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Abstract 
Microarray technology has been extensively used to detect patterns in gene 
expression that stem from regulatory interactions. Seminal studies demonstrated 
that the synergistic use of microarray-based techniques and bioinformatics analysis 
of genomic data might not only further the understanding of pathological 
phenotypes, but also provide lists of genes to dissect a disease into distinct groups, 
with different diagnostic or prognostic characteristics. Nonetheless, optimism for 
microarray-based technologies as clinical tools has suffered of both perceptual and 
real setbacks. Criticism is largely on the ground of general non-reproducibility of 
gene signatures and the inability to replicate results. 
The research activity illustrated in this thesis aimed at fulfilling methodological gaps 
still hampering the identification of gene signatures with proved prognostic and 
predictive value and, finally, affecting their reliability, reproducibility, and 
applicability. Specifically, we developed computational methods to efficiently merge 
gene expression profiles of tumors from multiple, independent, retrospective studies 
and to construct meta-datasets storing high throughput gene expression profiles and 
clinical information from thousands cancer patients. Moreover, we expanded on the 
concept of gene signature and derived consensus signatures, i.e. linear weighted 
combinations of gene signatures that, singularly, recapitulate independent signaling 
pathways or specific molecular mechanisms, while intertwined together render a 
more comprehensive molecular model of tumor progression or chemo-resistance. 
This approach has been applied to breast cancer, in general, and to triple negative 
breast cancer (TNBC), in particular, and resulted in the identification of gene 
signature combinations with increased robustness and power to predict cancer 
progression or response to therapy over the use of single signatures. 
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Riassunto 
Tra le varie tecnologie high-throughput, i microarray, unitamente agli strumenti 
bioinformatici per l’analisi dei relativi segnali, rappresentano una risorsa 
preziosissima per lo studio dei meccanismi di regolazione trascrizionale che 
contribuiscono a determinare gli stati fisiologici e patologici delle cellule. In ambito 
oncologico, molti studi hanno dimostrato che l’utilizzo sinergico dei microarray e 
della bioinformatica può contribuire, non solo a una maggiore comprensione dei 
meccanismi coinvolti nel cancro, ma anche alla definizione di liste di geni con i quali 
identificare gruppi patologici con diverse caratteristiche diagnostiche o 
prognostiche. Tuttavia, l'ottimismo per le tecnologie basate sui microarray come 
strumenti clinici ha subito delle battute d'arresto sia percettive che reali . La critica è 
in gran parte dovuta alla non riproducibilità delle firme geniche e all'incapacità di 
replicare i risultati. L'attività di ricerca illustrata in questa tesi ha avuto l’obiettivo di 
colmare lacune metodologiche che ancora ostacolano l'identificazione di marcatori 
prognostici e predittivi e che, infine, inficiano affidabilità, riproducibilità ed 
applicabilità. In particolare, sono stati sviluppati metodi computazionali per 
integrare set multipli di dati di profili di espressione genica di tumori provenienti da 
studi indipendenti gli uni dagli altri al fine di costruire un meta-dataset di profili di 
espressione genica con associate le informazioni cliniche dei pazienti. Inoltre, è stato 
ampliato il concetto di firma genica e di firme consenso derivate, cioè combinazioni 
lineari di firme geniche che, singolarmente, ricapitolano vie di segnalazione 
indipendenti o meccanismi molecolari specifici, mentre unite insieme rendono un 
modello molecolare di progressione del tumore o chemio-resistenza più completo. 
Questo approccio è stato applicato al tumore al seno, in generale , e al tumore triplo 
negativo ( TNBC ), in particolare , e ha portato all'identificazione di combinazioni di 
firme geniche con maggiore robustezza e potere di predire la progressione del 
tumore o la risposta alla terapia rispetto all'uso delle firme singole. 
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Chapter 1 

Introduction 

1.1 Motivations 

The completion of genome sequencing of specific organisms, combined with 
technological advances in the capability to detect genome-wide changes, has 
heralded a new era in the quest for understanding the complex molecular 
mechanisms of living organisms. The exploration of all genes at once, in a 
systematic fashion, represented a sort of revolution that shifted molecular biology 
from a reductionist, hypothesis-driven approach towards deciphering the signaling 
networks that operate in the cell and the molecular basis of physiological states. 
Microarray technology for the parallel quantification of large numbers of messenger 
RNAs is one of the technical cornerstones of a new approach to molecular biology, 
the so-called omics revolution, in which an organism is viewed as an integrated and 
interacting network of genes, proteins and biochemical reactions. According to the 
central dogma of molecular biology, genomic DNA is first transcribed into mRNA, 
which thereafter is translated into protein. Proteins play critical roles in most intra- 
and extra-cellular activities, including enzymatic, regulatory and structural functions. 
However, relative difficulties of expression measurement capabilities at the protein 
level and availability of high-throughput technologies for detection of individual 
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mRNAs have led to the wide use of microarrays to simultaneously measure the sum 
of all mRNA expression in a sample. Like most classical methods for analysis of 
gene expression at the mRNA level, the basic principle of microarray technology is 
complementary hybridization of nucleotides, as explained by the Watson–Crick 
double helical model of DNA. Microarrays measure transcriptomic modifications 
that, either at the single gene level or collectively in multiple genes, are supposed to 
induce or capture changes in protein expression. As opposed to the classical 
northern-blotting analysis, the mRNA from a given cell line or tissue is used to 
generate a labeled sample, sometimes termed the target, which is hybridized in 
parallel to a large number of DNA sequences, immobilized on a solid surface in an 
ordered topology. Tens of thousands of transcript species can be detected and 
quantified simultaneously. In the last two decades, DNA microarray technology has 
been advancing rapidly. The development of more powerful robots for arraying, 
new surface technology for glass and silicon slides, and new labeling protocols and 
dyes, together with increasing genome-sequence information for different 
organisms, including humans, allowed extending the quality and complexity of 
microarray experiments. Although academic groups and commercial suppliers have 
developed many different microarray systems, in the most commonly used 
technology the arrayed material, generally termed the probe (being the equivalent to 
the probe used in a northern blot analysis), is an oligonucleotide sequence. In 
oligonucleotide arrays, short 20–25mers are synthesized in situ, either by 
photolithography onto silicon wafers (high-density-oligonucleotide arrays from 
Affymetrix) or by ink-jet technology (developed by Rosetta Inpharmatics and 
licensed to Agilent Technologies) or the BeadArray technology (from Illumina 
company). Since the late 1990s, the power and potential of microarray technology 
have been fully appreciated and applied to develop novel descriptions of complex 
diseases as cancer. The underlying hypothesis is that novel genes and pathways, 
previously not implicated in the patho-physiology of a certain tumor, might emerge 
from microarray studies to provide new theories regarding the disease process and 
potential therapeutic drug targets. The spread in use of the technology was 
unprecedented, with exponential growth in the number of publications reporting 
results from its application. Seminal studies demonstrated that the synergistic use of 
microarray-based techniques and bioinformatics analysis of genomic data might not 
only further the understanding of cancer taxonomy, but also provide lists of genes 
that can dissect a tumor into distinct groups, with different diagnostic or prognostic 
characteristics. The identification of these gene expression signatures held promise 
for being more effective than standard prognostic and predictive factors. A 
demonstrable success occurred in early 2007 when the U.S. Food and Drug 
Administration approved MammaPrint, the first microarray-based commercial 
molecular prognostic test for breast cancer. Tumor profiling has also changed the 
perception of metastatic propensity suggesting that a metastasis trait may be 
encoded within the genome. The fact that specific collection of genes expressed in 
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primary tumors could be predictive for metastasis allowed inferring that metastatic 
proclivity might be intimately wired to the same aberrant genetic pathways that 
control malignant progression at the primary tumor site. Although the invasion-
metastasis cascade may originate at a level unobservable using microarray-based 
technology (e.g., molecular interactions occurring at the protein scale), some genes 
or functional classes of genes are invariably altered when tumor cells acquire 
malignant properties, including genes involved in cell-cycle control, adhesion, 
motility, apoptosis and angiogenesis. Nonetheless, optimism for microarray-based 
technologies as predictive tests of cancer recurrence has suffered both perceptual 
and real setbacks. Criticism is largely on the grounds of general non-reproducibility 
of gene signatures and the inability to replicate results in terms of significant genes 
identified from experiments in different laboratories and from different 
experimental platforms. Skepticism regarding reliability and reproducibility reflects 
the complexity of the analytical methods and the peculiar nature of the data 
generated by high-throughput technologies. Different microarray studies led to the 
identification of different gene expression signatures able to predict the clinical 
outcome but characterized by a minimal, if not null, number of overlapping genes. 
Again, several technical, analytical and biological reasons may, at least partially, 
explain these seemingly discrepant results. These include the use of different 
microarray platforms with different sets of probe and data normalization methods, 
as well as differences in the study populations. Two other major explanations are 
the lack of independent measurements between the expressed genes and the limited 
statistical power applied to select individual genes associated with clinical outcome. 
The intrinsic dependency of gene expression signals implies that if the expression of 
a particular gene is associated with clinical outcome, all other genes, whose 
expression is closely correlated with that gene, will also correlate with clinical 
outcome. Since the strength of correlation between the genes and clinical outcome 
varies from data set to data set, the rank order of these informative genes in the 
prognostic signatures is highly unstable, thus leading to different gene lists with a 
small overlap. The low statistical power of prognostic or predictive signatures is 
mostly due to the limited number of samples included in the different data sets used 
for the development of classifiers. In retrospective studies, an adequately powered 
sample size is the most important, and most overlooked, aspect of successful 
expression array analysis. The small number of samples in individual studies, 
particularly for human studies where there is a high degree of both intra- and inter-
population variability, represents a major limitation for the detection of gene 
expression signatures and ultimately results in disease biomarkers that are 
population dependent, rather than having global applicability (Bhattacharya and 
Mariani, 2009). Regarding the computational approach, concepts inspiring the 
marker discovery process can be classified in top-down or bottom-up approaches 
(Sotiriou and Piccart, 2007). In the top-down approach, a prognostic model is 
derived simply by looking for gene expression patterns associated with clinical 
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outcome without any a priori biological assumption, whereas in the bottom-up, 
gene expression profiles linked with a specific biological phenotype are first 
identified and subsequently correlated to survival. Both strategies rely only on gene 
expression data and/or clinical information and none of them include mechanistic 
insights in the discovery process. It is most likely that the selection of predictive 
genes on the basis of mechanistic insights, rather than solely on the basis of 
expression levels and outcome data, will dramatically improve reliability, robustness, 
and, ultimately, biological significance of prognostic and predictive signatures.  

1.2 Breast cancer 

In recent decades, we have witnessed an increased incidence of cancer, rendering 
cancer one of today’s major public health issues. Currently, breast cancer is the most 
frequently diagnosed malignancy in women and it causes death mainly in European 
and American women. The use of screening mammograms in developed countries 
brought to the identification of more and more women diagnosed with breast 
cancer at an early stage (i.e., small size tumors and no invasion of regional lymph 
node). In the majority of these cases, surgery is the primary treatment, alone or in 
combination with radiotherapy. Unfortunately, despite early detection, up to 50% of 
these women will develop distant metastasis, i.e. development of new tumors in 
different organs. Metastatic breast cancer is unfortunately incurable. As a result, 
since the mid 1980s, randomized trials of adjuvant systemic therapy (i.e., after 
surgery) have been conducted in an effort to reduce the rate of recurrence and to 
prolong the survival of patients with operable disease (EBCTCG, 2005). Due to the 
importance of breast cancer for public health, this disease has been the subject of 
intense research for decades. Moreover, the introduction of high throughput 
technologies, such as gene expression profiling, has provided powerful tools to 
study and fight this disease. The use of high-throughput technologies for the 
analysis of cancers has provided new hints for understanding the diversity and 
heterogeneity of cancers and to devise classification methods that better recapitulate 
the biology and clinical behavior of human tumors. Microarray-based gene 
expression profiling has highlighted the existence of breast cancer subtypes with 
distinct biology and clinical behavior (Sotiriou and Pusztai, 2009; Weigelt et al., 
2010). Instead, traditional histo-pathological characteristics, i.e. microscopic 
examination of the diseased tissues anatomy, are unable to capture the biologic 
heterogeneity of these tumors. Expression profiling class discovery studies have led 
to a working model for a breast cancer molecular taxonomy (Perou et al., 2000 ; 
Sorlie et al., 2003 ; Hu et al., 2006; Parker et al., 2009), which has become widely 
used and recently adopted for the design of clinical trials. Briefly, breast cancers 
were classified by hierarchical cluster analysis using an “intrinsic” gene list, i.e., list 
of “genes with significantly greater variation in expression between different tumors 
than between paired samples from the same tumour” (first described in Perou et al., 
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2000) into at least one of different molecular subtype classes: the luminal (often 
differentiated into two subgroups, for example, luminal A and B), HER2-enriched, 
basal-like, and normal breast-like (Perou et al., 2000; Sorlie et al., 2001-2003, Hu et 
al., 2006, Parker et al., 2009). Luminal A tumors usually have intermediate to high 
expression of ESR1 (or ER, estrogen receptor gene) and ER-regulated genes and 
rarely have high ERBB2 expression (HER2 gene). Luminal B tumors usually have 
intermediate to high expression of ESR1 and ER-regulated genes and often have 
higher proliferation than luminal A tumors. Together, luminal tumors constitute the 
most common molecular subtype of breast tumor and represent approximately 50% 
of all tumors in most series. Tumors of this subgroup are associated with a good 
prognosis and can be treated with targeted therapies, e.g. selective oestrogen 
receptor modulators (SERMS), such as tamoxifen or, in post-menopausal women, 
aromatase inhibitors such as anastrozole. HER2-enriched tumors usually have 
intermediate to high expression of the ERBB2 gene and intermediate to low 
expression of ER gene and estrogen-regulated genes; this subtype comprises 
approximately 10% of all breast tumors. Before the introduction of Trastuzumab 
into breast cancer treatment in 2001 for metastatic disease (Slamon et al., 2001) and 
in 2005 for early breast cancer (Piccart-Gebhart et al., 2005), tumors of HER2-
overexpressing type were associated with a poor prognosis (Sorlie et al., 2001-2003, 
Hu et al., 2006, Parker et al., 2009). Basal-like tumors usually have low expression of 
ER, PgR (or PR, progesterone receptor gene), and HER2, but have high 
proliferation rate. This particular subtype represents approximately 15-20% of 
breast cancers. They occur in younger women than other subgroups (Carey et al., 
2006 ; Foulkes et al., 2004 ; Calza et al., 2006 ; Rakha et al., 2006). They have been 
shown to have worse overall and relapse-free survival rates than luminal and HER2-
overexpressing subtypes (Sorlie et al., 2001) and they are more likely than other 
subtypes to metastasize to lung and brain, sites that are known to be associated with 
poor survival (Tsuda et al., 2000; Banerjee et al., 2006 ; Rodríguez-Pinilla et al., 2006; 
Hicks et al., 2006; Fulford et al., 2007). Basal-like tumours are highly proliferative 
tumours, which is thought to be largely due to their deficiencies in both p53 and 
retinoblastoma 1 (RB1) protein function (Perou, 2010).	  This subtype is also called 
triple negative breast cancer (TNBC). The main characteristics of triple-negative cancers 
that have emerged from the literature illustrate their similarities to basal-like cancers 
(Badve et al., 2011). TNBC is diagnosed by immunohistochemistry (IHC) 
methodologies to detect ER, PR and HER2 expression and joint guidelines by the 
American Society of Clinical Oncology (ASCO) and the College of American 
Pathologists (CAP) helped to standardize the techniques in the hope of improving 
their reliability and reproducibility (Penault-Llorca et al., 2009). To date, there is no 
targeted therapy available for treatment of this specific subtype and no preferred 
standard form of treatment for this group, and treatment should be selected as it is 
for other subtypes (Foulkes et al., 2010).  
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In cancer behavior, prognostication and prediction of therapy benefit are two main 
issues. The goal of prognostication is to predict the survival of a patient, or her risk 
to develop metastases without treatment. Specifically, prognosis attempts to predict 
the prospect of remission of a breast cancer patient from the usual course of disease 
after the initial surgery. This information is extremely important because it assists 
oncologists in determining which breast cancer patients require chemo-, hormono- 
or other systemic therapies, and which women can safely be treated with 
radiotherapy alone. There are several clinical variables commonly used for breast 
cancer prognosis. The risk of recurrence is primarily determined by the age of the 
patient, nodal status, tumor size, histological grade, the expression status of the 
hormonal receptors, i.e. the estrogen (ER) and the progesterone receptors (PgR) as 
quantified by immunohistochemistry (IHC), and the expression (IHC) or the gene 
amplification (fluorescence In situ hybridization, FISH) status of the HER2 
oncogene. These clinical variables can provide prognostic information and are 
summarized in clinical guidelines, such as the National Institute of Health (Eifel et 
al., 2001) in the USA or the St. Gallen consensus criteria (Goldhirsch et al., 2003) in 
Europe in order to assist clinicians and patients in adjuvant therapy decision-
making. Histological grade (Scarff and Torloni, 1968) is a well-known histo-
pathological parameter routinely used in the clinic to measure tumor differentiation, 
i.e. how much tumor cells look like the normal tissue from which they originated. 
Histological grade is known to be highly prognostic in breast cancer (Elston and 
Ellis, 1991). Patients having a histological grade 1 tumor exhibit better survival than 
patients having a histological grade 3 tumor. So, the use of histological grade is not 
sufficient to predict precisely the clinical outcome of a breast cancer patient. To 
reduce uncertainty in prognosis, these clinical variables can also be combined into 
multivariable outcome prediction models, like Adjuvant! Online (Olivotto et al., 
2005) and the Nottingham Prognostic Index (Galea et al., 1992). These tools use 
age, nodal status, tumor size, histological grade, and ER status as clinical variables to 
estimate the risk of recurrence of breast cancer patients. However, risk estimation 
based on these guidelines or prognostic models is far from perfect and much 
progress is needed before it will be possible to clearly identify those patients, 
especially with early (node-negative, i.e. nodal status equal to 0) breast cancer, who 
would really need adjuvant systemic therapy (Isaacs et al., 2001 ; Sotiriou and 
Piccart, 2007). As a result, many women are prescribed adjuvant chemotherapy that 
probably would have had excellent long-term outcomes without it, exposing them 
to the potential adverse effects of chemotherapy such as cardiac dysfunction, 
second malignancies and premature menopause. Therefore, better prognostic tools 
could avoid the adverse side effects of adjuvant therapies, as well as the high costs 
of such treatments. During the last two decades, several clinical and pathological 
parameters have been used to evaluate the prognosis of breast cancer patients, but it 
still remains a challenge to distinguish those patients who would really need 
adjuvant systemic therapy from those who could be spared such treatment. Clinical 
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investigators rapidly harnessed the great potential of gene expression profiling, not 
only for gaining new insights into cancer biology, but also as a powerful prognostic 
tool. Unlike the traditional clinical variables routinely measured in the clinic, which 
are limited to few, sometimes subjective, measurements, this technology enables the 
quantitative measurement of thousands of gene expressions in parallel, making 
possible the development of prognostic models with numerous molecular markers. 
In order to develop a more accurate tool for early breast cancer prognosis, the 
Netherlands Cancer Institute (NKI) conducted a comprehensive, genome-wide 
assessment of gene expression profiling (van ’t Veer et al., 2002). They identified the 
genes differentially expressed between two groups of patients that differ in their 
survival. The low-risk group included patients who had not developed distant 
metastases within the first five years after diagnosis, a result that contrasted with the 
high-risk group. The NKI group refined the set of relevant genes and built a risk 
prediction model with 70 prognostic genes (denoted by GENE70). This set of 
genes (gene signature) included mainly genes involved in the cell cycle, invasion, 
metastasis, angiogenesis and signal transduction. This gene signature was then 
validated on a larger set of patients, including both node-negative and node-positive 
breast tumors in treated and untreated patients from the same institution(van ’t Veer 
et al., 2002), and consequently proved to be predictor for distant metastasis-free 
survival, independently of several clinical prognostic indicators described above. To 
assess the clinical relevance of the GENE70 signature, the authors compared its 
performance to the National Institute of Health (NIH) consensus and the St Gallen 
guidelines. The NKI group found that the GENE70 signature, compared to the 
NIH and St Gallen classifications, was better at predicting which patients should 
have been spared adjuvant chemotherapy (low risk) and which patients should have 
been prescribed adjuvant chemotherapy (high-risk). The authors concluded that the 
GENE70 signature could outperform current clinical risk classifications and 
therefore could significantly impact on breast cancer management by sparing some 
women from over-treatment and the unnecessary toxicity of chemotherapy. Using a 
similar approach, Erasmus Medical Center and Veridex identified a prognostic gene 
signature (denoted by GENE76) that could be used to predict the development of 
distant metastases within the first five years after diagnosis in early (node-negative) 
breast cancer patients who did not receive systemic treatment (Wang et al., 2005). In 
contrast to van’t Veer, this study considered ER-positive patients separately from 
ER-negative patients. This decision was based on the assumption that the 
mechanisms for disease progression could differ for these two ER-based subgroups 
of breast cancer patients. Similarly to the GENE70 signature, when compared to 
the classification results of St. Gallen and NIH, the GENE76 signature better 
identified the low-risk patients not needing treatment. By using gene expression 
profiling to develop gene signatures that are advantageous when compared to 
clinical guidelines, we could therefore significantly reduce the number of patients 
subject to unnecessary treatment. This would ultimately also translate into savings in 
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cost and health resources, without sacrificing long-term clinical outcome. However, 
a careful validation of the gene expression profiling technology and prognostic gene 
signatures is required before bringing this predictive tool into day-to-day clinical 
practice. The use of systemic adjuvant treatments has increased in the last twenty 
years, with the objective of prolonging the survival of breast cancer patients. New 
treatments are continually being developed in order to target specifically the cancer 
cells and to reduce toxicity for the individual. The goal of prediction is to predict the 
response of a breast cancer patient to a treatment. There exist two settings for 
breast cancer prediction: the adjuvant and the neo-adjuvant settings (Mauri et al., 
2005). The adjuvant setting is similar to the prognostication, except that the patients 
are prescribed a therapy. In the neo-adjuvant setting, the situation is more complex. 
First, a biopsy of the breast tumor is taken at diagnosis, before the neo-adjuvant 
therapy. Second, breast surgery is carried out to remove the tumor and to assess 
whether the tumor was affected by the treatment (e.g. decrease in tumor size). A 
pathological complete response (pCR) is then defined as the complete 
disappearance of tumor cells in the breast and the axillary lymph nodes and it has 
been shown that a pathological complete response is associated with excellent long-
term survival. In this case, only the response or the resistance to the treatment is 
analyzed, leaving aside the issue of the survival of the patients. Currently, there exist 
few tools for prediction. For instance, the expression status of the hormonal 
receptors (ER and PR) and the expression/gene amplification status of the HER2 
oncogene are used to define the subset of individuals who may benefit from 
hormono- and chemo- therapy, respectively. Despite the existence of the tools 
described above, current prediction models need to be improved, since the accuracy 
of these tools is poor (Sotiriou and Piccart, 2007; Lønning et al., 2007). Numerous 
attempts have been made to identify prognostic groups based on other pathological 
characteristics, mainly lymph vascular invasion or proliferation markers such as S-
phase fraction, which might better reflect tumor biology and serve as prognostic 
and/or predictive markers that may aid in treatment decision making in the adjuvant 
setting (Colozza et al., 2005). In addition, a variety of molecular tumor markers have 
been studied both in the laboratory and in the clinical settings for their ability to 
predict response to treatment, but unfortunately, the studies examining the clinical 
utility of these tumor markers have usually used small, heterogeneous, retrospective 
patient series, often with insufficient power to draw robust conclusions; moreover, 
they have not been reported in a detailed enough fashion to provide information for 
the reproduction and external validation of results (McShane et al., 2005). There is 
also a lack of well-designed, prospective clinical trials addressing the clinical utility of 
such markers. Given the complexity of breast cancer and the huge diversity in 
molecular pathways dissected by basic research scientists (Konecny et al., 2004), 
isolated markers might not be sufficient to predict response or resistance to 
treatment, and a comprehensive view of the disease is needed. These limitations 
have driven breast cancer research to develop more accurate molecular predictors of 
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clinical outcome and response to various anti-cancer therapies using a multi-marker 
approach with the help of the quantitative gene expression profiling technologies. 

1.3 Contribution 

The introduction of gene-expression tests have ushered in a new era in which many 
conventional clinical markers and predictors may be seen merely as surrogates for 
more fundamental genetic and physiologic processes. However, the 
multidimensional nature of these predictors demands both large numbers of 
clinically homogeneous patients to the used in the validation process, and 
exceptional rigor and discipline. Every study provides an opportunity to tweak a 
genetic signature, but the development of scientifically robust and clinically reliable 
tools require study designs and computational procedures. If gene-expression 
signatures are to reach the clinical setting, several outstanding issues will need to be 
addressed. First, researchers in this area will now need to turn their attention to 
methods of sample acquisition and the effect these methods have on the prognostic 
and predictive power of microarray data. Secondly, standardization of protocols and 
platforms for the measurement of gene-expression signatures in a robust and 
reproducible manner will have to be adopted. Thirdly, prior to commercialization of 
these signatures, a significant amount of validation will be required. Lastly, 
statistically powered studies with large, independent patient cohorts will be a 
prerequisite for acceptance. The research activity illustrated in this thesis aimed at 
fulfilling these methodological gaps that still hamper the identification of prognostic 
and predictive markers and affecting their reliability and reproducibility. Specifically, 
we addressed aspects related to i) the sample size of analyzed studies (dataset) and ii) 
the computational approaches applied in the discovery process. We developed a 
bioinformatics strategy to i) integrate multiple, independently generated datasets of 
tumor specimens with well-annotated clinical data, ii) to exploit this large-scale 
genomic data, in a retrospective behavior, for elucidating mechanisms of cancer 
progression and iii) to derive gene signatures as models for predicting neo-adjuvant 
chemotherapy sensitivity or resistance. This approach was tested and applied to 
breast cancer. These computational methods contribute fulfilling gaps in the 
bioinformatics analysis of microarray data where probe selection, annotation and 
specificity, comparability of different microarray platforms and signal normalization 
strategies, still represent a major, and partially unresolved, computational issue when 
analyzing multiple gene expression datasets. The problem of the limited sample size 
characterizing most functional genomics studies was addressed taking advantage of 
the increasing number of microarray datasets being deposited in public domains as 
Gene Expression Omnibus (GEO). Real opportunity exists for more reliable 
information to be generated through the integration of multiple, independently 
generated data focusing on the same tumor type, i.e., through meta-analysis. Meta-
analysis strategies can be divided into two broad classes: data integration and data 
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combination. In meta-analyses based on data integration each dataset is analyzed by 
itself and then results are combined with statistical techniques. Instead, data 
combination requires an ad-hoc normalization step of the raw data files and is 
applicable only when the expression profiles have been obtained using the same 
array technology (e.g. Affymetrix, Agilent, Illumina, etc.). Despites numerous 
efforts, mining and analyzing publicly available microarray data still represents a 
bioinformatics challenge and the lack of appropriate tools able to overcome critical 
issues, as annotation, cross-platform comparison and handling of metadata, is still 
hampering the potentialities of large-scale meta-analyses. Performing a meta-analysis 
of independent microarray studies requires to carefully handling the heterogeneity 
of array designs, which complicates cross-platform integration, and of sample 
descriptions, which impacts the correct characterization of specimens. At least for 
the case of Affymetrix arrays, cross-platform comparison has partially been solved 
by the adoption of custom Chip Definition Files (custom-CDF) which, linking 
probe sequences to annotated entities as genes or transcripts, allow matching 
expression profiles across subsequent generations of microarrays (Gautier et al., 
2004 ; Dai et al., 2005; Ferrari et al., 2007). In custom CDFs, probes matching the 
same transcript, but belonging to different probes sets, are aggregated into putative 
custom-probe sets, each one including only those probes with a unique and 
exclusive correspondence with a single transcript. Similarly, probes matching the 
same transcript but located at different coordinates on different type of arrays may 
be merged in custom-probe sets and arranged in a virtual platform grid. As for any 
other microarray geometry, this virtual grid may be used as a reference to create i) 
the virtual-CDF file, containing the probes, shared among the platforms of interest, 
and their coordinates on the virtual platform, and ii) the virtual-CEL files containing 
the intensity data of the original CEL files properly re-mapped on the virtual grid. 
Once defined the virtual platform through the creation of its custom-CDF and 
transformed the CEL files into virtual-CELs, raw data, originally obtained from 
different platform, are homogeneous in terms of platform and can be preprocessed 
and normalized adopting standard approaches, as RMA (Robust Multiarray 
Analysis; Irizarry et al., 2003). Instead, retrieval, organization and utilization of meta-
information is still an extremely critical step which affects the correct match 
between raw data files and sample IDs and the organization of samples into 
meaningful, homogeneous groups. This task is further complicated by the fact that 
i) datasets may be incompletely annotated, ii) the relationship between specimen, 
biological sample, phenotypic characteristics and raw data files, the most granular 
object in repositories, may be not sufficiently explicit, and iii) the procedures for 
managing large numbers of data files and related meta-information are tedious and 
error prone (Ioannidis et al., 2009).  
 
