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ABSTRACT 

Sedimentation in the upstream reaches of incised valleys is predominantly fluvial and 

mostly out from any relative sea level fluctuations. Here, the dynamics of facies distribution 

respond to an interaction of tectonics and climate. Tectonics can directly influence fluvial 

aggradation and degradation through local changes in gradient, both longitudinal and transverse 

to the valley slope.  

This paper deals with a –Pliocene – Pleistocene fluvial valley fill developed in the 

northeastern shoulder of the Siena Basin (Northern Apennines, Italy). Valley fill aggradation 

resulted from the interaction of autogenic dynamics and extensional tectonics manifested by 

normal and oblique-slip faults parallel and near orthogonal to the valley axis, which generated 

rises of local fluvial base level.  

This thesis coupled a classical field approach, which aims at analysing the interaction 

between longitudinal and lateral alluvial plain tectonic tilting and fluvial sedimentation, and 

numerical modelling, which focuses on the temporal and spatial validation of tectonic forcing on 

the studied valley fill and on the effects of uplift rate on variable-discharge systems.  

Longitudinal tilting was generated by a transverse, upstream-dipping normal fault that 

controlled aggradation of fining-upward strata-sets both upstream and downstream of the fault 

zone. Aggradation in the upstream sector occurred as a backfilling process and predated that in 

the downstream one, where sediment was stored as a downfilling.  Lateral tilting, spacing out the 

aggradations, was governed by the interaction between fault-generated subsidence and the 

topographic confinement of progradational, flank-sourced alluvial fans. Both longitudinal and 

lateral tilting anomalies are easily recorded in sedimentary succession generated by high-

discharge system disturbed by high uplift rates. 
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RIASSUNTO 

Nel tratto prossimale di un sistema di valle incisa la sedimentazione fluviale risulta 

indipendente dalle variazioni eustatiche; pertanto la distribuzione delle diverse facies 

sedimentarie rispecchia principalmente l’interazione tra tettonica e clima. Una tettonica 

sindeposizionale può portare ad aggradazione o degradazione di depositi fluviali a causa di 

variazioni locali di gradiente sia longitudinale che trasversale dello slope della valle. 

Questo lavoro focalizza sulla successione di riempimento Plio-Pleistocenico di una valle 

sviluppatasi sul margine N-E del Bacino di Siena (Appennino Settentrionale, Italia). L’aggradazione 

di questa successione è il risultato dell’interazione tra dinamiche autogeniche ed allogeniche, 

manifestate da faglie normali con componente obliqua che presentano un’orientazione variabile 

da parallela ad ortogonale alla direzione dell’asse della valle e sono causa di un sollevamento 

localizzato rispetto al livello di base fluviale. 

La tesi integra un tradizionale approccio di campagna, finalizzato all’analisi 

dell’interazione tra il tilting longitudinale e laterale della piana alluvionale e la sedimentazione 

fluviale, con un’analisi basata su modellizzazione numerica, che risulta volta a convalidare il 

controllo spazio-temporale della tettonica sulla sedimentazione  e ad analizzare gli effetti del 

diverso tasso di sollevamento su sistemi fluviali a diversa portata.  

Il tilting longitudinale della piana alluvionale è generato da una faglia normale 

immergente sopracorrente, la cui attività induce l’aggradazione di depositi con trend 

granulometrico tipo fining-upward sia sopracorrente che sottocorrente rispetto alla zona di faglia. 

A monte della zona di faglia, l’aggradazione avviene principalmente tramite un processo di 

backfilling  e precede l’accumulo nelle aree sottocorrente, che si verifica secondo un processo di 

downfilling. Il tilting laterale è causato da subsidenza localizzata ed induce lo spostamento 

laterale del principale sistema di drenaggio, che risulta anche influenzato da apporti provenienti 

dai fianchi della valle.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 OVERVIEW 

This study – dealing with fluvial successions accumulated in inland valleys under 

the influence of localised tectonic disturbance – aims at defining the tectono-sedimentary 

dynamics in relation to the architecture of resulting alluvial successions. A Pliocene – 

Pleistocene fluvial succession exposed along the northern margin of the Siena Basin 

(Northern Apennines, Italy) was analysed with a multidisciplinary approach based on the 

integration of sedimentological and geophysical data with numerical modelling.  

 

1.2 STATE OF THE ART 

1.2.1 Incised valleys 

During the flourishing of hydrocarbon exploration, the interest in ancient valley 

fills significantly increased due to their high economic potential as productive reservoirs 

(Zaitlin & Schulz, 1984; Posamentier & Vail, 1988; Posamentier et al., 1988; Howard & 

Whitaker, 1990; Van Wagoner et al., 1990; Dolson et al., 1991; Shanley & McCabe, 1991; 

Brown, 1993; Wright & Marriott, 1993; Dalrymple et al., 1994). A large percentage of 

global siliciclatic reservoirs are hosted within incised-valley systems (Brown, 1993), and a 

clear understanding of their internal architecture and facies distribution is, therefore, 

crucial for reservoir detection and development (Boyd et al., 2006). Van Wagoner et al. 

(1990) suggested some key criteria for the identification of incised valleys: i) the 

occurrence of a significant erosional surface cutting older strata; ii) the association of 
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fluvial or estuarine strata on marine deposits; iii) the existence of a significant basinward 

shift in facies, with subaerial exposure on interfluves (see also Zaitlin et al., 1994; Boyd et 

al., 2006). Nonetheless, modern analogues for incised valleys as described by Van 

Wagoner et al. (1990), are commonly buried beneath Holocene delta plains or are 

submerged on the shelves, and no longer have a morphological expression. Incised valleys 

are complex sedimentary environments, since their genesis and development are widely 

controlled by factors (Fig. 1.1), whose influence varies depending on the distance from 

the palaeocoastline (Wright & Marriott, 1994; Dalrymple et al., 1994; Boyd et al., 2006).  

 

 

Figure 1.1: Schematic representation on forcing distribution along an incised valley depending on the 
distant of the palaeo-coastline and manifesting different type of sedimentation. Modified after Shanely & 
McCabe (1991), Dalrymple et al. (1994). 
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Even though different types of valley-fill successions have been described and 

different classifications have been proposed (Aslan & Blum, 1999; Blum & Tornqvist, 

2000; Dalrymple, 2006; Simms et al., 2006; Gibling et al., 2011), the distance from the 

palaeocoastline is a key parameter (Fig. 1.1) that distinguishes marine-controlled reaches 

downstream from fluvial-influenced reaches upstream (Zaitlin et al., 1994; Gibling et al., 

2011). Downstream valley reaches are cut and filled in response to relative sea-level 

fluctuations (Fig. 1.2A; Allen & Posamentier, 1993; Dalrymple et al., 1994; Li et al., 2006; 

Simms et al., 2006; Breda et al., 2009), whose influence can control inland sedimentation 

(Fig. 1.2B) up to 400 km from the coast (Blum & Tornqvist, 2000; Gibling et al., 2011). In 

contrast, the upstream valley reaches (i.e. inland valleys) are characterised by: i) solely 

fluvial sedimentation (Dalrymple et al., 1994; Zaitlin et al., 1994); ii) a coarse-grained infill 

 

 
 
Figure 1.2: A) Sequence stratigraphic sketch on downstream valley reaches cut and filled in response to 
relative sea-level oscillations. B) Sequence stratigraphic sketch on upstream valley reaches, characterised 
by a dominant fluvial sedimentation, cut and filled by several factors, as tectonic, climate and relative 
sea-level fluctuation. 
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(Vincent, 2001; Fielding et al., 2007); iii) an infilling occurring beyond the influence of 

relative-sea level oscillations (Currie, 1997; Legarreta & Uliana, 1998; Martinsen et al., 

1999); iv) a development under the complex interaction between tectonics, climate and 

drainage evolution (Shanley & McCabe, 1991, 1994; Blum & Tornqvist, 2000; Holbrook, 

2001; Gibling et al., 2011).  

Seaward reaches are widely described in terms of the classical estuary model 

(Dalrymple et al., 1994; Boyd et al., 2006; Gibling, 2006; Simms et al., 2006; Blum & 

Womack, 2009; Blum et al., 2013), whereas minor attention has been given to the 

landward reaches (Gibling et al., 2011). 

 

1.2.2 Inland valleys and tectonics 

  Inland valleys are poorly understood because their infill is either rarely 

preserved due to erosion, or when present, it is hard to distinguish in the stratigraphic 

record because of the similar sediment composition between intra-valley and extra-valley 

deposits (Gibling et al., 2011). Although they are poorly documented, fillings of 

Quaternary upstream valleys appear to archive precious information about the tectonic 

evolution of inland areas (Gibling et al., 2011; Blum et al., 2013). The effects of tectonics 

on fluvial sedimentation have been described for modern rivers (Schumm, 1986; 

Guiseppe & Heller, 1998; Holbrook & Schumm, 1999) and laboratory experiments (Ouchi, 

1985; Lague et al., 2003; Hickson et al., 2005; Turowski et al., 2006), concluding that 

rivers are extremely sensitive to tectonic modifications, both in terms of morphology and 

channel behaviour. The fluvial response to tectonic disturbance can be manifested in 

terms of: i) changes of geomorphic features and fluvial style (Twidale, 1971; Ouchi, 1985;; 

Blum & Tornqvist, 2000; Gibling et al., 2011); ii) modification of the equilibrium profile 
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(Dalrymple, 2006); iii) alternation between aggradation and degradation (Shanley & 

McCabe, 1991; Holbrook & Schumm, 1999); iv) channel avulsion (Bryant et al., 1995).  

 Large and mature structural highs, such as the U.S. Colorado and Tibetan plateaus, 

may denote an easy identification of warpings (Holbrook & Schumm, 1999). Small and/or 

incipient epeirogenic warpings that are hidden by the landscape may be difficult to detect 

in modern settings, and present an even bigger challenge to be recognised in ancient 

ones (Holbrook & Schumm, 1999). Several studies focused on the effects of subsidence 

on fluvial dynamics (Leeder, 1978; Hickson et al., 2005), but only few of them took into 

account the effects of localised uplift and relative valley-slope perturbation (Burnett & 

Schumm, 1983; Ouchi 1985; Pazzaglia & Brandon, 2001). Rapid uplift (>10 mm/y) of 

specific valley segments can result in valley flooding (e.g. New Madrid earthquake, Russ, 

1982) or dramatic avulsions (e.g. Indus Valley, Dales, 1966; Hole, 2011). The effects of 

these localised uplifts on valley-fill aggradation are poorly known (Holbrook & Schumm, 

1999), and this gap is even more relevant when we consider the fossil record (Guiseppe & 

Heller, 1998; Holbrook & White, 1998; Vincent, 2001), where the effects of other forcings 

could hide the tectonic signature.  

 

1.3 GOALS OF THE STUDY 

 Scarce knowledge on tectonically-influenced fluvial successions raises queries 

concerning the dynamics of their accumulation and development of stratal architectures: 

i) how does tectonic activity control fluvial aggradation within upstream valley reaches? 

ii) how do tectonically-controlled fluvial valley-fills differ from those controlled by relative 

sea-level fluctuations? 
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The present work contributes to unravelling these issues by analysing a Pliocene – 

Pleistocene fluvial valley-fill through the integration of sedimentological and geophysical 

data with numerical modelling. The succession is exposed along the northern margin of 

the Siena Basin, one of the main Neogene-Quaternary depressions (Fig. 1.3) that 

developed on the Northern Apennines (Italy) as superficial response to a lithospheric 

scale extension (Carmignani et al., 1994, 1995, 2001; Brogi, 2008; Barchi, 2010). The 

studied valley-fill accumulated beyond the influence of relative sea-level changes 

(Aldinucci et al., 2007), and its upper part developed from the interaction between the 

southward-draining fluvial system and two normal faults, named here Ambra River and 

Terre Rosse faults. 

 

 

Figure 1.3: Simplified geological sketch of the Northern Apennines showing the Neogene-Quaternary 
basins bounded by bedrock ridges and main tectonic features. 

  

The present work was carried out in two steps. The first one was based on a 

“classical” sedimentological and stratigraphic approach aimed at: i) analysing the effects 
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of tectonics on the spatial distribution of aggradation and degradation processes; ii) 

exploring the role of tectonics on fluvial sedimentation within a confined setting; iii) 

investigating the relationship between tectonics and valley avulsion. The second step 

focused on numerical modelling of landscape evolution, a newly developed approach to 

geosciences (e.g., Dietrich et al., 2003; Bonnet & Crave, 2003; Braun & van der Beek, 

2004; Willgoose, 2005; Paola et al., 2009; Tucker & Hancock, 2010), which aimed to: i) 

calibrate time and modes of aggradation for the study succession; ii) compare the results 

with the classical models used to explain fluvial morphodynamics in tectonically active 

areas; iii) develop generic models and analyse the impact of fluvial discharge and uplift 

rate on developing fluvial architectures.  

 

1.4 THESIS OUTLINE 

The present work is presented through five chapters. 

Chapter 2 and Chapter 3 deal with the sedimentology and stratigraphy of the 

study area, respectively. Chapter 2 summarises the results of a high-resolution field 

mapping, which was required to outline geometries and facies distribution within the 

main sedimentary units forming the valley-fill succession. The results of this work were 

published in Journal of Maps (Bianchi et al., 2013. DOI: 10.1080/17445647.2013.829412) 

and include a geological map at 1:20:000 scale which is attached to the present thesis. 

Chapter 3 goes deeper into the stratigraphic issues to analyse and discuss the study 

succession in terms of sedimentology, structural geology and geophysics. The main body 

of this chapter has been submitted to Sedimentology (Bianchi et al., SED – 2014 – OM – 

013). 
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Chapter 4 discusses a numerical modelling simulation for the study succession and 

some generic models that analyse similar tectono-sedimentary scenarios. This chapter 

will provide material for a further publication, which is currently in preparation.   

Chapter 5 summarises the main results of this thesis. 
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CHAPTER 2 

GEOLOGICAL MAP OF PLIOCENE-PLEISTOCENE DEPOSITS OF THE AMBRA 

AND OMBRONE VALLEYS (NORTHERN SIENA BASIN, TUSCANY, ITALY) 

 

 2.1 OVERVIEW 

This chapter is a journal paper published in Journal of Maps. Geological setting of 

the Plio-Pleistocene Ambra palaeovalley  (Northern Apennines, Italy) is presented, with 

particular emphasis to the spatial distribution of the valley-fill deposits. This paper 

illustrates a detailed geological map of an area of about 20 km2. The map was published 

at a 1:20.000 scale and is attached to this thesis. It aims at refining the stratigraphy of the 

Pliocene - Pleistocene deposits exposed along the eastern margin of Siena Basin, and 

highlight the relationship between tectonic activity and the sedimentary evolution of the 

northern Siena Basin during Pliocene-Pleistocene time span.  

 

2.2 PAPER 

VALERIA BIANCHI1, MASSIMILIANO GHINASSI1, MAURO ALDINUCCI2, NICOLA BOSCAINI3, 

IVAN MARTINI4, GIORGIA MOSCON1, MARCELLA RONER1 

1Dept. of Geosciences, University of Padova, via Gradenigo 6, 35131 Padova, Italy. 

2Weatherford Petroleum Consultants A.S., Folke Bernadottesvei 38 5147 Fyllingsdalen, 

Bergen, Norway. 

3Via J. F. Kennedy 14, Sant’Ambrogio di Valpolicella, 37010 Verona, Italy 

4Dept. of Environment, Earth and Physical Sciences, University of Siena, via Laterina 8, 

53100 Siena, Italy. 
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2.2.1 Abstract  

The study area is located across the Chianti Ridge (Tuscany, Italy), between the 

Upper Valdarno Basin and the Siena Basin. This area covers about 25 km2, forming a 

narrow belt oriented N–S and drained by the Ambra and Ombrone Rivers, which flow 

northward and southward, respectively. Field mapping was carried out at 1:10,000 scale 

through an allostratigraphic-sedimentological approach. The study deposits represent the 

infill of a SW-draining paleovalley, cut both in pre-Neogene bedrock and marine Pliocene 

deposits of the Siena Basin. The valley-fill succession consists of two main allounits, 

named here as V1 and V2. V1 comprises gravelly to sandy fluvial deposits, whereas V2 

deposits show noticeable downvalley variability. V2 consists of poorly-drained floodplain 

deposits in the northern sector of the paleovalley, whereas gravel and sand-bed river 

deposits fill its southern part. Alluvial-fan and palustrine deposits are also associated with 

V2 fluvial facies. A normal fault trending NW–SE is the main structural feature of the area. 

This fault cuts the V2 unit lowering the upstream reach and is thought to have promoted 

the marked facies changes observed in the fluvial deposits of unit V2. 

 

Keywords: fluvial deposits, incised valley, Siena Basin. 

 

2.2.2 Introduction 

The study area (Fig. 2.1A), located on the northern margin of the Siena Basin 

(Tuscany, Italy), has been the target of geological studies since the beginning of the 80’s. 

Specifically, Costantini et al. (1982) focused on the deposits exposed in the southern part 

of the study area in the framework of their relationship with the Pliocene Siena Basin, 

whose alluvial nature was firstly recognized by Magi (1992). Furthermore, the 
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geomorphological features of the Ambra Valley and its relationships with the Pleistocene 

depositional evolution of Upper Valdarno Basin (Fig. 2.1A) were discussed by Costantini et 

al. (1995). More recently, Aldinucci et al. (2007) interpreted the alluvial deposits cropping 

out in the southern part of the study area as the Plio–Pleistocene infill of an incised-

valley. This interpretation was also reported by Lazzarotto et al. (in press) in the frame of 

the geological mapping project of Carta Geologica d'Italia (Foglio 297-Asciano. ISPRA) 

Although increasing attention has been paid to the alluvial post-Middle Pliocene deposits 

of this area, their spatial distribution and internal architecture is still poorly known, as 

well as their sedimentary history. 

 

Figure 2.1:  Northern Apennines. A) Geological sketch map of Tuscany; B) Schematic structural map of the 
area shown in A.  