Considering as model breast cancer, we collected 27 datasets, all hybridized on the 
same Affymetrix platform and with available raw data. Thus we used a combination 
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approach that involved not only the expression signals but also sample meta-
information. As a result, we constructed a meta-dataset comprising 3661 unique 
breast cancer samples with associated detailed clinical and outcome information and 
response to neo-adjuvant chemotherapy that allowed a statistically robust 
investigation of cancer subpopulations. In fact, microarray-based gene expression 
profiling allows the stratification of breast cancers into molecularly and clinically 
different subtypes with distinct gene expression patterns based on the activity of 
specific signaling cascades. In basic and translational research, this technique has 
become a working model for breast cancer molecular classification and for the 
definition of effective predictive and prognostic tools. Both these issues are critical 
in Triple Negative Breast Cancer (TNBC), a particular molecular subtype also 
known as basal-like, which still lacks not only of prognostic and therapeutic options, 
but also of a solid understanding of the molecular mechanisms at the base of its 
metastatic proclivity. Moreover, selecting markers extracted from gene signatures 
with biological insights, rather than solely on the basis of gene expression and 
phenotypic data, without taking into account a priori biological knowledge, could 
dramatically improve the reliability and robustness of prognostic and predictive 
signatures. Prediction of response to therapy is a clinically relevant need to improve 
patient selection for drug administration. An option would be the use of predictive 
markers of response to distinguish patients who are likely to receive benefits from 
those who are not, thus sparing predicted poor responders from the significant 
associated toxicities. Unfortunately, although this is an attractive strategy, suitable 
biomarkers predicting response to specific chemotherapy agents have, on the whole, 
remained elusive. Recently, it has been suggested that a single biomarker may not be 
sufficient for predicting anthracycline response, rather that a multifactorial approach 
might be better. Based on this, we exploited genetic data and clinical characteristics 
and responses of the retrospective cohort study to expand on the concept of 
multifactorial scoring and to derive Consensus Signatures as models for predicting neo-
adjuvant chemotherapy sensitivity or resistance in triple negative breast cancer 
(TNBC). We designed Consensus Signatures as linear weighted combinations of gene 
signatures that, singularly, recapitulate independent signaling pathways (e.g., 
YAP/TAZ, mutp53/p63) or specific molecular mechanisms (i.e., hypoxia, immune 
function, induction of apoptosis), while intertwined together render a more 
comprehensive molecular model of chemo-resistance. As such, combinations of 
gene signatures resulted in a substantial improvement of the power to predict 
response to therapy over the use of single signatures. 
Finally, in collaboration with the group headed by Giannino Del Sal at the 
University of Trieste, we investigated the breast cancer meta-dataset to gain new 
insights into the molecular bases of breast cancer stem cell (CSC) malignant 
properties which are implicated in both treatment resistance and disease relapse 
(Rustighi et al., 2014). 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
Chapter 2 

Materials and methods 

This chapter contains a description of breast cancer studies (datasets), after 
searching public databases (Gene Expression Omnibus (GEO), ArrayExpress), 
published in peer-reviewed journals analyzing gene expression profiling data from 
tumor tissues or biopsies from patients. Each dataset is fully reviewed and detailed. 
Following paragraphs describe how different datasets were combined together, the 
subtype molecular classification models and the methods used to derive predictive 
signatures. Finally, theoretical aspects of survival and statistical analyses applied for 
the meta-analysis of gene expression data are presented. 

2.1 Breast cancer datasets 

Public repositories have been inspected to retrieve gene expression data from tissue 
of breast cancer patients that were produced using Affymetrix technology and for 
which clinical annotations were publicly available. 
The huge amount of gene expression profiles produced using microarray technology 
induced the creation of public repositories where storing and make publicly 
available to the scientific community this ocean of genomic data. Gene expression 
profiling, obtained during experiments designed to study a particular biological 
pathway, contains indeed a wealth of information not necessarily used in the original 
study and therefore available to other researchers for validating and confirming 
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biological hypotheses. To enable the storage and exchange of gene expression data 
produced by high-throughput technologies, in 2001 a standard for describing all the 
information characterizing an experiment has been developed.  
This standard is called MIAME (Minimum Information About a Microarray 
Experiment; Brazma et al., 2001) and it provides guidelines for the storage of data 
produced with microarrays and specify all the information that has to complement a 
genome-wide gene expression experiment. According to MIAME standards, public 
databases have been created with the purpose of maintaining, coordinating and 
distributing data from experiments involving the microarray technology. The major 
repositories of gene expression profiles are: 

• Gene Expression Omnibus (GEO;	   http://www.ncbi.nlm.nih.gov/geo/) at 
the National Center for Biotechnology Information (NCBI, Bethesda, MD, 
USA); 

• ArrayExpress at the European Bioinformatics Institute 
(http://www.ebi.ac.uk/microarray-as/ae/); 

• caArray (Cancer Array Informatics Project), a database dedicated to the study 
of gene expression profiles in tumor cells and developed by the NCI Center 
for Bioinformatics https://cabig.nci.nih.gov/tools/caArray); 

• Stanford Microarray Database (SMD;	   http://smd.stanford.edu/), collecting 
data mostly derived from spotted microarrays. 

All these databases have been inspected to retrieve gene expression data from tissue 
of non-hereditary breast cancer patients that were produced using Affymetrix arrays 
and annotated with information on the clinical outcome. This survey returned a 
total of 4640 samples referring to 27 major studies listed in Table 2.1 and described 
in the following paragraphs. 
Additional datasets produced using different type of microarrays are described in 
paragraph 2.3 and was used as a validation set. 

Table 2.1: Breast cancer datasets analyzed in this thesis. 

Study Affymetrix platform Samples Data source References 

Stockholm HG-U133A 159 GSE1456 Pawitan et al., 2005 
EMC-286 HG-U133A 286 GSE2034 Wang et al., 2005 
EMC-58 HG-U133A 58 GSE5327 Minn et al., 2007 
MSK HG-U133A 82 GSE2603 Minn et al., 2005 
Uppsala-Miller HG-U133A 236 GSE3494 Miller et al., 2005 
Ivshina-Miller HG-U133A 249 GSE4922 Ivshina et al., 2006 

Loi HG-U133A 
HG-U133 Plus 2.0 414 GSE6532 Loi et al., 2007; Loi et al., 

2008; Loi et al., 2010 
Sotiriou HG-U133A 187 GSE2990 Sotiriou et al., 2006 

Tamoxifen HG-U133 Plus 2.0 77 GSE9195 Loi et al., 2008;  
Loi et al., 2010 

Desmedt HG-U133A 198 GSE7390 Desmedt et al., 2007 
Schmidt HG-U133A 200 GSE11121 Schmidt et al., 2008 
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Veridex HG-U133A 136 GSE12093 Zhang et al., 2009 
     
Chin HG-U133AAofAV2 129 E-TABM-158 Merritt et al., 2008 
Zhou HG-U133AAofAV2 54 GSE7378 Zhou T et al., 2007;  

Yau C et al., 2008 
 

TOP trial 
 
HG-U133 Plus2.0 

 
120 

 
GSE16446 

Desmedt Cet al., 2011; Li Y 
et al., 2010;Juul N et al., 
2010 

GSE19615 HG-U133 Plus2.0 115 GSE19615 Li Y et al., 2010 
IPC HG-U133 Plus2.0 266 GSE21653 Sabatier R et al., 2011 
KFSYSCC HG-U133 Plus2.0 327 GSE20685 Kao KJ et al., 2011 
 
GSE31519 

 
HG-U133 Plus2.0 

 
67 

 
GSE31519 

Rody A. et al., 2011; Karn 
T. et al., 2011; Karn T. et 
al., 2012 

GSE22093 HG-U133A 103 GSE22093 Iwamoto T et al., 2011 
Hatzis HG-U133A 508 GSE25066 Hatzis C. et al., 2011 
GSE23988 HG-U133A 61 GSE23988 Iwamoto T et al., 2011 
GSE20271 HG-U133A 178 GSE20271 Tabchy A. et al., 2010 
GSE20194 HG-U133A 230 GSE20194 Popovici V. at al., 2010; Shi 

L. et al., 2010 
Miyake HG-U133 Plus2.0 115 GSE32646 Miyake T et al., 2012 
GSE18728 HG-U133 Plus2.0 24 GSE18728 Lin Y et al., 2010 
GSE19697 HG-U133 Plus2.0 61 GSE19697 Korde LA et al., 2010 

2.1.1 Stockholm 
The Stockholm dataset derives from the analysis of 524 breast cancer patients that 
have been operated at the Karolinska Hospital from January 1 1994 to December 31 
1996 and identified from the population-based Stockholm–Gotland breast cancer 
registry established in 1976 (Pawitan et al., 2005; Table 2.2). Available tumor 
material was frozen on dry ice or in liquid nitrogen and stored in -70°C freezers. 
Out of the 524 tumors, 231 samples were excluded from gene expression profiling 
because of insufficient quantity of frozen tissue, 89 for various technical reasons (as 
degraded tumors and insufficient amount of RNA), 7 because the tissue was from 
patients living abroad and 6 because the patient refused participation in the study. 
Of the remaining 191 samples, 159 were profiled using Affymetrix HG-U133A and 
HG-U133B platforms, 17 were excluded because from neo-adjuvant therapy-treated 
patients, and RNA from the remaining 14 samples was hybridized on HG-U95 
arrays. The remaining 159 tumors were divided in two groups according the 
different treatment: 126 patients received systemic adjuvant therapy and 33 no 
systemic adjuvant therapy. In the first group, 104 patients received Tamoxifen and 
its combinations. 
 
Table 2.2: Characteristics of patients operated for breast cancer at the Karolinska Hospital 1994–
1996 and considered in the Stockholm dataset (Pawitan et al., 2005). 

Patient categories 
All patients 

(n=524) 

No available 
tissue 

(n=231) 

Excluded for 
other reasons 

(n=134) 

Included for 
analysis 
(n=159) 
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Mean age at breast cancer 
diagnosis (years) 58 57 58 58 

Mean tumor size (mm) 20 16 24 22 
Proportion of patients with 
tumor size <21 mm (%) 68 77 57 62 

Proportion of patients with 
positive lymph nodes (%) 26 16 32 38 

Proportion deceased (%) 20 12 26 24 

 
Tumors sections from the primary tumors from patients with array profiles were 
classified using the Elston–Ellis grading (Elston and Ellis, 1991). These tumors were 
characterized with ER, PR and HER2 status. In the adjuvant treatment Tamoxifen 
and/or goserelin is normally used for hormonal treatment, but mostly intravenous 
cyclophosphamide, methotrexate and 5-fluorouracil (CMF) on days 1 and 8 was 
used as adjuvant chemotherapy. After primary therapy, patients were recommended 
to have regular clinical examinations and yearly mammograms, in addition to 
laboratory and X-ray tests guided by clinical signs and symptoms. Patients were 
normally followed for 5 years. There was no loss to follow-up. The relapse site, date 
of relapse, relapse therapy and date of death were ascertained in May 2002. The 
average follow-up was 6.1 years. Cause of death has been coded as death due to 
breast cancer (DEATH_BC; 1 = dead from breast cancer, 0 = alive or censored), 
including those with distant metastases or for other related causes, death due to 
other malignancies and nonmalignant disorders (DEATH; 1 = dead, 0 = alive or 
censored). During the follow-up patients developing breast cancer relapse were 
coded as RELAPSE (1 = relapse, 0 = no relapse or censored). Data are publicly 
available in the form of raw files at Gene Expression Omnibus GSE1456 
(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE1456). 

2.1.2 EMC-286 
The Erasmus Medical Centre (EMC) dataset includes 286 samples derived from the 
Rotterdam tissue bank (Wang et al., 2005). These tumor samples come from 
patients with lymph node-negative breast cancer who were treated during 1980-95, 
but who did not receive any systemic neoadjuvant or adjuvant therapy. Tumors 
samples have been submitted to EMC from 25 regional hospitals for measurements 
of steroid-hormone receptors and a total of 436 samples of invasive tumors have 
been processed. Patients with poor, intermediate and good clinical outcome have 
been included. Out of the original 436 samples, 150 have been rejected on the basis 
of insufficient tumor content (53), poor RNA quality (77) and poor chip quality 
(20); thus, 286 samples were considered eligible for gene expression analysis. Clinical 
and pathological features of the EMC patients are summarized in Table 2.3. The 
median age of the patients at surgery was 52 years (range 26-83); 219 had undergone 
breast-conserving surgery and 67 modified radical mastectomy. Radiotherapy was 
given to 248 patients (87%) according to the institutional protocol. All involved 
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patients were lymph-node-negative, based on pathological examination by regional 
pathologists. Amounts of estrogen receptors (ER) and progesterone receptors (PR) 
have been measured by ligand-binding assay, enzyme immunoassay or 
immunohistochemistry. The post-operative follow-up involved examinations every 
6 months for 2 years, every 6 months for 3-5 years and every 12 months for 5 years. 
The date of metastasis was defined as the time of metastasis confirmation after 
symptoms reported by the patients, detection of clinical signs or at regular follow-
up. Tumor samples have been hybridized to the Affymetrix oligonucleotide 
microarray U133A GeneChip. The median follow-up for the 198 patients who 
survived was 101 months (range 20-171). Of the 286 patients included, 93 (33%) 
showed evidence of distant metastasis within 5 years. Data are publicly available in 
the form of raw files at Gene Expression Omnibus GSE2034 
(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2034). 
 
Table 2.3: Characteristics of patients from the EMC-286 dataset. 

Clinical variables Patients n=286 
Age, years  
<40 29 (10%) 
40-60 159 (56%) 
>60 87 (30%) 
Menopausal status  
Pre 139 (49%) 
Post 147 (51%) 
T stage  
T1 146 (51%) 
T2 132 (46%) 
T3/4 8 (3%) 
Grade  
Poor 148 (52%) 
Moderate 42 (15%) 
Good 7 (2%) 
Unknown 89 (31%) 
ER status  
Positive 209 (73%) 
Negative 77 (27%) 
PR status   
Positive 166 (58%) 
Negative 107 (37%) 
LN status  
Positive 0 
Negative 286 (100%) 
Metastasis within 5 years  
Yes 93 (33%) 
No 183 (64%) 
Type of metastasis  
Brain 10 (3%) 
Therapy  
Radio 248 (87%) 
Surgery  
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Breast conserving 219 (77%) 
Radical mastectomy 67 (23%) 

2.1.3 EMC-58 
The EMC-58 cohort consists of 58 estrogen receptor-negative samples available at 
GEO GSE5327 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE5327). 
Samples, obtained from the Erasmus Medical Center, were hybridized on HG-
U133A Affymetrix arrays and, together with the 286 samples previously described 
(EMC-286), constitute the so-called EMC-344 dataset described in Minn et al., 
2007. Patients’ characteristics are reported in Table 2.4. 
 
Table 2.4: Characteristics of patients from the EMC-58 dataset. 

Clinical variables Patients n=58 
Age, years   
<40 13 (22%) 
40-60 32 (55%) 
>60 13 (22%) 
T stage   
T1 21 (36%) 
T2 33 (57%) 
T3/4 4 (7%) 
ER status   
Positive 0 
Negative 58 (100%) 
PR status    
Positive 15 (26%) 
Negative 41 (71%) 
Unknown 2 (3%) 
Metastasis within 5 years   
Yes 10 (17%) 
No 1 (2%) 
Type of metastasis   
Lung 7 (12%) 
Other 4 (7%) 

2.1.4 MSK 

This study includes 121 samples of which 99 are derived from primary breast 
cancers surgically resected at the Memorial Sloan-Kettering Cancer Center 
(MSKCC; Minn et al., 2005). Clinical information as age at diagnosis, tumor size 
(cm), Lymph Nodes status (LN), ER status, PR status and Her2 status are available 
for 82 patients. Moreover, the samples are annotated in terms of clinical outcome as 
MFS (metastasis free survival), LMFS (lung metastasis free survival) and BMFS 
(bone metastasis free survival), defined as the interval between the date of breast 
surgery and the date of diagnosed all metastasis, lung metastasis and bone metastasis 
of breast cancer, respectively (Table 2.5). The MSK dataset is available at GEO 
GSE2603 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2603). 
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Table 2.5: Characteristics of patients from the MSK dataset. 

Clinical variables Patients n=82 
Age, years   
<40 8 (10%) 
40-60 44 (54%) 
>60 30 (37%) 
T stage   
T1 12 (15%) 
T2 58 (71%) 
T3/4 12 (15%) 
ER status   
Positive 46 (56%) 
Negative 36 (44%) 
PR status    
Positive 46 (56%) 
Negative 36 (44%) 
HER2 status   
Positive 58 (71%) 
Negative 18 (22%) 
Unknown 6 (7%) 
LN status   
Positive 54 (66%) 
Negative 28 (34%) 
Metastasis within 5 years   
Yes 22 (27%) 
No 5 (6%) 
Type of metastasis   
Lung 14 (17%) 
Bone 14 (17%) 
Brain NA 
Therapy   
Chemo 69 (84%) 
Hormonal 53 (65%) 

2.1.5 Uppsala-Miller 
The original patient material are freshly frozen breast cancers from a population-
based cohort of 315 women that represented 65% of all breast cancers operated in 
Uppsala County during the time period from January 1, 1987 to December 31, 1989. 
In the Uppsala-Miller dataset, frozen tumor tissues are available in 293 out of 
original 315 patients (Miller et al., 2005). Of these, 251 had RNA of sufficient 
quantity and quality for microarray experiments passed Affymetrix quality controls. 
Survival data were based on the information from the Swedish population registry 
and cause of death was obtained from a review of the patient records last completed 
in 1999. Outcome information was available for 236 tumor samples whose clinical 
characteristics are reported in Table 2.6. Among the 251 tumors included in the 
present study, 58 had p53 mutations found by cDNA sequence analysis of exons 2-
11 of the p53 gene. Clinic pathological variables were derived from the patient 
records and from routine clinical measurements at the time of diagnosis. Estrogen 
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(ER) and progesterone receptor (PR) status was determined by biochemical assay as 
part of the standard clinical procedure. An experienced pathologist determined the 
Elston-Ellis histological grade, classifying tumors into low-, medium-, and high-
grade. Axillary lymph node status was positive in 78 patients. Nine patients had 
unknown node status, because no axillary examination was performed due to 
advanced age or concomitant serious disease. Systemic adjuvant therapy was offered 
to all node-positive patients. In general, premenopausal women were offered 
chemotherapy and postmenopausal women received endocrine treatment. The 
samples were hybridized on Affymetrix HG-U133A and B platforms. Data are 
publicly available at GEO GSE3494 
(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE3494). 
 
Table 2.6: Characteristics of the 236 patients from the Uppsala-Miller dataset. 

Clinical variables Patients n=236 
Age, years   
<40 15 (6%) 
40-60 79 (33%) 
>60 140 (59%) 
Size (mm)   
Median 20 (2-130) 
Grade   
G1 62 (26%) 
G2 121 (51%) 
G3 51 (22%) 
Unknown 2 (1%) 
ER status   
Positive 201 (85%) 
Negative 31 (13%) 
Unknown 4 (2%) 
PR status    
Positive 179 (76%) 
Negative 57 (24%) 
p53 status   
Mutation 55 (23%) 
Normal 181 (77%) 
LN status   
Positive 78 (33%) 
Negative 149 (63%) 
Unknown 9 (4%) 
Survival time (years)   
Median 10.17 (0.25-12.75) 
Disease specific-death  55 (23%) 

2.1.6 Ivshina-Miller 
The Ivshina-Miller dataset consists of 289 patients profiled on Affymetrix HG-
U133A and B arrays (Ivshina et al., 2006). These samples were divided into two 
groups, depending on the site where samples were collected, i.e. the Uppsala cohort 
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(249 samples) and the Singapore cohort (40 samples). The Uppsala cohort originally 
was composed of 315 women representing 65% of all breast cancers resected in 
Uppsala County, Sweden, from January 1 1987 to December 31, 1989. For 
histological grading, new tumor sections were prepared from the original paraffin 
blocks and stained with eosin. All sections were graded in a blinded fashion 
according to the Nottingham Grading system. Estrogen receptors was assessed by 
Abbott's quantitative enzyme immunoassay and deemed positive if >0.05 fmol/µg 
DNA. After exclusions based on tissue availability, RNA amount, RNA integrity, 
clinical annotation, and microarray quality control, expression profiles of 249 and 40 
tumors from the Uppsala and Singapore cohorts, respectively, were considered 
suitable for further analysis. Clinical outcomes were available only in Uppsala 
cohort. Disease free survival event (DFS) was defined as 0 if censored and as 1 in 
case of event defined as any type of recurrence (local, regional or distant) or death 
from breast cancer. In Table 2.7 are described all clinical and pathological features 
of the Uppsala cohort. Data are publicly available at GEO GSE4922 
(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE4922). 
 
Table 2.7: Characteristics of patients from the Uppsala cohort of the Ivshina-Miller dataset. 

Clinical variables Patients n=249 
Age, years   
<40 16 (6%) 
40-60 90 (36%) 
>60 143 (57%) 
Size (mm)   
Median 20 (2-130) 
Grade   
G1 49 (20%) 
G2 68 (27%) 
G3 9 (4%) 
ER status   
Positive 211 (85%) 
Negative 34 (14%) 
Unknown 4 (2%) 
p53 status   
Mutation 58 (23%) 
Normal 189 (76%) 
Unknown 2 (1%) 
LN status   
Positive 81 (33%) 
Negative 159 (64%) 
Unknown 9 (4%) 
Metastasis within 5 years  
Yes 47 (19%) 
No 16 (6%) 

2.1.7 Loi  
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This dataset contains 414 samples obtained from the John Radcliffe Hospital 
(OXFT, Oxford, UK), the Guys Hospital (GUYT, London, UK) and the Uppsala 
University Hospital (KIT, Uppsala, Sweden). All samples had been hybridized using 
Affymetrix U133 arrays and specifically the OXFT and KIT samples have been 
analyzed using HG-U133A and HG-U133B arrays while the GUYT cohort was 
hybridized on HG-U133 Plus 2.0 chips (Loi et al., 2007; Loi et al., 2008; Loi et al., 
2010). All samples were required to be estrogen (ER) and/or progesterone receptor 
(PR) positive by ligand-binding assay. The cut-off value for classification of patients 
as positive or negative for ER and PR was 10 fmol/mg of protein. OXFT and KIT 
groups are formed of 178 and 149 samples, respectively, while the GUYT group is 
composed of 87 samples. Table 2.8 reports all clinical and pathological 
characteristics of patients while gene expression data are publicly available at GEO 
GSE6532 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE6532). 
 
Table 2.8: Characteristics of patients from the Loi dataset. 

Clinical variables Patients n=414 
Age, years   
<40 16 (4%) 
40-60 177 (43%) 
>60 208 (50%) 
Size   
Median 2.1 (0-8.2)  
Grade   
G1 82 (20%) 
G2 182 (44%) 
G3 76 (18%) 
Unknown 74 (18%) 
ER status   
Positive 349 (84%) 
Negative 45 (11%) 
Unknown 20 (5%) 
PR status    
Positive 185 (45%) 
Negative 32 (8%) 
Unknown 192 (46%) 
LN status   
Positive 143 (35%) 
Negative 250 (60%) 
Unknown 21 (5%) 
Therapy   
Tamoxifen 277 (67%) 
None 137 (33%) 
Metastasis within 5 years 
Yes 96 (23%) 
No 284 (69%) 

2.1.8 Sotiriou 

This dataset is divided in two subsets, i.e. KJX64 and KJ125, and consists of 
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information obtained from a total of 189 patients with primary operable invasive 
breast cancer, whose frozen tumor specimens were archived at the John Radcliffe 
Hospital (Oxford, UK) and at the Uppsala University Hospital (Uppsala, Sweden). 
The set KJX64 contains data from 64 ER-positive primary breast tumor samples 
and the set KJ125 contains data from 125 breast tumor samples (Sotiriou et al., 
2006). No patient in the KJ125 dataset received any adjuvant systemic therapy. 
Histological tumor grade was based on the Elston–Ellis grading system and 
determined from data extracted from the pathology reports and reviewed separately 
by one pathologist for the Oxford population and another pathologist for the 
Swedish population. A total of 187 samples are characterized by clinical outcome in 
terms of relapse free survival (RFS) defined as the interval between the date of 
breast surgery and the date of diagnosis of any type of relapse (local, regional or 
distant), while 179 have clinical information about distant metastasis free survival 
(DMFS) defined as the interval between the date of breast surgery and the date of 
diagnosed distant relapse of breast cancer. Microarray analysis was performed on 
Affymetrix U133A GeneChip. Table 2.9 reports all clinical and pathological 
characteristics of patients and gene expression data are publicly available at GEO 
GSE2990 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2990). 
 
Table 2.9: Characteristics of patients from the Sotiriou dataset. 

Clinical variables Patients n=187 
Age, years   
<40 14 (7%) 
40-60 97 (52%) 
>60 76 (41%) 
Size (cm)   
≤2 104 (56%) 
<2 ≤5 81 (43%) 
>5 4 (2%) 
Grade   
G1 64 (34%) 
G2 48 (26%) 
G3 55 (29%) 
Unknown 20 (11%) 
ER status   
Positive 147 (79%) 
Negative 34 (18%) 
Unknown 6 (3%) 
LN status   
Positive 30 (16%) 
Negative 153 (82%) 
Unknown 4 (2%) 
Metastasis within 5 years   
Yes 28 (15%) 
No 35 (19%) 
Therapy   
Tamoxifen 64 (34%) 
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2.1.9 Tamoxifen 

This dataset contains 77 patients diagnosed at the Guy's Hospital (London, UK) 
with early stage breast cancer and treated with adjuvant Tamoxifen monotherapy 
(Loi et al., 2008; Loi et al., 2010). Samples were hybridized on Affymetrix HG-U133 
Plus 2.0 microarrays according to standard Affymetrix protocols. Clinical 
characteristic such as age, tumor size, PR, ER, lymph node status and histological 
grade are in Table 2.10. The median follow-up is 12.5 years. Data are available at 
GSE9195 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE9195). 