 

The present study was carried out through detailed field mapping, according to 

sedimentological and allostratigraphic principles, in order to refine the stratigraphy of the 

Pliocene - Pleistocene deposits exposed along the eastern margin of Siena Basin. This 
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work aims also at clarifying the relationship between tectonic activity and the 

sedimentary evolution of the northern Siena Basin during Pliocene-Pleistocene time span.  

The study area is located in central Tuscany (about 70 km south of Florence), between the 

Upper Valdarno Basin and the Siena Basin (Fig. 2.1A and B). It represents a N-S oriented 

belt along the so-called “Arbia-Val Marecchia line” (one of the main tectonic transverse 

lineaments of the Northern Apennines, Liotta, 1991; Pascucci et al., 2007), and extending 

from the north-eastern margin of the Siena Basin into the Chianti Ridge (Fig. 2.1A) (Brogi, 

2011a). The northern and southern parts of this area are presently drained by the Ambra 

and Ombrone Rivers, respectively. Specifically, the Ambra River flows northward, towards 

Upper Valdarno Basin, whereas the Ombrone River drains southward and belongs to the 

catchment of the Siena Basin (Fig. 2.1A). 

 

2.2.3 Geological Setting 

The Northern Apennines are a Tertiary fold-and-thrust belt resulting from the 

interaction between the Adria and Corsica–Sardinian microplates, in the framework of 

the larger-scale collision of Africa with Eurasia (Carmignani et al., 2001 and references 

therein). The Northern Apennines tectonic pile consists of several stacked tectonic units 

representing different paleogeographical zones, ranging from western (internal) oceanic 

areas (Ligurian units) to eastern continental domains (Tuscan and Umbria-Marche units), 

with an intervening area of transitional crust (Subligurides units). The geological history of 

the Northern Apennines reflects a compressional-extensional orogenic cycle (Elter et al., 

1975; Carmignani et al., 1994, 1995; Liotta et al., 1998; Brogi, 2008; Barchi, 2010), with 

compression dating back to the Late Cretaceous - Paleocene and following the closure of 

the Ligurian-Piedmont Ocean in the inner Northern Apennines (i.e. southern Tuscany). 
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The extensional tectonics started in the Early (Tyrrhenian area, Carmignani et al., 1995) – 

Middle (southern Tuscany, Brogi & Liotta, 2008) Miocene and coexisted with the 

compressional tectonics in the outer Northern Apennines.  This extensional tectonics 

gave rise to detachment basins, which were successively dissected by high-angle normal 

faults showing listric geometries (Dallmayer & Liotta, 1998; Brogi et al., 2003; Brogi, 2008; 

Brogi, 2011b) and leading to the modern “horst and graben” configuration (Fig. 2.1B). 

This extensional basin pattern was described in detail by Martini & Sagri (1993). These 

authors distinguished between “peripheral” and “central” basins, which were located 

close to the Apenninic divide and the Tyrrhenian Sea, respectively. The central basins 

were filled by upper Miocene – Middle Pliocene deposits, whereas the peripheral ones 

experienced a Pliocene – Pleistocene continental sedimentation. 

Neogene – Quaternary basins (Fig. 2.1B) are separated by bedrock ridges trending 

NW–SE (e.g. Chianti Ridge) and transversal lineaments trending NE–SW  (e.g. so called 

“Arbia-Val Marecchia line”;  Liotta, 1991; Pascucci et al., 2007). Although their origin is 

still debated, transversal lineaments are thought to represent the link between areas with 

different rate of extension and shortening (Castellarin et al., 1986; Liotta, 1991; Pascucci 

et al., 2007).  

The fill of the Upper Valdarno Basin comprises fluvio-lacustrine deposits up to 550 

m thick, subdivided into four main unconformity-bounded stratigraphic units (Fidolini et 

al., 2013a; Ghinassi et al., 2013). The Siena Basin (Brogi, 2011a) was filled with about 1000 

m of Miocene continental deposits unconformably overlain by about 600 m of Pliocene 

alluvial to shallow marine deposits (Costantini et al., 1982; Martini et al., 2011, 2013). The 

stratigraphic architecture of Pliocene deposits is relatively poorly known, except for some 

areas, recently investigated according to allostratigraphic and sequence-stratigraphic 



Tectonically-driven deposition within upland incised valley 

 

 18 

principles (Arragoni et al., 2012; Martini et al., 2011, 2013). Specifically, according to 

Martini et al. (2011) the Pliocene deposits of the northern basin margin (alluvial-to-inner 

shelf marine sediments) are organised in four allostratigraphic units. Marine 

sedimentation ended in the latest Piacenzian, when an overall uplift of southern Tuscany 

resulted in subaerial exposure and sedimentation of Pleistocene alluvial deposits 

(Costantini et al., 1982; Martini & Sagri, 1993).  

 

2.2.4 Methods 

The present work provides a high-resolution map (1:20,000) covering about 25 

km2, from the area of Capannole village to the neighbourhood of Rapolano Terme village, 

and focuses on the continental deposits accumulated from the earliest Late Pliocene 

(Piacenzian) to the Middle Pleistocene (Ionian). Field mapping was performed at 1:10,000 

scale using the “Carta Tecnica Regionale” topographic map (sections: 287080, 287120, 

287150, 287160, 288050, 288090, 288130, 297030, 297040, 297070, 297080, 297110 and 

297120). Field mapping was carried out through an allostratigraphic-sedimentological 

approach, based on facies analysis principles. The mapped deposits represent different 

sedimentary environments (i.e. facies associations) that were subdivided in allounits, 

namely stratigraphic units bounded by both unconformities and correlative-conformity 

surfaces (North American Commission on Stratigraphic Nomenclature, 1983). Facies 

association mapping was adopted since it is a powerful tool to define depositional history 

and basin-scale geometry of sedimentary successions (Ghinassi et al., 2009; Martini et al., 

2011, 2013; Arragoni et al., 2012). Allounits are preferred to depositional sequences (Vail 

et al., 1977), UBSU (Salvador, 1987) or synthems (Chang, 1975; International 

Subcommission on Stratigraphic Classification, 1987; Salvador, 1994) because of their 



Tectonically-driven deposition within upland incised valley 

 19 

wide applicability in narrow confined basins characterized by erosional, non depositional 

and correlative-conformity surfaces, either in marginal or depocentral areas. 

 

2.2.5 Stratigraphy 

The studied deposits overlie unconsolidated, alluvial to shallow-marine Zanclean 

to Piacenzian sediments of the Siena Basin and pre-Neogene bedrock (i.e. Ligurian, 

Subligurian and Tuscan units).  

  

2.2.5.1 Pre-Neogene bedrock 

Ligurian units are represented by siliciclastic (Santa Fiora Fm., Cretaceous–

Paleocene) and calcareous (Mt. Morello Fm., Eocene) turbiditic deposits (Abbate & Sagri, 

1982; Abbate et al., 1986; Boccaletti et al., 1990; Lazzarotto et al., in press). The Santa 

Fiora Formation is made of grayish mud-siltstone strata intercalated by limestone and 

fine calcarenitic. The Monte Morello Formation is composed of grayish to brownish 

limestone and marl-limestone strata, with intercalations of marl and calcarenites layers. 

Subligurian units are characterized by turbiditic deposits of the Paleocene–Eocene 

Argille e Calcari di Canetolo Fm. (Bruni et al., 2007) and Oligocene Arenarie di Mt. Senario 

Fm. (Lazzarotto et al., in press). The first formation is constituted by grayish  to brownish 

mud-siltstone strata interbedded with grayish calcarenites and sandstone. The second 

one consists of yellowish coarse sandstone strata intercalated with conglomeratic-

sandstone intervals and thin argillite layers.  

The Tuscan Units are represented solely by the Macigno Fm. (Chattian– 

Aquitanian), consisting of thick strata of turbiditic sandstone with mudstone 

intercalations. At the base of the formation several layers of calcarenites can occur 
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(Cornamusini et al., 2012). 

 

2.2.5.2 Zanclean-Piacenzian deposits (Siena basin) 

The Pliocene (Zanclean–Piacenzian) alluvial to shallow-marine deposits are 

organized in four allostratigraphic units (Martini et al., 2011), which are grouped under a 

single label in the frame of the present study. 

The Pliocene succession consists of alluvial deposits (De Castro & Pilotti, 1933; 

Manganelli et al., 2007; 2011; Martini et al., 2011), passing upward into nearshore 

(deltaic-non deltaic) deposits often rich in molluscan assemblages (Manganelli et al., 

2010). 

 

2.2.5.3 Gelasian–Calabrian deposits (Valley fill) 

The examined succession comprises two allounits (V1 and V2) and represents the 

infill of a U-shaped elongate depression that was cut both in the bedrock and Pliocene 

deposits. For the sake of clarity, the description of the study area will focus on two 

sectors: North of Castello di Montalto and South of Castello di Montalto. In the southern 

sector V1 and V2 are stacked one upon the other although the bodies’ axis are not 

aligned vertically, whereas in the northern sector these allounits are vertically stacked. V1 

comprises mainly gravelly deposits and rare mud, whereas V2 consists of sand and mud 

with subordinate gravel. Field evidence and well-core data show that allounits V1 and V2 

are at least 60 and 25 m thick, respectively. 

Paleocurrent measurements from both these units show that the main transport 

direction was toward SW (i.e. toward the Siena Basin). 
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Figure 2.2: Stratigraphy of the study alluvial deposits. A) Pliocene continental deposits unconformably 
overlain by allounit V1, which shows three main fining upward (FU) intervals, the main unconformity is 
marked by yellow line; B) Fining-upward fluvial gravel of unit V2flb, unconformably overlaying Pliocene 
marine deposits; C) Sandy fluvial deposits of unit V2flb deposits, covered by palustrine V2pl facies and 
overlain Pliocene marine deposits. 
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2.2.5.3.1 Allounit V1 

Allounit V1 crops out in the southern sector, but has also been identified in the 

northern sector through well-core data. It is composed of alternating intervals of gravel, 

sand and subordinate mud, showing a well-defined fining-upward trend (Fig. 2.2A). The 

gravelly intervals consist of amalgamated channelized bodies with minor intercalations of 

lens shape gravelly sand (Fig. 2.3B). Gravel is clast-supported, poorly sorted and locally 

contains abundant sandy matrix. Clasts are rounded and some of them show abraded 

litophaga traces, highlighting reworking from Pliocene marine deposits below. 

The sandy to muddy intervals (Figs 2.2A and 2.3A) are characterized by strong 

pedogenesis, with organic-rich mud horizons and scattered continental gastropods 

(Pomatia elegans and Retinella sp; Aldinucci et al., 2007). All these fine-grained intervals 

disappear moving northward, making the gravelly intervals amalgamate. 

The basal gravelly part of each interval is interpreted as fluvial bars of a gravel-bed 

river system (Lunt & Bridge, 2004; Lunt et al., 2004; Bridge & Lunt, 2006), whereas the 

muddy to sandy deposits represent a floodplain environment (Reading, 1996; Jones et al., 

2001; Bridge, 2003). Continental gastropods suggest these deposits are younger than 

Piacenzian in age. 

 

2.2.5.3.2 Allounit V2 

Allounit V2 consists of a wide spectrum of deposits with different stacking pattern 

North and South of Castello di Montalto. 

North of Castello di Montalto, allounit V2 (up to 25-30 m thick) is dominated by 

massive, brownish to grayish silt-grained pedogenized deposits characterized by plant 

remains, roots and organic-enriched layers (V2fla; Fig. 2.3C). Isolated and rare sandy 
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deposits occur as lens-shaped bodies, floored by gravel-rich coarse sand. These deposits 

are ascribed to a poorly-drained floodplain environment (V2fla) (Miall, 1996; Nemec, 

1996; Jones et al., 2001; Bridge, 2003). 

South of the Castello di Montalto, allounit V2 is composed of 15 m thick, 

channelized and cross-stratified gravel (V2flb; Figs 2.2B and 2.3D), passing downstream 

into channelized trough cross stratified gravelly sand (V2flb; Fig. 2C). Both these units are 

covered by organic-rich mud (V2pl; Fig. 2.3E), which is up to 6 m thick and contains 

abundant freshwater gastropods (e.g. Bithynia tentaculata). The gravelly deposits are 

interpreted as fluvial bars within a gravel bed river setting (Lunt & Bridge, 2004; Lunt et 

al., 2004; Bridge & Lunt, 2006), whereas the sandy ones as fluvial bars of a sand-bed river 

system (Thorne et al., 1985; Smith 1986; Bridge, 2003). The overlying muddy interval 

accumulated in a palustrine setting (Esu et al., 1993; Miall, 1996; Nemec, 1996).  

 

Figure 2.3: Sedimentary facies of the study deposits. A) fluvial sand with subordinate silt of V1; B) fluvial 
gravels with abundant sandy matrix (V1);  C) muddy floodplain deposits  of V2fla; C) fluvial, cross-
stratified gravel of V2flb unit; E) organic-rich deposits of V2pl palustrine deposits;  F) alluvial-fan gravel of 
unit V2af. 
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Gravelly fan-shape deposits (V2af) occur along the flanks of the U-shape 

depression both in the northern and southern sector. These bodies (up to 50 m) mainly 

comprise channelized gravelly deposits (Fig. 2.3F) that pass downstream into poorly 

channelized gravelly sand and show a paleotransport direction transverse to the belt axis, 

as defined by V2 deposits. The V2af deposits are attributed to an alluvial fan setting 

(Nemec & Muszynski, 1982; Nemec & Steel, 1984; Sohn et al., 1999).  

To the North, the alluvial fan deposits are heteropic with V2fla fluvial deposits, 

whereas to the South they are heteropic both with V2flb fluvial deposits and palustrine 

deposits (V2pl). The Calabrian age of this unit is inferred from the occurrence of Aculean 

stonetools in distal alluvial fan facies (Magi, 1992).  

According to their geometries and sedimentological features, units V1 and V2 are 

interpreted as the infill of two paleovalleys that were nested in the northern sector of the 

study area, and offset in the southern part. The paleovalley was drained toward SW (units 

V1 and V2fla-b) and it received sediments from alluvial fans developed along its flanks 

(V2af). 

  

2.2.5.4 Ionian deposits (alluvial terraces) 

Fluvial terraces of the Ambra and Ombrone Rivers are easily distinguished in the 

present-day topography. They are made of sandy bodies capped by pedogenized mud 

and occur along the flanks of the modern valley, showing erosional base and flat top. The 

Ambra and Ombrone drainages developed two and one order of terraces, respectively. 
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2.2.6 Structural features 

Several tectonic lineaments have been recognized in the selected area, and 

ascribed both to thrusts and high-angle normal faults (Lazzarotto et al., in press). Thrusts 

separate Ligurian from Tuscan units and show a NE vergence resulting from the Late 

Cretaceous-Late Eocene compressional phase (Martini & Sagri, 1993). High-angle normal 

faults have a dominant “Apenninic” NW–SE trend and are associated with the post-

collisional, extensional tectonic phase (Plio-Quaternary, Brogi et al., 2005).  

The most significant tectonic lineament of the area occurs nearby Castello di 

Montalto (Fig. 2.4A), and shows a NW-SE trend (i.e. normal to valley axis). Structural 

stations, measured along this lineament, show a 120° N trend and 30° N dip, with an 

overall normal movement, lowering the northern area (i.e. upstream valley sector). Field 

and well-core data (Fig. 2.4C) show a differential bedrock displacement, measured on 

Macigno Fm. outcrops, which increases from 40 to 60 m moving eastward along the fault. 

This fault displaces V1 deposits, which bear evidence of tectonic deformations (i.e. 

striation; Fig. 2.4B). The variability of fluvial deposits of unit V2 (V2fla and flb) across the 

fault zone could testify a syn-depositional tectonic sedimentation.  

The present-day intense CO2 emission (Fig. 2.4D) indicates active tectonics, or, at 

least, a hydrothermalism as last step of a very recent activity. Activity of this fault is 

consistent with the latest stage of Siena Basin evolution (Brogi, 2011a), characterized by 

activation of high-angle normal faults after a phase of crustal detachments.  

A further normal fault is located in the Terre Rosse area, where it displaces the 

Pliocene marine deposits and develops the escarpment, which sourced alluvial fan 

deposits of unit V2af.  
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Figure 2.4: Structural features of the normal fault crossing the study paleovalley. A) Fault plane in 
sandstone (Macigno Fm.) and related kinematic indicators consisting of superposed generations of calcite 
fibers; B) Tectonic striations (red arrow) caused by intra-clast shearing induced by tectonic displacement; 
C) Well-core data showing bedrock displacement affected by the fault in the Castello di Montalto area; d) 
Natural CO

2
emissions along the Ambra River.  

 

2.2.7 Conclusions 

This work provides a high-resolution geological map of the Pliocene and 

Pleistocene deposits exposed along northern margin of the Siena Basin through an 

allostratigraphic and sedimentological approach. The study deposits represent the infill of 

a SW-draining paleovalley, and consist of two main allounits, V1 and V2. These allounits 

are vertically stacked in the northern sector of the study area and offset in the southern 

sector. V1 mainly consists of gravelly fluvial deposits, whereas V2 deposits show a marked 

downvalley variability, manifested by poorly-drained floodplain deposits (V2fla) in the 

northern sector, and by gravel-bed river deposits (V2flb) in the southern one. Alluvial fan 

(V2af) and palustrine (V2pl) deposits are associated with V2 fluvial facies. A NW–SE 
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trending normal fault cuts transversally the paleovalley axis near Castello di Montalto. 

This fault displaces V2 deposits and is probably the cause of the along valley variability of 

V2fl deposits. 
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CHAPTER 3 

TECTONICALLY-DRIVEN DEPOSITION AND LANDSCAPE EVOLUTION 

WITHIN UPLAND INCISED VALLEYS: 

THE AMBRA VALLEY FILL, PLIOCENE-PLEISTOCENE OF TUSCANY, ITALY. 

 

3.1 OVERVIEW 

This chapter is a journal paper submitted to Sedimentology (SED – 2014 – OM – 

013). Facies and structural analysis, integrated with geophysical data from the Plio-

Pleistocene Ambra palaeovalley were presented here in order to extricate the effects of 

tectonics of fluvial aggradation in an incised valley setting. 

 

3.2 PAPER 

VALERIA BIANCHI1, MASSIMILIANO GHINASSI1, MAURO ALDINUCCI2, JACOPO BOAGA1,  

ANDREA BROGI3, RITA DEIANA4 

1 Dept. of Geoscience, University of Padova, Via Gradenigo 6, 35121 Padova, Italy 

2Weatherford Petroleum Consultants A.S., 5147 Bergen, Norway 

3Dept. of Earth and Geoenvironmental Sciences, University of Bari “Aldo Moro”, Via 

Orabona 4, 70125 Bari, Italy 

4Dept. of Cultural Heritages, University of Padova, Piazza Capitaniato, 7, 35121 Padova 

 

3.2.1 Abstract 

Sedimentation in the upstream reaches of incised valleys is predominantly fluvial 

and, in most cases, independent from relative sea level oscillations. The mechanisms of 
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facies distribution respond to a combination of factors such as tectonics, climate and 

landscape evolution. Tectonics can influence fluvial aggradation and degradation through 

local changes in gradient, both longitudinal and transverse to the valley slope. This paper 

deals with a Pliocene – Pleistocene fluvial valley fill developed in the northeastern 

shoulder of the Siena Basin (Northern Apennines, Italy). The valley lacked the control of 

sea level, and its morphological and depositional history resulted from the interaction of 

autogenic morphodynamics and extensional tectonics giving rise to normal and oblique-

slip faults orthogonal and parallel to the valley axis. This research integrated field and 

geophysical data, with the main scope of introducing a comprehensive, tectono-

sedimentary model of coeval longitudinal and lateral alluvial plain tilting.  

Longitudinal tilting was generated by a transverse, upstream-dipping normal fault 

that mainly controlled the aggradation of fining-upward strata-sets. Upstream of the fault 

zone, valley backfilling generated an architecture similar to that of classic, sea-level-

controlled, coastal incised valleys. Downstream of the fault zone, valley downfilling was 

related to an overwhelming sediment supply sourced and routed from the faulted zone 

itself. Lateral tilting was promoted by the activity of a fault parallel to the valley axis, as 

well as by different offsets along near orthogonal faults. As a result, the valley trunk 

system experienced complex lateral shifts, which were governed by interacting fault-

generated subsidence and by the topographic confinement of progradational, flank-

sourced alluvial fans. 

 

Keywords: alluvial-valley fill; incised valley; fluvial sedimentation; extensional tectonics; 

valley avulsion 
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3.2.2 Introduction 

The rise of seismic exploration as a key tool in exploration of hydrocarbon 

reservoirs over the last four decades (Posamentier & Vail, 1988; Posamentier et al., 1988), 

was followed by a  dramatically-increasing interest on the dynamics of ancient valley fills, 

given their high potentials as oil- and gas-prone lithosomes (Van Wagoner et al., 1990; 

Dalrymple et al., 1994;). Different models of valley fill architecture and classification have 

been proposed in the past (Aslan & Blum, 1999; Blum & Tornqvist, 2000; Dalrymple, 

2006; Simms et al., 2006; Gibling et al., 2011), most of them sharing the notion of palaeo-

coastline as key control on facies distribution. As downstream valley reaches are closer to 

their coastal outlet, they show common evidence of marine influence and were widely 

described in the classical estuarine models (Dalrymple et al., 1994; Boyd et al. 2006; 

Gibling, 2006; Simms et al., 2006; Blum & Womack, 2009; Blum et al., 2013). On the 

opposite, upstream and fluvial-dominated valley reaches received much less attention 

(Gibling et al., 2011). Most downstream valley reaches are arguably cut and filled in 

response to relative sea-level changes (Allen & Posamentier, 1993; Dalrymple et al., 1994; 

Li et al., 2006; Simms et al., 2006; Breda et al., 2009), with inland expressions of tens to 

few hundreds of km upstream (Blum & Tornqvist 2000; Gibling et al., 2011). Upstream 

valley reaches have sedimentation solely controlled by fluvial processes (Dalrymple et al., 

1994; Zaitlin et al., 1994; Vincent, 2001; Fielding et al., 2007), which in most cases do not 

betray the direct influence of relative-sea level oscillations (Currie, 1997; Legarreta & 

Uliana, 1998; Martinsen et al., 1999). In these cases, the mechanisms of facies 

distribution comprise complex interactions between tectonics, climate and drainage 

evolution (Shanley & McCabe, 1991, 1994; Blum & Tornqvist, 2000; Holbrook, 2001; 

Gibling et al., 2011). Inland valley systems are poorly documented because of the difficult 
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preservation of upstream portions, which in most cases are deeply affected by 

subsequent erosion, and because of their difficult discrimination from similar, extra-valley 

deposits (Gibling et al., 2011). Nonetheless, infill of Pleistocene upstream valleys (Gibling 

et al., 2011; Blum et al., 2013) proved to represent a precious, yet poorly explored archive 

of recent tectono-climatic evolution for inland areas. The effects of tectonics on fluvial 

sedimentation are known from modern rivers (Schumm, 1986; Holbrook & Schumm, 

1999) and have been modelled in laboratory experiments (Ouchi, 1985; Lague et al., 

2003; Hickson et al., 2005; Turowski et al., 2006). Results substantially demonstrate how 

tectonic activity involves significant modifications in terms of: i) geomorphic features and 

fluvial styles (Twidale, 1971; Ouchi, 1985; Blum & Tornqvist, 2000; Gibling, 2011); ii) 

modification of the equilibrium profile (Dalrymple, 2006); iii) alternation between phases 

of aggradation and degradation (Shanley & McCabe, 1991; Holbrook & Schumm, 1999); 

iv) and channel avulsive patterns (Bryant et al., 1995). Nevertheless, the tectonic forcing 

on valley fill aggradation is poorly known (Shanley & McCabe, 1991; Boyd et al., 2006), a 

gap particularly relevant considering difficult to disentangle signature of tectonics, 

climate and other forcings where reserved (Guiseppe & Heller, 1998; Holbrook & White, 

1998; Vincent, 2001). Having said this, the specific questions that this paper is intended to 

address are: how do tectonics activity controls fluvial aggradation within upstream valley 

reaches? And how do tectonically-controlled fluvial valley fills differ from those controlled 

by relative sea-level? 

This paper contributes to these topics via a multidisciplinary approach on a Plio-

Pleistocene, fluvial valley fill currently exposed along the Ambra River Valley, southern 

Chianti (Northern Apennines, central Italy; Fig. 3.1). The study succession accumulated 

both on Pliocene marine sediments and on pre-Neogene bedrock (Aldinucci et al., 2007), 
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in response to the activity of normal faults (Baldi et al., 2006; Bianchi et al., 2013). The 

specific goals of this study are to: i) analyze the effects of tectonic on the spatial 

distribution of facies, and aggradation and degradation processes within the valley; ii) 

explore the role of tectonics on fluvial sedimentation within a spatially-confined setting; 

iii) investigate the relationship between tectonics and valley avulsion. 

 

3.2.3 Geological Setting  

3.2.3.1 Neogene – Quaternary basins of Northern Apennines  

The Northern Apennines is an orogenic belt developed after the Late Cretaceous - 

Early Miocene convergence of Africa and Eurasia (Carmignani et al., 1994, 1995, 2001; 

Brogi, 2008; Barchi, 2010). After the collisional event (Oligocene-Early Miocene), 

Neogene-Quaternary basins (Fig. 3.1A) developed as the superficial response of a 

lithosphere-scale (Nicolich, 2001) extensional process (Carmignani et al., 1994; Brogi et 

al., 2005). These basins are mostly NW- and NNW-trending, up to 200 km long, and up to 

25 km wide, showing articulated and mutually superimposed extensional structures 

(Brogi & Liotta, 2008), and are segmented into minor sub-depocentres by transversal, 

NNW-SSE-oriented lineaments (such as the Arbia-Val Marecchia line; Liotta, 1991), which 

often highlight to bedrock highs (Fig. 3.1A; Sacco, 1935; Signorini, 1935). Neogene-

Quaternary basins show a wide spectrum of infill successions. Basins occurring west of 

the Chianti Ridge (Fig. 3.1A) are characterized by late Miocene – Pliocene fluvio-lacustrine 

and shallow-marine sedimentation (“central” basins sensu Martini & Sagri, 1993; such as 

the Siena Basin, Fig. 3.1A). Basins located east of the Chianti Ridge (Fig. 3.1) are filled with 

late Pliocene - Pleistocene continental deposits (“peripheral” basins, sensu Martini & 

Sagri, 1993; such as the Upper Valdarno Basin, Fig. 3.1A). 
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Figure 3.1: A) Simplified geological sketch of the Northern Apennines showing the Neogene-Quaternary 
basins with intervening bedrock ridges and main tectonic features; B) Schematic geological map of the 
area affected by the drainage changes discussed in this paper with the study area shown as inset; C) 
Sketch of the drainage modifications occurred in the studied area in the Gelasian-Recent time interval; D) 
Outline of the studied area with location of the Ambra and Ombrone rivers and present-day watershed; a 
schematic geometry of the sedimentary succession with the studied stratigraphic units along the cross-
section A-A` is also shown. 
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3.2.3.2 The study area and previous works 

The study area is located along the Chianti Ridge, and corresponds to a linking 

zone between the Upper Valdarno (Fidolini et al., 2013a; Ghinassi et al., 2013) and Siena 

basins (Brogi, 2011a; Martini et al., 2011). The Chianti Ridge is characterised by a pre-

Neogene bedrock comprising uprooted and deformed tectonic units (Ligurian, Subligurian 

and Tuscan units; Abbate & Sagri, 1982; Lazzarotto et al., in press). The Ligurian, are only 

represented by the Cretaceous-Paleocene deposits (Lazzarotto et al., in press), composed 

of turbiditic, fine-grained siliciclastics and marly limestone (Santa Fiora and Monte 

Morello formations). Subligurian Unit consists of Palaeocene-Oligocene calcarenite, 

limestone, shale and minor sandstone (Canetolo group). The Tuscan Unit (Tuscan Nappe) 

consists of the Late Oligocene-Early Miocene siliciclastic turbidites (Macigno Fm.). The 

Pliocene Siena Basin infill (Martini et al., 2011; 2013; Arragoni et al., 2012) consists of 

Zanclean fluvio-deltaic gravels grading upward into marine sand and mud. 

Micropalaeontological analyses ascribe the uppermost part of the marine succession to 

the latest Piacentian (Bambini et al., 2010; Martini et al., 2011; Arragoni et al., 2012; 

Martini et al., 2013), when a regional tectonic doming caused a forced regression (Martini 

& Sagri, 1993). A 60-70 m thick fluvial valley fill succession overlies both the pre-Neogene 

Units and the marine deposits of the Siena Basin (Aldinucci et al., 2007; Bianchi et al., 

2013). The valley was fed from the north (Fig. 3.1C), and successively terraced by the 

Ambra and Ombrone Rivers, which flows north- (i.e. Upper Valdarno Basin catchment) 

and southward (i.e. Siena Basin catchment), respectively (Fig. 3.1C). This drainage pattern 

is the result of the latest Calabrian – early Ionian piracy of the Ambra River, which was 

incorporated in the northward-flowing Arno River catchment (Fig. 3.1B) (Bartolini & 
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Pranzini, 1981; Fidolini et al., 2013a, 2013b).  

Aldinucci et al. (2007) focused on the southern part of the study area (Fig. 3.1D), 

concluding that the valley fill lacks any evidence of marine-paralic influence since the 

latest Piacentian regional tectonic doming uplifted the paleo-coastline up to 700 m above 

the modern sea level, isolating the area from any marine influence. More recently, 

Bianchi et al. (2013) identified two distinct valley fill units (Fig. 3.1D). The lower gravel-

dominated unit (henceforth referred to as unit V1) includes the Q and VF units of 

Aldinucci et al. (2007) (Fig. 3.1D). The upper unit (henceforth referred to as unit V2) is 

markedly heterogeneous, with both mud- and gravel-dominated deposits.  

The study area is centered along a WSW-ENE-trending, regional tectonic 

lineament known as Arbia-Val Marecchia lineament (Liotta, 1991; Pascucci et al., 2007). 

The main local structural elements are the Ambra River and Terre Rosse normal faults 

(Bianchi et al., 2013). The Ambra River Fault dips towards NE, displacing unit V1 (Bianchi 

et al., 2013) and being characterized by intense CO2 leakage (Minissale, 2004; Baldi et al., 

2006). The Terre Rosse Fault dips toward SW and displaces Pliocene marine deposits 

(Bianchi et al., 2013). 

 

3.2.4 Methods 

3.2.4.1 Field investigations and borehole data 

This work is based on field investigations, aimed at collecting sedimentological and 

structural data. The bulk of sedimentological and structural data were integrated with 

borehole and geophysical information. The geology of the study deposits was initially 

defined through mapping on 1:10.000 scale supports over an area of some 25 km2 (Fig. 

3.2A). Sedimentary units were detailed via bed-by-bed logging and outcrop line-drawing,  
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Figure 3.2: A) Detailed geological map of the studied area and geological cross sections with main 
localities mentioned in the text; B) Areal distribution of the recognized stratigraphic units showing the 
trace of ERT line and sites of boreholes, HVSR and compositional analyses. 
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with the aim of individuating groups of spatially and genetically related facies (i.e. 

facies associations). Facies associations were in turn interpreted as originated from 

distinct depositional environments. The main vectors of palaeo-drainage were inferred 

through the measurement of ca. 200 indicators of palaeoflow, using both a(t)b(i) clast 

imbrications and directions of cross-bedding progradation. Palaeocurrent data were 

accompanied by compositional analysis of gravelly deposits. Eight samples were collected 

(Fig. 3.2B), each one reporting 100 identifications performed on un-weathered surfaces of 

clasts having b-axis > 3 cm and sampled on horizontal lines.Structural analyses were 

focused on high-angle normal faults which are thought to represent the youngest regional 

structures affecting both unconsolidated Pliocene-Pleistocene deposits and pre-Neogene 

bedrock (Brogi et al., 2010; Brogi, 2011b; Cornamusini et al., 2012,  Brogi et al., 2013). 

Structural and kinematic data represent discrete clusters (structural stations), along 

exposed meso-fault surfaces. The borehole dataset consists of 8 well logs located in the 

northern sector of the study area (Fig. 3.2B), and was coupled in places with Cone 

Penetration tests (CPT) (Fig. 3.3D). Borehole data proved to be useful in: i) defining the 

depth of the valley floor; 2) tracing the boundary between unit V1 and V2; and 3) 

calibrating the geophysical dataset.  

 

3.2.4.1 Geophysical measurements 

3.2.4.1.1 Electrical resistivity tomography (ERT) 

Three ERT lines were collected in the Northern sector of the study area (Fig. 3.2B) 

using an IRIS Syscal Pro 72 instrument. The data acquisition was performed, for two of 

these lines (ERT1 and ERT 2) using 72 electrodes, while for the third line (ERT 3) were 

used 48 electrodes.  All lines were collected using 5 m electrode spacing and the dipole-
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dipole skip zero scheme, to ensure the best signal to noise ratio and optimal spatial 

resolution. In order to assess a data quality control, a full reciprocal acquisition was 

applied, swapping potential with current electrodes, in order to estimate data errors and 

reject the data exceeding a 5% difference between direct and reciprocal values, before 

the inversion processing (Daily et al., 2004, Cassiani et al., 2006; Deiana et al., 2008). The 

ERT tomographic inversion was performed using the ProfileR version 2.5 code (Binley, 

2008), based on the Occam’s inversion approach (LaBrecque et al., 1996), fitting the 

observation at a 5% error level. 

 

3.2.4.1.2 Horizontal to Vertical Spectral Ratio (HVSR) single station measurements 

Horizontal to Vertical Spectral Ratio technique (HVSR, Nogoshi & Igarashi, 1970 or  

“Nakamura's technique”, Nakamura & Samizo, 1989) consists of passive recording of 

natural micro-tremors (seismic noise) through the use of 3 component receivers, and is 

used in order to identify the subsoil resonance frequency F0 (Field & Jacob, 1993) which is 

related to material properties and to the depth of the main impedance contrast (Galgaro 

et al., 2013). Single stations were performed in 42 sites located in the Monticello – La 

Selva – Abbadia di Monastero area (Fig. 3.2). We adopted digital 24bit seismometers 

equipped with 3 orthogonal velocimeters with noise threshold < 0.5 μV r.m.s. at 128 Hz 

sampling and a frequency response rate between 0.1Hz and 256 Hz. The instruments 

were installed with a spirit level with horizontal high precision of sensitivity of 5' arc 

(0.083°). Each acquisition lasted 30 minutes with 128 Hz sampling rate. The horizontal to 

vertical spectral ratio was computed for windows of 20 s length, with a smoothing of 10%. 

Each window was de-trended, tapered, padded, FF-transformed and smoothed with 

Konno & Omachi smoothing type windows, with a width equal to 20% of the central 
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frequency (Konno & Omachi, 1998). The euclidean average was used to combine EW and 

NS components in the single horizontal (H) spectrum, following the indications of the 

Sesame Project (SESAME, 2004; Chatelain et al., 2007). 

  

3.2.5 Results 

The study deposits show a marked variability in terms of geometry, thickness and 

facies distribution (Fig. 3.2A), and the sedimentological and stratigraphic features of the 

northern and southern sector of the study area will be described separately. The 

boundary between these two sectors is located in the Castello di Montalto area (Fig. 

3.2A). In plan-view, units V1 and V2 appear as elongated bodies sharing a NNE-SSW to 

NNW-SSE orientation (Fig. 3.2A). Unit V1 is exposed only in the southern sector, between 

Castello di Montalto and Arcidosso (Fig. 3.2A), although subsurface data indicate that it 

sub-crops in the northern sector as well.  

 

3.2.5.1 Sedimentary succession 

3.2.5.1.1 Northern sector 

3.2.5.1.1.1 Field and borehole data 

Most of the northern sector is characterized by extensive covers of Holocene 

deposits, even if the upper portion of unit V2 is locally exposed (e.g. Pietraviva area, Fig. 