Table 2.10: Characteristics of patients from the Tamoxifen dataset. 

Clinical variables Patients n=77 
Age, years   
<40 0 (0%) 
40-60 29 (38%) 
>60 48 (62%) 
Size (cm)   
Median  2.1 (1.09- 6) 
Grade   
G1 14 (18%) 
G2 20 (26%) 
G3 24 (31%) 
Unknown 19 (2%5) 
ER status   
Positive 36 (47%) 
Negative 41 (53%) 
PR status   
Positive 36 (47%) 
Negative 41 (53%) 
LN status   
Positive 59 (%) 
Negative 18 (%) 
Metastasis within 5 years   
Yes 10 (13%) 
No 0 
Therapy   
Tamoxifen 77  (100%) 

2.1.10 Desmedt 

The TRANSBIG consortium constructed the Desmedt dataset to validate the 70-
gene signature of the MammaPrint (van’t Veer et al., 2002). The consortium 
analyzed, blinded to clinical data, the gene expression profiles of 198 lymph node 
negative, systemically untreated patients, of the Bordet Institute. These patients 
were younger than the age of 61 years (median age 47 years) and affected by lymph 
node-negative, T1-T2 (≤5 cm) tumors. Patients in this series have been diagnosed 
between 1980 and 1998 (median follow-up, 13.6 years) in 6 different centers, i.e., 
Institut Gustave Roussy, (IGR, Villejuif, France), Karolinska Institute and Uppsala 
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University Hospital, (KI, Stockholm and Uppsala, Sweden), Centre René Huguenin 
(CRH, Saint-Cloud, France); Guy's Hospital (GH, London, UK), and John Radcliffe 
Hospital ((JRH, Oxford, UK). Patients with previous malignancies (except basal cell 
carcinoma) and bilateral synchronous breast tumors were excluded. ER status (by 
immunohistochemistry) and histological grade (by the Elston and Ellis method) 
were determined by the same pathologist, blinded to the clinical and genomic data, 
from the corresponding paraffin-embedded tumor samples at the Department of 
Pathology at the European Institute of Oncology (Milan, Italy). Tumor 
characteristics (age, tumor size and grade, ER status, and proportion of patients 
alive at 10 years) are all available. The median follow-up is 14.0 years and distant 
metastases are found in 51 (26%) patients, with 35 patients showing progression 
within 5 years (18%). Time from diagnosis to distant metastases (TDM) and overall 
survival (OS), defined as time from diagnosis to death from any cause, are the 
clinical outcomes. Table 2.11 contains the clinical characteristics. Data are available 
at GSE7390 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7390). 
 
Table 2.11: Characteristics of patients from the Desmedt dataset. 

Clinical variables Patients n=198 
Age, years   
<40 0 (%) 
40-60 162 (82%) 
>60 36 (18%) 
Size (cm)   
Median  2 (0.6-5) 
Grade   
G1 30 (15%) 
G2 83 (42%) 
G3 83 (42%) 
Unknown 2 (1%) 
ER status   
Positive 134 (68%) 
Negative 64 (32%) 
LN status 100 
Positive   
Negative 198 (%) 
Metastasis within 5 years   
Yes 36 (18%) 
No 8 (4%) 

2.1.11 Schmidt 
The Schmidt study consists of 200 lymph node-negative breast cancer patients 
treated at the Department of Obstetrics and Gynecology of the Johannes 
Gutenberg University in Mainz between 1988 and 1998 (Schmidt et al., 2008). 
Patients were all treated with surgery and did not receive any systemic therapy in the 
adjuvant setting. The established prognostic factors as histological grade, tumor size, 
age at diagnosis, and steroid receptor status were collected from the original 
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pathology reports of the gynecologic pathology division. 75 patients were treated 
with modified radical mastectomy and 125, without evidence of regional lymph 
node and distant metastasis at the time of surgery, with breast-conserving surgery 
followed by irradiation. The median age of the patients at surgery was 60 years 
(range, 34–89 years) and the median time of follow up was 92 months (Table 2.12). 
For all tumors, samples were snap frozen and stored at 80°C and RNA hybridized 
on Affymetrix HG-U133A arrays. Data are available at Gene Expression Omnibus 
GSE11121 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE11121). 
 
Table 2.12: Characteristics of patients from the Schmidt dataset. 

Clinical variables Patients n=200 
Size (cm)   
Median 2.1 (0.1-6) 
Grade   
G1 29 (15%) 
G2 136 (68%) 
G3 35 (18%) 
LN status   
Positive 0 
Negative 200 (100%) 
Metastasis within 5 ys   
Yes 28 (14%) 
No 18 (9%) 

2.1.12 Veridex 

This dataset has been collected to validate a 76-gene signature identified by Veridex 
(a Johnson & Johnson Company) to predict high-risk patients that benefit from 
adjuvant Tamoxifen therapy (Zhang et al., 2009). After defining the signature in an 
independent cohort of untreated patients, Veridex selected frozen tumor specimens 
of patients treated with adjuvant Tamoxifen (n=136) from the tumor banks in three 
of the four European institutions that provided the samples of patients without 
systemic therapy, i.e., Institute of Oncology of Ljubljana (36 samples), National 
Cancer Institute of Bari (28 samples) and Technical University of Munich (9 
samples), and from one US institution, i.e., the Cleveland Clinic Foundation (63 
samples; period 1981–2000). Routine postsurgical follow-up was similar among the 
participating institutions and involved examination every 3 months during the first 2 
years, every 6 months for years 2–5, and annually after year 5 of the follow-up 
period. Date of diagnosis of metastasis was defined as the date of imaging or 
histological confirmation of metastasis after complaints and/or clinical symptoms, 
or at regular follow-up. The surviving patients (n=119) had a median follow-up time 
of 90 months (range 29–193 months). Twenty patients (15%) showed evidence of 
distant metastases with 12 (9%) having metastases within 5 years. A total of 17 
patients died, with 6 dying without evidence of metastasis. These patients were 



	  
	  
	  

	  

Chapter 2: Materials and methods  

43 

censored at last follow-up in the analysis of distant metastasis free survival. RNA 
has been hybridized on Affymetrix HG-U133A arrays and the raw data submitted to 
GSE12093 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE12093). 
Table 2.13 contains the clinical characteristics of the patients included in the 
Veridex study. 
 
Table 2.13: Characteristics of patients from the Veridex dataset. 

Clinical variables Patients n=136 
Age, years   
Median  64 (9%) 
<40 4 (3%) 
41-55 23 (17%) 
56-70 80(59%) 
>70 29 (21%) 
T stage    
T1 63 (48%) 
T2 65 (48%) 
T3/T4 7 (5%) 
Unknown 1 ((1%) 
ER status   
Positive 136 (100%) 
Negative 0 
Grade   
Poor 30 (22%) 
Moderate 43 (32%) 
Good 8 (6%) 
Unknown 55 (40%) 
Therapy   
Hormonal 136 (100%) 
Metastasis within 5 ys   
Positive 12 (9%) 
Negative 124 (91%) 

2.1.13 Chin 
 

Frozen tissue from UC San Francisco and the California Pacific Medical Center 
collected between 1989 and 1997 was used for this study (Chin et al., 2006). Tissues 
were collected under IRB-approved protocols with patient consent. Tissues were 
collected, frozen over dry ice within 20 min of resection, and stored at −80°C. An 
H&E section of each tumor sample was reviewed, and the frozen block was 
manually trimmed to remove normal and necrotic tissue from the periphery. Clinical 
follow-up was available with a median time of 6.6 years. Tumors were 
predominantly early stage (83% stage I and II) with an average diameter of 2.6 cm. 
About half of the tumors were node positive, 67% were estrogen receptor positive, 
60% rceived tamoxifen, and half received adjuvant chemotherapy (typically 
adriamycin and cytoxan). Samples were hybridized to Affymetrix HT-HG_U133A 
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(U133AAofAV2) GeneChip. Table 2.14 contains the clinical characteristics of the 
patients included in the E-TABM-154 study. The raw data for expression profiling 
are available at ArrayExpress repository  with accession number E-TABM-158 
(http://www.ebi.ac.uk/arrayexpress/experiments/E-TABM-158/). 

Table 2.14: Characteristics of patients from the E-TABM-158 dataset. 

Clinical variables Patients n=129 
Age, years   
<40 19 (15%) 
40-60 70 (54%) 
>60 39 (30%) 
Unknown 1 (1%) 
Size (cm)   
≤2 54 (42%) 
>2 ≤5 66 (51%) 
>5 7 (5%) 
Grade   
G1 14 (11%) 
G2 46 (36%) 
G3 64 (50%) 
Unknown 5 (4%) 
ER status   
Positive 83 (64%) 
Negative 46 (36%) 
PR status   
Positive 73 (57%) 
Negative 54 (42%) 
Unknown 2 (2%) 
HER2 status   
Positive 11 (9%) 
Negative 78 (60%) 
Unknown 40 (31%) 
LN status   
Positive 71 (55%) 
Negative 58 (45%) 
Metastasis within 5 ys   
Yes 36 (28%) 
No 25 (19%) 
Therapy   
Hormonal 74 (57%) 

2.2.14 Zhou 

Cryobanked breast cancer specimens were obtained from the University of 
California San Francisco (UCSF) Comprehensive Cancer Center Breast Oncology 
Program Tissue Core, and collected under UCSF approved protocols following 
patient consent (Zhou et al., 2007; Yau et al., 2008). From an archive of over 1,000 
liquid nitrogen frozen breast cancer specimens, 54 primary breast cancer samples 
(UCSF cases) had been identified, using the following criteria: early clinical stage 
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(T1/2, N0, M0) invasive breast cancer, ER-positive status (>10% nuclear 
immunohistochemical staining), known clinical outcome (relapse-free survival, 
RFS), and stratification into young (≤ 45 years, n = 29) or old (≥ 70 years, n = 25) 
age-at-diagnosis. Clinical characteristics are illustrated in Table 2.15.  Total RNA 
was labeled and analyzed using Affymetrix HT-HG_U133A (U133AAofAV2) 
GeneChip. Raw data files have been entered into the NCBI Gene Expression 
Omnibus (GEO) repository with accession number GSE7378 
(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7378). 

Table 2.15: Characteristics of patients from the Zhou dataset. 

Clinical variables Patients n= 54 
Age, years   
<40 10 (19%) 
40-60 19 (35%) 
>60 25 (46%) 
ER status   
Positive 54 (100%) 
Negative 0 (0%) 
LN status   
Positive 0 (0%) 
Negative 54 (100%) 
Metastasis within 5 ys   
Yes 6 (11%) 
No 17 (31%) 

2.2.15 TOP trial 

The prospective multicentric TOP trial enrolled 149 patients between January 2003 
and June 2008 (Desmedt et al., 2011). One patient was excluded because of 
concomitant contralateral breast cancer. Of these 148 patients, nine were excluded 
from further analysis, leading to a total of 139 evaluable patients. Epirubicin 
monotherapy (100 mg/m2) was administered as neo adjuvant chemotherapy, with 
four cycles every 3 weeks for patients with early breast cancer and a dose-dense 
schedule of six cycles every 2 weeks for patients with locally advanced and 
inflammatory disease. All patients underwent pre-treatment biopsies of the primary 
breast tumor before starting chemotherapy. Pathological complete response (pCR) 
was defined as the absence of residual invasive breast carcinoma in the breast and in 
the axillary nodes after completion of chemotherapy. Persistence of in situ 
carcinoma without an invasive component was also considered pCR. Clinical 
characteristics are illustrated in Table 2.16. One hundred twenty samples’ RNA have 
been hybridized to HG-U133 Plus 2.0 microarrays. Raw data files have been entered 
into the NCBI Gene Expression Omnibus (GEO) repository with accession 
number GSE16446 
(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16446). 
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Table 2.16: Characteristics of patients from the TOP trial dataset. 

Clinical variables Patients n=120 
Age, years   
≤50 70 (58%) 
>50 50 (42%) 
Size (cm)   
T1 17 (14%) 
T2 83 (69%) 
T3 5 (4%) 
T4 15 (13%) 
Node status   
N0 55 (46%) 
N1 60 (50%) 
N2 3 (2%) 
N3 2 (2%) 
Grade   
G1 2 (2%) 
G2 20 (17%) 
G3 92 (76%) 
Unknown 6 (5%) 
ER status   
Positive 0 (0%) 
Negative 120 (100%) 
HER2 status   
Amplified 31 (26%) 
Not amplified 62 (52%) 
Unknown 27 (22%) 
Metastasis within 5 ys   
Yes 23 (19%) 
No 70 (58%) 
Response neoadjuvant therapy    
pathological complete response (pCR) 16 (13%) 
residual disease (RD) 98 (82%) 
Unknown 6 (5%) 

2.2.16  GSE19615 

One hundred fifteen primary breast tumors were recruited from the US National 
Cancer Institute–Harvard Breast Specialized Program Of Research Excellence 
blood and tissue repository under protocols approved by the DF/HCC Institutional 
Review Board, with informed consent from subjects (Li et al., 2010). Table 2.17 
contains the clinical characteristics of the patients included in the GSE16915. For all 
tumors RNA were hybridized on Affymetrix HG-U133 Plus 2.0 arrays. Raw data 
are deposited in the NCBI Gene Expression Omnibus (GEO) database under 
accession number GSE19615 
(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19615). 

Table 2.17: Characteristics of patients from the GSE19615 dataset. 

Clinical variables Patients n= 115  
Age, years   
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<40 8 (7%) 
40-60 80 (70%) 
>60 27 (23%) 
Size (cm)   
≤2 51 (44%) 
<2 ≤5 62 (54%) 
>5 2 (2%) 
Grade   
G1 23 (20%) 
G2 28 (24%) 
G3 64 (56%) 
ER status   
Positive 66 (57%) 
Negative 45 (39%) 
Unknown 4 (3%) 
HER2 status   
Positive 30 (26%) 
Negative 79 (69%) 
Unknown 6 (5%) 
LN status   
Positive 51 (44%) 
Negative 62 (54%) 
Unknown 2 (2%) 
Metastasis within 5 ys    
Yes 14 (12%) 
No 41 (36%) 
Therapy   
Hormonal 64 (56%) 

2.2.17 GSE21653 

The IPC (Institut Paoli-Calmettes) series contained frozen tumor samples obtained 
from 266 early breast cancer patients who underwent initial surgery in our 
institution between 1992 and 2004 (Sabatier et al., 2011). The study was approved 
by the IPC review board, and informed consent was available for each case. 
Inclusion criteria included: pre-treatment sample of an invasive adenocarcinoma, 
non-inflammatory and non-metastatic, with available histoclinical data. All samples 
were similarly profiled using Affymetrix U133 Plus 2.0 human oligonucleotide DNA 
microarrays. Clinical characteristics are illustrated in Table 2.18. Raw data files have 
been entered into the NCBI Gene Expression Omnibus (GEO) repository with 
accession number GSE21653 
(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21653). 

Table 2.18: Characteristics of patients from the GSE21653 dataset. 

Clinical variables Patients n= 266 
Age, years   
<40 48 (18%) 
40-60 121 (45%) 
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>60 96 (36%) 
Unknown 1 (0.4%) 
Size (cm)   
≤2 59 (22%) 
<2 ≤5 126 (47%) 
>5 69 (26%) 
Unknown 13 (5%) 
LN status   
Positive 140 (53%) 
Negative 120 (45%) 
Unknown 6 (2%) 
Grade   
G1 45 (17%) 
G2 89 (34%) 
G3 125 (47%) 
Unknown 7 (3%) 
ER status   
Positive 150 (56%) 
Negative 113 (43%) 
Unknown 3 (1%) 
HER2 status   
Positive 29 (11%) 
Negative 216 (81%) 
Unknown 21 (8%) 
P53 status   
Mutant 69 (26%) 
Wild-type 125 (47%) 
Unknown 72 (27%) 
Metastasis within 5 ys   
Yes 69 (26%) 
No 78 (29%) 

2.2.18 GSE20685 

Fresh frozen breast cancer tissue from every patient diagnosed and treated between 
1991 and 2004 at the Koo Foundation Sun-Yat-Sen Cancer Center (KFSYSCC) 
were randomly selected for the study (Kao et al., 2011). Patients with follow-up 
periods shorter than three years were excluded, with the exception of those who 
died of the disease within three years of the initial treatment. In cases of ineligibility, 
the following sample was selected. The selected tissue samples spanned the major 
transition periods of adjuvant chemotherapy from CMF (cyclophosphamide, 
methotrexate and fluorouracil) to CAF (cyclophosphamide, doxorubicin, 
fluorouracil) and to taxane-based regimens. Four hundred forty seven samples were 
obtained, but 135 samples were excluded due to insufficient RNA (n = 1), poor 
RNA quality (n = 116), or unacceptable microarray quality (n = 18). A total of 312 
samples were eligible for the study plus an additional 15 lobular breast carcinoma 
samples, collected between 1999 and 2004, were also included. All patients were 
treated by a multidisciplinary team according to the guidelines consistent with the 
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National Comprehensive Cancer Network. Following modified radical mastectomy 
or breast-conserving surgery plus dissection of axillary nodes, patients received 
radiotherapy, adjuvant chemotherapy, and/or hormonal therapy, if indicated. 
Neoadjuvant chemotherapy was administered to patients with locally advanced 
disease. The study was approved by the institutional review board and ethical 
approval was obtained from the same board for samples without obtainable 
informed consent. Clinical characteristics are illustrated in Table 2.19. Samples’ 
RNA have been hybridized to HG-U133 Plus 2.0 microarrays. Raw data files have 
been entered into the NCBI Gene Expression Omnibus (GEO) repository with 
accession number GSE20685 
(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20685). 

Table 2.19: Characteristics of patients from the GSE20685 dataset. 

Clinical variables Patients n= 327 
Age, years   
<40 71 (22%) 
40-60 211 (65%) 
>60 45 (14%) 
Unknown 0 (0%) 
ER status   
Positive 41 (13%) 
Negative 37 (11%) 
Unknown 249 (76%) 
HER2 status   
Positive 0 (0%) 
Negative 41 (13%) 
Unknown 286 (87%) 
Metastasis within 5 ys   
Yes 67 (20%) 
No 15 (5%) 

2.2.19 GSE31519 

Tissue samples of invasive breast cancer cases were obtained with IRB approval and 
informed consent from consecutive patients undergoing surgical resection between 
December 1996 and July 2007 at the Department of Gynecology and Obstetrics at 
the Goethe-University in Frankfurt (Rody et al., 2011; Karn et al., 2011). Primary 
breast cancer biopsies were obtained from patients before treatment. Table 2.20 
reports all clinical and pathological characteristics of patients. Gene expression data 
have been deposited into the GEO database with accession number GSE31519 
(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31519). 

Table 2.20: Characteristics of patients from the GSE31519 dataset. 

Clinical variables Patients n= 67 
Size (cm)   
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≤1 16 (24%) 
≥1 48 (72%) 
Unknown 3 (4%) 
Grade   
G1/G2 18 (27%) 
G3 45 (67%) 
Unknown 4 (6%) 
ER status   
Positive 0 (0%) 
Negative 67 (100%)  
LN status   
Positive 21 (31%) 
Negative 44 (66%) 
Unknown 2 (3%) 
Metastasis within 5 ys   
Yes 21 (31%) 
No 32 (48%) 
Biopsy type   
Core needle 19 (28%) 
Surgical 48 (72%) 

2.2.20  GSE22093  

The chemotherapy sensitivity analysis was performed on the USO-02103 included 
103 patients (42 ER-positive and 56 ER-negative patients) who received four 
courses of 5-fluorouracil (500 mg/m2), eprirubicin (100 mg/m2), and 
cyclophosphamide (500 mg/m2), given once every 21 days, followed by 12 weeks of 
docetaxel (35 mg/m2), given once weekly concomitant with capecitabine (850 
mg/m2 given twice daily for 14 days, repeated every 21 days) (FEC/wTX) (Iwamoto 
T et al., 2011). Clinical characteristics are illustrated in Table 2.21. Samples’ RNA 
have been hybridized to HG-U133A microarrays. Raw data files have been entered 
into the NCBI Gene Expression Omnibus (GEO) repository with accession 
number GSE22093 
(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22093). 

Table 2.21: Characteristics of patients from the GSE22093 dataset. 

Clinical variables Patients n= 103 
Age, years   
<40 22 (21%) 
40-60 59 (57%) 
>60 16 (16%) 
Unknown 6 (6%) 
Size (cm)   
T0/T1 3 (3%) 
T2 51 (50%) 
T3 26 (25%) 
T4 18 (17%) 
Unknown 5 (5%) 
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Grade   
G1 3 (3%) 
G2 29 (28%) 
G3 47 (46%) 
Unknown 24 (23%) 
ER status   
Positive 42 (41%) 
Negative 56 (54%) 
Unknown 5 (5%) 
P53 status   
Wild-type 42 (41%) 
Mutant 58 (56%) 
Unknown 3 (3%) 
Neoadjuvant chemotherapy response   
pathological complete response (pCR) 28 (27%) 
residual disease (RD) 69 (67%) 
Unknown 6 (6%) 
Biopsy type   
Fine needle 103 (100%) 
Core needle 0 (0%) 

 

2.2.21 GSE20271 

Patients with clinical stage I to III breast cancer were eligible (Tabchy et al., 2010). 
Histologic diagnosis of invasive cancer and estrogen receptor (ER), progesterone 
receptor (PR), and HER2 receptor status were determined from a diagnostic core 
needle or incisional biopsy before therapy. All patients had to agree to a separate, 
pretreatment research fine-needle aspiration (FNA) of the cancer for gene 
expression analysis. Patients were accrued at six international sites including The 
University of Texas M.D. Anderson Cancer Center (MDACC; n = 96) and the 
Lyndon B Johnson General Hospital (n = 19) in Houston, Texas; the Instituto 
Nacional de Enfermedades Neoplasicas in Lima, Peru (n = 79); the Centro Medico 
Nacional de Occidente in Guadalajara, Mexico (n = 19); and the clinical trial group 
Grupo Español de Investigacion en Cancer de Mama in Spain (n = 60). This study 
was approved by the institutional review boards of each participating institution, and 
all patients signed an informed consent for voluntary participation. The study was 
conducted between October 2003 and October 2006. Two hundred and seventy-
three patients were enrolled: 138 were randomized to T/FAC and 135 to FAC 
chemotherapy. Twenty (7%) and 16 (6%) patients were excluded from genomic 
response analysis in each treatment arm, respectively, due to eligibility violations 
including nonstudy treatment regimen, patient withdrawal, or lack of pathologic 
assessment of response. Of the 118 patients who received T/FAC, 9 patients 
progressed clinically, and these were considered as RD for response prediction 
analysis. Of the 119 patients who were assigned to receive FAC chemotherapy, 11 
received T/FAC treatment (to maximize response or due to progression on FAC), 
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and these cases were assigned to the T/FAC treatment group for genomic response 
prediction analysis. The remaining 108 cases, including 5 cases that progressed, 
comprised the FAC treatment cohort for the final response prediction analysis. Two 
hundred and four FNA samples (75%) yielded sufficient quality and quantity of 
RNA to do gene expression analysis. The main reasons for failure were acellular 
aspirates and low RNA yield; five profiles (2.5%) failed array QC after hybridization. 
After excluding the patients who had no response information available, 178 cases 
remained with complete pathologic response and genomic prediction results for 
final analysis. Of these, 91 received T/FAC and 87 received FAC chemotherapy. 
Clinical characteristics of these patients are presented in Table 2.22. Gene 
expression data have been deposited into the GEO database with accession number 
GSE20271 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20271). 
 
Table 2.22: Characteristics of patients from the GSE20271 dataset. 

Clinical variables Patients n=178 
Age, years   
<40 25 (14%) 
40-60 114 (64%) 
>60 39 (22%) 
Size (cm)   
T0/T1 13 (7%) 
T2 76 (42%) 
T3 37 (21%) 
T4 51 (29%) 
Unknown 51 (1%) 
Grade   
G1 15 (9%) 
G2 61 (34%) 
G3 72 (40%) 
Unknown 30 (17%) 
ER status (IHC)   
Positive 98 (55%) 
Negative 80 (45%) 
HER2 status (FISH, IHC)   
Not overexpressed 152 (85%) 
Overexpressed 26 (15%) 
Race   
White 81 (46%) 
Black 13 (7%) 
Hispanic 83 (46%) 
Asian 1 (1%) 
Neoadjuvant chemotherapy response   
pathological complete response (pCR) 26 (15%) 
residual disease (RD) 152 (85%) 

 

2.2.22  GSE20194 
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Gene expression data from microarrays are being applied to predict preclinical and 
clinical endpoints, but the reliability of these predictions has not been established. In 
the MAQC-II project (Popovici et al., 2010; Shi et al., 2010), 36 independent teams 
analyzed six microarray data sets to generate predictive models for classifying a 
sample with respect to one of 13 endpoints indicative of lung or liver toxicity in 
rodents, or of breast cancer, multiple myeloma or neuroblastoma in humans. The 
human breast cancer data set was contributed by the University of Texas M.D. 
Anderson Cancer Center. Gene expression data from 230 stage I–III breast cancers 
were generated from fine needle aspiration specimens of newly diagnosed breast 
cancers before any therapy. The biopsy specimens were collected sequentially during 
a prospective pharmacogenomic marker discovery study between 2000 and 2008. 
These specimens represent 70–90% pure neoplastic cells with minimal stromal 
contamination. Patients received 6 months of preoperative (neoadjuvant) 
chemotherapy including paclitaxel (Taxol), 5-fluorouracil, cyclophosphamide and 
doxorubicin (Adriamycin) followed by surgical resection of the cancer. Response to 
preoperative chemotherapy was categorized as a pathological complete response 
(pCR = no residual invasive cancer in the breast or lymph nodes) or residual 
invasive cancer (RD). RNA extraction and gene expression profiling were 
performed using Affymetrix HG-U133A microarrays. Clinical characteristics of 
patients are presented in Table 2.23. Gene expression data have been deposited into 
the GEO database with accession number GSE20194 
(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20194). 

Table 2.23: Characteristics of patients from the GSE20194 dataset. 

Clinical variables Patients n=230 
Age, years   
<40 27 (12%) 
40-60 151 (66%) 
>60 52 (22%) 
Size (cm)   
T0/T1 23 (10%) 
T2 132 (57%) 
T3 34 (15%) 
T4 41 (18%) 
Grade   
G1 13 (6%) 
G2 94 (41%) 
G3 123 (53%) 
ER status (IHC)   
Positive 141 (61%) 
Negative 89 (39%) 
HER2 status (FISH, IHC)   
Not overexpressed 190 (83%) 
Overexpressed 40 (17%) 
Race   
White 153 (66%) 
Black 25 (11%) 
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Hispanic 34 (15%) 
Asian 16 (7%) 
Neoadjuvant chemotherapy response   
pathological complete response (pCR) 48 (21%) 
residual disease (RD) 182 (79%) 
Biopsy type   
Fine needle 230 (100%) 

2.2.23  GSE25066 

Five hundred eight patients prospectively provided written informed consent to 
participate in an institutional review board–approved research protocol (LAB99-
402, USO-02-103, 2003-0321, I-SPY-1) to obtain a tumor biopsy sample by fine-
needle aspiration or core biopsy prior to any systemic therapy for genomic studies 
to develop and test predictors of treatment outcome (Hatzis et al., 2011). Clinical 
nodal status was determined before treatment from physical examination, with or 
without axillary ultrasound, with diagnostic fine-needle aspiration as required. 
Pathologic ERBB2 status was defined as negative according to American Society of 
Clinical Oncology/College of American Pathologists guidelines. Patients with any 
nuclear immunostaining of estrogen receptor (ER) in the tumor cells were 
considered eligible for adjuvant endocrine therapy. In the discovery cohort, biopsy 
samples were obtained from June 2000 to December 2006; 227 were obtained by 
fine-needle aspiration (MDACC) and 83 by core biopsy (I-SPY), and all 
chemotherapy was administered as neo-adjuvant with taxane-anthracycline pre-
operative chemotherapy treatment. In the validation cohort, biopsy samples were 
obtained from April 2002 to January 2009; 157 were obtained by fine-needle 
aspiration (MDACC, Peru, US Oncology) and 41 by core biopsy (MDACC, Lyndon 
B. Johnson Hospital, Spain), and all chemotherapy was administered as neo-
adjuvant with taxane-anthracycline pre-operative chemotherapy treatment. 
Response was assessed at the end of neo-adjuvant treatment and distant-relapse-free 
survival was followed for at least 3 years post-surgery. Clinical characteristics are 
illustrated in Table 2.24. All gene expression microarrays were profiled in the 
Department of Pathology at the M. D. Anderson Cancer Center (MDACC), 
Houston, Texas. Samples’ RNA have been hybridized to HG-U133A microarrays. 
Raw data files have been entered into the NCBI Gene Expression Omnibus (GEO) 
repository with accession number GSE25066 
(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25066). 