3.2A). Unit V2 appears embanked in bedrock over a width of 0.8 to 1.5 km, following a 

wandering NNE-SSW trend. Unit V2 deposits consists of massive, horizontally-bedded 

mud with subordinate sand (V2fla), locally interbedded with pebble- to cobble-sized 

gravel (V2af; i.e. La Selva area). Mud of unit V2fla is commonly root-bioturbated (Fig. 

3.3A), or significantly enriched in undecomposed organic matter and plant debris (Fig.  
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Figure 3.3: A) Detailed geological map of the studied area and geological cross sections with main 
localities mentioned in the text; B) Areal distribution of the recognized stratigraphic units showing the 
trace of ERT line and sites of boreholes, HVSR and compositional analyses. 

 

3.3B). Sandy deposits consist of both sheets and lensoid bodies. Sheets are up to 1.5 m 

thick and composed of massive to plane parallel-stratified, medium- to fine-grained sand. 

Lensoid bodies are up to 4-5 m thick and at least 50-60 m wide along-strike (Fig. 3.3D), 

and composed of fining-upward bedsets of pebbly, coarse-grained sand (Fig. 3.3C) 
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grading into pedogenized mud (Fig. 3.3A and C). Their internal architecture is featured by 

large-scale inclined beds (Fig. 3.3C) dipping at 5° to 10°. Single inclined beds display plane 

parallel-, trough cross-stratification and ripple cross-lamination. Palaeoflow is oriented 

towards the south (Fig. 3.3F). In the La Selva area (Fig. 3.2A), unit V2fla deposits are also 

interbedded with poorly organized gravels (Fig. 3.3E) onlapping the bedrock along the 

hydrographic right flank of the modern Ambra valley (Fig. 3.2A). Unit V2af deposits are 

poorly exposed and consist of clast-supported, moderately- to well-rounded, pebble- to 

boulder-sized gravels with subordinate sandy intercalations (Fig. 3.3E). Gravels form 1- 2 

m thick units, which show a basal concave surface floored by imbricated a(t)b(i) boulders. 

Lensoid units show an overall fining-upward trend and range from bottom massive to top, 

crudely plane-parallel stratified. When in proximity to bedrock, disorganized to inversely-

graded, unsorted pebble- to boulder-sized gravel occurs in tabular beds. The latter are up 

to 1m thick, and show an a(p)/a(p)a(i) fabric. For the latter, imbrication indicates 

palaeoflow towards east (Fig. 3.3F). 

Borehole data show that unit V2fla is covered by up to 7 m of Holocene alluvium, 

and the integration with field observations indicate a thickness for the units V2fla and 

V2af of ca. 25 – 30 m, and 35 – 40 m, respectively. In the Monticello – La Selva area, the 

Ambra 01 borehole (Fig. 3.4A and B) encountered 60 – 70 m of gravel below unit V2fla, 

topping at a quote of 255 m asl. Boreholes Ambra 08 and Ambra 02 encountered the 

same boundary at a similar quote. 

 

3.2.5.1.1.2 Geophysical data 

The ERT results (Fig. 3.4A and C), highlight the presence of three different 

resistivity zones. In particular, a lower part with resistivity higher than 140 Ohm m 
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appears separated from an upper part, that shows resistivity values lower than 80 Ohm 

m, with an intermediate zone with 80 to 140 Ohm m. The unit with a resistivity higher 

than 140 Ohm m appears in ERT 2 and ERT 3 results, and shows an irregular top surface at 

an elevation of 200 to 240 m a.s.l. (Fig. 3.4C). Similar values are also highlighted in the 

eastern side of ERT1 section at about 200 m a.s.l. (Fig. 3.4 C). The unit with a resistivity 

comprised between 80 and 140 Ohm m occurs in ERT 1 and ERT 2 sections (Fig. 3.4 C). 

This unit shows a convex-upward basal surface and irregular top (well expressed in the 

ERT 2 result) and a maximum thickness of some 60 m (Fig. 3.4 C). The uppermost unit (i.e. 

resistivity lower than 80 Ohm m) occurs above 240-260 m a.s.l. in all ERT sections (Fig. 3.4 

C). ERT 1 shows spots of higher resistivity (120-140 Ohm m), which are several m-thick 

and laterally extensive for 150-200 m (Fig. 3.4 C). In the uppermost part of the same ERT 

section, 3-5 m-thick deposits with a resistivity close to 200 Ohm m also occur locally. 

HVSR analyses (Fig. 3.5A) identified three resonance frequency ranges, 

corresponding to three different depths of acoustic impedance contrast between layers. 

Narrow peaks were referred to intense contrasts of acoustic impedance, whereas broad 

peaks were identified as weak contrasts (Fig. 3.5B). Two main NW-SE trending sections 

(A-A’ and B-B’), derived from interpolated HVSR data (Fig. 3.5A and C), allowed to 

characterize the geometry of the most distinctive surfaces of acoustic impedance 

contrast. Section A-A’ is underlain by units V2af and V2fla, highlighting a different 

amplitudes of HVSR peaks, which are greater in the eastern sector of the section (Fig. 

3.5B). Section B-B’ is located in the southernmost part of the northern sector and, 

similarly to section A-A’, is underlain by both V2af and V2fla deposits. 
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Figure 3.4: A) Areal distribution of boreholes plotted on a schematic geological map of the northern part 
of the studied area with indication of ERT lines; Note that boreholes are only located upvalley of the 
Ambra River Fault; B) 3D geological sketch of the inset area in Fig 4A with the reconstructed stratigraphy 
of the sediments penetrated by the Ambra 01, 02 and 04 boreholes; C) Interpreted (and uninterpreted) 
ERT profiles showing the subsurface architecture of units V1 and V2fla along with bedrock 
palaeomorphology. 
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Figure 3.5: A) Areal distribution of HVSR sites plotted on a schematic geological map of the central-
northern part of the studied area with traces of interpreted geological cross-sections; B) Frequency 
ranges of acoustic impedance contrasts between V2fla unit and underlying V1 gravels, both weathered 
and unweathered; C) Geological cross-sections derived from the interpolation of HVSR data with 
constraints from the geological map. 
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3.2.5.1.1.3 Interpretation 

V2fla were interpreted as accumulated in an alluvial plain (Bridge, 2003), with 

tabular mud and sands representing floodbasin and crevasse splay deposits, respectively 

(Ethridge et al., 1981). Floodbasin deposits probably accumulated from sediment fallout 

in ephemeral, flood-generated ponds (Bridge, 2003), which occasionally persisted long 

enough to develop swamps (Basilici, 1997; Miola et al., 2006). Lens-shaped bodies are 

interpreted as the fill of 4-5 m-deep channels that wandered across the floodbasin. The 

isolated and scattered occurrence of channel bodies engulfed within overbank deposits 

suggests their pertinence to single-channeled, through-going systems (Ielpi, 2013), 

transecting high-accommodation plains (Martinsen et al., 1999). V2af gravels are 

interpreted as flanking alluvial-fan deposits (Blair & McPherson, 1994a, 1994b) that 

possibly accumulated at the entrance of tributaries into the valley; this interpretation is 

supported by their palaeoflow, which is orthogonal to that of the trunk systems. Lensoid 

conglomerates represent channel fill deposits, with their flooring boulders representing 

channel lags (Miall, 1985). Massive, ungraded to inversely graded conglomerates indicate 

that non-selective, mass-transport processes dominated by buoyancy (i.e. debris flows; 

Nemec & Steel, 1984) occurred in the most proximal areas of the fans. Borehole data also 

supports the interpretation of a southward-draining axial fluvial system (represented by 

unit V2fla), locally interfingered with flanking alluvial fans (unit V2af). The gravelly 

deposits underlying the unit V2 probably represent the sub-cropping unit V1.   

The calibration of ERT lines with field and borehole data allows to interpret the 

high, intermediate and low domains of resistivity as bedrock, and units V1 and V2fla, 

respectively. ERT data substantially confirm the ubiquitous distribution of unit V2fla 

deposits along the valley axis, with a progressive increase in thickness downstream. Unit 
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V1 and V2fla fills a 80 – 90 m-deep, 800 m-wide depression cut onto the bedrock. The 

uneven surface interposed between units V1 and V2 and visible on lines ERT1 and ERT2 is 

interpreted as a scour featured by 10 to 15 m of erosional relief. In the ERT 1 profile (Fig. 

3.4C), the high resistivity spots embedded within unit V2fla possibly represent sandy 

channel bodies, whereas the 3 – 5 m thick unit with resistivity approximating 200 Ohm m 

could represent sub-modern alluvial, terraced sand and gravel. 

Further constraints on the spatial distribution of the study deposits come from the 

HVSR dataset.  The contrasts of acoustic impedance in the A-A’ section is interpreted as 

the unit V1 top (Fig. 3.5B). Accordingly, the peaks in the eastern side of the section mark 

the boundary between units V2fla and V1. The peak in the western side of the section 

marks the boundary between units V1 and V2af, here both dominated by coarse-grained 

deposits, and thus characterized by a lower contrast of acoustic impedance; a similar low 

contrast of acoustic impedance also marks the boundary between unit V1 and V2af 

gravels in the western part of section B-B’. On the opposite, the sharp peak in the eastern 

portion records indicates again a high impedance contrast between the mud-dominated 

unit V2fla deposits and the underlying bedrock (Fig. 3.4B). 

  

3.2.5.1.2 Southern sector  

3.2.5.1.2.1 Field data 

The southern sector is characterized by both units V1 and V2 exposures (Fig. 3.2A). 

In the Castello di Montalto area, unit V1 is cut onto bedrock and composes a body ca. 1.2 

km-wide and 60 – 70 m-thick. In the Arcidosso area, it is cut onto Pliocene marine 

deposits, it shows a similar thickness, and occupies a ca. 2.5 km-wide outcrop belt. Unit 

V2 occurs eastward of unit V1, showing in plan-view a fan shape (Fig. 3.2A), with the apex 
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located in the nearby of Abbadia Monastero (Fig. 3.2A). The fan body trends NNW-SSE 

and is cut both onto unit V1 and Pliocene marine deposits (see section D – D’ in Fig. 3.2A). 

The fan body is up to 5 km wide and 15-20 m thick (Pian di Bari area; Fig. 3.2A).  

Deposits of unit V1 are well exposed in the Arcidosso area (Fig. 3.2A), where they 

display four vertically-stacked intervals of channelized gravel and gravelly sand grading 

upward into sheets of sand to mud (Fig. 3.6A, B and E). Gravels and gravelly sand are 

composed of multilater, 4-5 m-thick bodies internally structured in sets of large-scale 

inclined beds dipping transversely to the main paleo-transport direction (Fig. 3.6D and E); 

inclined beds overlie a pavement of pebbles and cobbles. Gravelly beds are made of 

moderately-sorted, clast-supported pebbles with plane parallel- and planar cross-

stratification. Sandier bedsets vary from plane parallel- to trough cross-stratified (Fig. 

3.6I), are bounded by erosional surfaces, and commonly floored by clast-supported, 

pebble-sized mud-clasts (Fig. 3.6G). Large-scale inclined beds are in places overlain by 

wedge-shaped, fine-grained sand and mud (Fig. 3.6D). Sheet-bedded deposits are up to 6-

7 m thick and vary from mud- (e.g. top of first interval; Fig. 3.6D and F) to sand-dominated 

(e.g. top of third interval; Fig. 3.6A). Mud-dominated beds are massive, and contain root 

bioturbation and pedogenic carbonate concretions. Organic-rich portion (Fig. 3.6H) have 

limited evidence of pedogenesis and bear gastropods shells (i.e. Pomatia elegans and 

Retinella sp.; Aldinucci et al., 2007). Sand-dominated beds are normally-graded, erosively-

based and display plane parallel-stratification and ripple cross-lamination. The overall 

palaeoflow of unit V1 deposits is southward (i.e. towards the Siena Basin). The sand- to 

mud-dominated deposits capping the four fining-upward intervals detected in the 

Arcidosso area tends to less traceability northward, and toward the Castello di Montalto  
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Figure 3.6: A) Panoramic view of unit V1 unconformably resting on Pliocene continental deposits and 
showing three of the four component FU successions; B) Sedimentary log showing depositional features 
of unit V1. Note the four FU constituent successions each formed by basal channelized gravel rapidly 
grading to overlying floodplain mud; C) Rose diagram showing an overall southward transport direction; 
D) Close-up view of the inset in Fig. 6A. Note the internal organization of the lowermost FU succession 
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characterized by inclined gravel beds locally overlain by channel-fill sand manifesting the channel-
abandonment stage. Inclined gravel beds dip transverse to the main palaeotransport direction as 
detected from imbricated gravel-floor pebbles. Channel gravel and sand are finally overlain by overbank 
mud; E) Sedimentary log showing depositional features of the lowermost FU succession of unit V1; F) 
Mottled mud with pedogenic carbonatic concretions at the top of the lowermost FU succession (unit V1); 
G) Pebble showing abraded lithopaga traces; H) Erosive-based, clast-supported gravel formed by 
dominant mud clasts and representing the basal interval of a sand bed; I) Organic-rich mud layers at the 
top of the lowermost FU succession (unit V1); J) Through-cross stratified sand overlying a plane-parallel 
stratified basal gravel locally rich in mud clasts. 

 

area (Fig. 3.2B) unit V1 transitions into amalgamated gravelly deposits, with features 

similar to those encountered in Ambra 01 borehole (Fig. 3.4B). 

Unit V2 consists of V2flb and V2af deposits, located in the axial part and along the 

flanks of the palaeovalley, respectively (Fig. 3.2A). In the Poggiarello area (Fig. 3.2A), V2flb 

deposits are about 15 m thick and consist of gravel grading upward into pedogenized 

sand and mud (Fig. 3.7A, E and B). Gravel occurs in 1 – 2 m-thick, multistorey channel 

bodies (Fig. 3.7F), commonly floored by a(t)b(i)-imbricated pebbles and scattered, angular 

boulder-sized clasts (Fig. 3.7A and D). In some channelized bodies, sub-horizontal, plane 

parallel-stratified gravelly beds are vertically stacked and form coarsening-upward 

packages up to 1 m-thick. Elsewhere, plane parallel-stratified gravelly beds dip at 5°-10° 

(Fig. 3.7C) towards the basal channel surface. Locally, 1 – 1.5 m-thick sets of planar cross-

stratified gravels display evidence of downstream-accretion and -migration. These gravels 

record southward palaeoflow (Fig. 3.7G), and tend to fine in the downstream direction 

(i.e. Pian di Bari area; Fig. 3.2A), where they grade into fining-upward, sand- to mud-

dominated bedsets (Fig. 3.8D). The latter bedsets have a basal, up to 5 m-thick, medium-

grained sand floored by fine pebbles (Fig. 3.8F and C) and fine upward into pedogenized 

fine-grained sand and mud. The sandy interval is structured into sets of large-scale 

inclined beds dipping at 5° to 20° (Fig. 3.8E and C). Inclined beds display internally a 

compound, plane parallel- / trough cross-stratification and ripple cross-lamination.  
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Figure 3.7: A) Sedimentary log showing depositional features of unit V2flb; B) Pedogenized sand and mud 
at the top of unit V2flb; C) Slightly inclined, plane-parallel stratified gravel (Unit V2flb); D) Close-up of 
insect in Fig. 7E showing outsized (boulder) clasts in channel-base gravels; E) Large-scale view of a FU 
succession of unit V2flb; F) Multi-storey, gravel-dominated channel fill resting unconformably on Pliocene 
marine sand; G) Rose diagram showing an overall southward transport direction. 

Palaeotransport direction was assessed on the basal pebbles, being transverse to 

the dip of inclined beds. The overlying mud-dominated deposits display evidence of 

pedogenesis and are toppped by organic-, freshwater shells-rich beds (Fig. 3.8A, B and C; 

Bianchi et al., 2013). 
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Figure 3.8: A) Pedogenized to organic-rich mud at the top of the distal V2flb unit; B) Freshwater shell-rich 
sand at the top of the distal V2flb unit; C) Sedimentary log showing depositional features of the distal 
expression of unit V2flb; D) Outcrop-based line drawing of a complete section of the distal portion of 
V2flb. Note the FU sandy channel-fill with evidence of inclined bedding overlying a basal lag gravelly sand 
and in turn overlain by overbank fines; E) Large-scale inclined sandy beds dipping transverse to the main 
palaeocurrent direction as inferred from imbricated basal pebbles; F) Lag deposit at the base of the distal 
V2flb unit. 

 

Unit V2af is well developed in the Terre Rosse area (Fig. 3.2A), where it reaches up 

to 50 m in thickness. Unit V2af is mostly composed of pedogenized sand that passes 

upward into channelized gravels (Fig. 3.9A and B). Sand-grained deposits consists of 

vertically-stacked, tabular beds with dispersed lenses of pebbles. Beds are up to 1 m-thick 

and are both massive or faintly plane parallel-stratified, with bedding overprinted by 

pedogenesis (Fig. 3.9D). The architecture of the channelized gravels is similar to that of 

unit V2flb, showing inclined beds dipping at up to 10° - 20° (Fig. 3.9C), and coarsening-

upward sets of sub-horizontal beds up to 50 cm thick. In the nearby of the valley flanks,  
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Figure 3.9: A) Panoramic view of unit V2af showing an overall CU trend; B) Sedimentary log showing 
depositional features of units V2flb and V2fa at Terre Rosse; C) Channelized gravel of unit V2af consisting 
of inclined gravel beds overlain by channel-fill sand. Gravel beds dip transverse to the main paleocurrent 
as inferred by basal embricated pebbles; D) Pedogenized sand interval between gravels of unit V2af; E) 
Close-up of inverse-graded gravel of unit V2af occurring close to the valley flank; F) Fragmented marine 
shells within gravel overlying the unconformity between marine Pliocene sand and unit V2flb; G) Rose 
diagram indicating an overall southward transport direction. 
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beds of disorganized and poorly-sorted, inversely-graded gravel occur as well (Fig. 3.9C). 

The overall palaeoflow of unit V2af is southwest-ward (Fig. 3.9E).  

In the southern sector, V2flb deposits represent most of the unit V2. They cap 

Pliocene marine deposits (Fig. 3.7A, 3.8C and 3.9B) and bear abundant fragments of 

reworked marine shells (Fig. 3.9D) and gravel with abraded lithophaga borings (Fig. 3.6F). 