Table 2.24: Characteristics of patients from the GSE25066 dataset. 

Clinical variables Patients n=508 
Age, years   
<40 97 (19%) 
40-60 307 (60%) 
>60 104 (21%) 



	  
	  
	  

	  

Chapter 2: Materials and methods  

55 

Size (cm)   
T0/T1 33 (6%) 
T2 255 (50%) 
T3 145 (29%) 
T4 75 (15%) 
Grade   
G1 32 (6%) 
G2 180 (35%) 
G3 258 (51%) 
Unknown 38 (8%) 
ER status (IHC)   
Positive 297 (59%) 
Negative 205 (40%) 
Unknown 6 (1%) 
HER2 status    
Positive 6 (1%) 
Negative 485 (96%) 
Unknown 17 (3%) 
Metastasis within 5 years   
Yes 110 (23%) 
No 337 (67%) 
Neoadjuvant chemotherapy response   
pathological complete response (pCR) 99 (19%) 
residual disease (RD) 389 (77%) 
Unknown 20 (4%) 

 
2.2.24  GSE23988 
 
This is Phase II Trial of four courses of 5-fluorouracil, doxorubicin and 
cyclophosphamide followed by four additional courses of weekly docetaxel and 
capecitabine administered as Preoperative Therapy for Patients with Locally 
Advanced Breast Cancer, Stages II and III by US oncology (PROTOCOL 02-103) 
(Iwamoto et al., 2011). Table 2.25 reports all clinical and pathological characteristics 
of patients. Pre-treatment FNA from primary tumors were obtained and RNA 
extracted and hybridized to Affymetrix HG-U133A microarrays. Raw data files have 
been entered into the NCBI Gene Expression Omnibus (GEO) repository with 
accession number GSE23988 
(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE23988). 
 
Table 2.25: Characteristics of patients from the GSE23988 dataset. 

Clinical variables Patients n=61 
Age, years   
<40 8 (13%) 
40-60 45 (74%) 
>60 8 (13%) 
Size (cm)   
≤2 1 (2%) 
<2 ≤5 20 (33%) 
>5 40 (65%) 
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Nodal status   
N0 21 (34%) 
N1 32 (53%) 
N2 5 (8%) 
N3 3 (5%) 
Grade   
G1 1 (2%) 
G2 19 (31%) 
G3 37 (60%) 
Unknown 4 (7%) 
ER status   
Positive 32 (53%) 
Negative 29 (47%) 
Neoadjuvant chemotherapy response   
pathological complete response (pCR) 20 (33%) 
residual disease (RD) 41 (67%) 

 
2.2.25  GSE32646 

Primary breast cancer patients (n = 123, T1-4b N0-1 M0) who were consecutively 
recruited for the present study (Miyake T et al., 2012) had been treated with 
neoadjuvant chemotherapy (NAC) consisting of paclitaxel (80 mg/m2) weekly for 
12 cycles followed by 5-FU (500 mg/m2), epirubicin (75 mg/m2) and 
cyclophosphamide (500 mg/m2) every 3 weeks for four cycles (paclitaxel followed 
by 5-fluorouracil/epirubicin/cyclophosphamide [P-FEC]) at Osaka University 
Hospital between 2004 and 2010. The NAC was indicated for stage IIA–IIIB breast 
cancer patients. Prior to NAC, every patient underwent vacuum-assisted core biopsy 
of tumors (Mammotome 8G; Ethicon Endosurgery, Johnson & Johnson, 
Cincinnati, OH, USA) under ultrasonographic guidance. The tumor samples 
obtained were then subjected to histological examination and DNA and RNA 
extraction. Tumor samples for extraction of DNA and RNA were snap frozen in 
liquid nitrogen and kept at −80°C until use. Inclusion of tumor cells in the biopsy 
samples for extraction of DNA and RNA was estimated using histological 
confirmation of tumor cells in the adjacent biopsy samples. The present study was 
approved by the Ethics Review Committee at Osaka University Hospital (Osaka, 
Japan) and informed consent was obtained from each patient before the core biopsy 
of tumors. Clinical characteristics are reported in Table 2.26. Gene expression data 
have been deposited into the GEO database with accession number GSE32646 
(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32646). 

Table 2.26: Characteristics of patients from the GSE32646 dataset. 

Clinical variables Patients n=115 
Age, years   
<40 15 (13%) 
40-60 75 (65%) 
>60 25 (22%) 
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Size (cm)   
T0/T1 5 (4%) 
T2 87 (76%) 
T3 18 (16%) 
T4 5 (4%) 
Grade   
G1 16 (14%) 
G2 78 (68%) 
G3 21 (18%) 
LN status   
Positive 83 (72%) 
Negative 32 (28%) 
ER status (IHC)   
Positive 83 (62%) 
Negative 32 (38%) 
HER2 status (FISH, IHC)   
Not overexpressed 71 (70%) 
Overexpressed 44 (30%) 
Neoadjuvant chemotherapy response   
pathological complete response (pCR) 27 (23%) 
residual disease (RD) 88 (77%) 
Biopsy type   
Fine needle 0 (0%) 
Core needle 115 (100%) 

 

2.2.26  GSE19697 

Core biopsies were obtained from 86 patients prior to neoadjuvant therapy out of 
which 70 fulfilled the requirements to undergo expression analysis (24 of these 70 
were used in the published analysis) (Lin et al., 2010). pCR was defined as no 
residual invasive disease in the breast or lymph nodes. Residual in situ carcinoma 
was also considered as pCR. RNA was extracted from snap frozen 14-gauge core 
samples obtained from pre-treatment tumors. Specimens containing more than 40% 
of tumor on histological examination were analyzed. Table 2.27 reports all clinical 
and pathological characteristics of patients. Samples’ RNA have been hybridized to 
HG-U133 Plus 2.0 microarrays. Raw data files have been entered into the NCBI 
Gene Expression Omnibus (GEO) repository with accession number GSE19697 
(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19697). 

Table 2.27: Characteristics of patients from the GSE19697 dataset. 

Clinical variables Patients n=24 
Size (cm)   
T1 1 (4%) 
T2 20 (83%) 
T3 3 (13%) 
Grade   
G1 0 (0%) 
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G2 2 (8%) 
G3 22 (92%) 
ER status    
Positive 1 (4%) 
Negative 23 (96%) 
HER2 status    
Positive 1 (4%) 
Negative 23 (96%) 
Nodal status    
Positive 9 (38%) 
Negative 15 (62%) 
Race   
African American 10 (42%) 
Caucasian 14 (58%) 

 

2.2.27  GSE18728 

Patients referred to the National Cancer Institute with newly diagnosed stage 2 or 3 
breast cancer (American Joint Commission on Cancer, fifth version) with a tumor 
size of >2 cm were eligible. Eligibility criteria included an absolute neutrophil count 
> 1200/mm3, platelet count > 100,000, creatinine < 1.5 mg/dL, calculated 
creatinine clearance > 50 mL/min, total bilirubin < 1.4, aspartate 
aminotransferase/alanine aminotransferase < 1.5× upper limit of normal, alkaline 
phosphatase < 2.5 upper limit of normal. Patients were excluded if they had a 
bleeding disorder, a cardiac ejection fraction below normal limits, serious cardiac 
events within the past 12 months, or prior treatment of breast cancer. Pregnant or 
lactating women were excluded. The protocol was approved by the Institutional 
Review Board of the National Cancer Institute and written informed consent was 
obtained. From January 2001 to August 2003, 30 patients were enrolled and treated 
with 116 total courses of docetaxel and capecitabine. One patient voluntarily 
withdrew from the trial after one cycle of therapy; the remainder of the patients 
completed the treatment phase of the trial (Korde et al., 2010). Twenty-one patients 
had baseline tumor biopsies that contained malignant cells, and are included in the 
analysis of baseline gene expression in responders vs. non-responders. Of these, 14 
patients had evaluable tumor samples at baseline and after one cycle of 
chemotherapy, and are included in subsequent analyses. Demographic and tumor 
characteristics for the entire study population are reported in Table 2.28. Gene 
expression data have been deposited into the GEO database with accession number 
GSE18728 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE18728). 

Table 2.28: Characteristics of patients from the GSE18728 dataset. 

Clinical variables Patients n=61 
ER status   
Positive 32 (53%) 
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Negative 29 (47%) 
HER2 status   
Positive 17 (28%) 
Negative 44 (72%) 

 

2.2 Validation datasets 

Independent cohorts of breast cancer samples hybridized on different types of array 
platform were used in this thesis: a proprietary AIRC 5X1000 dataset (see 2.2.1 
paragraph) and GSE6861 (see 2.2.2 paragraph). 

2.2.1 AIRC 5X1000 cohort 

A sample size of 48 breast cancer samples provides an independent in-house clinical 
dataset of gene expression profiles. Samples were obtained before any type of 
treatment. RNA gene expression profiles from FFPE (formalin fixed, paraffin-
embedded) tissues were hybridized on Illumina Whole Genome DASL HT-12 array. 
Being an in-house dataset, available cancer tissues allowed obtaining the correct 
molecular subtypes by immunohistochemistry (IHC) assays (Figure 2.1). 

 
 

Figure 2.1: Molecular subtypes of patients from the AIRC 5X1000 dataset. 

2.2.2 GSE6861 

Samples of this dataset derived from the EORTC 10994 phase III breast cancer 
clinical trial, in which FEC activity (5-fluorouracil, cyclophosphamide, epirubicin) 
was compared with ET (epirubicin, docetaxel). 161 needle biopsies of locally 
advanced or large operable breast tumours were hybridised to Affymetrix X3P 
chips. The array data from the ER negative tumours (28/65 pathological CR in the 
FEC arm, 27/59 pathological CR in the ET arm) were used to validate the cell line-
based chemotherapy response predictors developed at Duke University predictors 
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developed at Duke University. Tumor characteristics for the entire study population 
are reported in Table 2.29. Gene expression data have been deposited into the GEO 
database with accession number GSE6861 
(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE6861). 

Table 2.29: Characteristics of patients from the GSE6861 dataset. 

Clinical variables Patients n=161 
Size (cm)   
T0/T1 2 (1%) 
T2 63 (39%) 
T3 34 (21%) 
Unknown 62 (39%) 
Lymph nodes status   
N0 37 (23%) 
N1 55 (34%) 
N2 7 (4%) 
N3 62 (39%) 
ER status (IHC)   
Positive 37 (23%) 
Negative 65 (40%) 
Unknown 59 (37%) 
Neoadjuvant chemotherapy response   
pathological complete response (pCR) 66 (41%) 
residual disease (RD) 95 (59%) 
Neoadjuvant chemotherapy type   
Anthracycline-based 102 (63%) 
Taxane - anthracycline-based 59 (37%) 

 

2.3 Meta-analysis of gene expression data 
A common criticism about gene expression-based prognostic/predictive signatures 
regards the limited number of samples used for their development and validation. 
No doubt that an adequately powered sample size is one of the most important, and 
most overlooked, aspects in the definition of a prognostic/predictive signature. The 
small number of samples in individual studies, particularly for human studies where 
there is a high degree of both intra- and inter-population variability, represents a 
major limitation for the detection of gene-expression signatures and, ultimately, 
results in disease biomarkers that are population dependent, rather than having 
global applicability (Bhattacharya and Mariani, 2009). However, the datasets 
deposited in public gene expression data repositories, as GEO, represent a real 
opportunity to strengthen the validation of prognostic/predictive signatures 
through the meta-analysis of multiple, independently generated data focusing on the 
same tumor type. Meta-analysis strategies can be divided into data integration and 
data combination. Data integration aims at merging results obtained from the 
analyses of independent studies through statistical techniques. Instead, data 
combination integrates multiple datasets directly at the level of raw data and 
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generates a unique matrix of gene expression signals. The direct merging of raw data 
from different studies is applicable only when expression profiles have been 
obtained using the same array technology (e.g. Affymetrix, Agilent, Illumina, etc.) 
and requires an ad-hoc normalization step. The computational pipeline for the 
combination of multiple datasets is composed of three major steps: 

§ re-definition of outcome descriptions; 
§ probe re-mapping and selection; 
§ integration and normalization of different datasets. 

Re-definition of event descriptions has been conducted carefully considering the 
clinical annotations of any single study and defining two major types of events, one 
associated to the metastatic spread and one to overall survival (see 2.2.1 paragraph). 
Probe re-mapping and selection is based on the adoption of modified custom Chip 
Definition Files (custom-CDF) (see 2.2.2 paragraph) while the integration and 
normalization of gene expression signals has been obtained applying the virtual chip 
procedure (Bisognin et al., 2010; Fallarino et al., 2010) (see 2.2.3 paragraph). The 
application of this approach allowed constructing a meta-dataset of 3661 breast 
cancer samples derived from the combination of the 27 gene expression datasets 
described in Table 2.1 (see Results for details). 

2.3.1 Re-definition of outcome and clinic-pathological variables 
descriptions for breast cancer meta-dataset 

Retrieval, organization and utilization of meta-information is still an extremely 
critical step which impacts the correct match between raw data files and sample IDs 
and the organization of samples into meaningful, homogeneous groups. This task is 
further complicated by the fact that datasets may be incompletely annotated, the 
relationship between specimen, biological sample, phenotypic characteristics and 
raw data files, the most granular object in repositories, may be not sufficiently 
explicit, and the procedures for managing large numbers of data files and related 
meta-information are tedious and error prone (Ioannidis et al., 2009). To 
homogenize the clinical information of the various cancer datasets, the outcome 
descriptions have been re-defined based on the clinical annotations of any single 
study. Specifically, the description the various authors used to indicate the type of 
outcome have been surveyed in all breast cancer datasets and used to define two 
major types of events, i.e., metastasis and survival. Metastasis is associated to the 
metastatic spread and includes the following descriptions in the original studies: 

§ recurrence free survival; 
§ metastasis free survival; 
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§ distant metastasis free survival or distant recurrence (and subtypes at different 
districts as lung, bone, and brain distant metastasis free survival/distant 
recurrence); 

§ time to distant metastasis. 

Survival is associated to death because of cancer and includes the following 
descriptions in the original studies: 

§ overall survival; 
§ disease free survival; 
§ disease specific survival. 

In neo-adjuvant chemotherapy studies, patients were labeled according their tumor 
sensibility or resistance to specific chemotherapy treatment; we used to define two 
types of events, i.e., pathological complete response and residual disease. Pathological complete 
response (pCR) is defined as no invasive and no in situ residuals in breast and nodes 
after chemotherapy. Patients with noninvasive or focal-invasive residues or involved 
lymph nodes should be considered as having residual disease. The most used of 
systemic neo-adjuvant chemotherapies included in our studies of interest comprised 
anthracycline- or taxane-anthracycline based protocols. The anthracyclines are 
among the most effective anticancer treatments ever developed and are effective 
against more types of cancer than any other class of chemotherapeutic agents. Their 
main adverse effect is several cardiotoxicity, which considerably limits their 
usefulness. They inhibit i) DNA and RNA synthesis by intercalating between base 
pairs of the DNA/RNA strand, thus preventing the replication of rapidly-growing 
cancer cells (Takimoto et al., 2008) and ii) topoisomerase II (TOP2A) enzyme, 
preventing the relaxing of supercoiled DNA and thus blocking DNA transcription 
and replication; topoisomerase II stabilizes the topoisomerase II complex after it 
has broken the DNA chain. This leads to topoisomerase II mediated DNA-
cleavage, producing DNA breaks (Pommier et al., 2010). The binding of 
topoisomerase II inhibitor prevents DNA repair by ligase (Buhl et al., 1993). 
Available agents include for examples epirubicin, doxorubicin, daunorubicin, etc. 
Taxanes are diterpenes produced by the plants of the genus Taxus (yews), and are 
widely used as chemotherapy agents (Hagiwara et al., 2004). The principal 
mechanism of action of the taxanes is the disruption of microtubule function. 
Microtubules are essential to cell division, and taxanes stabilize GDP-bound tubulin 
in the microtubule, thereby inhibiting the process of cell division, "frozen mitosis". 
Thus, in essence, taxanes are mitotic inhibitors. Taxane agents include paclitaxel 
(Taxol) and docetaxel (Taxotere). In this thesis, since we have different types of 
anthracyclines or taxane, we classified two main chemotherapy protocols: the 
anthracycline-based (labeled as A) and taxane-plus anthracycline-based (labeled as 
AT) chemotherapy. 
Patients were also characterized by several clinic-pathological variables such as: 
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• Age of patients 
• tumor size (T): dimension of tumor (mm) 
• lymph nodes status (N): involvement of regional and axillar lymph nodes 
• stage of tumors: cancer staging can be divided into a clinical stage and a 

pathologic stage. In the TNM (Tumor, Node, Metastasis) system, clinical 
stage and pathologic stage are denoted by a small "c" or "p" before the stage 
(e.g., cT3N1M0 or pT2N0). Clinical stage is based on all of the available 
information obtained before a surgery to remove the tumor. Thus, it may 
include information about the tumor obtained by physical examination, 
radiologic examination, and endoscopy. Pathologic stage adds additional 
information gained by examination of the tumor microscopically by a 
pathologist. 

• histological grade: histological study of the tumor tissue removed during 
after a biopsy to check: 1) how much the cancer cells look like normal cells 
(the more the cancer cells look like normal cells, the lower the tumor grade 
tends to be) and 2) how many of the cancer cells are in the process of 
dividing (the fewer cancer cells that are in the process of dividing, the more 
likely it is that the tumor is slow-growing slowly and the lower the tumor 
grade tends to be). 

All these clinical variables were homogenized in order to have the same labeled for 
all patients (see Results, Table 3.2). 
 
2.3.2 Probe re-mapping and selection 
Performing a meta-analysis of independent microarray studies requires to carefully 
handling the heterogeneity of array designs, which complicates cross-platform 
integration, and of sample descriptions, which impacts the correct characterization 
of specimens. At least for the case of Affymetrix arrays, cross-platform comparison 
has partially been solved by the adoption of custom Chip Definition Files (custom-
CDF) that allow matching expression profiles across subsequent generations of 
microarrays (Gautier et al., 2004; Dai et al., 2005; Ferrari et al., 2007). Despite the 
computational differences, all methods for signal quantification rely on the 
correspondence between probes and genomic sequences. The Affymetrix Chip 
Definition Files (CDFs) encode the physical design of the microarray and contain 
the sequence details to link the oligonucleotide probes of the chip to the 
interrogated transcripts. The information of a CDF file relies so deeply on the 
genome annotation contained in the databases that the same name of the chip 
reflects the version of the UniGene Build used for probe design (e.g., the HG-U133 
expression set and the human UniGene Build 133). The evolution of genome 
sequence annotation from the time when probe sets were designed caused a massive 
deviation from the original one-to-one probe set/transcription locus (i.e. UniGene 
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entry) assignment. Affymetrix continuously updates probe sets annotations and 
redefines the links between probe sets and genes indicating the UniGene cluster that 
contains the probe set representative sequences and linking them to the 
corresponding EntrezGene ID. Similarly, the Bioconductor Biocore team quarterly 
releases CDFs and annotation libraries at the Bioconductor website, which can be 
used for analysis of gene expression data in R environment. However, these update 
actions simply affect the qualitative attributes of probe sets without any degree of 
control on the effective matching between probes and genome sequences. As such, 
Dai et al. developed a novel system for associating probes to genomic information, 
based on custom-probe sets which are composed of at least four probes specifically 
matching the same sequence (Dai et al., 2005). They defined custom probesets 
based on updated versions of various datasets entries (e.g. Entrez, RefSeq) and 
generated custom CDFs for the most popular Affymetrix microarrays. The 
development of custom CDF deeply improves the analysis outcome when the focus 
of the experiment is the identification of differentially expressed genes. In this 
thesis, probes designed by Affymetrix have been re-mapped and re-defined on 
Affymetrix and Entrez CDFs.  

2.3.3 Quantification of combined gene expression signals 

The integration and normalization of different datasets can be obtained, first, 
generating the gene expression signals in each dataset, then, combining the 
expression levels in a single data matrix, and, finally, applying a meta-normalization 
step to the combined data matrix. 
Briefly, the final normalization step of the combined expression set is a crucial issue, 
since the direct integration of different datasets may result in misleading outcomes, 
due to different experimental conditions, laboratory-dependent bias, etc. In 
alternative, RMA-quantile normalization could be directly used on the entire dataset 
as far as all data refer to a unique platform. Although RMA-quantile is the most 
effective normalization method, it cannot be applied to data obtained from different 
platforms (e.g., the HG-U133A, the HG-U133 Plus 2.0, and HG-U133A2 arrays), 
due to differences in number, type, and physical localization of probes. As such, 
Bisognin and collaborators implemented a procedure, the Virtual Chip, to create a 
custom and virtual microarray grid that integrates the geometry and probe content 
of two or more types of Affymetrix arrays (Bisognin et al., 2010; Fallarino et al., 
2010). Once defined the virtual grid, all CEL files, obtained from different 
platforms, are re-organized to match a single platform, i.e., the virtual chip. As such, 
raw data, originally from different types of microarrays, become homogeneous in 
terms of platform and can be preprocessed and normalized adopting standard 
approaches, as RMA or GCRMA (see RMA algorithm). The Virtual Chip approach 
allows combining data directly at the level of probe fluorescence intensity and 
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presents the advantage that gene expression signals are generated with a single step 
of background correction, normalization and summarization. 
The construction of the virtual grid is inspired by the generation of custom Chip 
Definition Files (CDFs). In custom CDFs, probes matching the same transcript, but 
belonging to different probe sets, are aggregated into putative custom-probe sets, 
each one including only those probes with a unique and exclusive correspondence 
with a single transcript. Similarly, probes matching the same transcript but located at 
different coordinates on different type of arrays may be merged in custom-probe 
sets and arranged in a virtual platform grid, whose geometry can be arbitrarily set 
(Figure 2.2). 

 
Figure 2.2: Construction of the Virtual Chip. 

 
As for any other microarray geometry, this virtual grid may be used as a reference to 
create a virtual CDF file containing the probes of the Virtual Chip and their 
coordinates on the virtual platform. The probes included in the virtual CDF are 
those shared among the platforms of interest, with the additional condition of 
generating custom probe set of at least 4 probes. The virtual CDF can be derived from 
any custom CDF, e.g., those developed by Dai and publicly accessible at the 
Molecular and Behavioral Neuroscience Institute Microarray Lab. Finally, the virtual 
CDF can be used as the geometry file in RMA as far as the original CEL files are 
properly re-mapped to match the topology described in the virtual CDF. Re-mapped 
CEL files, called virtual CEL file, are homogeneous in terms of platform and gene 
expression data can be generated with a single step of background correction, 

                                       AGCTATT 
Reference Sequence    5’ – TTGCAAGCTATTGCGC – 3’  

Virtual Chip 

Sequence x        y Probe set 
AGCTATT 3       1 100_at 

Sequence x        y Probe set 
AGCTATT 2        3 100_at 

Sequence x        y Probe set  
AGCTATT 4       1 100_at 

Sequence x        y Probe set  
AGCTATT 1        1 custom_at Gene 

Transcript 
Exon… 

HG-U133A HG-U133A2 HG-U133Plus2.0 
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normalization and summarization directly from the fluorescence signals of all 
microarrays composing the meta-dataset. CEL file re-mapping requires re-defining: 

• the content of the [HEADER] field of Figure 2.3, i.e., all physical 
coordinates (total number of cells containing the probes, indicated by Cols, 
Rows, TotalX, and TotalY, and localization of the 4 border cells) and the name 
of the platform (HG-133_Plus_2.1sq); 

• all data contained in the [INTENSITY] field, i.e., physical localization (X e 
Y) and fluorescence intensity (MEAN) of any probe. 

 
Figure 2.3: Fields modified in a virtual CEL file. 

 
RMA algorithm 
In Affymetrix microarrays, the expression signal of each gene is quantified 
summarizing the intensities of all the oligonucleotides, i.e. the probes (e.g., 11 or 
16), of a probe set matching a target gene or transcript. Each probeset is composed 
by a set of Perfect Match (PM) and Mis-Match (MM) probes, that contains 
mismatches and should measure non-specific hybridization. The signal can be 
generated using a series of statistical or model-based algorithms (i.e., MAS5.0, 
MBEI, RMA, GCRMA, PLIER, PDNN). In this thesis expression levels were 
quantified using RMA algorithm (Robust Multichip Average; Irizarry et al., 2003). 
The RMA method for computing an expression measure begins by computing 
background- corrected perfect match (PM) intensities for each perfect match cell on 
every array. The background corrected intensities are computed in such a way that 
all background- corrected values must be positive. After background correction, the 
log-2 of each background-corrected PM intensity is obtained. These background-
corrected and log- transformed PM intensities are normalized using the quantile 
normalization method developed by Bolstad et al. (Bolstad et al., 2003). In the 
quantile normalization method, the highest background-corrected and log-
transformed PM intensity on each array is determined. These values are averaged, 
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and the individual values are replaced by the average. This process is repeated with 
what were originally the second highest background-corrected and log-transformed 
PM intensities on each array, the third highest, etc. Following quantile 
normalization, an additive linear model is fit to the normalized data to obtain an 
expression measure for each probe on each array. The linear model for a particular 
probeset can be written as Yij=mi+aj+eij where Yij denotes the normalized probe 
value corresponding to the i-th array and the j-th probe within the probeset, mi 

denotes the log-scale expression for the probeset in the sample hybridized to the i-
th array, aj denotes the probe affinity effect for the j-th probe within the probeset, 
and eij is a random error term. Tukey's median polish is used to obtain estimates of 
the mi values. These estimates serve as the log-scale expression measures associated 
with the particular probeset. 

2.4 Molecular subtype classification models 
 
Breast tumors are biologically heterogeneous and exhibit different clinical outcomes 
and an accurate identification of molecular subtypes would make it possible to 
better understand breast cancer biology and to test the prognostic/predictive value 
of molecular markers with respect to these subtypes. In this thesis, we used PAM50 
Single Sample Prediction	   (see 2.4.1 paragraph) and Subtype clustering models (see 
2.4.2 paragraph). PAM50 and Subtype clustering models are the most widely used 
classifiers in microarray studies.  
 