In the Terre Rosse area, they are also interbedded with, and covered by gravelly sands of 

unit V2af (section D – D’ in Fig. 3.2A; Fig. 3.9B). 

 

3.2.5.1.2.2 Gravel composition 

Four samples of 100 clasts each were collected in the Arcidosso (unit V1) and 

Poggiarello (unit V2flb) areas, respectively (Fig. 3.2B). Gravels are composed by clasts of 

sandstone, calcareous micrite, calcarenite, flint and shale (Fig. 3.10) and derive from the 

erosion of rocks belonging to the Ligurian, Subligurian and Tuscan tectonic units exposed 

in the surrounding bedrock. Compositional analyses shows that unit V1 gravels are 

composed of ca. 40% of sandstone clasts, commonly deeply weathered, and 45% of 

calcarenite clasts relatively unaffected by weathering. Differently, unit V2flb gravels are 

composed of 85% of sandstone clasts, which are relatively unaffected by weathering, and 

just 4.6% of calcarenites. 

 

3.2.5.1.2.3 Geophysical data 

HVSR measurements were performed in the northernmost portion of the southern 

sector, in order to assess the sub-cropping depth of units V1 and V2flb in the Castello di 

Montalto and Abbadia di Monastero areas (i.e. section C – C’ in Fig. 3.5B). Results display 

how, in these areas, units V1 and V2flb are mainly composed of gravelly deposits  
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Figure 3.10: Compositional analysis of gravel from units V1 and V2flb (see text for methodology) showing 
two distinct populations. 

 

overlying the bedrock (Fig. 3.2A). Measurements performed on units V1 and V2flb 

deposits showed weak peaks of HVSR, which means relatively low contrast of acoustic 

impedance. 

 

3.2.5.1.2.4 Interpretation  

Channelized gravels and gravelly sands of unit V1 are interpreted as lateral 

channel bars (Bartholdy & Billi, 2002; Rice et al., 2009; Rice & Churchs, 2010) of relatively 

sinuous, 4-5 m-deep rivers, where clasts were transported over the bars as dunes or 

bedload sheets (Bridge, 2003). The coarser pavement flooring the channel probably 

represents a thalweg lag (Collinson, 1986), whereas the top wedge-shaped sands and 

muds represent accordingly abandonment fills (Bluck, 1980). Tabular sand and mud were 

accumulated as overbank deposits (Bridge, 2003) in response to major floods that 

induced channel over-spilling. Sandy beds probably represent crevasse splays (Ethridge et 
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al., 1981), and organic-rich muds represent fallout deposition in ephemeral, vegetated 

ponds (Bridge, 2003).  

Gravelly deposits of unit V2flb in the Poggiarello area were interpreted as 

belonging to a variety of fluvial bars; downstream-progradational, longitudinal bars are 

indicated by coarsening-upward packages of horizontally-stratified gravel (Nemec & 

Postma, 1993); lateral bars are instead represented by inclined beds dipping towards the 

channel axis (Lewin, 1976; Bridge, 1993). Subordinate transverse bars (Smith, 1971; Miall, 

1977) can be linked with downstream-migrating, cross-stratified deposits. The 

coexistence of these fluvial forms point out to a multi-channeled system, possibly 

braided, characterized by relatively shallow, 1-2 m-deep channels. The angular, cobble- to 

boulder-sized clasts occurring in the lowermost part of channelized bodies indicates the 

vicinity to source areas, and the limited routing capacity of a proximal, supply-dominated 

fluvial system. Pedogenized sand and mud are interpreted as overbank deposits 

accumulated in tractional-plus-fallout conditions during high flood-stages. Sand-grained, 

unit V2flb deposits in the nearby of Pian di Bari are interpreted as accumulated in 5 m-

deep channels floored by pebbly lags. Facies and palaeoflow indicates together their 

pertinence to lateral bars of poorly to moderately sinuous streams (Jackson, 1976; 

Nanson, 1980; Brierley, 1991a, 1991b; Bartholdy & Billi, 2002; Ghinassi, 2011). The top 

mud and sand deposits are interpreted as overbank beds accumulated in poorly drained 

floodbasins, and record accordingly waning flood-stages. 

Unit V2af deposits along Terre Rosse were interpreted as accumulated by 

progradational alluvial fans (Blair & McPherson, 1994a, 1994b), which were sourced from 

the north-eastern (hydrographic left) flank of the palaeovalley. Sands accumulated in 

intermediate to distal fan portions record a scarce flows confinement (Blair & McPherson, 
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1994a), and were most probably transported and reworked by tractional flows; even so, 

the subsequent pedogenic imprint masked most of their primary sedimentary signature. 

Their sedimentological features are similar to those of channelized unit V2flb gravels, 

suggesting that they were formed in a shallow multi-channeled system. In the proximity 

of the valley flanks, disorganized and inversely-graded deposits record mass-transport, 

buoyancy-dominated processes typical of plastic debris flows (Nemec & Steel, 1984). 

The abundance in unit V1 of clasts derived from Ligurian and Sub-Ligurian units 

suggests how, during the early phases of in-valley deposition, Tuscan units (i.e. Macigno 

Fm. sandstone) were not experiencing dismantling in the local drainage basin of the study 

area. The dramatic increase in sandstone clasts observed in unit V2flb indicates instead a 

progression in the un-roofing and denudation of lower tectonic units, with dismantling of 

Tuscan units, as attested by the dominance of fresh sandstone clasts along with angular 

sandstone blocks. In this later phase however, Ligurian rocks were still eroded, and 

provided an ongoing contribution to the processes of sediment sourcing and routing (Fig. 

3.2A) although activation of a localized source also occurred, as attested by the 

dominance of fresh sandstone clasts along with angular sandstone blocks. The further 

presence of calcareous clasts with abraded lithophaga borings in both units V1 and V2flb 

deposits also indicates undercutting and routing of the underlying Pliocene marine 

deposits. 

Once calibrated with field data, HVSR suggests that the peaks measured along the 

C - C’ transect (Fig. 3.5C) can be ascribed to an impedance contrast at the depth of about 

65 and 20 m, respectively. These depths are overall consistent with the thickness of units 

V1 and V2flb. 
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3.2.5.2 Structural data 

3.2.5.2.1 Pliocene-Pleistocene tectonic structures 

Pliocene-Pleistocene tectonic structures mainly developed in response to brittle 

deformation. Two main northeast- and northwest-trending faults systems control (and 

controlled) hydrothermal fluids circulation and CO2 discharge (Fig. 3.11). CO2 leakage 

mainly occurs along the trace of a northwest-trending fault (Ambra River Fault). A set of 

northeast-trending faults defines a shear zone, up to 1 km-wide, formed by anastomosed 

segments that locally dissect and displace the Ambra River Fault (Fig. 3.11).  

Bedrock is affected by meso-faults characterized by cm-thick core zones and 

damage zones up to 3 m-wide; meso-faults display well-developed sets of fractures, often 

with en-échelon geometry and concentrated near the slip surface (Fig. 3.12A). A number 

of kinematic indicators comprise: mechanical striation and subordinate calcite fibres (Fig. 

3.12B-C); arrays of extensional jogs; and T-fractures in damaged rock masses. Meso-faults 

affecting Quaternary deposits are defined by sharp surfaces, rarely striated (Fig. 3.12D). 

Their offset does not exceed few m and is characterized by a dominantly normal 

displacement; these are associated to minor drag folds, as well as to conjugated minor 

faults and fractures. Faults affecting gravel display m-thick shear zones characterized by 

cataclastic flow, which is indicated by striation, fracturing and fragmentation of pebbles 

that underwent mutual friction along the fault slip surface (Fig. 3.12E-H). Diffuse 

hydrothermal alteration is related to CO2 venting along the most permeable fault sectors, 

and is expressed by a deep argillification and/or decarbonation of the deposits (Fig. 

3.12I). In places, mm-thick iron hydroxide-rich patinae and diffuse encrustation developed 

around pebbles (Fig. 3.12J) indicating again hydrothermal flowing associated to the CO2 

leakage. 
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Figure 3.11: A) tectonic sketch-map of the study area and location of the structural stations; Stereonets 
(lower hemisphere, equal angle projection) illustrate the collected meso-fault dataset; B) Geological 
cross-sections through the Ambra River Fault. The trace is indicated in A. 

Although northeast- and northwest-trending faults are featured by overall similar 

architecture, they developed under different kinematic regimes: i) northeast-trending 

faults are characterised by a dominant left-lateral strike- to oblique-slip movements,  
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Figure 3.12: A) Meters wide fault zone affecting the bedrock (Macigno Fm) composed by discrete fracture 
sets and slip-surfaces. B) The kinematic indicators consist of mechanical striations supporting for a brittle 
deformation occurred at very shallow depth. C) Particular of a cataclasite lens on a slip surface affecting 
the Macigno Fm, with mechanical striation covered by calcite-sulphide mineralization. D) Fault with 
decimetre offset affecting unconsolidated sediments. E) Deformational features of gravels involved in a 
shear zone dominated by cataclastic flow. F-J) particulars of the deformed gravels: localised pressure-
induced cracks (F); mechanical striation on gravel surfaces (G-H); localised hydrothermal alteration and 
mineralization due to the CO2 and hydrothermal fluids circulation (I-J). 
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occasionally overlapped by normal slip; ii) the northwest-trending faults are instead 

characterised by dominant normal kinematics. A synthesis of the collected data is 

reported in Figure 3.11, and shows similarities with the tectonic frame described for the 

Upper Valdarno Basin by Brogi et al., (2013) (Fig. 3.1A and B). The most prominent 

tectonic lineament in the study area consists of the northwest-trending alignment of the 

Ambra River and Terre Rosse faults, which are detailed below. 

 

3.2.5.2.2 The Ambra River - Terre Rosse Faults 

The Ambra River Fault is exposed in the northern part of the study area. (Fig. 

3.11). CO2 leakage is economically exploited by a number of wells that penetrates the 

nearby of this fault for up to 150 m  (Fig. 3.11B). The Ambra River fault zone comprises a 

set of minor synthetic faults that gave rise to a significant volume of damaged rock. A 

large tract of this tectonic structure is capped by modern alluvium, and the main 

exposures occur along its northwest bedrock wall (Fig. 3.11A). The main slip surface dips 

northeastward and is characterized by oblique-slip to normal kinematics. In its northern 

part, the fault offset is estimated in about 40 m, on the basis of borehole data (Fig. 

3.11B), whereas an offset of about 60 – 70m can be estimated, through geophysical data, 

for its southeast side, where the Fault is interrupted and transferred by the northeast-

trending Rapale Fault (Fig. 3.11). This implies differentiated displacements along the 

whole fault tract, with the maximum value in its southeastern side, where the Ambra 

River fault intersects the Rapale Fault system.   

The Terre Rosse Fault dips southwestward and delimits, for at least 3km, the 

easternmost Pliocene sediments filling the Siena Basin from the bedrock composed of the 

Macigno Fm. The fault trace is buried by Quaternary deposits, therefore denying direct 
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observation and kinematic analyses. Its maximum offset can be estimated in several teens 

of meters. The Terre Rosse Fault is interrupted to the northwest by a southeast dipping 

fault segment belonging to the northwest trending Rapale Fault system, and therefore 

transferred toward west (Fig. 3.11). In the corner defined by the intersection of the two 

faults, the maximum offset is expected, as supported by a distributed tilting of the 

Pliocene sediments which result back-rotated about 5-10° toward the Terre Rosse Fault 

footwall. Kinematics analyses on its minor structures, consisting of synthetic minor faults 

developed in the footwall, support for a dominant normal kinematics (Fig 3.11).  

 

 

3.2.6 Discussion   

3.2.6.1 Tectono-depositional history of the valley 

Even if the processes of valley incision probably acted as a consequence of the regional, 

late Piacentian forced regression (Martini & Sagri 1993; Martini et al., 2001), the 

depositional history of the study area responded to a combination of tectonics processes, 

autogenic depositional forcing, and local base levels. With mechanisms applicable to the 

study area as well, Aldinucci et al. (2007) discussed how the deposition of unit V1 (Stage 1 

of Fig. 3.13) could be ascribed to an episode of valley down-filling (sensu Boyd et al., 

2006) related to the uplift of the surrounding Chianti Ridge, well- documented in the 

adjoining Upper Valdarno Basin (Bonini et al., 2013; Brogi et al., 2013; Fidolini et al., 

2013a), possibly enhanced by renewed humid climate (Ghinassi et al., 2004). These 

authors also interpreted the mud capping the first interval of unit V1 as accumulated in 

response to upstream gravel trapping, due to a tectonic-induced gradient decrease along 

the Ambra River Fault. After the deposition of unit V1, the activation of northwest- 



Tectonically-driven deposition within upland incised valleys 

 63 

 

Figure 3.13: Tectono-sedimentary evolution of the studied area illustrated in a four-step 3D sketch. Note 
the relationships between tectonic movements and drainage evolution with resulting sedimentation 
patterns. 
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trending faults (Stage 2 of Fig. 3.13) caused a sudden drainage reorganization: the Ambra 

River Fault caused subsidence in the northern sector and most probably induced an 

overall decrease in transport capability of the valley trunk systems; the respective 

response of the depositional system involved the accumulation of unit V2fla muds, with 

gravel deposition (unit V2af) restricted to tributary inlets along the valley flanks. At this 

time, fluvial incision occurred at the boundary between the northern and southern sector 

of the valley, where both the Macigno Fm. and Pliocene marine deposits were eroded and 

routed downstream, sourcing in turn the unit V2flb deposits. Relatively un-weathered 

sandstone clasts, angular boulders and carbonate clasts with abraded lithophaga occur 

within V2flb gravels, supporting this hypothesis.  

As the study area underwent uplift, the axis of fluvial incision within the valley 

progressively shifted towards the hydrographic left, a mechanism ascribable to the Ambra 

River Fault growth towards its south-eastern reaches. This process was possibly also 

favored by the enhanced erodibility of damaged bedrock along the northeast-trending 

shear zone of the Rapale Fault. In the southern sector instead, the Terre Rosse Fault 

activity caused deflection of the axial fluvial drainage toward southeast, and then 

triggered the development of alluvial fans along the left-hand valley flank. Even if 

dynamic, this morphological configuration was probably maintained stable by the 

persisting fault growth of the Ambra River and Terre Rosse structures (Stage 3 of Fig. 

3.13), at least until the progradational alluvial fans flanking the valley induced an 

autogenic shift of the fluvial system. The latter autogenic forcing was probably more 

prominent in the southern sector of the study area. Finally, the piracy of the Ambra River 

into the Upper Valdarno Basin (Bartolini & Pranzini, 1981), occurred during the early 
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Ionian (Albianelli et al., 1995; Fidolini et al., 2013a, 2013b), marked the establishment of 

the present-day drainage configuration (Stage 4 of Fig. 3.13). 

Summarizing, the palaeo-drainage of the study area appears as developed along a 

tectonically active zone where the slope of the incised valley was affected by differential 

tilting. Tilting appears to have had both a parallel and normal component to the valley 

axis, expression of the Terre Rosse and Ambra River Faults, respectively. Tilting further 

induced different styles of valley profile deformation, here defined as longitudinal and 

lateral, respectively (cf. nomenclature of Holbrook & Schumm (1999). Although these 

processes were most probably interacting, their effects on the valley infill dynamics are 

discussed separately. 

 

3.2.6.2 Valley fill aggradation: the role of longitudinal tilting  

Aggradational vs. degradational morphodynamics within incised valleys are 

controlled by the transport capacity of the fluvial trunk, which depends in turn on channel 

slope, sediment supply and runoff (Lane, 1955; Gibling et al., 2011). The interaction 

between tectonics (e.g. uplift of the source area), climate and drainage evolution (e.g. 

piracy) also contributes in varying the fluvial transport capability, particularly in upstream 

portion of alluvial valleys (Zaitlin et al., 1994; Blum & Tornqvist, 2000; Boyd et al., 2006; 

Blum et al., 2013). Although a climate influence on sedimentation cannot be completely 

ruled out, our results strongly support the hypothesis that the accumulation of unit V2 

was mostly a result of localized uplift and associated alteration in valley profile (Holbrook 

& Schumm, 1999; Schumm et al., 2000).  

Notably, the activation of the Ambra River Fault promoted coeval aggradation and 

degradation in adjacent valley segments. Ouchi (1985) and Holbrook & Schumm (1999) 
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recognized how upwarped incised valleys can be subdivided in three segments: i) a 

segment located upstream of the deformed area; ii) a central segment, corresponding to 

the deformed area; iii) and a segment located downstream of the deformed area. This 

model generally applies to study area, with the up- and downstream segments 

corresponding to the northern and southern sectors, respectively. The central segment is 

instead here represented by a narrow belt located along the boundary between the 

northern and southern study area. Modern examples such as the Rio Grande River 

crossing the Socorro magma body, New Mexico (Holbrook & Schumm, 1999), and 

laboratory experiments (Ouchi, 1985) show that aggradation occurs both upstream and 

downstream of the uplifted area, which is commonly affected by degradation.  