2.4.1 Clustering 

Clustering is a group of methodologies that assigns a set of objects into groups 
(clusters) that have a high internal homogeneity and a strong dishomogeneity with 
other clusters. In the microarray setting, clustering can be applied to genes or to 
samples. In the latter case, the focus is on clustering experiments (samples) 
according to a list of n genes, i.e., grouping together samples with a similar 
transcriptional profile. Among the various algorithms, the most commonly used is 
hierarchical clustering. Hierarchical clustering methods are non-parametric method, 
i.e. they do not rely on a probabilistic model that generates the observed data. 
However, they require that the analyst specifies the strategy for building the 
dendrogram, the measure of dissimilarity (distance) and the linkage, i.e. the measure 
The Spearman correlation coefficient is defined as the Pearson correlation 
coefficient between the ranked variables. For a sample of size n, the n raw scores Xi, 
Yi are converted to ranks xi, yi and ρ is computed from equation (1): 

                                       ! = (! !!!!)(!!!!)
!!(!!!!)! !!(!!!!)!
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Another important parameter to define hierarchical clustering is linkage, which 
determines the distance between sets of objects as a function of the pairwise 
distances between objects. The result of hierarchical clustering is a tree 
(dendrogram) that starts from the leaves (samples) and iteratively groups them 
together until forming a super-cluster containing all elements. To obtain a specific 
number of groups of samples, the tree has to be “cut” at the appropriate level. 

2.4.2 Single sample predictor (SSP) 

Hierarchical clustering has been widely used to identify molecular subtypes of breast 
cancer, but this approach can only be applied retrospectively to sufficiently sized 
cohorts of patients (Weigelt et al., 2010, Pusztai et al., 2006), but not prospectively 
to individual samples. Moreover, the hierarchical clustering model fitted onto the 
training set could not be used directly to identify the subtype of a tumor of a new 
breast cancer patient. Indeed, any new case should be added to the training set and 
the hierarchical clustering model should be fitted again, leading to a potentially 
different dendrogram. To avoid this difficulty, it was developed methods based on 
nearest centroid (Dudoit et al., 2002), called SSP (Single Sample Predictor). To 
define the SSPs, each molecular subtype was initially identified by hierarchical 
clustering based on several “intrinsic” gene lists (Table 2.30), and then the centroids 
(i.e., mean gene expression profile) of each molecular subtype (ie, luminal A, luminal 
B, HER2-enriched, basal-like, and normal breast-like) were derived; after, the gene 
expression profile of the new individual sample was compared to each centroid and 
assigned by the SSP to the nearest subtype centroid as determined by Spearman 
correlation. The method used is explained in Figure 2.4. 

Table 2.30: “Intrinsic” gene lists and Single sample predictor genes. 

Study Intrinsic gene lists Single sample predictor 
(SSP) genes 

Sorlie T et al., PNAS 2003 534 500 

Hu Z et al., BMC Genomics 2006 1300 306 

Parker JS et al., J Clin Oncol 2009 1906 50 
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Figure 2.4: Illustration of the SSP method used to identify breast cancer molecular subtypes. A 
hierarchical clustering is performed by using the intrinsic gene list to generate a dendrogram of 
patients’ tumors. The dendrogram is then cut to identify the different subtypes (in this case, S1 to 
S4). A centroid is computed for each subtype. A nearest centroid approach is used to classify a new 
patient’s tumor. In this case, the new tumor is highly correlated with centroid S3, making this the 
nearest centroid. So the new tumor is predicted to be of the subtype 3. 

In this thesis, intrinsic molecular subtypes were assigned using the 
intrinsic.cluster.predict function of genefu R package using the "50 intrinsic gene list" as 
proposed by Parker and colleagues: the 50-gene set classifier (henceforth called 
PAM50). PAM50 consisted of centroids constructed using the PAM (Prediction 
Analysis of Microarray) algorithm (Tibshirani et al., 2002) and distances calculated 
using Spearman's rank correlation. The genes used for subtyping are provided in 
Table 2.31.  
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Table 2.31: PAM50 gene list. 
Gene symbols Entrez gene ID 

ACTR3B 57180 
ANLN 54443 
BAG1 573 
BCL2 596 
BIRC5 332 
BLVRA 644 
CCNB1 891 
CCNE1 898 
CDC20 991 
CDC6 990 
CDCA1 83540 
CDH3 1001 
CENPF 1063 
CEP55 55165 
CXXC5 51523 
EGFR 1956 
ERBB2 2064 
ESR1 2099 
EXO1 9156 
FGFR4 2264 
FOXA1 3169 
FOXC1 2296 
GPR160 26996 
GRB7 2886 
KIF2C 11004 
KNTC2 10403 
KRT14 3861 
KRT17 3872 
KRT5 3852 
MAPT 4137 
MDM2 4193 
MELK 9833 
MIA 8190 
MKI67 4288 
MLPH 79083 
MMP11 4320 
MYBL2 4605 
MYC 4609 
NAT1 9 
ORC6L 23594 
PGR 5241 
PHGDH 26227 
PTTG1 9232 
RRM2 6241 
SFRP1 6422 
SLC39A6 25800 
TMEM45B 120224 
TYMS 7298 
UBE2C 11065 
UBE2T 29089 
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2.4.2 Subtype clustering models (SCMs) 
 
Subtype Clustering Model is an unsupervised method able to robustly identify the 
breast cancer molecular subtypes. It returns an accurate estimate of the classification 
uncertainty, i.e. for each subtype, the probability for a patient to have a tumor of 
this subtype.  It is based on a mixture model; it assumes that the data is an 
independent and identically-distributed sample from a population described by a 
probability density function. This density function is characterized by a 
parametrized model, taken to be a mixture of component density functions, where 
each component density describes one of the clusters. The population B of objects 
b is described by a finite mixture distribution of the form (2)  
 

Pr ! =    !!

!

!!!

Pr !|!  

 
where u is the number of clusters in the population,  !! are the mixing proportions 
such that !!!

!!! = 1, and Pr(b|r ) is the rth probability density function of b. The 
quantity !!  is typically interpreted as the prior probability that a data point is 
generated by the rth component of the mixture. There are three sets of parameters 
to estimate: the values of !! , the parameters of the probability distribution of each 
of the components, and the value of u. The usual approach to clustering using finite 
mixture distributions is first to specify the form of the component distributions, 
Pr(b|r). Then the number of clusters, u, is prescribed. The parameters of the model 
are estimated and the objects are grouped on the basis on their estimated posterior 
probabilities of cluster membership. Using Bayes’ theorem, the object b is assigned 
to cluster r if 
 

Pr !|! =  ≥ Pr !|! ∀! ≠ !  with  !, !   ∈ 1,… ,!  
 
where (3)  

Pr ! ! =   
!! Pr ! !
!! Pr ! !!

!!!
 

 
The analyst could easily use the probabilities of an object b to belong to each 
cluster. The most widely available form of mixture distribution for continuous 
variables is the mixture of normal (Gaussians) distributions, where the rth 
component Pr(b|r ) ∼ N(µr, Σr), where µr, and Σr are the means and covariance 
matrix of a multivariate normal distribution. So (4) 
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Pr(!) = !!

!

!!!

N b;   !! , Σ!    

 
The estimation of the parameters of a normal mixture model can be achieved by the 
maximum likelihood procedure through the Expectation-Maximization (EM) 
algorithm (Dempster et al., 1977). The Bayesian information criterion (BIC) 
(Schwarz et al., 1978) can be used to estimate the likelihood of a mixture model with 
u clusters. The BIC is the value of the maximized log- likelihood with a penalty for 
the number of parameters in the model, and allows comparison of models with 
different parameterizations and/or different numbers of clusters.  

The Subtype Clustering Model is composed of two steps: 
• Prototype-Based Feature Transformation: the genome-wide microarray data 

are transformed into few features quantifying the activity of key biological 
processes in breast cancer. It uses a robust estimation of gene co-expression 
and a priori knowledge about the biological processes of interest. These 
features should be specific to the biological process they represent, i.e. a 
feature representative to a biological process should not be also 
representative to another biological process. So, the genes sharing a 
biological affinity to the same biological process are before clustered together 
and then each cluster of genes is summarized by a single feature quantifying 
the activity at the gene expression level of the corresponding biological 
process (gene module). In this case, the method uses three gene modules: ER 
and HER2 signaling, and proliferation signaling (aurora kinase A, AURKA). 

• Subtypes identification: represent the patients in a low dimensional space 
defined by gene module scores quantifying the activity of the three gene 
modules. 

The model-based clustering is a mixture of Gaussians in a low dimensional space. 
The input space is defined by the three gene module scores computed through the 
prototype-based feature transformation. Let Xn×p be the matrix of p gene module 
scores for n patients and xi be the profile of the ith patient. A mixture of Gaussians 
model can be written as (5) 

  Pr !! =    !!

!

!!!

! !!; !! , Σ!  

 
where u is the number of Gaussians, πr is the prior probability of xi to be generated 
by the rth Gaussian N(xi ; µr , Σr ) of mean µr and covariance matrix Σr. From 
equation (3), we define the probabilities to belong to each subtype r as (6) 
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Pr !|!! =   
!!! !!; !! , Σ!
!!! !!; !!, Σ!!

!!!
 

 
So, Pr(r|xi) is the probability that the patient having the profile xi has a breast tumor 
of subtype r.  
In this thesis, we used the SCMGENE (Desmedt et al., 2008), SCMOD1 (Desmedt 
C., 2008) and SCMOD2 methods (Warapati et al., 2008). SCMGENE, a simplified 
SCM, is based on the expression of ER, HER2, and AURKA genes; whereas, 
SCMOD1 is based on 726 genes (Desmedt et al., 2008), and SCMOD2 on 663 genes 
(Wirapati et al, 2008) both related to ER, HER2, and AURKA gene module. All 
methods use the Perou’s subtype nomenclature (Perou et al., 2000): basal-like, 
HER2-enriched, and luminal A and B, which correspond, respectively, to the ER-
/HER2-, HER2+, and ER+/HER2- low and high proliferation tumors. The 
function subtype.cluster.predict of genefu R package	   fits the Subtype Clustering Models. 
This function includes MCLUST function (mclust package) that combines 
hierarchical clustering, Expectation-Maximization (EM) algorithm (Dempster et al., 
1977) and the Bayesian Information Criterion (BIC). There are several models to fit 
mixture of Gaussians; in this case, we used EEI models with diagonal variance, 
equal volume, equal shape and identical orientation of distributions.  
 
2.5 Gene signatures 
 
This paragraph describes the gene or signatures used in this thesis. The gene/ gene 
sets have been applied in the study for evaluation of a multifactorial approach by in-
silico analysis for predicting response to neo adjuvant anthracycline-based 
chemotherapy in triple negative breast cancer patients. Paragraph 2.5.6 describes a 
potential predictive test, A-score (anthracycline-based score). 
 
2.5.1 Penetration of drug into the cancer cell: HIF and SHARP1 
signatures 
Hypoxia, promoted by HIFs, is a well-known contributor to decreased drug 
penetration, and chemo resistance (Teicher et al., 1994). Montagner et al recently 
described a hypoxia signature of 22 genes (Table 2.32), with increased expression 
correlated with increased HIF activity (Montagner et al., 2012). A direct interaction 
between SHARP1 (a downstream target of the tumor suppression gene p63) and 
HIF1α and HIF2α was demonstrated, with a signature of low SHARP1 activity in 
TNBC conferring increased HIF function and increased hypoxia (Montagner et al., 
2012).  The SHARP1 signature (Table 2.33) measures low SHARP activity and thus 
increased HIF function. 
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Table 2.32: HIF gene signature. 
Symbol  EntrezGene ID 
ADM 133 
ALDOC 230 
BHLHE40 8553 
BIRC2 329 
BNIP3 664 
CENPF 1063 
DDIT4 54541 
ENO2 2026 
GLRX 2745 
HK2 3099 
INSIG1 3638 
MAFF 23764 
NDRG1 10397 
PDK1 5163 
PDPK1 5170 
PFKP 5214 
PGK1 5230 
SAP30 8819 
SLC2A1 6513 
SLC2A3 6515 
VEGFA 7422 
WSB1 26118 

 
Table 2.33: SHARP1 gene signature. 
Symbol EntrezGene ID 
AGTPBP1 23287 
CHN2 1124 
COBL 23242 
DSC2 1824 
EPS8L2 64787 
F2RL1 2150 
FSCN1 6624 
GBE1 2632 
GPR56 9289 
HSF2 3298 
IFIT3 3437 
IGF2BP3 10643 

IMPA2 3613 
ITGB2 3689 
LPIN1 23175 
LYZ 4069 
ME1 4199 
NOX5 79400 
PLCE1 51196 
RAPGEF5 9771 
S100A3 6274 
SH2D3A 10045 
SLC5A3 6526 
SLCO4A1 28231 
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SREBF1 6720 
TGFA 7039 
WWTR1 25937 

 
2.5.2 Location of TOP2A protein within the nucleus: LAPTM4B 
mRNA 
In order to work effectively, the target of anthracyclines, TOP2A protein, must have 
access to nuclear DNA; thus, it must be located in the nucleus. Nuclear export of 
TOP2A protein may contribute to anthracycline resistance (Oloumi et al., 2000, 
Turner et al., 2004). TOP2A protein nuclear location might be inferred using 
expression level of LAPTM4B (Lysosomal Associated Protein Transmembrane 4B 
gene) (Li et al., 2010). LAPTM4B gene resides on chromosome 8q22, with 
overexpression shown to increase sequestration of anthracyclines in the cytoplasm. 
Increased levels of LAPTM4B mRNA have been correlated with increased 
anthracycline resistance, while selective depletion of LAPTM4B significantly 
increased sensitivity to anthracycline, but not cisplatin or taxane, chemotherapy (Li 
et al., 2010).  
 
2.5.3 Increased expression of TOP2A: TOP2A mRNA 
Topoisomerase II (TOP2A) is a key enzyme in DNA replication, one of the 
molecular targets of anthracyclines, and it is amplified in 24% to 54% of HER2-
amplified tumors (Slamon et al., 2009). TOP2A gene amplification has been shown 
to predict increased sensitivity to anthracyclines in several studies (Di Leo et al., 
2011; Di Leo et al., 2002; Press et al., 2011; Slamon et al., 2011, Arriola et al., 2007; 
Desmedt et al., 2011). However this finding has not been entirely consistent across 
all trials (Bartlett et al., 2008; Martin et al., 2011), and further research is needed to 
clarify the role of TOP2A gene status as a predictive biomarker of anthracycline 
sensitivity. 
 
2.5.4 Induction of apoptosis: YWHAZ and Minimal signature 
The anti-apoptotic gene YWHAZ (coding for 14-3-3ζ) resides on chromosome 
8q22 close to LAPTM4B gene and may promote de novo anthracycline resistance (Li, 
2010). Increased expression has been associated with increased doxorubicin 
resistance in breast cancer cell lines, and early relapses after anthracycline 
chemotherapy. siRNA knockdown of YWHAZ in breast cancer cell lines 
significantly increased doxorubicin-induced apoptosis (Li et al., 2010).  An alternate 
marker of apoptosis is the Minimal Signature, MS, (Adorno et al., 2009), comprising 
two genes, SHARP1 and CCNG2. As with SHARP1, CCNG2 is a downstream 
target of p63. As p63 is inhibited by mutant p53, lack of MS expression implies 
dysfunction in the p53 pathway, the major apoptotic pathway in the presence of 
oncogenic stress, and may be a suitable surrogate for lack of apoptosis. YWHAZ 
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and the MS were both selected for evaluation as markers of apoptosis  
 
2.5.5 Active immune and stromal function: STAT1 and PLAU 
signatures  
Both innate and adaptive immune responses are important in anthracycline toxicity 
(Mattarolo et al., 2011, Zitvogel et al., 2008). Anthracyclines trigger immunogenic 
cell death by eliciting tumor-specific IFNγ CD8+ cytotoxic T lymphocytes, thus an 
anthracycline-induced anticancer immune response can help eradicate residual 
cancer cells, or maintain residual cells in state of dormancy. Moreover, immune 
module scores (Teschendorff et al., 2007, Desmedt, 2008) (STAT1, Table 2.34) have 
been associated with higher probability of achieving pCR after anthracycline +/- 
taxane chemotherapy among all breast cancer subtypes when defined by 
immunohistochemistry (Ignitiadis et al., 2012). Closely related to immune function, 
stromal signatures (PLAU, Table 2.35) may also be useful in predicting 
anthracycline sensitivity or resistance (Desmedtet al., 2008, Farmer et al., 2009).  
 
Table 2.34: Immune gene signature (STAT1). 
Symbol EntrezGene ID 

STAT1 6772 

CXCL10 3627 

TAP1 6890 

CXCL11 6373 

INDO 3620 

CXCL9 4283 

MX1 4599 

LAMP3 27074 

ISG15 9636 

RTP4 64108 

HERC6 55008 

IFI44L 10964 

MX2 4600 

IFIT3 3437 

HERC5 51191 

RSAD2 91543 

DDX58 23586 

CCL5 6352 

ADAMDEC1 27299 

CD2 914 

NA 55601 

HCP5 10866 
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NMI 9111 

SPOCK2 9806 

CCL8 6355 

TRIM22 10346 

LYZ 4069 

IRF1 3659 

LAG3 3902 

PSCDBP 9595 

TFEC 22797 

UBD 10537 

SP140 11262 

CTSC 1075 

IFI6 2537 

PLA2G7 7941 

CD3G 917 

ECGF1 1890 

PLAC8 51316 

FGL2 10875 

GZMK 3003 

CD48 962 

STAT4 6775 

GPR18 2841 

P2RX5 5026 

IFI30 10437 

SH2D1A 4068 

LAPTM5 7805 

CD69 969 

PTPN7 5778 

IRF8 3394 

PIM2 11040 

ETV7 51513 

GPR171 29909 

PSME1 5720 

BIRC3 330 

FASLG 356 

IFITM1 8519 

IFIT5 24138 

ITGB2 3689 

BTN3A2 11118 

HCLS1 3059 

SECTM1 6398 
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ARHGAP15 55843 

KLRK1 22914 

IGSF6 10261 

EBI2 1880 

NA 26034 

SNX10 29887 

NA 79132 

BST2 684 

NA 55337 

APOC1 341 

NA 51237 

NA 445347 

ZC3HAV1 56829 

DDAH2 23564 

LILRA4 23547 

EBI3 10148 

KLRC3 3823 

CLEC4A 50856 

CD40LG 959 

VAV1 7409 

GLRX 2745 

ACP5 54 

RFX5 5993 

CECR1 51816 

TRAF3 7187 

RAB8A 4218 

IL18 3606 

EFNA1 1942 

RASGRP1 10125 

REC8L1 9985 

CCRL2 9034 

DNAL4 10126 

 
Table 2.35: Stromal gene signature (PLAU). 

Symbols EntrezGene ID 

PLAU 5328 
BMP1 649 
MMP14 4323 
THY1 7070 
COL5A2 1290 
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ADAM12 8038 
ANGPTL2 23452 
MFAP2 4237 
SERPINH1 871 
COL6A1 1291 
ISLR 3671 
PDLIM7 9260 
PARVA 55742 
OLFML2B 25903 
TAGLN 6876 
CTSA 5476 
PDGFRB 5159 
MXRA8 54587 
OSMR 9180 
COL3A1 1281 
GREM1 26585 
FAP 2191 
DBN1 1627 
BICD2 23299 
TNFRSF12A 51330 
VDR 7421 
SNAI2 6591 
EPB41L2 2037 
FKBP14 55033 
NBL1 4681 
CAP1 10487 
ATP6V1B2 526 
EPHB4 2050 
TRAM2 9697 
DDR2 4921 
GFPT2 9945 
NID1 4811 
OFD1 8481 
CADM1 23705 
STAB1 23166 
TPST2 8459 
PPP1R15A 23645 
PDLIM3 27295 
ATPIF1 93974 
TRIM33 51592 
MMP3 4314 
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EPYC 1833 
ANKRD46 157567 
CPNE1 8904 
BCL3 602 
GLB1 2720 
UBL5 59286 
ULK1 8408 
NOL8 55035 
TGFB2 7042 
PDGFB 5155 
BASP1 10409 
SDS 10993 
RPS27A 6233 
ENC1 8507 
ACAN 176 
ZNF518A 9849 
RPL18 6141 
MEF2A 4205 
DNASE1L1 1774 
MYO1B 4430 
JPH2 57158 

 
2.5.6 A-score 
 
Desmedt et al. developed a gene expression signature to identify patients who would 
not benefit from anthracyclines and could thus be spared the non-negligible risks of 
this type of chemotherapy. The anthracycline-based score (A-Score) was developed 
integrating three biologically different expression signatures associated with the 
efficacy of anthracyclines: TOP2A signature, stroma and immune response 
signatures. TOP2A signature is composed by TOP2A and several additional genes 
based on a genomic region of genes that were reported to be co-amplified with 
TOP2A, but that are not part of the smallest region of amplification of HER2 as 
defined by Marchio et al., 2008. So, TOP2A signature is the averaged sum of all the 
genes annotated in the region ranging from 35.37 Mb to 36.06 Mb of chromosome 
17 (suppl. Data in Desmedt, 2008). The TOP2A signature was significantly 
associated with pCR in the ER-negative/HER2-positive tumors of patients 
receiving anthracycline-based treatment, but not in those of patients receiving 
combined taxane plus anthracycline treatment. The last two signatures have been 
previously described in 2.5.5. This model takes into consideration the heterogeneity 
of ER-negative tumors in terms of HER2 status by assessing their probability of 
belonging to the ER-negative/HER2-negative and the ER-negative/HER2-positive 
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subtypes and by only considering the TOP2A signature for the latter, given the fact 
that the amplification of TOP2A and its predictive value was observed only in 
HER2-positive samples. 
 

2.6 Statistical analysis  
This paragraph illustrates common analyses of gene expression profiles such as 
differential expression (see 2.61 paragraph), the methods to classify samples and 
gene signatures (see 2.6.2 paragraph), survival (see 2.6.3 paragraph) and ROC 
analysis (see 2.6.4 paragraph).  
 
2.6.1 Differential expression analysis 

Identification of differentially expressed genes is a high level analysis and consists in 
finding genes that are differentially expressed between different conditions or 
phenotypes, e.g. two different tumor types. Differentially expressed genes are genes 
whose expression levels are associated with a phenotype of interest. There are 
different methods to identify such genes, including statistical tests. In this thesis a 
statistical test was used: Significance Analysis of Microarrays (SAM). The input for 
test is N gene expression measurements from a set of M microarray experiments, as 
well as a response variable from each experiment. The response variable is usually a 
label like “untreated”, “treated” (either unpaired or paired). The null hypothesis is 
that the average gene expression is the same in the two populations. 
 
Significance Analysis of Microarrays (SAM) 

Tusher et al. (2001) introduced Significance Analysis of Microarrays (SAM) as a 
statistical technique for finding significant genes in microarrays. This technique aims 
to control the False Discovery Rate (FDR), which is the proportion falsely rejected 
null hypothesis among all rejected null hypotheses. SAM is available in the samr R 
package. Given two populations with m1 and m2 samples, SAM computes a statistic 
!!  for each gene g, measuring the strength of the relationship between gene 
expression and the response variable: 
 

!! =   
!!! − !!!

!!"!
1
!!

+ 1
!!

+   !!
   

 
where !!!  and !!!  are the mean of gene g in population 1 and 2, respectively and  
!!"!  is the pooled variance of the gene in the two populations defined as: 
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!!"! =   
!! − 1 !!!! + !! − 1 !!!!

!! +!! − 2
 

 
where !!!! and !!!!  are the variances of gene g in population 1 and 2. SAM uses a 
regularized version of the t-statistics where it adds a positive constant !! to make 
the coefficient of variation of !!  approximately constant as a function of !!. It then 
uses repeated permutations of the data to determine if the expression level of any 
genes is significantly related to the response. The cutoff for significance is 
determined by a tuning parameter ∆, chosen by the user based on the false positive 
rate. This tuning is achieved controlling the q-value or the false discovery rate for 
the gene list that includes that gene and all genes that are more significant. The user 
can also choose a fold change parameter, to ensure that called genes change at least 
of a pre-specified amount. 
 

2.6.2 Signature quantification 

These techniques have been used to calculate the continuous score of the signatures 
described in paragraph 2.5. In this thesis, we used two approaches to define a 
continuous signature score: the combined Z-score and Module score. 
 
Combined Z-score 
Given a list containing n genes and a sample j, a score can be defined as the sum of 
the standardized expression values (z-scores) of the n genes in the list: 
 

!"#$%! =   
!!,! − !!
!!

!

!!!

   

 
Two groups of objects can be obtained setting a threshold on the score value. Since 
the score is centered on the mean, a common threshold is zero. If the list contains 
genes that represent the read-out of a pathway, a positive score will indicate that the 
pathway is active, while a negative will mean that the pathway is inactive (Fig 2.5). 
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Figure 2.5: Distributions of score values in samples with activation/inactivation of a given pathway. 

 
Module score  
The other way to calculate a continuous signature score is the module score as 
described in Desmedt et al., 2008. For each sample, the signature was quantified as: 

!"#$%! =   Σ!!!!!/Σ!|!!|	  
where !!   is the expression of a gene included in the set of genes of interest and !! is 
either +1 or -1 depending on the sign of the association under study. The signature 
scores have been assessed with the sig.score function of R (genefu package).  

2.6.3 Survival analysis  
 
The importance of statistics in biomedical research is that it allows drawing 
conclusions or making inferences based on a sample from a population rather than 
from a total population. Once a sample from a population is extracted, one or more 
hypotheses can be tested on it through the combined use of descriptive statistics 
and inferential statistics. The descriptive statistics describes the samples. For 
example, a sample of population can be described on the basis of its characteristics 
as age, sex or smoking habit. These factors can be next summarized, generally 
through the media or median or by measures of frequency (proportion of males, 
smoking rates, etc). Survival analysis is a part of inferential statistics and describes 
and quantifies time to event data. Once times to event data have been collected, the 
first task is to describe them and usually this is done graphically through a survival 
curve. There are several methods to estimate the survival curve. In epidemiology the 
most frequently used methods make no assumption on the distribution of the data 
(non-parametric methods). There are three non-parametric methods for describing 
time to event data, i.e., the Kaplan-Meier, the life table, and the Nelson-Aalen 
method. All survival analyses performed in this thesis are based on the Kaplan-
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Meier method (Kalbfleisch and Prentice, 1980). The Kaplan-Meier method is a 
statistical tool that allows to construct the survival curves (the relationship between 
the probability of survival, on y-axis, and the observation time on the x-axis) and to 
measure the hazard rate. In cohort study each patient is described through two 
terms: failure is used to define the occurrence of the event of interest and survival time 
specifies the length of time taken for failure to occur, i.e., the survival of tumor 
patients after surgery. Obviously, the survival time for patients without the event of 
interest corresponds to that between the beginning of study and the end of the 
observation. Censored patients are those who don’t incur in the event during the 
observation period or those who survive until the end of the observation or leaving 
the study before the end of it for various reasons (e.g., patients lost to follow-up, 
moved to another center, or died from other causes). In all cases, censored patients 
remain in the analysis until fixed data on their health and their presence are 
available. In the survival curve, the curve has a step down whenever the patient has 
the event of interest, while it continues when a patient is censored, and has a sign 
(normally + sign) when the patient was still alive at the end of his follow-up (Figure 
2.6). The part of the curve after censoring of the first patient is only an estimate of 
survival for the group rather than the actual survival, which is not yet known since 
the censored patients are still alive at the time of analysis. If the analysis were done 
later (and often results from clinical studies are updated with increased follow-up), 
then the information that a previously censored patient had continued to survive or 
had died at some point would be incorporated into the curve. Since everyone 
eventually dies and all patients of the study will have died, the survival curve for the 
group will be precisely known. Until that, the curve is only an estimate. 