In the northern sector, the high-accommodation unit V2fla deposits well fit with 

this model (cf. Martinsen et al., 1999). Here, the aggradation potential was probably 

linked by the relative elevation of the trunk thalweg crossing the footwall block. As this 

elevation moved vertically, a dynamic equilibrium balanced the fault-controlled uplift rate 

and the erosion capacity of river system. This dynamic equilibrium acted de facto as a 

local base level for this segment of the valley (Blum & Tornqvist, 2000). When the fault 

uplift rate outpaced that of the footwall incision, a resulting base level rise increased the 

accommodation potential in the northern sector, resulting in the engulfment of isolated 

channel bodies within poorly drained floodplain mud. In similar settings, if uplift rate 

outpaces significantly that of river incision, damming can also occur (Doornkamp & 

Temple, 1966; Rasanen et al., 1987; Dumont, 1992, 1993; Marple & Talwani, 1993). In our 

case, the reduction of river transport capability associated to slope decrease caused the 

development of flanking alluvial fans (Zaitlin et al., 1994). Even so, the erosionally-based 

unit V2fla (line ERT 1 in Fig. 3.4) indicates that entrenchment predated aggradation, 
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possibly in response to an early slope steepening when approaching the subsiding zone 

(Ouchi, 1985; Holbrook & Schumm, 1999). The sediment produced after entrenchment 

was in turn trapped in the subsiding zone, following the natural evolution of the river 

gradient profile (Lane, 1955; Schumm, 1993). The steepened areas (Fig. 3.14) favored an 

upstream migration of streambed degradation (Ethridge, 1985; Einsele, 1992; 

Posamentier & Allen, 1999), which caused erosion of unit V1, as well as storing of 

alluvium along the subsiding valley portions (Fidolini et al., 2013b) (Fig. 3.14). The sum of 

these processes involved an upstream propagation of mud-dominated accumulation, 

which lead in turn to the individuation of a fining-upward, upstream-thinning succession 

overlying the basal erosional surface (Fig. 3.14). This sedimentary motif strikingly 

resembles the fluvial infill of sea level-controlled, inner incised valleys (sensu Boyd et al., 

2006), typically featured by a basal sub-aerial unconformity overlain by a fining-upward, 

upstream-thinning fill (Wright and Marriot, 1993; Boyd & Diessel, 1994; Shanley & 

McCabe, 1994; Boyd et al., 2006). Following this model, the deposition of unit V2fla can 

therefore be regarded as a valley backfilling (Zaitlin et al., 1994; Boyd et al., 2006), where 

an episode of base level rise originates an upstream-pinching wedge, and with a 

significant aggradational component favoured by sediment supply of lateral tributaries 

(Legarreta & Uliana, 1998). 

Following classical models, at the boundary between the up- and downstream 

sectors, the central, uplifting sector should experience prevailing degradation, recorded 

by erosional unconformities and thinning trends within the valley fill (Schwartz, 1982; 

Pivnik & Johnson, 1995; Greb & Chesnut, 1996). These features are not expressed in the 

study area, as the footwall uplift was associated to an eastward shifting of the fluvial 

system. This process enhanced the preservation of unit V1 on the uplifted block; also,  
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Figure 3.14: Along-valley cross-sections showing the impact of the Ambra Fault movements on the valley 
river equilibrium profile with resulting degradational vs aggradational patterns, sediments distribution 
and depositional trends. 
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since the fluvial system shifted over a resistant bedrock bank, its erosion capacity did not 

outpace the uplift rate induced by the fault slip, resulting in a bolstered base level rise in 

the northern sector (Fig. 3.14). 

In the southern sector, the aggradation of low-accommodation unit V2fla deposits 

(Martinsen et al., 1999), well fits with the general notion of fluvial deposition 

downstream of the upwarped area (Ouchi, 1985; Holbrook & Schumm, 1999). However, 

the erosional surface flooring unit V2 indicates that the eastward-shifting trunk system 

had in this phase a maximum bedload transport rate exceeding the sediment supply 

(Blum & Tornqvist, 2000; Paola, 2000). This condition probably reflects the loss of a 

substantial bedload fraction in the northern sector (Lane, 1955). Once entered the Siena 

Basin, the trunk system probably had a relatively high incision potential, facilitated in turn 

by the unconsolidated nature of the Pliocene marine sediments. The following phase of 

fluvial aggradation was eventually favored by the progressive dismantling of uplifted 

block, a process that restored the maximum bedload capability of the trunk system 

(Paola, 2000). At this time, a substantial coarse sediment input interested the area 

downstream of the upwarped zone (Fig. 3.14), favouring the configuration of a supply-

dominated braided configuration (cf. Ouchi, 1985). Storing of coarse sediment was 

probably limited in this sector of the valley, whereas finer deposition persisted in the 

downstream Pian di Bari area. As the footwall uplift rate of the Ambra River Fault 

decreased, the trunk system re-established its ideal equilibrium profile, favouring fining-

upward aggradation (unit V2flb) (Posamentier & Allen, 1999; Fidolini et al., 2013b). With a 

pattern similar to that already described for unit V2fla, the fining-upward, upstream-

thinning stratal stacking resembles that of incised valleys controlled by relative sea level 

(Boyd et al., 2006). However, we postulate that our result rather point out to processes of 
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downfilling (Schumm; 1993; Zaitlin et al., 1994), originated by an overwhelming sediment 

supply from upstream point sources (i.e. uplifted zone) that caused rising of the 

equilibrium profile above the valley floor (Blum & Tornqvist, 2000). 

 

3.2.6.3 Avulsion of the valley: the role of lateral tilting 

Lateral thalweg shifting towards down-tilted sides of the alluvial plain is a typical 

evidence of cross-valley tilting (Alexander & Leeder, 1987). This process has been 

commonly considered as active at the scale of the channel belt (Bridge & Leeder, 1979; 

Alexander & Leeder, 1987; Bridge & Mackey, 1993; Dumont & Hanagarth, 1993; Mack & 

James, 1993), although a marked channel belt mobility can lead in turn to valley axis 

relocation over time (Blum & Price, 1998; Blum & Aslan, 2006; Blum et al., 2013), 

especially if coupled with the control of inherited morphologies and contrasts in 

erodibility within the valley. In the study area, the earliest evidence of lateral shift would 

link the eastward deflection of unit V1 trunk drainage with the displacement associated 

to the Terre Rosse Fault (Fig. 3.15A). This process was followed by valley avulsion, 

controlled in turn: by the differential, eastwardly-increasing displacement of the Ambra 

River Fault, which forced the trunk system into eroding preferentially the hydrographic 

left the valley (Fig. 3.15B); by the enhanced subsidence generated by the Terre Rosse 

Fault (Fig. 3.15B). During the deposition of unit V2, the southern valley sector experienced 

a westward shift of its trunk system, probably assisted by the progradation of alluvial fans 

sourced from the Terre Rosse area (Fig. 3.15C). In a nutshell, this morphodynamic 

evolution highlights how valley avulsion can respond directly to tectonic tilting (Leeder & 

Gawthorpe, 1987), as well as to inherited morphologies and contrasts in erodibility. 
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The drainage evolution related to the activity of the Ambra River Fault 

substantially differs from the classical models of lateral tilting (Bridge & Leeder, 1979; 

Alexander & Leeder, 1987; Dumont & Hanagarth, 1993), which predict shifts in response 

to faulting with strike parallel to that of the channel belt axis. Although the Ambra River 

Fault trends normal to the valley axis, its along-strike differential displacement favors an 

eastward cross-valley tilting (Fig. 3.15D). Once the trunk system adapted to the cross-

valley gradient, the activation of alluvial fans in the La Selva area provided a further 

impulse towards the hydrographic left flank (Blair, 1987). Cross-valley tilting associated to 

the Ambra River Fault activity is also consistent with “combing” of the channel bodies in 

the ERT 1 line (sensu Todd & Went, 1991) (Fig. 3.4), which progressively migrated in the 

down-tilt direction without producing an immediate avulsion (Peakall, 1995).  

 

Figure 3.15: Plan-view evolution of drainage patterns in relation to faults activity. 

 

The Terre Rosse Fault had instead a strike parallel to that of the channel belt axis, 

and the mechanisms of induced channel belt shifting followed those previously described 

by Bridge & Leeder (1979), Alexander & Leeder (1987) and Dumont & Hanagarth (1993). 

The occurrence of unit V2flb fluvial deposit in the Terre Rosse Fault zone indicates that 
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the rate of subsidence was sufficient to diverge the trunk system towards the fault 

escarpment (Leeder & Gawthorpe, 1987; Peakall, 1995), even if not high enough to 

preserve unit V1 deposits from the erosion acted by the unit V2flb trunk system. Although 

mechanisms of trunk shift induced by alluvial fan growth have been previously described 

(Blair, 1987), our case study also underlines the pivotal role of flank faulting in controlling 

the ratio between subsidence rate and sediment supply. High subsidence rate: sediment 

supply ratios will force the trunk system to diverge towards the fault escarpment; 

Rejuvenated topography will however increase the sediment supply, inducing a 

subsequent progradation of fault-sourced alluvial fans and related shift of the trunk 

system towards the opposite valley flank (Fig. 3.15D). In both cases, the rate of lateral 

trunk shifting will be however also controlled by the erodibility of the valley flanks, 

especially in strongly incised and confined systems. In alluvial valleys superimposed onto 

unconsolidated sediments, lateral trunk shifting will be capable of altering significantly 

the valley aspect over short times, allowing sudden widening yet without a significant 

deepening (Gibling, 2006). 

 

3.2.7 Conclusions 

The present study illustrated a comprehensive model of tectono-sedimentary 

evolution for a nonmarine incised palaeo-valley draining the northeastern margin of the 

Siena Basin (Northern Apennines, Italy). The major drivers of facies distribution within the 

study area consisted of a set of extensional/transtensional, NW- and NE- trending faults 

active during the Gelasian – Calabrian time span. Syn-sedimentary faulting appears to 

have controlled most of the alluvial depositional dynamics in the upland sector of the 
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incised valley, involving coeval tilting of the fluvial drainage along both its major (valley-

longitudinal) and minor (valley-parallel) axis. 

Longitudinal tilting was forced by a major normal lineament that had striking 

transverse to the valley axis and upstream-dip. This peculiar geometry involved fluvial 

aggradation both upstream and downstream of a central uplifted area, which 

experienced instead landscape degradation. The onset of faulting within the valley 

resulted in the individuation of two separate knickpoints (upstream and downstream of 

the faulted zone), the upstream one responding to local increase of valley slope, the 

downstream one responding to increased stream power due to upstream bedload 

trapping. Fluvial aggradation produced fining-upward successions both upstream and 

downstream of the upwarped, faulted area. In the upstream zone, a progressive valley 

backfilling generated an architecture similar to that of sea-level-controlled, coastal incised 

valleys. Downstream of the faulted area, aggradation occurred as a downfilling related to 

an overwhelming sediment supply, which caused the fluvial equilibrium profile to rise 

above the valley floor.  

Lateral tilting affected the fluvial morphodynamics in distinct ways: the activity of 

a normal fault striking parallel to the valley axis was associated with a down-dip shift of 

the trunk system; lateral increase in displacement along faults striking transverse to the 

valley axis also involved a shift of the trunk system towards the faulted valley flank. The 

latter process was counter-balanced by the activation of fault-sourced, supply-dominated 

alluvial fans that generated positive topography and shifted back the trunk system 

towards the valley axis. 

The present study sheds light on the effects of tectonics as an active control fluvial 

aggradational vs. degradational dynamics, with a particular focus on upstream, sea-level-
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independent reaches. It is finally demonstrated how differential, complex faulting can 

deeply influence the facies distribution of alluvial valleys, and is capable of promoting 

significant trunk system shifts, once its effects are coupled with those of inherited 

morphologies and contrasts in bedrock erodibility. 
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CHAPTER 4 

TECTONICALLY-DRIVEN DEPOSITION AND LANDSCAPE EVOLUTION OF 

UPLAND INCISED VALLEYS:  NUMERICAL MODELLING OF THE PLIOCENE-

PLEISTOCENE AMBRA VALLEY (TUSCANY, ITALY) 

 

4.1 OVERVIEW 

This chapter is a journal paper in preparation (to be submitted to Earth Surface 

Processes and Landforms). In this chapter, numerical modelling allowed to assess and 

quantify the tectonic control on sedimentation of the Ambra palaeovalley  fill succession, 

through a numerical reconstruction. Furthermore the effects of the interaction between 

fluvial discharge and fault uplift are discussed. 

 

4.2 PAPER 

VALERIA BIANCHI1, TRISTAN SALLES2, MASSIMILIANO GHINASSI1, PAOLO BILLI3, EDOARDO 

DALLANAVE4, GUILLAUME DUCLAUX2 

1Dept. of Geoscience, Padova, Italy 

2CSIRO Earth Science & Resource Engineering, North Ryde, Sydney, Australia 

3Dept. of Physics and Earth Sciences, Ferrara, Italy 

4Department of Earth and Environmental Science, Munich, Germany 

 

4.2.1 Abstract 

Fluvial sedimentation is predominant within upstream reaches of incised valleys, 

where it is controlled by interaction between climate and tectonics. Tectonic control on 
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fluvial sedimentation was the main theme in modelling context for several years, focusing 

on variation of architectures at the mesoscale. Within tectonically driven uplift context, 

fluvial response induces rapid and dangerous phenomena such as flooding and avulsion. 

This study focuses on a Plio-Pleistocene fluvial valley fill in the northeastern margin of 

Siena Basin (Northern Apennines, Italy), which sedimentation was controlled by the 

interaction between two opposite-dipping normal faults orthogonal to the valley axis 

generating a local uplift relative to the fluvial initial base level. The work aims to assess 

and quantify the tectonic control on fluvial aggradation, through a numerical 

reconstruction of the valley evolution. Calibration was performed integrating previous 

field study with palaeo-hydraulic and palaeo-magnetic data. In a broader context, a set of 

generic models is produced to quantify and generalise the interplay existing between 

fluvial discharge and uplift rate. The numerical reconstruction highlighted the pre-

tectonic system steady state and differential syn-tectonic aggradation, then a system 

relaxation for the post-tectonic phase. The aggradation is manifested by fine-sediment 

backfilling aggradation upstream and coarse-sediment downfilling aggradation 

downstream of the uplifted area. The two aggradations formed diachronous deposits, 

firstly upstream and secondly downstream, as a rapid consequence to uplift movement. 

Aggradation phases are spaced out by the time required for the system avulsion and the 

uplift degradation. Generic models emphasised the speed and intensity of fluvial 

response to uplift movement, highlighting valley sedimentation and deposit 

heterogeneity sensibility to several types of uplift movements and fluvial discharge 

settings.  

 

Keywords: alluvial-valley fill; extensional tectonics; numerical modelling. 
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4.2.2 Introduction 

Understanding the evolution of the Earth’s surface has been the challenging objective 

of geomorphologists and sedimentologists for over a century (Gilbert, 1895; Davis, 1899). 

The development of methods such as geochronological techniques, remote sensing and 

geographic information systems (GIS) have made it possible to gather quantitative data 

and better constrain the evolution of the Earth’s surface in a variety of environments. 

Modelling surface processes has allowed the geoscience community to test and develop 

new conceptual models and to quantify the drivers and feedback mechanisms 

responsible for shaping the Earth’s surface (e.g., England & Molnar, 1990; Hasbargen & 

Paola, 2000; Bonnet & Crave, 2003; Paola et al., 2009). Over the past three decades, new 

numerical modelling methods have been developed to address medium- to large- scale 

landscape evolution and stratigraphy reconstruction over spatial dimensions of a 

catchment to an orogen and temporal dimensions of 104 to 106 years (e.g., Koons, 1989; 

1994; Kooi & Beaumont, 1994, 1996; Dietrich et al., 2003; Braun & van der Beek, 2004; 

Willgoose, 2005; Paola et al., 2009; Tucker & Hancock, 2010). 

The tectonic control on fluvial sedimentation was the main theme in the modelling 

context for several years since the revealing papers involving the LAB models, so-called by 

Bryant et al. (1995) including Leeder’s paper (1978) and coworkers (e.g. Alexander & 

Leeder, 1987; Allen, 1978; Bridge & Leeder, 1979; Mackey & Bridge, 1995). These studies 

focused on the influence of external and internal forcing on alluvial architecture, with 

emphasis on channel-belt deposits (mesoscale), their connectivity and their implications 

for petroleum and aquifer research (Leeder, 1993; Dalrymple, 2006; Bersezio et al., 2004). 

Numerical modelling in these types of research presents a unique and physically valid 

approach to quantify the interplay between mesoscale architectures and selected forcing 
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factors involved during sedimentation (Hickson et al., 2005). 

 For incised-valley systems, tectonic and climate are considered to be the main 

controls of fluvial sedimentation in upstream reaches (Shanley & McCabe, 1991; Currie, 

1997; Blum & Tornqvist, 2000; Holbrook, 2001), whereas relative sea-level fluctuations 

are mainly controlling the downstream evolution of valley fill (Zaitlin et al., 1994; Boyd et 

al., 2006). Recent studies from Blum et al. (2013) show that water, sediment supply, as 

well as the distribution of vertical displacements along incised-valley, are the primary 

upstream boundary conditions for any fluvial system. 

Tectonic control, in the majority of fluvial valley studies refers to the effects of 

subsidence variations on fluvial aggradation (Leeder, 1978; Hickson et al., 2005), and only 

few of them take into account the effects of uplift movements (Burnett & Schumm, 1983; 

Ouchi, 1985). However, uplift rate in fluvial setting leads to more rapid and concentrated 

facies variations than those produced by subsidence (Schumm, 1986; Guiseppe & Heller, 

1998). Rapid uplift movements (>10 mm/yr) can produce sudden valley flooding (New 

Madrid earthquake, Russ, 1982; Schumm, 1986; Gibling et al., 2006; Hengesh & Lettis, 

2002) and avulsions (Indus Valley, Dales, 1966; Hole, 2011). The topographic steady state 

in a tectonically active setting could be referred as the achievement of the balance 

between the long-term erosion rate and the rock uplift rate; consequently, the 

topography is statistically invariant over the long term (Whipple, 2004). Tectonic forcing 

disturbs the equilibrium profile of the river and increases stratal heterogeneities, 

variation in grain-size distribution, avulsion and incision (Ouchi 1985; Holbrook & 

Schumm 1999; Blum & Tornqvist, 2000; Hickson et al., 2005; Blum et al., 2013). 

The Plio-Pleistocene fluvial infill of the Ambra Valley  (Northern Apennines, Italy) is 

an outstanding example of sedimentation in an upstream valley reaches, where 
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aggradation is primary driven by an upstream-dipping, normal fault trending transversally 

to valley axis. Recent studies (Aldinucci et al., 2007; Bianchi et al., 2013; Bianchi et al., 

submitted) provided a detailed field-based dataset necessary to produce meaningful 

numerical results (Leeder, 1978, Mackey & Bridge, 1995; Whipple, 2004; Hickson et al., 

2005).  

This chapter presents the physical equations and the calibration techniques used 

to develop a numerical model for the valley-fill accumulation. Results of this work will be 

compared with those stemmed out from field investigations. Finally generic models are 

developed to study the impact of fluvial discharge and uplift rate on recorded fluvial 

architectures. Using these numerical experiments relationships between fluvial valleys 

and uplift forcing are discussed. 

 

4.2.3 Geological setting  

The study valley-fill succession is located along the northern margin of the Siena 

Basin, one of the Neogene-Quaternary depressions (Fig. 4.1A) developed on the Northern 

Apennines (Italy) as superficial response to a lithospheric scale extensional process 

(Carmignani et al., 1994, 1995, 2001; Barchi, 2010; Brogi, 2008). These basins, up to 200 

km long and up to 25 km wide, are filled with continental to marine deposits (Martini & 

Sagri, 1993). The basins are NW- and NNW-trending and segmented into minor 

depressions by NNW-SSE-oriented tectonic lineaments (Liotta, 1991; Martini & Sagri, 

1993; Bonini & Sani, 2002; Pascucci et al., 2007), which control organization of the 

present-day fluvial drainage (Bartolini & Pranzini, 1981).  

The study area (Fig. 4.1B) is located where the northern margin of the Siena Basin 

crosses one of these lineaments (i.e. Arbia Val - Marecchia line; Liotta, 1991). The margin  
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Figure 4.1: A) Simplified geological sketch of the Northern Apennines showing the Neogene-Quaternary 
basins bounded by bedrock ridges and main tectonic features; B) detailed geological map of the studied 
area with the main localities mentioned in the text. 
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of the Siena Basin is made of Cretaceous to Oligocene sedimentary rocks (Abbate & Sagri, 

1982) mainly consisting of sandstone with subordinate marlstone and shale. 

Sedimentation in the Siena Basin started in the late Miocene in a fluvio-lacustrine setting, 

and followed into marine realm from the early Zanclean to late Piacentian (Bambini et al., 

2010; Martini et al., 2011, 2013; Arragoni et al., 2012), when a regional tectonic doming 

caused a widespread forced regression (Martini et al., 2001). The studied palaeovalley 

was cut as a consequence of this regression both onto the rocky margin (Chianti Ridge; 

Fig. 4.1A) and marine sand and mud (Fig. 4.1B), and was successively filled with fluvial 

deposits (Aldinucci et al., 2007; Bianchi et al., submitted) sourced from North (i.e. Chianti 

Ridge). Drainage reorganization caused the valley to be abandoned and dissected by 

minor watercourses during the latest Calabrian/early Ionian (Bartolini & Pranzini, 1981; 

Fidolini et al., 2013a, 2013b).  

 

4.2.4 Depositional history  

Regional evidence demonstrates that valley filling occurred beyond the influence 

of relative sea-level (Aldinucci et al., 2007). Specifically, the upper part of this succession 

stemmed out from the interaction between the southward-draining fluvial system and 

two normal faults, named here Ambra River and Terre Rosse fault. The Ambra River fault 

(Minissale, 2004; Baldi et al., 2006) cuts the pre-Neogene bedrock, dips toward NE (i.e. 

transverse to the valley axis) whereas the Terre Rosse fault dips toward SW (i.e parallel to 

the valley axis) and displaces Pliocene marine deposits (Bianchi et al., 2013). 

Bianchi et al. (2013) and Bianchi et al. (submitted) divided the valley-fill succession 

into two main sedimentary units (V1 and V2) and summarized their tectono-sedimentary 

evolution as follow (Fig. 4.2A): 
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Figure 4.2: A) Tectono-sedimentary evolution of the studied area illustrated in a three-step sketch with 
geological cross-sections (A-A’, B-B’). B) Sedimentary log showing depositional features of unit V1, with a 
detail of the first FU interval. C) Sedimentary log showing depositional features of unit V2fla. D) 
Sedimentary log showing depositional features of unit V2flb; note the FU trend. 

 
1) Tectonic uplift of the Chianti ridge provided a pulse of sediment which caused 

accumulation of about 60-70 m of gravelly sand deposits within the whole valley (V1 unit; 

Fig. 4.2B). 
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2) Activation of the Ambra River Fault triggered subsidence upstream of the fault 

zone, with an overall decrease of fluvial transport capability and consequent 

accumulation of mud-rich fluvial deposits (V2fla; Fig. 4.2C) and coeval alluvial-fan gravels 

(V2af) at the entrance of the main tributaries into the valleys. In the uplifted area, fluvial 

incision progressively shifted toward the left-hand flank of the valley, in response to the 

SE increase in displacement of the Ambra River fault. Downstream of the uplifted zone, 

the activation of the Terre Rosse Fault caused an eastward shift of the fluvial system, 

which started to accumulate gravel and sand (V2flb) sourced from the uplifted area over 

the marine Pliocene succession (Fig. 4.2D).  

3) The piracy of the Ambra River toward North marked the establishment of the 

present-day drainage configuration. 

The present study focuses on the tectono-sedimentary dynamics stemming out 

from the interaction between the fluvial system and the Ambra River fault (Stage 2 of Fig. 

4.2A).  

 

4.2.5 Simulated processes & governing equations 

Until recently, geomorphic and stratigraphic codes were generally separated. 

Increasing demand for solving geomorphic changes and track sedimentary record 

simultaneously stemmed out to the generation of new codes (e.g. CHILD: Gasparini et al.,  

(2004), or ROMS: Warner et al., (2008)). LECODE (Salles & Duclaux, submitted) is one of 

these codes. It performs 3D parallel geomorphic and stratigraphic modelling, able to 

replicate surface processes and their influences on the sedimentary system through time. 

This modelling framework addresses large-scale landscape evolution and stratigraphic 

reconstruction equivalent to valley or basin scale through geological time (Salles & 
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Duclaux, submitted). The adopted modelling scale is suitable for the scientific community 

because it encompasses the results obtained from different geological disciplines, such as 

sedimentology, geomorphology, stratigraphy, hydrology, geodynamics and 

palaeoclimatology (Alexander et al., 1994; Bishop, 2007; Jerolmack, 2011; Salles & 

Duclaux, submitted). The geomorphic and stratigraphic modelling framework used in this 

work, is based on a Lagrangian particle-in-cell finite difference scheme, already developed 

in other codes (Tetzlaff & Harbaugh, 1989; Griffiths et al., 2001). The method has the 

advantage of allowing the flow to follow the topography in a natural way and it also 

offers an alternative to purely diffusive approach often used in stratigraphic models 

(Heimsath et al., 2005). LECODE modelling code is able to reproduce several sedimentary 

processes that shape the surface in an innovative way. It has been implemented through: 

i) a parallel approach, increasing the modelling power and then accounting better the 

surface flow; ii) an unstructured mesh, which consists of triangulated irregular networks 

for discretise the surface with variable resolution, enhancing the possibility of a 

refinement by means of a dynamic rediscretisation (Salles & Duclaux, submitted). 

LECODE solves the flow evolution using the “particle-in-cell” approach. It uses 

fluid elements (flow walkers) as passive tracers particles, which describe flow evolution 

through time, and with their acceleration or deceleration these flow walkers are able to 

erode or deposit (Harlow, 1964; Hockney & Eastwood, 1981). For every flow walker it is 

possible to obtain two equation sets from Newton’s law of motion for incompressible 

fluid: i) The Navier-Stokes momentum equation and ii) the law of conservation mass 

(Lane & Richards, 1998). Assuming the fluid as incompressible, homogeneous and at 

constant temperature, in two dimension the continuity or mass conservation equation 

can be expressed as: 



Tectonically-driven deposition within upland incised valleys 

 
 

85 

  

  
     (  )     

where A is the flow area and v is the horizontal flow velocity vector. 

And the simplified depth-averaged shallow water momentum equation can be simplified 

as: 

  

  
        

  
 
      

    

 
 

The Lagrangian derivative of horizontal flow velocity vector with respect time is function 

of H water surface elevation, p the fluid density, c1 the bottom friction coefficient, c2 the 

lateral friction coefficient and gR the specific gravity of the flow. 

The bottom friction is expressed using Manning equation (Tetzlaff & Harbaugh, 

1989; Griffiths et al., 2001). 

     
  

 
 

 

 

where n is the Manning roughness coefficient. The values of n are determined empirically 

and are available for open channel flow (Arcement & Schneider, 1984; McCuen, 1998). 

In addition the transport is simulated as a non-uniform sediment mixture and then 

divided into several grain-size classes (Zhang, 1989; Wu et al., 2000). Wu (2007) solved a 

simplified sediment transport for each grain-size class k in a Lagrangian context: 

   
  

   
     
 

 (     
 ) 

where ck is the depth-averaged concentration of sediment k, c*
k is the equilibrium 

sediment concentration that involve both suspended and bed load sediments and βt 

is the adaptation coefficient, proposed by Wu (2007). 

In LECODE, sediment diffusion assumes that a particle moves downslope until it 

reaches its angle of static friction (θ), at a rate proportional to the tangent of the slope 
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angle. Such an assumption is simplistic because natural agents such as air and water 

actually move sediments at rates that are not determined solely by slope (Heimsath et al., 

2005; Paola et al., 2009). In LECODE the slope diffusion algorithm is used associate with 

previously described sediment transport processes, becoming a secondary sediment 

transport mechanism. 

 

4.2.6 Parameters calibration 

Parameters associated with sediment size, hydrology and time-scaling are 

required to constrain any simulation to the case of study. The following subsections 

present how palaeo-hydraulic and time-scale parameters required to initialize LECODE 

simulations have been derived from previous field data studies.  

 

4.2.6.1 Palaeo-hydrology 

Palaeohydrological investigations were focused on gravelly deposits of unit V1 

exposed in the Arcidosso area, where a specific cross-section (Fig. 4.3) allowed to 

measure grain size distribution of bed material and the hydraulic geometry (e.g. bankfull 

area, wetted perimeter, maximum and mean depths). These gravels were accumulated 

(Bianchi et al., submitted) in lateral bars within single, relatively-sinuous channels 

(“wandering” sensu Rice et al., 2009 or  “pseudo-meandering” sensu Bartholdy & Billi, 

2002).  

Grain size distribution of bed material was measured in channel lag deposits 

stretching a tape ruler across the outcrop cliff and collecting 100 clasts tangent to the 

ruler dent every 50 cm. Channel lag deposits was selected since they are the most  
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Figure 4.3: Panoramic view and relative line-drawing of the last FU interval belonging to unit V1. The 
sedimentary parameters to calculate the palaeohydraulic section are reported. 

 

effective in determining the boundary flow resistance in the equations to calculate the 

hydraulic parameters. Grain size of bed material is shown in Table 4.1 as D50, D84 and D90. 

Thickness of large scale-inclined bedsets shows that the studied palaeochannel was about 

4.5 m deep (Fig. 4.3 and Table 4.1). Channel-fill deposits are not entirely exposed but 

their lateral extent shows that the channel was at least a few tens of meters wide. The 

width of a 4.5 m deep single channel forming gravelly lateral bars can be estimated at 

about 70 m (Wb in Table 4.1) according to Leeder (1978), and its hydraulic section at 

about 200 m2 (A in Table 4.1) following (McGowen & Gardiner, 1970). 
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Mean flow velocity (v) was calculated using the Chezy uniform flow equation  

v = C (RS)0.5                                                            [1] 

where R is the hydraulic radius, S the streambed gradient and C the roughness coefficient. 

C = (8g)0.5/f 0.5                                [2] 

in which g is gravity and 1/f 0.5 is the Darcy-Weisbach roughness coefficient. 

To calculate 1/f 0.5, the following equations were used: 

     1/f 0.5 = 1 + 2*log (h/D84) (Leopold & Wolman, 1957)  [3] 

where h is mean depth and D84 is the grain size for which 84% of the distribution is finer; 

     1/f 0.5 = 1.16 + 2*log (R/D84) (Limerinos, 1970)   [4] 

    1/f 0.5 = 0.82*log (4.35*R/D84) (Knighton, 1996)   [5] 

These equations were selected since they were developed for gravel-bed streams with 

grain size similar to those of the studied cross-section. 

Since tectonic tilting affected the studied deposits the streambed gradient that 

could be eventually inferred from field exposures is considered not to be representative 

of the actual one. 

In order to assess the streambed gradient of the studied palaeochannel, the 

following equations were used: 

S = 0.002·Wb
-0.06 H-0.91 (Williams, 1984)   [6] 

in which Wb is bankfull width and H is maximum depth 

S = 0.0173 *(H / D84) 0.785 (Dingman & Sharma, 1997)                [7] 

      S = Jf / 2.58 0.862 (Billi et al., 2014)    [8] 
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where Jf is the Jamming factor of the clasts in the considered section (table 1) , which is 

function of channel width and grain-size (Jf = D90 / Wb; D90) 

Eqs [6], [7] and [8] provided streambed gradients of 0.0004, 0.0007529 and 

0.0006436, respectively (Table 4.1). Combining C and v values, we obtained the v values 

reported in Table 1. For each v values, bankfull discharge Qb was calculated  

Qb = v / A. 

The bankfull discharges calculated with different criteria are very close with an 

average value of 230 m3s-1 (Table 4.1). This value is considerably similar to the discharge 

of the modern Arno River, which is located at about 10 km North of the study area and 

represents the main watercourse in the region since Piacentian (Bartolini & Pranzini, 

1981). 

 

4.2.6.2 Palaeomagnetism 

In order to provide a time-constrain for the valley-fill succession we have 

integrated regional geological evidence with palaeomagnetic analyses, which were 

carried out on 56 oriented samples collected for unit V1 and V2 the Arcidosso (30) and 

Pian di Bari (26) area respectively (Fig. 4.1B and 4.4A). All the oriented specimens were 

stepwise thermally demagnetized up to a temperature of 575 °C, and the natural 

remanent magnetization (NRM) of the specimens was measured after each 

demagnetization step. A set of representative specimens from the rock-cutting residuals 

was used to investigate the magnetic properties of the sediments by mean 

thermomagnetic curves, which revealed that a mixture of goethite and maghemite 

dominates the magnetic particles of the sediments. 
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    Arcidosso 

Field data H (m) 4.5 

      

Leeder (1977) Wb (m) 68.9 

Section (McGowen & Gardiner, 1970) A (m
2
) 206.8 

      

Field data D50 (mm) 0.0363 

  D84 (mm) 0.0830 

  D90 (mm) 0.1004 

      

Billi et al. (2014) Jf 0.0015 

Billi et al. (2014) S 0.0006436 

Williams (1984) S 0.0004 

Dingman & Sharma (1997) S 0.0007529 

Knighton C 15.739621 

Limerinos C 37.353591 

Leopold & Wolman C 35.936951 

Knighton + Billi V (m/s) 0.669 

Knighton + Williams V (m/s) 0.524 

Knighton + Dingman & Sharma V (m/s) 0.724 

Limerinos + Billi V (m/s) 1.588 

Limerinos + Williams V (m/s) 1.244 

Limerinos + Dingman & Sharma V (m/s) 1.718 

Leopold & Wolman + Billi V (m/s) 1.528 

Leopold & Wolman + William V (m/s) 1.197 

Leopold & Wolman + Dingman & Sharma V (m/s) 1.653 

Knighton + Billi Qb (m
3
/s) 138.4 

Knighton + Williams Qb (m
3
/s) 108.4 

Knighton + Dingman & Sharma Qb (m
3
/s) 149.7 

Limerinos + Billi Qb (m
3
/s) 328.5 

Limerinos + Williams Qb (m
3
/s) 190.8 

Limerinos + Dingman & Sharma Qb (m
3
/s) 263.6 

Leopold & Wolman + Billi Qb (m
3
/s) 316.0 

Leopold & Wolman + Williams Qb (m
3
/s) 247.5 

Leopold & Wolman + Dingman & Sharma Qb (m
3
/s) 341.8 

Qb total average Qb (m
3
/s)  231.6 

Qb total average without Knighton Qb (m
3
/s) 281.4 

 

Table 4.1: Parameters involved in the calculation of bankfull discharge. 

 

Intensity of the NRM varies between 5.5x10-5 and 9.6x10-4 A/m, with an average 

value of 4.3x10-4 A/m. Scattered magnetic component directions are observed between 

room temperature and generally 150–250 °C. Characteristic magnetic component (ChRM) 

directions linearly trending to the origin of the demagnetization axes were isolate  
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Figure 4.4: A) Schematic geological cross-section showing sites of palaeomagnetic sampling B) From left 
to right declination, inclination and virtual geomagnetic pole (VGP) latitude associated to each ChRM 
direction, plotted vs. the stratigraphic position of the samples. The relative latitude of each VGP with 
respect the paleomagnetic (North) pole was used to interpret the magnetic polarity: black (white) bar 
indicate normal (reverse) polarity. C) Representative sedimentary log with positioning of palaeomagnetic 
samples in the valley-fill succession. D) Palaeo-magnetic constraints on valley-fill deposition. 

 
generally up to 450–550°C in 16 oriented specimens at Arcidosso and on 9 at Pian di Bari. 

At Arcidosso these directions are organized in two modes pointing Nord-and-down and 

South-and-up, respectively. In 2 specimens the thermal demagnetization patterns are 

compatible with South-pointing ChRM directions, however tracking along a great circle 

path. We combine these great circles with the S-and-upward pointing stable endpoint 

directions applying the algorithm proposed by McFadden & McElhinny (1988). After these 

analyses we obtained 18 ChRM directions suitable for magnetic polarity stratigraphy, 10 

pointing North-and-down and 8 South-and-up. The two modes deviate from antipodality 

by 15.0°, passing the reversal test using the procedure suggested by Watson (1983; V0= 

5.4, Vcritical= 6.5, Fig. 4.4B; see also Tauxe, 2010 for details on the method), with a class ‘C’ 
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following the classification proposed by McFadden & McElhinny (1990). At Pian di Bari all 

the ChRM directions point North-and-down. We have calculated the position of the 

virtual geomagnetic pole (VGP) for each ChRM direction, and we have used the latitude of 

each VGP relative to the mean palaeomagnetic (north) pole for interpreting magnetic 

polarity stratigraphy (Kent et al., 1995; Lowrie & Alvarez, 1977). The VGP relative 

latitudes approaching +90° or -90° are interpreted as recording normal or reverse 

polarity, respectively (Fig. 4.4B). At Pian di Bari we have calculated a total of 3 VGPs 

averaging the samples ChRM directions from the same stratigraphic level. The Arcidosso 

section is characterized by reverse polarity from the base up to 26.3 m, and by normal 

polarity upsection, whereas the whole Pian di Bari section is characterized by normal 

polarity (Fig. 4.4B and C). 