 

Figure 2.6: Example of a censored curve with tick marks 

When a patient is censored the sample size of patients at risk is reduced by one after 
the time of censorship; this always reduces the reliability of the curve, so the more 
patients are censored and at earlier time they are censored the more unreliable the 
curve is. The end of the curve is most affected, because each censored patient 
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reduces the reliability of the curve from that point forward. In these curves the 
number of intervals is dictated by times when the event of interest takes place, 
showing the number remaining at risk at each interval. The number at risk at any 
interval is the number of patients who are still alive and whose follow-up extends at 
least that far into the curve. The percentage surviving at the start of any interval is 
equal to the probability of survival multiplied for each one of the preceding 
intervals. In fact, the aim is to find a way to account for censored patients and to 
remove them from the curve at the time their follow-up ends. So when a patient 
dies, the survival for the interval ending with his death is calculated according to the 
number remaining at risk at the time of death. 
It is frequently of interest to compare the survival of two group of study. The most 
commonly used test for comparing survival distributions is the log-rank test 
(Harrington and Fleming, 1982), also known as the Mantel-Cox test. This test takes 
each time point when a failure event occurs and creates a 2×2-table showing the 
number of deaths and the total number of subjects under follow-up. For each table, 
the observed deaths in each group, the expected deaths and the variance of the 
expected number are calculated. These quantities are summed over all tables to yield 
a χ2 statistic with one degree of freedom. This test also produces the observed to 
expected ratio of each group, i.e., the ratio between the number of deaths observed 
during the follow-up and the expected number of deaths under the null hypothesis 
that the survival curve for that group would be the same as that for the combined 
data. Survival analysis, Kaplan-Meier curves, and the multivariate analysis have been 
performed using survival package of R. Kaplan-Meier plots were drawn using the 
km.coxph.plot function of survcomp package. Log-rank test has been performed with 
surv_test function of coin package. 
 
2.6.4 ROC analysis  
 
The receiver operating characteristic (ROC) curve is a standard technique for 
visualizing, organizing and selecting classifiers based on their performance (Swets et 
al, 2000). Given a classifier and a condition, there are four possible outcomes. If the 
condition is positive and it is classified as positive, it is counted as a true positive; if it 
is classified as negative, it is counted as a false negative. If the condition is negative and 
it is classified as negative, it is counted as a true negative; if it is classified as positive, it 
is counted as a false positive. Given a classifier and a set of conditions (the test set), a 
two-by-two confusion matrix (also called a contingency table) can be constructed 
representing the dispositions of the set of instances. This matrix forms the basis for 
many common metrics. Figure 2.7 shows a contingency table and equations of several 
common metrics that can be calculated from it. 
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Figure 2.7: Contingency table and common performance metrics calculated from it. 

 
A ROC curve is a two-dimensional graph in which the sensitivity is plotted on the Y 
axis and 1 - specificity is plotted on X axis. The best possible prediction method 
would yield a point in the upper left corner or coordinate (0,1) of the ROC space, 
representing 100% sensitivity (no false negatives) and 100% specificity (no false 
positives). The (0,1) point is also called a perfect classification. A completely random 
guess would give a point along a diagonal line (the so-called line of no-discrimination) 
from the left bottom to the top right corners (Figure 2.8). 

 

Figure 2.8: ROC curve graph. 
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To compare classifiers we may want to reduce ROC performance to a single scalar 
value representing expected performance. A common method is to calculate the 
area under the ROC curve, abbreviated AUC (Bradley et al., 1997; Hanley and 
McNeil, 1982). Since the AUC is a portion of the area of the unit square, its value 
will always be between 0 and 1. The concordance-index is a generalization of the 
area under the ROC curve (AUC), therefore it measures how well the classifier 
discriminates between different responses, i.e., is your predicted response low for 
low observed responses and high for high observed responses. So concordance-
index > 0.5 implies a good prediction ability, equal to 0.5 implies no predictive 
ability (no better than random guessing), and < 0.5 implies "good" anti-prediction 
(worse than random, but if you flip the prediction direction it becomes a good 
prediction). In this thesis, using the receiver operating characteristic (ROC) analysis, 
we assessed the ability of any single gene/gene signature score or their linear 
combination to discriminate patients with pathologic complete response from 
patients with residual disease. We calculated the area under the curve (AUC) to 
assess the prediction performance of any score (rocr package). AUC was estimated 
through the concordance.index (survcomp R package). 
 
Performance of a classifier 
To classify a patient as a putative responder or as a resistant one, we first need to 
determine the appropriate threshold for the continuous score of the classifier. 
Metrics for the classifier score as the positive (PPV) and negative predictive values 
(NPV), sensitivity (SENS), specificity (SPEC) (see Figure 2.7) were determined at 
the threshold that maximizes the Youden Index (SPEC + SENS − 1) in a cohort of 
interest. Youden’s index (J), defined as the maximum vertical distance between the 
ROC curve and the diagonal line, serves as another global measure of overall 
classifier accuracy and can be used in choosing an optimal cut-point. These metrics 
can be represented using forest plot. The word originated from the idea that graph 
had a forest of lines. The horizontal line corresponds to exact 95% confidence 
intervals (CIs) of each classifier. Point estimates are displayed as blue squares 
(Figure 2.9). 
 

 

 
 

Figure 2.9: Forest plot. 
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2.7 Enrichment analysis  
Enrichment analysis consists in identifying statistically significant associations 
between microarray experiments and gene sets. This approach requires expression 
data that represent the transcriptional effect of an event occurring at the molecular 
level (e.g., overexpression/silencing of a gene, treatment with pharmaceutical 
compounds, activation of a regulatory axis) and the use of statistical tools to 
evaluate the significance of the overlap between this effect and gene sets 
representing signaling pathways, gene ontologies or other transcriptional 
characteristics. Approach to perform enrichment analysis: i) first identify a list of 
differentially expressed genes (for instance using as SAM) and then apply a Fisher’s 
exact test to determine the enrichment of specific gene sets among the differentially 
expressed genes. 
 
2.7.1 Fisher’s exact test 

The Fisher’s exact test (Fisher, 1925) can be used to conduct an over-representation 
analysis to assess the statistical association between two nominal variables that result 
from classifying objects in two different ways. The test uses a 2×2 contingency table 
and verifies if the data observed in the table are compatible with the null hypothesis 
that the relative proportions of one variable are independent of the second variable. 
The probability of getting the observed data under the null hypothesis that the 
proportions are the same follows the hyper geometric distribution. The hyper 
geometric distribution is a discrete probability distribution that describes the 
probability of k successes in n draws from a finite population without replacement. 
Given an urn with two types of balls, black ones and white ones, if the variable N 
describes the number of all balls in the urn and m describes the number of white 
balls, then N−m corresponds to the number of black balls. Given the contingency 
table indicated in Table 2.36, X is the random variable whose outcome is k, the 
number of white balls drawn in the experiment. 
 
Table 2.36: example of a contingency table. 
  drawn not drawn total 

White balls k m - k m 
Black balls n - k N + k - n - m N - m 
Total n N - n N 

 
The probability of drawing exactly k white balls can be calculated as: 
 

! =    ! = ! = ! !;!,!,! =   
!
!

! −!
! − !
!
!
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In order to calculate the significance of the observed data, i.e. the total probability 
of observing data as extreme or more extreme if the null hypothesis is true, the 
values of p for this table and all tables with a more extreme configuration have to be 
calculated and added together. This gives a one-tailed test; for a two-tailed test we 
must also consider tables that are equally extreme but in the opposite direction. In 
this thesis, the one-sided Fisher’s exact test was used to assess the significance of the 
overlap between two lists of genes, e.g. overexpressed genes and genes belonging to 
a signaling pathway. Given m up-regulated probesets and n probesets in a predefined 
pathway signature, the probability of observing an overlap of k probesets for that 
signature, under the hypothesis that the probesets were picked out randomly from 
the N total probesets of the microarray, is given by the hypergeometric distribution. 
Testing more signaling pathways, a 2×2 contingency table was built for each 
pathway recording the relation between genes in the pathway signature and 
overexpressed genes. For any given signature, the significance of the observed 
overlap k (p-value) is computed as the sum of the probabilities for all possible 
contingency tables with an overlap greater than or equal to k. The null hypothesis is 
then rejected if the p-value is smaller than a predetermined threshold. Considering 
that multiple signatures were tested, p-values were finally adjusted for false 
discovery rate (FDR) using Benjamini-Hochberg (BH) correction. The over-
representation analysis has been conducted using the phyper function of the R stats 
package. The p-value threshold has been set to 0.05 and p-values adjusted using the 
p.adjust function of the R stats package. 
 

2.7.2 Gene Sets 

The Molecular Signature Database (MSigDb) is a publicly accessible collection of 
curated gene sets that is maintained by the GSEA team 
(http://www.broadinstitute.org/gsea/msigdb/index.jsp; Subramanian et al., 2005). 
The MSigDB gene sets are divided into seven major collections: 
C1: positional gene sets for each human chromosome and each cytogenetic band; 
C2: curated gene sets from online pathway databases, publications in PubMed, 
any knowledge of domain experts; 
C3: motif gene sets based on conserved cis-regulatory motifs from a comparative 
analysis of the human, mouse, rat and dog genomes; 
C4: computational gene sets defined by mining large collections of cancer-
oriented microarray data; 
C5: GO gene sets consist of genes annotated by the same GO terms; 
C6: oncogenic signatures defined directly from microarray gene expression data 
from cancer gene perturbations; 
C7: immunologic signatures defined directly from microarray gene expression 
data from immunologic studies. 
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In this thesis, we used a subset of the C2 collection (version 4.0), i.e. those gene sets 
derived from the BioCarta pathway database 
(http://www.biocarta.com/genes/index.asp). This collection contains 217 gene sets 
describing metabolic and signaling pathways. Moreover, we added to the BioCarta 
gene sets several other pathways derived from the literature (Table 2.37) and 
signatures characterizing normal mammary (hNMSC), breast cancer (IGS, 
CD44high), and embryonic (ES1, ES2, ES-like) stem cells listed in Table 2.38. 
 
Table 2.37: List of gene sets representing signaling pathways obtained from literature. 
Signature name # probesets Reference 
β-catenin 13 Bild et al., 2006 
E2F3 258 Bild et al., 2006 
ERBB2 30 Mackay et al., 2003 
HIFs 54 Montagner et al., 2011 
H-Ras 262 Bild et al., 2006 
Mutant-p53 165 Miller et al., 2005 
NCID 135 Mazzone et al., 2010 
NF-KB 223 Park et al., 2007 
Notch 418 Mazzone et al., 2010 
Src 73 Bild et al., 2006 
STAT3 12 Alvarez et al., 2005 
TGF-β-a 120 Padua et al., 2008 
TGF-β-b 51 Adorno et al., 2009 
TGF-β-c 170 Adorno et al., 2009 
WNT 13 Di Meo et al., 2009 
WNT/TCF4 47 van de Wetering et al., 2002 
YAP.TAZ 619 Zhang H et al., 2009 

YAP.TAZ conserved 93 
Zhao et al., 2008               
Dong et al., 2007                   
Ota and Sasaki, 2008 

Core_Human 126 Bild et al., 2006 
Myc_Human 605 Bild et al., 2006 
MYC 53 Bild et al., 2006 
SHARP1 28 Montagner et al., 2012 
TenGene 29 Girardini et al., 2011 
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Table 2.38: List of staminal signatures. 

Signature name Description # probesets Reference 

hNMSC (Staminal) Human normal mammary stem cells 294 Pece et al., 2010 

CD44high CD44+ breast cancer cells 39 Shipitsin et al., 2007 
ES1 Embryonic stem cells 1 328 Ben-Porath et al., 2008 

ES2 Embryonic stem cells 2 40 Ben-Porath et al., 2008 

ES-like Embryonic stem cells-like 731 kim et al., 2010 
IGS  Invasive gene signature 97 Liu et al., 2007 
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Chapter 3 

Results 
 
Paragraph 3.1 contains a description of the re-organization of the breast cancer 
datasets; paragraph 3.1.1 describes the clinical covariates of meta dataset; paragraph 
3.2 describes the used methods for classification in the different molecular subtypes 
and finally, paragraph 3.3 describes the definition of two large meta-cohorts; in 
particular, the prognostic meta-cohort and its application are described in paragraph 3.3.1 
and the predictive meta-cohort and its application are described in paragraphs 3.3.2. 
 
3.1 Breast cancer data collection 
 
The survey for gene expression profiles of breast cancer samples analyzed using 
Affymetrix microarrays and for which raw data and patients’ clinical annotations 
were publicly available returned 4640 samples collected in 27 major datasets (see 
Table 2.1 and paragraphs 2.2.1-2.2.27 for details). Prior to analyzing the gene 
expression data, the content of all breast cancer datasets has been manually verified 
and up-dated. Indeed, a finer inspection of cohort descriptions, in primary article 
and supplementary information, and of GEO meta-data seemed to indicate that, in 
some cases, the same sample was included in more than a study and submitted in 
more than one GSE. As such, we re-organized all datasets eliminating multiple 
copies of the same sample and designing a final database in which any sample 
appears only once. Moreover, we changed the name of the original dataset and 
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named the new datasets after the medical center where patients were recruited. In 
summary, the studies of Table 2.1 have been changed as follows: 

• Stockholm dataset has been fully confirmed, except for the name changed to 
KI_Stockholm (Karolinska Institutet Stockholm); 

• EMC-286 and EMC-58 were merged to create EMC-344 (Erasmus Medical 
Center);  

• MSK dataset has been fully confirmed, except for the name changed to MSKCC 
(Memorial Sloan-Kettering Cancer Center); 

• Uppsala-Miller, Ivshina-Miller, and Loi datasets (GSE3494, GSE4922, and 
GSE6532) includes samples derived from 3 cancer centers, i.e., Uppsala 
University Hospital, for GSE3494 and GSE4922, and John Radcliffe Hospital 
in Oxford, Guys Hospital in London and, again, Uppsala University Hospital 
for GSE6532. Moreover, a comparison of the hybridization dates on the CEL 
files of GSE3494 and GSE4922 and of the patients’ clinical information 
revealed that, despite being deposited twice, the two series are identical. As 
such, these 3 datasets have been split into: 
§ KI_Uppsala comprising all 258 unique patients of the Uppsala University 

Hospital; 
§ OXF composed of the 178 samples collected at the John Radcliffe Hospital 

in Oxford and formerly part of GSE6532; 
§ GUY composed of the 87 samples from the Guys Hospital in London and 

formerly part of GSE6532 and, as explained later, of 77 samples from the 
former Tamoxifen study; 

• Sotiriou dataset has been eliminated since samples of this series are all included 
in GSE6532; 

• Tamoxifen dataset has been added to GUY cohort since all patients were 
recruited at the Guys Hospital in London; 

• Desmedt dataset has been fully confirmed, except for the name changed to 
TRANSBIG (after the consortium of cancer centers where samples have been 
collected); 

• Schmidt datasets has been fully confirmed, except for the name changed to 
Mainz (Johannes Gutenberg University in Mainz); 

• Veridex dataset has been fully confirmed; 
• E-TABM-158 and GSE7378 were merged to create UCSF since all patients 

were recruited at the University of California, San Francisco (173 samples). 
Moreover, a comparison of the hybridization dates on the CEL files of E-
TABM-154 and GSE7378 and of the patients’ clinical information revealed 
that, 17 samples were deposited twice for a total of 166 unique samples out of 
173 samples; 
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• GSE16446 was re-named as IJB_TOP (Institut Jules Bordet /Trial of Principle) 
since all patients were recruited at Institut Jules Bordet; 

• GSE19615 was re-named as US_NCI since all patients were recruited at US 
National Cancer Institute; 

• IPC-GSE21653 was re-named as CRCM since all patients were recruited at 
Centre de cancérologie de Marseille;  

• GSE20685 was re-named as KOOF since all patients were recruited at Koo 
Foundation SYS Cancer Center; 

• GSE31519 was re-named as Goethe since all patients were recruited at Goethe-
University, Frankfurt;  

• GSE22093 was re-named as MDACC/IGR (M.D. Anderson Cancer 
Center/Institut Goustave Russy) and comprises 103 samples, 36 of which are 
included in GSE20271; 

• GSE20271 was re-named MDACC and comprised 178 samples, 78 of which 
are included in GSE25066; 

• GSE20194 is largely included in MDACC cohort of GSE25066 (187 out of 230 
samples; other four samples are included in GSE20271); the remaining 39 
samples compose the cohort and it was re-named as MDACC MAQC-II; 

• GSE25066 includes samples derived from 4 cancer centers, i.e., I-SPY-1 
(Investigation of Serial Studies to Predict Your Therapeutic Response With 
Imaging and Molecular Analysis), LBJ_INEN_GEICAM (Lyndon B. Johnson 
Hospital, Instituto Nacional de Enfermedades Neoplásicas, and Grupo Español 
de Investigación en Cáncer de Mama), USO-02103 (US Oncology) and 
MDACC (M. D. Anderson Cancer Center, Houston). Moreover, a comparison 
of the hybridization dates on the CEL files of GSE25066 and GSE20271 and 
GSE20194 and also of the patients’ clinical information revealed that, despite 
being deposited twice, some samples are identical. As such, these four datasets 
have been split into: 
§ I-SPY-1 comprising 83 samples; 
§ LBJ_INEN_GEICAM comprising 58 samples; 
§ MDACC comprising 313 samples; 
§ USO-02103 was entirely included in GSE23988;  

• GSE23988 was re-named USO-02103 and it is composed of 54 samples 
included in USO-02103 cohort of GSE25066 and 61 from GSE23988. Twenty 
samples from GSE23988 were removed, because they were deposited twice in 
the two series; 

• GSE32646, GSE19697 and GSE18728 were re-named as Osaka, St. Louis and 
UW respectively since all patients were recruited at the Osaka University, 
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Washington University School of Medicine (St. Louis) and University of 
Washington (Seattle), respectively. 

The re-organization of the downloaded datasets returned 3661 unique samples 
distributed in 27 cohorts (Table 3.1).  
 
Table 3.1: Re-organized datasets of breast cancer expression profiles. 

 

Since raw data (.CEL files) were available for all samples, the integration and 
normalization of gene expression signals has been obtained applying the virtual chip 

Cohort Affymetrix platform Samples Data source References 

KI_Stockholm HG-U133 A 159 GSE1456 Pawitan et al., 2005 

EMC-344 HG-U133A 344 GSE2034 
GSE5327 

Wang et al., 2005;    
Minn et al., 2007 

MSKCC HG-U133A 82 GSE2603 Minn et al., 2005 

KI_Uppsala HG-U133A 253 
GSE3494 
GSE4922 
GSE6532 

Loi et al, 2008;      
Ivshina et al, 2006; 
Miller et al, 2005 

OXF HG-U133A 178 GSE6532 Ivshina et al., 2006 
TransBIG HG-U133A 198 GSE7390 Desmedt et al., 2007 
Mainz HG-U133A 200 GSE11121 Schmidt et al., 2008 

Veridex HG-U133A 136 GSE12093 Zhang et al., 2009;      
Loi et al., 2007; 

GUY HG-U133 Plus2.0 164 GSE6532 
GSE9195 

Loi et al., 2008;          
Loi et al., 2010 

UCSF HG-U133AAofAV2 166 E-TABM-158 - 
GSE7378 

Merritt et al., 2008; 
Zhou T et al., 2007;  
Yau C et al., 2008 

IJB_TOP HG-U133 Plus2.0 114 GSE16446 
Desmedt Cet al., 2011; 
Li Y et al., 2010;         
Juul N et al., 2010 

US_NCI HG-U133 Plus2.0 115 GSE19615 Li Y t al., 2010 
CRCM HG-U133 Plus2.0 252 GSE21653 Sabatier R et al., 2011 
KOOF HG-U133 Plus2.0 327 GSE20685 Kao KJ et al., 2011 

Goethe HG-U133A 64 GSE31519 Rody A. et al., 2011; 
Karn T. et al., 2011; 

MDACC_IGR HG-U133A 61 GSE22093 Iwamoto T et al., 2011; 

MDACC_GSE25066 HG-U133A 313 GSE25066  
GSE20194 

Hatzis C. et al., 2011; 
Popovici V. at al., 
2010; Shi L. et al., 2010 

I-SPY-1 HG-U133A 83 GSE25066 Hatzis C. et al., 2012 
LBJ_INEN_GEICAM HG-U133A 58 GSE25066 Hatzis C. et al., 2012 

USO-02103 HG-U133A 95 GSE23988 Iwamoto T et al., 2011; 
Hatzis C. et al., 2012 

MDACC_GSE20271 HG-U133A 100 GSE20271 Tabchy A. et al., 2010 

MDACC MAQC-II HG-U133A 39 GSE20194 Popovici V. at al., 
2010; Shi L. et al., 2010 

Osaka HG-U133 Plus2.0 115 GSE32646 Miyake T et al., 2012 
UW HG-U133 Plus2.0 21 GSE18728 Lin Y et al., 2010 
St.Louis HG-U133 Plus2.0 24 GSE19697 Korde LA et al., 2010 
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procedure (see paragraph 2.2.3). Gene expression signal have been generated using 
the robust multi-array average procedure RMA. Specifically, intensity levels have 
been background adjusted, normalized using quantile normalization, and log2 
expression values calculated using median polish summarization. 

 

3.1.1 Analyses of outcome and clinic-pathological covariates of 
meta-dataset 
 
Combining data from independent but related studies is at the base of meta-analysis. 
Meta-analysis strategies include an important step: data combination. To 
homogenize the clinic-pathological and outcome information of the various cancer 
datasets in order to combine the data in a unique meta-dataset, the variables have 
been carefully re-defined considering the clinical annotations of any re-organized 
study (Tables 2.2 - 2.28). The two types of events, i.e., metastasis and survival were 
defined. Metastasis is associated to the metastatic spread and includes the following 
descriptions in the studies of Table 3.1: 

§ recurrence free survival; 
§ metastasis free survival; 
§ distant metastasis free survival or distant recurrence (and subtypes at different 

districts as lung, bone, and brain distant metastasis free survival/distant 
recurrence); 

§ time to distant metastasis. 

Survival is associated to death because of cancer and includes the following 
descriptions in the studies of Table 3.1: 

§ overall survival; 
§ disease free survival; 
§ disease specific survival. 
 
All clinic-pathological variables such as tumor size (T), pathologic lymph nodes 
status (N), stage of tumor, and grade of tumor were re-organized as the American 
Joint Committee on Cancer (AJCC) staging system; moreover, ER, PR, and HER2 
status (IHC), p53 status, response to neo-adjuvant chemotherapy, type of 
chemotherapy were labeled as dichotomous variables as described in Table 3.2.  
 
Table 3.2: Re-defined clinic-pathological covariates of meta-cohort of breast cancer samples. 

Clinic-pathological covariates Class description 

Age 
<40 
40-60 
>60 
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Tumor size (T) 

T1: Tumor 2.0 cm or less in greatest dimension 
T2: Tumor more than 2.0 cm but not more than 5.0 cm in 
greatest dimension 
T3: Tumor more than 5.0 cm in greatest dimension 
T4: Tumor is any size, but has spread beyond the breast 
tissue to the chest wall and/or skin 

Pathologic lymph nodes status (N) 

N0 : Axillary and other nearby lymph nodes do not have 
cancer  
N1 : Micrometasases (very small clusters of cancer) or 1–3 
axillary lymph nodes have cancer  
N2 :  4–9 axillary lymph nodes have cancer or internal 
mammary nodes have cancer, but axillary lymph nodes do 
not have cancer  
N3 : 10 or more axillary lymph nodes have cancer or infra- 
or supra-clavicular  nodes have cancer   

Stage of tumor 

1 = Early breast cancer  
2 = Early/locally breast cancer  
3 = Locally advanced breast cancer  
4 = Metastatic breast cancer  

Estrogen receptor - ER (IHC)  + = positive 
 -  = negative 

Progesteron receptor - PR  (IHC)  + = positive 
 -  = negative 

Epidermal growth factor receptor - 
HER2  (IHC or FISH)  

 + = positive 
 -  = negative 

Lymph node status (LN)  + = positive 
 -  = negative 

Grade of tumor 

G1 = well differentiated state, like normal breast tissue 
G2 = moderate differentiated state 
G3 = poor differentiated state, few similarities to normal   
      breast tissue 

P53 status WT = Wild-type status 
MUT = Mutant status 

Metastasis associated to the metastatic spread 
Survival associated to death because of cancer 

Neo-adjuvant chemotherapy type  A = Anthracycline - based 
AT = Taxane plus anthracycline - based  

Response neo-adjuvant 
chemotherapy 

pCR = complete response 
RD= residual disease 

 
Since samples were derived from different studies, the samples in a specific dataset 
have clinic-pathologic variables of interest for the objective of study, whereas 
samples of other datasets could have missing information (unknown data) about these 
considered variables. Unfortunately, according the variables derived from IHC assay 
(e.g., estrogen and progesterone receptors, or epidermal growth factor receptor) we 
have sometime only qualitative and not quantitative information; indeed, IHC assay 
could change among different studies and experimental conditions; so, we can know 
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only the positivity or negativity of a sample about a specific variables, but not how 
many is positive or negative than others. About p53 status, we have only a 
dichotomous variable (wild-type or mutant protein), but we don’t have information 
about the mutation type (i.e. missense, non-sense, or frame shift). We don’t have 
information about race of patients, but only the name of hospitals where they were 
recruited. Table 3.3 describes the clinical and pathological characteristics of the 
samples included in the meta-dataset. 
Table 3.3: Distribution of clinical and pathological characteristics of the samples included in the 
meta-dataset. 

Clinical variables Patients n=3661 

Age, years   

<40 385 (10%) 

40-60 1686 (46%) 

>60 870 (24%) 

T stage   

T0/T1 919 (25%) 

T2 1486 (41%) 

T3/4 370 (10%) 

Unknown 150 (4%) 

Grade   

1 351 (10%) 

2 1047 (29%) 

3 1128 (31%) 

ER status   

Positive 1839 (50%) 

Negative 1073 (29%) 

Unknown 749 (21%) 

p53 status   

Mutated 187 (5%) 

Wild type 409 (11%) 

Unknown 3065 (84%) 

PR status    

Positive 1127 (31%) 

Negative 1041 (28%) 

Unknown 1493 (41%) 

LN status   

0 241 (7%) 

1 327 (9%) 

2 97 (3%) 

3 57 (2%) 
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HER2  status   

Positive 275 (8%) 

Negative 1482 (40%) 

Unknown 1904 (52%) 

Response to neo-adjuvant therapy   

pCR 209 (6%) 

RD 770 (21%) 

Type of neo-adjuvant therapy   

Anthracycline 244 (7%) 

Anthracycline + Taxane 758 (21%) 

Metastasis within 5 years   

Yes 652 (18%) 

No 756 (21%) 

Follow-up all cases (years)   

Median (CI) 7.78 (4.7, 10.7) 

Follow-up still living (years)   

Median (CI) 9.07 (6.2, 11.2) 

 
3.2 Molecular subtypes identification  
  
We used the proprietary AIRC 5X1000 dataset as a “gold standard”, since we have 
the correct molecular subtypes characterized by IHC assay, to chose the best 
molecular subtype classifier among PAM50 model (see 2.5.1 paragraph) and the 
three SCM models (SCMGENE, SCMOD1, and SCMOD2) described in 2.5.2 
paragraphs. 
AIRC 5X1000 dataset’s samples were hybridized on Illumina Whole Genome 
DASL HT-12 arrays, while the meta-cohort’s samples on Affymetrix platforms. 
Prior the analysis, the PAM50 gene-list was refined so that only genes with a 
corresponding probe on these two types of platform were used for classification, in 
order to compare the concordance of the models on different platform. As a result, 
ANLN, CDCA1, CXXC5, GPR160, TMEM45B and UBE2T were not included in 
the classification. PAM50 gene list was reduced to a list of 43 common genes out of 
50 (Table 3.4). For genes with more than one probe set, all probe sets were median 
gene centered prior to classification.  
 
Table 3.4: PAM50 reduced gene list. 
Gene symbols Entrez gene ID 

ACTR3B 57180 
BAG1 573 
BCL2 596 
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BIRC5 332 
BLVRA 644 
CCNB1 891 
CCNE1 898 
CDC20 991 
CDC6 990 
CDH3 1001 
CENPF 1063 
CEP55 55165 
EGFR 1956 
ERBB2 2064 
ESR1 2099 
EXO1 9156 
FGFR4 2264 
FOXA1 3169 
FOXC1 2296 
GRB7 2886 
KIF2C 11004 
KNTC2 10403 
KRT14 3861 
KRT17 3872 
KRT5 3852 
MAPT 4137 
MDM2 4193 
MELK 9833 
MIA 8190 
MKI67 4288 
MLPH 79083 
MMP11 4320 
MYBL2 4605 
MYC 4609 
NAT1 9 
PGR 5241 
PHGDH 26227 
PTTG1 9232 
RRM2 6241 
SFRP1 6422 
SLC39A6 25800 
TYMS 7298 
UBE2C 11065 
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The same approach was applied for the SCMOD1 and SCMOD2 models gene lists. 
SCMOD1 is based on 726 genes related to ER, HER2, and AURKA signalings 
(Desmedt, 2008) divided in 469, 28, and 229 gene modules, respectively; SCMOD2 
on 663 genes (Wirapati et al., 2008) divided in 288, 20 and 353 gene modules, 
respectively (Table 3.5).  
 
Table 3.5: SCMOD1 and SCMOD2 reduced gene modules. 

Models name 
Original gene modules Reduced gene modules 

ESR1  ERBB2 AURKA  ESR1 ERBB2 AURKA  
SCMOD1 469 28 229 284 24 216 
SCMOD2 288 20 353 193 11 255 

 
AIRC 5X1000 dataset comprises a pilot study of 48 breast cancer samples, subdivided 
among well characterized 11 luminal A, 12 luminal B, 13 HER2+ and 12 basal-like 
subtypes. Finally, we assessed the best molecular subtype classifier calculating its 
specificity, sensitivity, accurancy, and the negative and positive predictive value to 
classify basal-like samples. Comparing the different models, SCMOD2 resulted the 
best classifier with almost 98% of specificity, 92% of sensitivity, 96% of accurancy, 
and 98% of negative predictive value. 
Starting from these results, we classified the meta-cohort of breast cancer samples 
using SCMOD2 model. This model uses the same molecular subtype nomenclature 
described for the first time by Perou and collaborators (Perou et al., 2000): ER-
/HER2-, HER2+, and ER+/HER2- low and high proliferation tumors which 
correspond, respectively, to basal-like, HER2-enriched, and luminal A and B (Figure 
3.1 and 3.2). 
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Figure 3.1: Molecular subtypes in meta-cohort using SCMOD2. Upper panel: Density distribution 
of the mixture of three gaussians fitted for the subtype clustering model. Bottom panel: Scatter-
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plot. Each subtype is represented by a different color and symbol. The ellipses shown are the 
multivariate analogs of the SDs of the Gaussian of each cluster. 
	  

 
Figure 3.2: Distribution of molecular subtypes in breast cancer meta-cohort.	  

 
3.3 Definition of meta-cohorts 
The meta-dataset allowed the definition of two large meta-cohorts (Figure 3.3): one 
includes samples with clinical outcome information, called prognostic meta-cohort (see 
3.3.1 paragraph) and the other ones is composed by neo-adjuvant chemotherapy 
(NAC) treated samples with available chemotherapy response called predictive meta-
cohort (see 3.3.2 paragraph). 
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Figure 3.3: Flow chart of meta-analysis 

3.3.1 Prognostic meta-cohort 

In the prognostic meta-cohort we included 21 datasets with available clinical outcome 
information derived by the complete meta-cohort of Table 3.1 (i.e., CRCM, EMC-
344, Goethe, GUY, I-SPY-1, LBJ_INEN_GEICAM, USO-02103, MDACC, IJB-
TOP, KI_Stockholm, KI_Uppsala, KOOF, Mainz, MSKCC, OXF, TransBIG, 
UCSF, US_NCI, Veridex) for a total of 3254 primary tumors.  

Application of prognostic meta-cohort: Contro l  o f  Pro ly l - i somerase  
Pin1 in breast  normal and cancer  s t em ce l l s   
 
Breast cancer is the most frequently diagnosed cancer and the leading cause of 
cancer mortality in females worldwide (Siegel et al, 2011). Despite advances in 
diagnosis and treatment, a significant percentage of breast cancer patients still die, 
due to the development and dissemination of metastases (Steeg & Theodorescu, 
2008). It is increasingly acknowledged that a subpopulation of cancer cells, termed 
cancer stem cells (CSCs) play a major role in cancer growth, metastasis formation 
and chemo resistance (Dean et al, 2005; Stingl & Caldas, 2007; Visvader & 
Lindeman, 2012). Like their normal counterpart, CSCs are able to self-renew and 
maintain a reservoir of cancer-initiating cells that may produce a more differentiated 
progeny of cells and contribute to intratumor heterogeneity (Stingl & Caldas, 2007). 
This evidence has been observed for breast cancers, where it has been shown that 
poorly differentiated, more aggressive tumors (histological grade 3) have an 
increased number of CSCs than well-differentiated (histological grade 1) tumors 
(Pece et al, 2010). Considerable similarities are found between normal and CSCs 
regarding the molecular pathways and stem cell factors that determine the 
undifferentiated state of these cells, which suggested that CSCs originate from the 
transformation of adult tissue stem cells or from more differentiated progenitors 
that have acquired self-renewal ability (Reya et al, 2001; Ben-Porath et al, 2008; 
Visvader & Lindeman, 2012). Several studies indicated that oncogenic activation of 
pathways involved in the regulation of normal stem cells, such as Notch, WNT, 
SHH, RTKs, and PI3K/AKT among others, might be involved in self-renewal 
properties and aggressive features of CSCs (Polyak & Weinberg, 2009; Thiery et al, 
2009; Visvader & Lindeman, 2012). However, how these signaling networks govern 
CSCs still remains to be elucidated. One appealing candidate as a fine-tuner of stem 
cell traits might be the prolyl-isomerase Pin1. This unique enzyme catalyzes the 
cis/trans conversion of specific motifs composed by phosphorylated Serines or 
Threonines preceding a Proline in certain proteins, thereby inducing conformational 
changes required for the full activity and cross-talk of a plethora of signaling 
pathways (Liou et al, 2011). The discovery of Pin1-catalyzed cis/trans isomerization 
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of phospho-Ser/Thr-Pro motifs revealed a post-phosphorylation mechanism critical 
for several biological processes involved in physiology and disease (Lu & Zhou, 
2007; Yeh & Means, 2007). In particular, Pin1 is required for full activity and cross-
talk of a variety of oncogenic pathways in breast and other cancers (Wulf et al, 
2005), acting as an amplifier of phosphorylation signals. Of note, deregulated levels 
of Pin1 have been shown to disrupt cellular polarity of breast epithelial cells (Ryo et 
al, 2002) and found associated to high tumor grade and aggressiveness in breast 
cancer (Wulf et al, 2001; Girardini et al, 2011). However, so far Pin1-dependent 
signaling mechanisms have not been linked to breast CSCs' biology. The aim of this 
work was to show, by performing in vivo and in vitro functional studies, that Pin1 
acts as a fundamental regulator of stem cell features both in normal stem cells and 
CSCs of the mammary gland. Pin1 knock-out mice show a number of 
developmental defects (Atchison & Means, 2004) affecting among others mammary 
epithelium, that fails to undergo the dynamic changes required to its expansion 
during pregnancy (Liou et al, 2002). Based on this, our collaborators hypothesized a 
possible function of Pin1 in governing the functions of mammary stem cells and 
thus it was evaluated the stem cell activity of mammary epithelial cells from wild-
type (Pin1+/+) and knock-out (Pin1−/−) mice. To this aim, mammary tissues from 
8 to 10 weeks old virgin female mice were dissociated, prepared as single cell 
suspensions of purified, lineage-depleted epithelial cells (Sleeman et al, 2006; Stingl 
et al, 2006) and grown in suspension cultures to form secondary mammospheres 
(M2) (Dontu et al, 2003). Whereas cells obtained from Pin1+/+ mice formed an 
average of 22.9 (±1.44) M2 mammospheres per 100.000 seeded cells, a 40% 
reduction of M2 formation from Pin1−/− cells was observed (Figure 3.4 A). In 
addition, to assess the impact of Pin1 on the replicative potential of mammary stem 
cells, wild-type cells were serially replated from primary mammospheres (M1) for 
four more times (M2–M5). As expected in these conditions, a progressive decrease 
was observed in mammosphere formation at each passage, due to exhaustion of 
adult stem cells (Cicalese et al, 2009). Notably, this effect was significantly 
exacerbated by addition of the Pin1 small molecule inhibitor PiB (Uchida et al, 
2003): mammosphere formation efficiency of Pin1+/+ shrunk progressively and 
was reduced by almost 50% at the stadium of quaternary mammospheres (M4) and 
did not reach the M5 level (Figure 3.4 B). 
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Figure 3.4. A) Pin1−/− mice display decreased self-renewal of mammary stem cells. Left panel: 
Number of secondary mammospheres (M2) generated from primary mammary epithelial cells of 
indicated mice. Means, standard deviations and P-values (t-test, n = 4) are indicated in the 
histogram. Right panel: representative M2 microscope images with 200 µm scale bar. B) Inhibition 
of Pin1 affects replicative potential of mammary stem cells. Serial replating of mammospheres 
(M1–M5) generated from Pin+/+ mice treated with DMSO or PiB (1.5 µM). 
 
To better characterize this aspect, the proportion of stem cells and progenitors was 
analyzed by flow cytometric analyses and sorting (FACS) analysis using the surface 
markers CD24 and CD49f. These markers are widely used to identify two 
populations of cells functionally characterized as stem/bipotent progenitors 
(CD24med/CD49fhigh or mammary repopulating units, MRU) and luminal 
progenitors (CD24high/CD49flow or mammary colony forming cells, Ma-CFCs) 
(Stingl et al, 2006). In line with this hypothesis, the MRU and Ma-CFC cell 
populations from Pin1−/− mammary glands were present at lower proportion as 
compared to Pin1+/+ mice (Figure 3.5 A). In addition, Pin1 mRNA and protein 
levels in the MRU cell population were almost three times higher as compared to 
the total of mammary epithelial cells (Figure 3.5 B). This evidence confirmed the 
hypothesis and suggests a prominent role of Pin1 in sustaining the mammary stem 
cell compartment in vivo. 
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Figure 3.5. A) Decreased number of bipotent stem cell and luminal progenitor in Pin1−/− 
mammary tissue. Left panel: representative FACS analyses of mammary epithelial cells from 
indicated mice. CD24/CD49f plots and gatings for MRU and Ma-CFC populations are indicated. 
Right panel: histogram of mean counts of MRU and MA-CFC populations from Pin−/− 
normalized to Pin1+/+ mice. Means, standard deviations and P-values (t-test, n = 3) are indicated. 
B) Pin1 mRNA and protein levels are up-regulated in the mammary stem cell compartment. Left 
panel: qRT-PCR of endogenous Pin1 mRNA in MRU sorted populations relative to total 
population. Means, standard deviations and P-values (t-test, n = 3) are indicated. Right panel: 
Western blot analysis of the same cell populations as in the left panel. Fold change in Pin1 protein 
levels determined by Image J software (Rasband, 1997–2012) with respect to actin levels is 
indicated by a number, Molecular weights in kDa (Mr (K)) are shown on the right. 
 
Stem cell traits in a subpopulation of mammary tumor cells are thought to be 
implicated in treatment resistance (Dean et al, 2005) and metastasis dissemination 
(Malanchi et al, 2012; Rosenthal et al, 2012; Visvader & Lindeman, 2012) and high 
levels of Pin1 correlate with high grade breast cancer and chemoresistance (Wulf et 
al, 2001; Ding et al, 2008; Kim et al, 2009; Girardini et al, 2011). Therefore it was 
next chosen to investigate whether Pin1 could also control mammary CSCs. NOP6 
mouse mammary tumor cells, harboring the Her2/Neu amplification, were grown 
as mammospheres in presence or absence of the Pin1 inhibitor (Figure 3.6 A). 
NOP6 cells formed very fast growing spheres that did not decrease when 
propagated to M3 or M4, indicating that mammosphere-forming cells were self-
renewing at a constant rate. Conversely, when cells were treated with Pin1 inhibitor, 
mammosphere formation efficiency (MFE) was strongly impaired already at the M2 
level. It was also next tested whether Pin1 could be required for the maintenance of 
human breast CSCs. To address this question, the MDA-MB-231 breast cancer cell 
line expressing a doxycycline-inducible knockdown costruct for Pin1 (pLKO-TetO-
shPin1) was generated and tested in mammosphere formation assays. As shown in 
Figure 3.6 B (left), in agreement with other reports (Harrison et al, 2010; 
Cordenonsi et al, 2011), non-induced cells had on average 0.6% of MFE, remaining 
constant throughout serial replating to M4. Instead, in Pin1 silenced (+DOX) cells, 
MFE decreased already at M2 stage and progressively at M3 and M4. The content of 
putative stem cells was lower following Pin1 silencing or inhibition, as confirmed by 
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the Aldefluor assay, that evaluates the activity of Aldehyde dehydrogenase 1 (Aldh), 
a marker for breast CSCs (Ginestier et al, 2007) (Figure 3.6 B, right). 
 

 
 
Figure 3.6. A) Pin1 inhibition decreases self-renewal of mouse mammary tumor cells. Serial 
replating of mammospheres (M1–M4) generated from NOP6 cells treated with DMSO or PiB (1.5 
lM). Mammosphere formation efficiency (%MFE) was calculated as percentage of mammospheres 
divided by the number of plated cells. B) Pin1 knockdown decreases self-renewal of human breast 
cancer cells. Left panel: MFE of MDA-MB-231-pLKO-shPin1 control cells (Ctrl) compared to 
shPin1 inducedcells (DOX) upon serial passages. Right panel: Quantification of Aldh-positive and 
Aldh-negative cells from control- and shPin1 induced M4, as assessed by FACS. 
 
Next it was evaluated the expression of several genes acting within pathways 
governing the stemness phenotypes of breast CSCs (Leong et al, 2007; Yu et al, 
2007, 2011; Polyak & Weinberg, 2009; Cordenonsi et al, 2011; Visvader & 
Lindeman, 2012). As shown in Figure 3.7, the expression of tested factors (Hes1, 
HeyL, Birc5, CTGF, Slug, ABCG2, Ptch, Bmi-1, HMGA2 and Klf4) decreased by 
Pin1 knockdown. Epithelial-mesenchymal plasticity in breast carcinoma has recently 
been linked to acquisition of stem cell traits by tumor cells (Mani et al, 2008). It was 
therefore also analysed the impact of Pin1 modulation on this process by analyzing 
markers of epithelial-mesenchymal transition (EMT). Of note, Pin1 down-
modulation caused enhanced mRNA expression of the epithelial marker E-cadherin 
(CDH1) while that of mesenchymal markers Vimentin and Fibronectin (VIM1, FN) 
was reduced (Figure 3.7). 
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Figure 3.7: Pin1 knockdown affects expression of stem cell markers. qRT-PCR of the indicated 
stemness and EMT marker genes from MDA-MB-231-pLKO-shPin1 quaternary mammospheres 
(M4) upon shPin1 induction (DOX) with respect to control cells (Ctrl). Standard deviations are 
indicated, P-values * <0.02 (t-test, n = 3). 
 
All together these results indicate that high Pin1 levels are required to sustain 
mesenchymal traits and to keep pro-stemness signaling constant. The majority of 
genes described above are controlled by the Notch pathway (Lee et al, 2008; 
Ranganathan et al, 2011; Li et al, 2012), which was shown to be required for EMT 
induction (Leong et al, 2007) and regulation of both normal stem cells of the 
mammary gland and breast CSC (Dontu et al, 2004; Bouras et al, 2008; Raouf et al, 
2008; Harrison et al, 2010; Xing et al, 2012). It was investigated whether the action 
of Pin1 in breast CSCs maintenance is driven by Notch function. Notch proteins 
are membrane-bound receptors, that upon ligand binding are subjected to cleavage 
by gamma-secretase, releasing an intracellular domain (N-ICD) directly involved in 
transcriptional control (Ranganathan et al, 2011). In particular, two members of the 
family, Notch1 and Notch4, have been linked to induction and maintenance of 
breast CSC features (Farnie et al, 2007; Grudzien et al, 2010; Harrison et al, 2010).  
Notably, the levels of their active forms (N1-ICD and N4-ICD) were strongly 
reduced (about five fold) by Pin1 knockdown in M4 mammospheres compared to 
control cells (Figure 3.8 A). To address the question whether the effect of Pin1 on 
breast CSC relies on its action on N1-ICD levels, we tested the ability of wild- type 
N1-ICD or of a constitutively stable N1-ICD mutant (dPEST) to rescue M2 
formation following Pin1 knockdown. This mutant lacks the cdc4-phosphodegron 
constituting the consensus for the E3 ubiquitin-ligase Fbxw7a, the major negative 
regulator of the intracellular Notch signal (O’Neil et al, 2007; Thompson et al, 
2007). As expected, M2FE of MDA-MB-231-pLKO-shPin1 cells decreased upon 
Pin1 silencing (+DOX) (Figure 3.8 B). Notably, M2FE did not further increase 
following ectopic expression of N1-ICD in control cells, since in these cells 
endogenous Notch pathway is already strongly activated (Harrison et al, 2010). 
Moreover, N1-ICD overexpression was not able to rescue M2FE in Pin1 silenced 
cells. By contrast, overexpression of N1-ICD-dPEST was able to rescue M2FE.  
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Figure 3.8: Pin1 controls breast CSC self-renewal through N1-ICD stabilization. A) Pin1 depletion 
causes reduced N1- and N4-ICD protein levels. Left panel: Western Blot analysis of N1- and N4-
lCD protein from MDA-MB-231-pLKO-shPin1 M4 control cells (Ctrl) and shPin1 induced cells 
(DOX). Molecular weights (Mr) are indicated in kDa. Right panel: histogram representing the 
percentage of band intensity with respect to actin levels. B) Expression of N1-ICD-dPEST stable 
mutant rescues M2FE following Pin1 depletion. Upper panel: Percentage of secondary 
mammosphere formation efficiency (%M2FE) of control (Ctrl, black bars) or Pin1 silenced (DOX, 
grey bars) cells, transduced with empty (-), N1-ICD or N1-ICD-dPEST vectors (+). Means, 
standard deviations and P-values (t-test, n = 3) are indicated. 
 
At the biochemical level, it was demonstrated that Notch1 and Notch4 escape from 
Fbxw7α-dependent proteasomal degradation following interaction with Pin1 and 
that phospho-specific prolyl-isomerization of Notch1 triggers de-phosphorylation 
by the PP2A phosphatase, preventing Fbxw7α interaction and subsequent poly-
ubiquitination. While mouse xenograft experiments prove the relevance of Pin1 in 
tumor growth and metastasis formation in vivo, gene expression and 
immunohistochemical analyses of primary tumors from breast cancer patients show 
that Pin1 overexpression is significantly linked to activated Notch, irrespectively of 
the coexistance of functional Fbxw7α. In human patients with breast cancer high 
expression of Notch receptors and ligands is causally involved and has been linked 
to poor clinical outcomes (Han et al, 2011; Xu et al, 2012); in this context, in the 
absence of mutations, high Pin1 expression might contribute to sustain levels and 
function of nuclear N1- and N4-ICD by interfering with their degradation by 
Fbxw7a. To evaluate this hypothesis, serial sections of 38 TNBC samples of breast 
cancer tissues were stained with anti-N1-ICD, anti-Pin1 and anti-Fbxw7 antibodies. 
Among 22 patients with high intracellular Notch1 immunoreactivity, an high 
percentage of patients with a strong nuclear Fbxw7a signal (72.7%) was found; 
moreover, the majority of these samples (93.8%) also displayed high Pin1 levels, 
that might be responsible for the simultaneous presence of high N1-ICD and its ub-
ligase. These results were finally confirmed in silico on the prognostic meta-dataset. The 
entire meta-cohort was classified according to high/low expression of FBXW7 and 
PIN1 mRNA with the combined Z-score. Considering that mRNA levels of Notch 
receptors are frequently not representative of the protein levels of N1-ICD, 
activated Notch1 pathway status in this cohort was inferred from expression levels 
of a Notch-dependent gene signature (Notch direct target gene signature, NDT), 
built up by selecting published Notch1 targets, for which Notch responsiveness 
and/or direct promoter binding as well as their expression in breast cancer was 
demonstrated (Table 3.6). The combined Z-score was used to identify two groups 
of tumors with either high or low NDT activity. Tumors were classified as NDT 
activity High if the combined score was positive and as NDT activity Low if the 
combined score was negative.  
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Table 3.6: Notch direct target  (NDT) gene signature. 
Gene symbol Entrez Id Reference 

HES1 3280 Grabher et al., 2006 
HEY1 23462 Grabher et al., 2006 
HEY2 23493 Grabher et al., 2006 
HEYL 26508 Grabher et al., 2006 
MYC 4609 Palomero et al., 2006; Weng et al., 2006 
BUB1B 701 Palomero et al., 2006 
BUB3 9184 Palomero et al., 2006 
CDC25A 993 Palomero et al., 2006 
PHB 5245 Palomero et al., 2006 
RBL1 5933 Palomero et al., 2006 
RPL3 6122 Palomero et al., 2006 
USP5 8078 Palomero et al., 2006 
PLAU 5328 Shimizu et al., 2011 
SHQ 55164 Chadwick et al., 2009 
CCND1 595 Ronchini and Capobianco, 2001 
GATA3 2625 Amsen et al., 2007 
SKP2 6502 Sarmen et al., 2005 
ERBB2 2064 Chen et al., 1997 
CDKN1A 1026 Rangarajan et al., 2001 
SNAI1 6615 Sahlgren et al., 2008 
SNAI2 6591 Leong et al., 2007 
NFKB2 4791 Oswald et al., 1998 
BIRC5 332 Lee et al., 2008 
NOTCH1 4851 Weng et al., 2006; Hamidi et al., 2011 
NOTCH3 4854 Weng et al., 2006; Hamidi et al., 2011 
NOTCH4 4855 Hamidi et al., 2011 
IFRD2 7866 Palomero et al., 2006 
ING3 54556 Palomero et al., 2006 
PTCRA 171558 Grabher et al., 2006 
CD3D 915 Palomero et al., 2006 

 
More than 48% of all samples expressed high levels of NDT signature genes and 
this correlated with poorer overall survival;	   the two NDT signature groups were 
compared by univariate Kaplan-Meier and depicted in Figure 3.9. The group with 
high-NDT expression signature displayed a significantly higher probability to 
reduced survival (p-value=5e-04). This is consistent with previously published 
analyses (Farnie et al, 2007) and confirms the usefulness of this signature as a 
surrogate of activated Notch1 pathway. 
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Figure 3.9: Survival analysis of patients in function of NDT signature expression. Kaplan-Meier 
graphs representing the probability of overall survival in breast cancer patients of prognostic meta-
cohort stratified according to high or low expression levels of the NDT signature.	  The log-rank test 
p value reflects the significance of the association between NDT gene signature low and longer 
survival. 
 
Interestingly, high FBXW7 levels expression was found in 51.7% of patients with 
hyperactive Notch (N1-ICD) (Fig 3.10). Similarly to the findings in the cohort of 38 
TNBC samples of breast cancer tissues, high correlation with PIN1 overexpression 
was found in the great majority of these cases, while those with low PIN1 
expression were underrepresented with respect to any other possible category of 
patients with high levels of FBXW7 mRNA (Fig 3.10).  
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Figure 3.10: NDT expression analysis in the prognostic meta-dataset. Left panel: heat map representing 
the contingency table frequencies of samples classified as having high or low levels of FBXW7, of 
PIN1 and of the NDT gene signature. Number of samples in each category is indicated on the left. 
The association among high levels of NDT gene signature, PIN1, and FBXW7 resulted statistically 
significant (P < 0.001; chi-square test). Right panel: Contingency table showing percentage of each 
category calculated on the precedent category of patients. 

 
Notably, the average expression value of NDT gene signature was contingent on 
PIN1 mRNA levels (Fig 3.11), while FBXW7 was non influential, therefore 
highlighting the biological dominance of Pin1 over Fbxw7a in regulating Notch 
signaling in breast cancer.  
 
 

 
Figure 3.11: Expression correlation between NDT gene signature, PIN1 and FBXW7 mRNA 
levels. Average expression of NDT gene signature in breast cancer samples stratified according to 
high or low expression of PIN1 and FBXW7 mRNA. Data are shown as mean standard error of 
the mean (s.e.m.). 

 
To evaluate the clinical significance of this finding, the effect of high or low Pin1 
expression levels was searched on the survival of patients with high or low NDT 
signature. While Pin1 levels did not affect the clinical outcome in all patients, we 
found that in grade 3 breast cancer high Pin1 levels correlate with a worse outcome 
in patients with activated Notch1 signature (high NDT-high PIN1, Fig 3.12).  
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Figure 3.12: Survival analysis of grade 3 high NDT expressing patients in function of PIN1 
expression. Kaplan–Meier survival curve is indicated for high NDT signature, grade 3 breast cancer 
patients in function of high or low PIN1 mRNA levels. P-value and the number of subjects at risk 
at each time point are indicated below. 
 
Moreover, pathway enrichment showed association with several stem cell pathway 
signature genes in high NDT signature-high PIN1 group of patients with grade 3 
(Table 3.7). The over-representation of signaling pathways (see Tables 2.37-38) in 
genes up-regulated in samples with high NDT signature-high PIN1 was tested using 
a one-sided Fischer’s exact test on signaling pathways as described in 2.8.2 
paragraph. Genes up-regulated in grade 3 high NDT signature-high PIN1 patients 
have been identified using SAM algorithm with 1,000 permutations and setting the 
q-value threshold at 0.01 and fold change higher than 1.5. SAM comparison of gene 
expression profiles in high NDT signature-high PIN1 and high NDT signature –
low PIN1 grade 3 samples resulted in 1460 differentially expressed genes up-
regulated in high NDT signature-high PIN1 grade 3 samples. 
 
Table 3.7: Fisher’s test’s results. Signaling pathways significantly enriched in genes up-regulated in 
high NDT signature-high PIN1 grade 3 samples as determined by one-sided Fisher’s exact test. 
Enrichment was considered significant with a BH adjusted p-value < 0.05. 

Pathway  Adjusted p-value 
ES1 0.008 
ES.like 0.021 
IGS 0.029 
Mutant p53 0.034 
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3.3.2 Predictive meta-cohort  
 
A predictive meta-cohort was composed by breast cancer samples from neo-adiuvant 
chemotherapy (NAC) treated patients with available chemotherapy response 
information in terms of pCR (pathological complete response) and RD (residual 
disease). All patients underwent pretreatment biopsies of the primary breast tumor. 
This cohort included 10 datasets (i.e., MDACC/IGR, USO-02103, I-SPY-1, 
LBJ_INEN_GEICAM, Osaka, TOP, MDACC, MDACC_MACQ_GSE25066, 
MDACC_MAQC_GSE20194, UW) for a total of 979 primary tumors. 
 
Use of predictive meta-cohort: a multifactorial tool for predicting 
response to neo-adjuvant anthracycline-based chemotherapy in 
Triple-Negative Breast Cancers 

A vast majority of patients considered to be at moderate or high risk of relapse is 
treated with cytotoxic agents, most of them are anthracyclines. Across all 
anthracycline-treated patients, only a small percentage actually receives benefit, 
while these agents are associated with significant toxicities. Breast cancer is well 
recognized as a heterogeneous disease and therefore treating all breast cancers with 
the same chemotherapeutic agents could be considered illogical. Little progress has 
been made in the field of biomarkers predictive of chemotherapy benefit in breast 
cancer. In this thesis, we focused on identifying molecular markers that predict 
response or resistance to anthracyclines in a specific molecular subtype of breast 
cancer: basal-like (also known as triple negative breast cancer). We therefore aimed 
to develop a gene expression signature to identify those patients who would not 
benefit from anthracyclines and could thus be spared the non-negligible risks of this 
type of chemotherapy.  
The cohort of interest of TNBCs treated with anthracycline-based chemotherapy 
was derived from the meta-cohort (Table 3.1). Among the overall 939 basal-like 
samples (25.65%) classified using the SCMOD2 subtype clustering classifier, 331 
had information about neo-adjuvant chemotherapy: 67 samples were treated with 
anthracycline-based chemotherapy, 264 with a combination of anthracycline and 
taxane based chemotherapy. To mimic in-silico a sort of small clinical trial, we 
separated the 331 TNBC samples treated with neo-adjuvant chemotherapy between 
a design cohort (namely patients treated with anthracyclines (A)) and a control cohort 
comprising samples treated with another neo-adjuvant therapy (i.e., a mix of taxanes 
and anthracyclines (AT)). Of course a cohort of patients treated without 
anthracyclines would have been desirable as control cohort, but unfortunately no such 
data are available at all. Finally, for validation we used data from a third, external 
cohort (validation cohort), not previously comprised in the meta-cohort because data 
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have been obtained from paraffin fixed and not fresh frozen tissues and hybridized 
on a different type of platform (GSE6861, see paragraph 2.3.2) (Figure 3.13).  
 

 

 
Figure 3.13. Flow-chart to derive cohorts of interest from the in silico predictive breast cancer 
meta-cohort. 
 
Clinical and tumor characteristics for patients of design cohort are listed in Table 3.8. 
These samples were originally contained in 4 different datasets (Table 3.9), i.e., I-
SPY-1, MDACC, MDACC/IGR and TOP and 18 samples (26.87%) achieved 
complete pathological response (pCR) to therapy while 49 had residual disease 
(RD). 
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Table 3.8. Clinical characteristics of TNBC patients treated with anthracycline based-chemotherapy 
(design cohort) (n = 67). 

Clinical variables Patients = 67  

Age (years)   
<40 12 (18 %) 
40-60 33 (49 %) 
>60 4 (6 %) 
Unknown 18 (27 %) 
Tumor size   
T1 3 (4 %) 
T2 40 (60 %) 
T3 16 (24 %) 
T4 8 (12 %) 
Lymph nodes status   
N0 11 (16 %) 
N1 9 (13 %) 
N2 5 (8 %) 
Unknown 42 (63 %) 
Grade of tumor   
G1 0 (0 %) 
G2 9 (13 %) 
G3 53 (79 %) 
Unknown 5 (8 %) 
pCR   
Yes 18 (27 %) 
No 49 (73 %) 

 

Table 3.9. Distribution of samples treated with anthracycline-based chemotherapy among original 
single datasets. 

Response 
Single datasets 

Total 
I-SPY-1 MDACC MDACC/IGR TOP 

pCR 0 3 15 0 18 
RD 1 18 12 18 49 

Total  1 21 27 18 67 
 

All clinical variables were tested for their ability to predict pCR. Odd-Ratios (ORs) 
and their associated p-values were used to compare response to treatment 
(pathological complete response, pCR) between groups defined by different clinical 
and molecular characteristics (age, tumor size, nodal status, histologic grade, p53 
status). No significant association between any clinical characteristics and pCR was 
found (Table 3.10).  
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Table 3.10: Odds ratios (OR) for response to treatment defined as pCR (pathological complete 
response) according to the clinical characteristics of the design cohort (n = 67). 

Characteristic No. of 
patients 

Patients with 
pCR (%) OR 95% CI p value 

Age (years)           
<40 12 33.3       
40-60 33 39.4 1.3 0.33 - 5.69 0.711 
>60 4 25 0.67 0.03 – 7.45 0.756 

Tumor size (T)     
	   	   	  T1-T2 43 30.2 

0.61 0.17 - 1.90 0.408 
T3-T4 24 20.8 

Nodal status (N)     
	   	   	  N0 11 18.2 

0.75 0.08 - 7.25 0.792 
N1-N2 14 14.3 

Histologic grade     
	   	   	  G1-G2 9 11.1 

3.78 0.62 - 72.98 0.227 
G3 53 32.1 

 

Design of the Consensus Signature 

In order for anthracycline-based chemotherapy to be effective we postulated the 
following steps (Figure 3.14).  

 
Figure 3.14: Postulated components in order to be effective for anthracycline-based chemotherapy. 

The genes or gene signatures, described in paragraph 2.5, have been applied in the 
study for evaluation of a multifactorial approach, by in silico analysis, for predicting 
response to neo-adjuvant anthracycline-based chemotherapy in triple negative breast 
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cancer patients (Table 3.11). All genes and gene lists have a direct biological 
meaning in the contest of breast cancer behavior; in particular, Minimal signature, 
Sharp1 and HIF signatures are the read-outs of specific molecular mechanism 
involved in breast cancer (see paragraph 2.5). 
Table 3.11:  Postulated steps required for effective anthracycline-induced cytotoxicity. 

Step required for anthracycline 
sensitivity Surrogate marker Association with 

pCR 

1. Penetration of drug into the cancer cell 
SHARP1 signature Negative 
Hypoxia signature (HIF)  Negative 

2. Location of topoIIα protein within the nucleus LAPTM4B mRNA Negative 
3. Increased expression of TOP2A mRNA TOP2A mRNA Positive 

4. Induction of apoptosis 
YWHAZ Negative 
Minimal signature (MS) Positive 

5. Active immune function 
Immune signature (STAT1) Positive 
Stromal signature (PLAU) Negative 

 

As shown in table 3.11, we linked the high expression of genes or gene signatures 
with a positive or negative pCR as highlighted in biological experiments. Increased 
hypoxia function and high expression of LAPTM4B have a negative association 
with pCR. Moreover, increased expression of TOP2A mRNA has a positive 
association with pCR. YWHAZ and the MS were both selected for evaluation as 
markers of apoptosis and their high activity has a negative and positive association 
with pCR, respectively. Finally, high immune (STAT1) and stromal (PLAU) 
activities have respectively positive and negative association with pCR. 
 

Quantification of genes and gene signatures 

SHARP1, HIF signatures and Minimal Signature were quantified using a continuous 
combined Z-score as previously described in paragraph 2.6. Briefly, each signature 
was calculated by summarizing the standardized expression levels of the genes in the 
signature into a combined score with zero mean. STAT1 and PLAU signatures were 
quantified in a continuous score (module score) as previously described in 
paragraph 2.6. LAPTM4B, TOP2A, and YWHAZ mRNA expression levels have 
been calculated using the correspondent probe sets or the median expression if 
multiple probe sets were available for each gene.  

Predictive power of single gene/gene signatures 
 
We first assessed, using the receiver operating characteristic (ROC) analysis, the 
ability of any single gene/gene signature to discriminate patients with pathologic 
complete response from patients with residual disease. The ROC analysis requires 
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defining the sign of the association between any signature and pCR. Given the 
postulated role of each component in determining anthracycline sensitivity, we 
defined the association of any gene/gene signature with pCR as reported in Table 
3.12. The area under the curve (AUC) and the associated p-value highlighted that 
STAT1, HIF signatures, and TOP2A mRNA were significantly associated with pCR 
status, with a positive association for STAT1 and TOP2A mRNA and negative 
association for HIF, again consistent with their putative roles in anthracycline 
function. All other genes/gene signatures, when considered individually, were not 
significantly correlated with pCR. 
 
Table 3.12. Predictive power of single component signatures in TNBC patients treated with 
anthracycline (design cohort). 

Marker of activity of 
specific component 

Association with 
pCR AUC 95% CI p value 

SHARP1 signature Negative 0.41 0.25 - 0.57 0.853 
Hypoxia signature (HIF)  Negative 0.63 0.51 - 0.76 0.018 
LAPT4MB mRNA Negative 0.48 0.33 - 0.64 0.581 
TOP2A mRNA  Positive 0.63 0.49 - 0.77 0.035 
Minimal signature (MS) Positive 0.53 0.39 - 0.66 0.347 
YWHAZ mRNA Negative 0.55 0.41 - 0.69 0.251 
Immune signature (STAT1) Positive 0.69 0.54 - 0.83 0.006 
Stromal signature (PLAU) Negative 0.52 0.38 - 0.67 0.371 

 
 
Predictive power of the Consensus Signature 
 
The use of single predictive markers of chemotherapy response to distinguish 
patients who are likely to receive benefits from those who are not is a clinically 
relevant need to improve patient selection for drug administration. It has been 
recently suggested that a multifactorial approach might be a more efficient 
alternative (Desmedt, 2011). In this thesis, starting from these hypotheses and 
previously described results, we derive Consensus Signatures as models for predicting 
neo-adjuvant chemotherapy sensitivity or resistance in TNBCs. Consensus Signatures 
are designed as linear combinations of the gene or gene signature scores highlighted 
above (Table 3.11). In particular, Consensus Signatures were designed by considering 
the core set of components comprising the genes or gene signatures shown to have 
significant predictive capability when used alone; that is, HIF, STAT1, TOP2A 
mRNA, and then, adding other components. Using a continuous score to quantify 
Consensus Signature expression level, combinations of core components demonstrated 
a significant correlation with pCR, with the HIF + STAT1 + TOP2A mRNA 
combination (ConSig1) being the most predictive, with AUC 0.79, 95% CI, 0.51 to 
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0.76, p = 9.1 x 10-9 (Table 3.13 and Figure 3.15). Interestingly, the addition of 
further component genes or gene signatures to the ConSig1 did not increase overall 
predictive power, although each combination still retained excellent correlation with 
pCR.  

Table 3.13 Predictive power of Consensus Signatures in TNBC patients treated with anthracycline 
(design cohort) using continuous score. In bold are the best performing consensus signature that 
includes components for 3, 4 or 5 of the steps required for anthracycline function (Table 3.11). 

Combination of Consensus Signature components AUC 95% CI p value 

STAT1 0.69 0.54 - 0.83 5.7 x 10-3 
HIF + STAT1 0.72 0.60 - 0.84 2.2 x 10-4 
HIF + STAT1 + TOP2A mRNA (ConSig1) 0.79 0.69 - 0.90 9.1 x 10-9 
HIF + STAT1 + TOP2A mRNA + LAPT4MB   0.76 0.65 - 0.87 1.6 x 10-6 
HIF + STAT1 + TOP2A mRNA + YWHAZ  0.78 0.68 - 0.88 1.3 x 10-8 
HIF + STAT1 + TOP2A mRNA + MS 0.76 0.65 - 0.87 1.1 x 10-6 
HIF + STAT1 + TOP2A mRNA + LAPT4MB + YWHAZ 0.73 0.62 - 0.85 2.7 x 10-5 
HIF + STAT1 + TOP2A mRNA + LAPT4MB + MS 0.74 0.62 - 0.85 1.6 x 10-5 
HIF + STAT1 + TOP2A mRNA + PLAU + LAPT4MB  
+ YWHAZ 0.73 0.62 - 0.85 2.7 x 10-5 

HIF + STAT1 + TOP2A mRNA + PLAU + LAPT4MB  
+ MS 0.75 0.64 - 0.86 2.7 x 10-6 

 

 
Figure 3.15: ROC analysis of ConSig1 in design cohort. Receiver operating characteristic (ROC) 
analysis of the ability of ConSig1 to discriminate patients with pathologic complete response from 
patients with residual disease in the design cohort. 
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Moreover, to assess specificity of ConSig1 for anthracycline-based chemotherapy 
response compared with other chemotherapy regimens, we analyzed its 
performance in a control cohort of patients who received taxanes in addition to 
anthracyclines (n=272), 264 of whom had information about response, and 94 with 
pCR (Figure 3.12). ConSig1 was not predictive of response in this cohort, with no 
significant correlation with pCR seen on ROC analysis (AUC = 0.51, 95% CI, 0.44 
to 0.58, p = 0.386) (Figure 3.16). These findings support that ConSig1 has ability to 
discriminate patients with pathologic complete response from patients with residual 
disease in anthracycline-based chemotherapy treated patients. 

 
 

Figure 3.16: ROC analysis of ConSig1 in control cohort. Receiver operating characteristic (ROC) 
analyses of the ability of ConSig1 to discriminate patients with pathologic complete response from 
patients with residual disease in the control cohort. 
 
Performance of the Consensus Signature 
 
As the best performing consensus signature, ConSig1 was selected for subsequent 
analyses. To classify a patient as a putative responder or as resistant, a threshold for 
ConSig1 score was determined by identifying the score value that maximized the 
Youden index (i.e. specificity + sensitivity – 1), with positive predictive value (PPV), 
negative predictive value (NPV), sensitivity (SENS), and specificity (SPEC) then 
calculated. When considering patients treated with anthracycline-based 
chemotherapy, NPV was higher (97%) than NPV considering patients treated with 
taxane plus anthracycline-based chemotherapy, while the ability to predict 
anthracycline sensitivity was moderate (PPV = 46%), but higher than PPV in control 
cohort (Figure 3.17). 
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Figure 3.17. Performance of the ConSig1 according to the cutoff defined by the maximal Youden 
Index in design cohort. The positive (PPV) and negative predictive values (NPV), sensitivity (SENS), 
specificity (SPEC) were determined at the threshold that maximizes the Youden Index (SPEC + 
SENS - 1) in the design cohort. Point estimates are displayed as squares. The horizontal lines 
correspond to exact 95% CIs. 
 
We then also compared the predictive power of ConSig1 with the A-SCORE (see 
paragraph 2.5.6), the only existing predictor of response to anthracycline  
chemotherapy. It resulted to have a predictive power 5 orders of magnitude lower 
than the ConSig1 (AUC = 0.7, 95% CI, 0.58 to 0.83, p =6.5 x 10-4). Moreover, the 
ConSig1 has both negative predictive power and sensitivity 10% higher than the A-
SCORE (Figure 3.18).  
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Figure 3.18: Performance of A-score according to the cutoff defined by the maximal Youden Index 
in design study. The positive (PPV) and negative predictive values (NPV), sensitivity (SENS), 
specificity (SPEC) were determined at the threshold that maximizes the Youden Index (SPEC + 
SENS - 1) in the design cohort. Point estimates are displayed as squares. The horizontal lines 
correspond to exact 95% CIs. 
 
Predictive power and performance of the ConSig1  in validation cohort 
 
We assessed the predictive power and the performance of ConSig1 using a validation 
cohort that contains samples from anthracycline-based treated patients. This cohort 
contained patients enrolled in the EORTC 10994 phase III breast cancer clinical 
trial (see 2.3.2 paragraph); we selected the basal-like samples using the SCMOD2 
classifier for a total of 85 samples of which 46 samples were treated with 
anthracycline based-chemotherapy. ConSig1 was predictive of response also in this 
group, with significant correlation with pCR seen on ROC analysis (AUC = 0.65, 
95% CI, 0.5 to 0.8, p = 0.024) (Figure 3.19).  
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Figure 3.19: ROC analysis of ConSig1 in validation cohort. Receiver operating characteristic (ROC) 
analysis of the ability of ConSig1 to discriminate patients with pathologic complete response from 
patients with residual disease in the validation cohort. 
 
NPV was little lower than the NPV calculated on design cohort (71%), while the ability 
to predict anthracycline sensitivity was quite similar (PPV = 48%) (Figure 3.20). 
 

 

Figure 3.20. Performance of the ConSig1 according to the cutoff defined by the maximal Youden 
Index in validation cohort. The positive (PPV) and negative predictive values (NPV), sensitivity 
(SENS), specificity (SPEC) were determined at the threshold that maximizes the Youden Index 
(SPEC + SENS - 1) in the validation cohort. Point estimates are displayed as squares. The horizontal 
lines correspond to exact 95% CIs. 
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Chapter 4  

Conclusions 

Since the completion of the human genome sequencing and the development of 
high throughput techniques, as DNA microarray, monitoring the expression of 
thousands of genes in a given tumor has become possible. These technological 
advances have been accompanied by the development of bioinformatics methods 
for the analysis and interpretation of an overwhelming mass of genomic data. The 
common objective of all these methods is the identification of statistically relevant 
genes sharing particular profiles from huge matrices bearing values for thousands of 
molecules. Seminal studies demonstrated that the synergistic use of microarray-
based techniques and computational tools may not only further the understanding 
of cancer taxonomy, but also provide lists of genes that can classify tumors into 
distinct groups, with different diagnostic or prognostic characteristics. The 
identification of these gene expression signatures held promise for being more 
effective than standard prognostic and predictive factors. A demonstrable success 
occurred in early 2007 when the U.S. Food and Drug Administration approved 
MammaPrint, the first microarray-based commercial molecular prognostic test for 
breast cancer. Nonetheless, optimism for microarray-based technologies as 
predictive tests of cancer sensitive to therapy or recurrence has suffered both 
perceptual and real setbacks. Criticism is largely on the grounds of general non-
reproducibility of gene signatures and the inability to replicate results in terms of 
significant genes identified from experiments in different laboratories and from 
different experimental platforms. Skepticism regarding reliability and reproducibility 
reflects the complexity of the analytical methods and the peculiar nature of the data 
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generated by high-throughput technologies. Indeed, most of the discrepancies have 
to be ascribed to inconsistent probe annotation, low comparability of different 
microarray platforms, lack of probe specificity for different isoforms, or differences 
in the hybridization conditions, fluorescence measurement, normalization strategies 
and computational procedures adopted. Reliability concerns are further supported 
by results from several microarray studies that, investigating the same tumor type, 
identified different gene-expression signatures, all able to predict response to 
therapy or clinical outcome, but characterized by a minimal, if not null, number of 
overlapping genes. Again, several technical, analytical and biological reasons may, at 
least partially, explain these seemingly discrepant results. These include the use of 
different microarray platforms with different sets of probe and data normalization 
methods, as well as differences in the study populations. Two other major 
explanations are the lack of independent measurements between the expressed 
genes and the limited statistical power applied to select individual genes associated 
with response to therapy or clinical outcome. Since the strength of correlation 
between the genes and clinical outcome varies from data set to data set, the rank 
order of these informative genes in the prognostic and predictive signatures is highly 
unstable, thus leading to different gene lists with a small overlap. The low statistical 
power of prognostic and predictive signatures is mostly due to the limited number 
of samples included in the different data sets used for the development of 
classifiers. A final concern on the robustness of gene-expression signatures stems 
from the concepts inspiring the two different approaches applied so far for 
prognostic or predictive marker discovery: the top-down and the hypothesis-driven 
or bottom-up approaches. In the top-down approach a prognostic/predictive model 
is derived simply by looking for gene-expression patterns associated with clinical 
outcome without any a priori biological assumption, whereas in the bottom-up 
gene-expression profiles linked with a specific biological phenotype are first 
identified and subsequently correlated to survival or response to therapy. Although 
both valuable, the two strategies rely only on gene expression data and/or clinical 
information to derive the classification rules and none of the approaches include 
mechanistic insights in the discovery process. It is most likely that the selection of 
predictive genes on the basis of mechanistic insights, rather than solely on the basis 
of expression levels and outcome data, will dramatically improve the reliability and 
robustness of prognostic/predictive signatures.  
The introduction of gene-expression tests have ushered in a new era in which many 
conventional clinical markers and predictors may be seen merely as surrogates for 
more fundamental genetic and physiologic processes. However, the 
multidimensional nature of these predictors demands both large numbers of 
clinically homogeneous patients to the used in the validation process, and 
exceptional rigor and discipline. Every study provides an opportunity to tweak a 
genetic signature, but the development of scientifically robust and clinically reliable 
tools require study designs and computational procedures. If gene-expression 
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signatures are to reach the clinical setting, several outstanding issues will need to be 
addressed. First, researchers in this area will now need to turn their attention to 
methods of sample acquisition and the effect these methods have on the prognostic 
and predictive power of microarray data. Secondly, standardization of protocols and 
platforms for the measurement of gene-expression signatures in a robust and 
reproducible manner will have to be adopted. Thirdly, prior to commercialization of 
these signatures, a significant amount of validation will be required. Lastly, 
statistically powered studies with large, independent patient cohorts will be a 
prerequisite for acceptance.  
The research activity illustrated in this thesis aimed at fulfilling these methodological 
gaps that still hamper the identification of prognostic and predictive markers and 
affecting their reliability and reproducibility. Specifically, we addressed aspects 
related to i) the sample size of analyzed studies (dataset) and ii) the computational 
approaches applied in the discovery process. We developed a bioinformatics 
strategy to i) integrate multiple, independently generated datasets of tumor 
specimens with well-annotated clinical data, ii) to exploit this large-scale genomic 
data, in a retrospective behavior, for elucidating mechanisms of cancer progression 
and iii) to derive gene signatures as models for predicting neo-adjuvant chemotherapy 
sensitivity or resistance. These computational methods contribute fulfilling gaps in 
the bioinformatics analysis of microarray data where probe selection, annotation 
and specificity, comparability of different microarray platforms and signal 
normalization strategies, still represent a major, and partially unresolved, 
computational issue when analyzing multiple gene expression datasets.  
In summary, the computational pipeline for the combination of multiple datasets is 
composed of three major steps, i.e., i) re-definition of clinic-pathological and 
outcome descriptions, ii) probe re-mapping and selection; and iii) integration and 
normalization of different datasets.  
Re-definition of clinic-pathological and outcome descriptions has been conducted 
carefully considering the clinical annotations of any single study and defining two 
major types of events, one associated to the metastatic spread (metastasis) and one to 
overall survival (survival) and also standardized clinic-pathological variables. Probe 
re-mapping and selection has been based on the adoption of modified custom Chip 
Definition Files (custom-CDF) while the integration and normalization of gene 
expression signals has been obtained applying the virtual chip procedure (Bisognin et 
al., 2010; Fallarino et al., 2010).  
The application of this approach allowed constructing a meta-dataset of 3661 gene 
expression profiles (samples) derived from sporadic breast cancer patients’ tissues (all 
hybridized on Affymetrix platforms and with available raw data) arising from the 
combination of the 27 gene expression datasets (a collection of samples deriving 
from the same experiment). Detailed clinical and outcome information and 
response to neo-adjuvant chemotherapy were available. To date, this meta-dataset 
represents the largest collection of integrated gene expression data from fully 
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annotated sporadic breast cancer specimens. Moreover, this meta-dataset allows a 
statistically robust investigation of cancer subpopulations (i.e., triple negative breast 
cancer). This specific subtype, also known basal-like, has a small incidence (~20%) in 
overall population and it is an aggressive subtype with early death in younger 
women. Microarray-based gene expression profiling allows the stratification of 
breast cancers into molecularly and clinically different subtypes with distinct gene 
expression patterns based on the activity of specific signaling cascades. In basic and 
translational research, this technique has become a working model for breast cancer 
molecular classification and for the definition of effective predictive and prognostic 
tools. Both these issues are particularly critical in Triple Negative Breast Cancer 
(TNBC), which still lacks not only of prognostic and therapeutic options, but also 
of a solid understanding of the molecular mechanisms at the base of its metastatic 
proclivity. A focus of this research was to identify the TNBCs using molecular 
subtype classification models based on gene expression data from the breast cancers 
collection.  
Moreover, this thesis addressed to identify predictive gene signatures in triple 
negative breast cancers. Prediction of response to chemotherapy is a clinically 
relevant need to improve patient selection for drug administration. An option would 
be the use of predictive markers of response to distinguish patients who are likely to 
receive benefits from those who are not, thus sparing predicted poor responders 
from the significant associated toxicities. Unfortunately, although this is an attractive 
strategy, suitable biomarkers predicting response to specific chemotherapy agents 
have, on the whole, remained elusive. Recently, it has been suggested that a single 
biomarker may not be sufficient for predicting anthracycline response, rather that a 
multifactorial approach might be better (Desmedt et al., 2011; Di Leo et al, 2011). 
In this thesis work it was constructed a computational approach to derive gene 
signatures as models for predicting neo-adjuvant chemotherapy sensitivity or 
resistance in anthracycline treated TNBC patients. A Consensus Signature was 
designed as linear weighted combinations of gene signatures that, singularly, 
recapitulate independent signaling pathways (e.g., mutp53/p63) or specific 
molecular mechanisms (i.e., hypoxia, immune function), while, intertwined together, 
render a more comprehensive molecular model of chemo resistance. The selection 
of markers extracted from gene signatures with biological insights, rather than solely on 
the basis of gene expression and phenotypic data, without taking into account a 
priori biological knowledge, could dramatically improve the reliability and robustness 
of prognostic and predictive signatures. Specifically, a Consensus Signature was 
constructed based on five biologically relevant steps required for anthracycline-
induced cytotoxicity: i) penetration of the drug into the cancer cell; ii) location of 
TOP2A, target of anthracycline, within the nucleus; iii) increased TOP2A 
expression; iv) induction of apoptosis; v) active stromal and immune function. 
Genes/gene signatures were selected as surrogate measures of each of these 
components and various combinations of these signatures were assessed for 
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correlation with pathological complete response (pCR) to anthracycline-based 
chemotherapy without taxane using the cohort of TNBC patients (design cohort). The 
most powerful combination (ConSig1) included HIF signature, immune response 
signature (STAT1), and TOP2A mRNA expression. ConSig1 demonstrated high 
correlation with pCR in ROC analyses (AUC = 0.79, p=9.05x10-9), while no 
correlation with response was seen in a cohort of patients treated with anthracycline 
plus taxane (control cohort), supporting the ConSig1’s ability to discriminate sensitive 
patients from those resistant in a anthracycline-based regime. Testing ConSig1 in 
another cohort of TNBC samples (hybridized on different type of microarray 
platform) from patients treated always with anthracycline-based chemotherapy, it 
had still predictive power (AUC = 0.65, p=2.4x10-2). 
Lastly, in collaboration with the group headed by Giannino Del Sal at the University 
of Trieste, new insights were gained in the molecular bases of breast cancer stem 
cell (CSC) malignant properties which are implicated in both treatment resistance 
and disease relapse. Rustighi and collaborators show that both normal stem cells 
and CSCs of the breast are controlled by the propyl-isomerase Pin1. Mechanistically, 
following interaction with Pin1, Notch1 and Notch4, key regulators of cell fate, 
escape from proteasomal degradation by their major ubiquitin-ligase Fbxw7α. 
Functionally, we show that Fbxw7α acts as an essential negative regulator of breast 
CSCs' expansion by restraining Notch activity, but the establishment of a 
Notch/Pin1 active circuitry opposes this effect, thus promoting breast cancer CSCs 
self-rewenal, tumor growth and metastasis in vivo. In human breast cancers, despite 
Fbxw7α expression, high levels of Pin1 sustain Notch signaling, which correlates 
with poor prognosis. Suppression of Pin1 holds promise in reverting aggressive 
phenotypes, through CSC exhaustion as well as recovered drug sensitivity carrying 
relevant implications for therapy of breast cancers. 
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