The termination of marine sedimentation in the Siena Basin (i.e. latest Piacentian; 

Bambini et al., 2010; Martini et al., 2011, 2013; Arragoni et al., 2012) and the valley 

abandonment due to a piracy of the Ambra river  (i.e. latest Calabrian; Bartolini & 

Pranzini, 1981; Fidolini et al., 2013a, 2013b) allow to frame accumulation of units V1 and 

V2 within the Gelasian to Calabrian time span (Fig. 4.4D). Two distinct scenarios stem out 

therefore from palaeomagnetic analyses.  In the first case (Fig. 4.4D), most of the study 

succession accumulated during the subchron Jaramillo, with an average sedimentation 

rate close to 1.1 mm/yr. In the second case, it was mainly deposited with an average 

sedimentation rate of about 0.5 mm/yr during subchron Olduvai (Fig. 4.4D). The 

sedimentation rate for the first scenario seems to be unrealistic considering the scarce 

elevation and uplift rate of the of the Chianti ridge during the Pliocene – Pleistocene time 

(Thomson et al., 2010). Considering the duration of the Olduvai subchron, a time of 

deposition of 300 kyr will be therefore used for numerical models. 
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4.2.7 The experiment 1 – Ambra Valley simulation 

The initial setting of Ambra Valley numerical simulation requires the definition of 

pre-Gelasian buried geological layers sedimentary composition and thicknesses, the 

reconstruction of palaeo-topography, and the assumption that tectonic was the main 

forcing on sedimentation, as attested by field evidence (Bianchi et al., 2013; Bianchi et al., 

submitted).  

 

4.2.7.1 Initial geological layers 

The geological layers were characterised by a volume, represented by the 

sedimentary layer defining the substratum geology, and the surface defined by the 

topography (Fig. 4.5). 

The topography reconstruction was obtained by a geomorphic and geological 

interpretation of the early Gelasian palaeo-topography consistent with field data 

presented in previous chapters. To defined the palaeo topography, we used a Digital 

Elevation Model (DEM) of the modern topography (www.regionetoscana.com). Then this 

modern topography was modified in GRASS software (GIS open-source software Neteler 

& Mitasova, 2008) using several filters. These filters were used to create (1) a spatial 

tilting of the whole region, (2) an uplift flattening in correspondence to Castello di 

Montalto (see Bianchi et al., 2013) and a localized digging within the whole valley. The 

DEM was tilted with a 300 m rotation toward south, necessary to contrast the modern 

slope and to simulate the Gelasian drainage slope, based on calculated palaeo-

hydrological values (S = 0.06%). The uplifted southern portion was flattened to guarantee 

a continuum with the altitude of the northern portion and to provide a uniform valley  

http://www.regionetoscana.com/
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Figure 4.5: Illustration of initial layers composed by substratum geology and topography. The substratum 
geology is represented by a bulk made of deposits with two different hardnesses. The palaeo-topography 
is represented by a modified modern DEM (see the text for details). 

 

floor, consistent with the calculated slope. The digging was performed by removing 100 m 

of valley deposits, through a localized subsidence within the valley. 

The substratum geology was simulated using two initial underlying sedimentary layers 

with specific hardness and grain size distribution (Fig. 4.5), based on the valley lithological 

features documented in the geological map of the area (Bianchi et al., 2013). Two types 

of substratum were considered: (1) one representing the sandstone of Macigno Fm., 

simulated as hard rock (h = 2, d = 0.25 mm), and (2) the second corresponding to the 

Pliocene marine deposits belonging to the Siena Basin infill, simulated as unconsolidated 

sand and clay (h = 1, d = 0.20, 0.01 mm). 
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4.2.7.2 River parameterisation 

As explained above, in LECODE, river input is represented by flow walkers holding 

river information such as river discharge, velocity, flow height, sediment concentration 

and sediment percentages.  

According to palaeo-hydrological evidence, the considered initial discharge has 

been set to 200 m3/s. The velocity was directed toward South and was set to 2 m/s at the 

source point, according to palaeocurrent distribution (Bianchi et al., 2013; Bianchi et al., 

submitted). Flow height defines the flow walker depth at the source point; the maximum 

height defined in the input file is 10 m. For sediment concentration, a value of 3.5 kg/m3 

was fixed and corresponds to both suspended and bed load sediments.  

As mentioned in the paragraph 4.4, LECODE uses a non-uniform sediment mixture for 

sediment transport calculation. For this reason it is convenient to divide the mixture in 

several grain-size classes (Zhang, 1989; Wu et al., 2000), which are characterized also by 

density and angle of repose. Relatively to the source, 6 sediment classes were imposed: 4 

for gravel, 1 for sand and 1 for silt-clay. The following table (Table 4.2) shows the values 

adopted for each sediment class. 

 

Table 4.2: parameters characterising the examined grain-size classes. 

 

 Gravel 1 Gravel 2 Gravel 3 Gravel 4 Sand Silt/Clay 

Diameter (mm) 10 5 2.5 1 0.23 0.01 

Density (kg/m3) 2250 2250 2250 2250 2650 2350 

Angle of repose (dz/dx) 0.0070 0.0069 0.0068 0.0067 0.0065 0.0045 
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The choice of 4 gravelly classes was used to match with the sediment distribution 

cropping out in Arcidosso section (Fig. 4.1) and corresponding to the V1 deposits (Bianchi 

et al., 2013). To finalize the river parameterization, each grain-size class composing the 

source has to be allocated based on their respective percentages. It was chosen to define 

the following values from coarsest to finest grain-sizes: 1 %, 1.5 %, 1.25 %, 1.25 %, 37 % 

and 58 %. 

 

4.2.7.3 Allogenic forcing 

Two factors control sedimentation within the model: climate and tectonics (Fig. 

4.6). 

Since the tectonic is the main control factor, we supposed the climatic 

contribution steady through the simulation; consequently we used as a proxy of ancient 

climate a rainfall rate of 1 m/y, which corresponds to the modern average precipitations 

in the Tuscany region.  

In order to simulate the Ambra River fault dynamics (Bianchi et al., submitted), the 

movement of the footwall block was replicated, since the uplift can be easily spatially 

constrained by LECODE. The uplifting portion was displayed as a hilly area bounded to the 

North by a steep NW-SE trending slope mimicking the Ambra River fault plane. The 

maximum displacement, located in correspondence to the main valley axis, was about 

100 m and occurred over 50 kys. Although Thomson et al. (2010) calculated the average 

uplift rate of Northern Apennines as 1 mm/y, with peaks of 1.4 mm/y (Mt. Falterona, NE 

Tuscany) and 0.5 mm/y (Valdarno, Central Tuscany), we modeled an uplift event for a 

limited portion and for a brief period, thus assessing an increased uplift rate of 2 mm/y. 

Furthermore, we impose the presence of a localized subsidence in the eastern valley flank  
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Figure 4.6: Representation of forcing parameters arranged in different layers. Vertical displacement 
characterised by uplift (red) and subsidence (blue); rain-derived drainage with a rainfall rate of 0.7 m/yr; 
flow walker and sediment relative to the source. 
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of the southern sector to simulate the Terre Rosse fault creating accommodation space 

for the input of lateral tributaries. This lineament has the same trend of the fault 

mentioned above.  

 

4.2.7.4 Running phases 

Three phases were defined to simulation the valley evolution. The first, pre-

tectonic phase aimed at reaching the steady state of the system, the second, syn-tectonic 

phase focused on the monitoring of the sedimentary dynamics, while the last, post-

tectonic phase consists in the adjustment of the system to reach an equilibrium 

corresponding a new steady state. This approach highlighted the signature of autogenic 

factors on sedimentation during the reaching of the pre-tectonic steady state, and 

allowed to avoid their disturbance during syn-tectonic sedimentation (Whipple, 2004). 

The model duration is strictly linked with the bankfull discharge stemmed out from 

palaeo-hydraulic investigations. Although the bankfull discharge is associated to a specific 

return time (Dalrymple, 1960; Chow, 1964; Eagleson, 1972), it provides the most dynamic 

phase for channel construction (Dunne & Leopold, 1978) and it is, therefore, simulated 

here in a continuous virtual time. Moreover, the similarity between the inferred palaeo-

discharge and the modern Arno River was considered in order to develop the model. 

Specifically, we assumed the bankfull discharge frequency of the modern Arno River (12h 

per year) as starting point for the first running tests. In this framework, assuming that the 

Ambra valley succession accumulated over about 300.000 years, the time arose from the 

flood frequency analysis could be approximated to 400 years. Unfortunately, with a 

discharge of 200 m3/sec, a running time of 400 yrs is not able to: i) bring the system to a 

steady state; ii) develop the fluvial response to tectonic disturbance; iii) reach a second 
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steady state. This lack highlights that the bankfull discharge frequency was probably 

higher than that of the modern Arno River. Several test allowed to establish that a virtual 

time of 1100 yrs is adequate to allow the model to simulate the former three stages. 

Specifically a first simulation phase (i.e. reaching of the steady state) was run for 700 

years, the second phase (i.e. fluvial response to tectonic disturbance) for 200 years and 

the third phase (i.e. reaching of the second steady state) for other 200 years for a total of 

1100 years of virtual time. Every 100 years the model generates one sedimentary layer 

and every 50 years the flow walkers are released. During the syn-tectonic phase, the 

tectonic perturbation does not create a decreasing valley slope, as highlighted by field 

insights (Bianchi et al., submitted). For that motive, we decrease the velocity and height 

of the source (V = 2 > 1.5 m/s; H = 2.25 > 1.5 m) only in the syn-tectonic phase (form 700 

to 900 years), to simulate the effects of river potential energy loss (Blum & Tornqvist, 

2000).  

 

4.2.7.5 Results  

To illustrate how the numerical reconstruction displays similar features of Ambra 

study case maps of aggradation/degradation, grain size changing, stratal architectures 

and valley evolution are presented in the fault zone (Fig 4.7, 4.8, 4.11). 

The aggradation/degradation pattern (Fig. 4.7) shows that most of the 

aggradation occurred upstream of the fault, where the thickness of virtual sediments 

reaches 85 m. The valley evolution is displayed in the panel in fig. 4.8 and shows the 

fluvial valley  filling by deposits derived from the lateral tributaries, enhanced by the rain, 

and by the source that provides most of the sediment on the area (Fig. 4.8).  
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Figure 4.7: Schematic sketch describing the parameters (stacked layers) involved in the formation of 
aggradation/degradation pattern. Aggradation is expressed in red high relief and degradation in blue low 
relief. 
 

4.2.7.5.1 Pre-tectonic phase (0 – 700 years) 

In the pre-tectonic phase the valley fills (Fig. 4.9A) and reaches its steady state. 

The overall grain size distribution (Fig. 4.8, 4.9) shows a downstream fining sequence, 

whereas thickness of infill deposits varies as consequence of irregularities of the valley 

floor. From 0 to 500 years the system displays the fluctuating sedimentation rate (Fig. 

4.9C) and it deposits thick layers (up to 15 m each), showing a sandy-gravelly coarsening-

upward tendency (Fig. 4.9B). From 500 to 700 years the system is defined by a low 

constant sedimentation rate (0.3 cm/y, fig. 4.9C). The grain-size is mainly sandy-gravelly, 

with a fining-upward trend. Deposits younger than 500 years present sharp bases that 

incised the older deposits with almost no depositional features (Fig. 4.9B), suggesting the 
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development of a by-pass zone (Whipple, 2004). When the by-pass zone develops, the 

sedimentation rate reaches a stability pattern at about 500 years.  

 

 

Figure 4.8: Set of frames showing the landscape evolution of the valley. Green line comprises frames 
belonging to the pre-tectonic phase. Red line borders frames of syn-tectonic phase. Blue line frames 
screenshots of post-tectonic phase. 
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Figure 4.9: Pre-tectonic phase. A) Plan view of the area with cross section of the valley fill framed at 700 
years; note the enlarged cross-section of pre-tectonic deposits, highlighting the grain size. B) 
Sedimentation rate graph; note the low sedimentation rate from 500 to 700 years. 
 

4.2.7.5.2 Syn-tectonic phase (700 – 900 years) 

During this phase the virtual fault displacement reaches 100 m, which is equally 

distributed in two distinct tectonic events (Fig. 4.10). Just after the first pulse (700-800 

years), aggradation occurred upstream of the fault (Fig. 4.10A), whereas just after the 

second pulse (800-900 years) the river shifts eastward and leads to the aggradation of 

coarse sediments in the downstream part (Fig. 4.10B). This shifting form a second valley 

(Fig. 4.10B) sourced from the eastward tip of the fault and developed onto the rocky 

substrate. (Fig. 4.10C).  
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Figure 4.10: Syn-tectonic phase. A) Plan view of grain-size distribution (left-hand) at 800 years; detail of 
thickness distribution (right-hand) in plan view at 800 years, showing the aggradation localised in the 
valley upstream portion. B) Plan view of grain-size distribution (right-hand) at 900 years; highlighted in 
the left-hand the deposits thickness at 900 years, showing an aggradation framed in the downstream 
portion and spatially limited in the upstream portion. C) Cross-sections (position shown in B) concerning 
the valley axis shifting. Note the bedrock degradation and formation of a second valley at 900 years. 
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Upstream of the fault zone, cross-sections show a narrow (about 1.7 km) and 

deep (up to 60 m) valley (Fig 4.11A). About 30 m of muddy sediments and 10 m of sand 

were accumulated during the first and second tectonic pulse, respectively (Fig. 4.11A). 

Both these intervals tend to thin upstream. In this area sedimentation occurred with a 

rate of about 10 cm/yr at 800 years, then decreasing to 3 cm/yr at 900 years (Fig. 4.13A). 

Downstream of the fault zone, cross-sections display a wider (about 3.2 km) and 

shallower (about 35 m) valley than the upstream sector. Deposits are mainly gravelly, up 

to 10 m thick (Fig. 4.11B) and form a fan-shaped lithosome confined within the newly-

formed valley (Fig. 4.10B,C). Aggradation occurred at 900 years with a rate of about 3 

cm/y (Fig. 4.13B). Along-valley sections show as the layers pinch southward. The presence 

of the secondary Terre Rosse fault is laterally recorded by gently rollover layers 

architecture (Fig. 4.11B). 

 

4.2.7.5.3 Post-tectonic phase (900 -1100 years) 

During the post-tectonic phase, the river system maintains its new pathway (Fig. 

4.8) and only a reduced thickness of sediments was accumulated along the valley (Fig. 

4.11). Significant accumulations of bedrock-derived materials occur at the entrance of the 

main tributaries into the main valley, both upstream and downstream of the fault zone 

(Fig. 4.12). This phase was characterized by a reduced aggradation rate about 0.3 cm/y, 

indicating the achievement of the steady state (Fig. 4.13A, B). 
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Figure 4.11: A) set of cross-sections of the upstream portion displayed on the base of different 
parameters; B) set of cross-sections of the downstream portion visualised through different parameters 
(see A for the colour scales). 
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Figure 4.12: Post-tectonic phase. Plan view of the area across the fault highlighting the proportion of 
bedrock material. Cross-sections of the downstream area (A) and the upstream area (B) displayed on the 
basis of the proportion of the bedrock material, representing alluvial fan deposits. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.13: Sedimentation rate graph 
for the northern sector and the 
southern sector calculated on the basis 
of the instantaneous aggradation in 
both syn- and post-tectonic phase (from 
800 to 1100 years); note the high 
aggradation at 800 y in the northern 
sector and at 900 y in the southern one. 
On the right-hand representative 
portions (for location see the inset). 
Note the highlighted portions in graphs, 
concerning the sedimentation rate 
during the syn-tectonic phase. 
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4.2.8 Experiment 2 - generic models 

In this section generic models developed on the base of Experiment 1 are used to 

better investigate the relationship between different rate of tectonic uplift and fluvial 

discharge.  

 

4.2.8.1 Experimental apparatus 

The adopted stratal grid has a simplified structure of a U-shaped valley prolonged 

in the entire model length (Fig. 4.14A). This simplified construction is adequate to focus 

on the effects of selected forcing, avoiding disturbance due to a more complex 

topography. The initial layers have high value of hardness, simulating a bedrock 

succession. Finally, to focus on the effects provided by tectonic forcing only, we do not 

consider rainfall input. This simplified structure is dissected by an upstream-dipping, 

normal fault trending slightly oblique to the valley axis (Fig. 4.14B). 

Three sources were simulated, all positioned on the same abscissa, and with the 

same characteristics. The multiple-source approach is used to fill homogenously the 

valley floor.  

Hydraulic parameters adopted for each source are: flow height 2 m, velocity 1 

m/s, sediment concentration 0.5 kg/s. Three grain-size classes are involved: 10% of gravel 

(2 mm of diameter), 30% of sand (0.25 mm) and 60% of silt (0.1 mm). 

The examined variation of elementary parameters focuses on fluvial discharge and 

uplift rate. Fluvial discharge range was ranging from 3 to 150 m3/s. The discharge 

frequency was not considered here, since the uplift rate strongly controls the simulation 

time. Uplift rate was simulated as low rate with 1 mm/y and high rate with 2 mm/y, in 

order to reproduce slow and rapid deformation.  
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Figure 4.14: A) Representation of the 
simplified design used as topography. B) 
Localisation and shape of the uplifted 
portion. 

 

 

 

 

 

 

 

 

 

From 0 to 50 ky the pre-tectonic phase run, whereas the syn-tectonic phase is 

from 50 ky to 75 ky for system with high uplift rate, and from 50 ky to 100 ky, for low 

uplift rate simulations. 

According to the combination of fluvial discharge and uplift rate, we have created 

four possible scenarios: i) scenario 1 characterised by low discharge (3 m3/s) and low 

uplift rate (1 mm/y); ii) scenario 2 with low discharge (3 m3/s) but high uplift rate (2 

mm/y); iii) scenario 3 with high discharge (150 m3/s) and low uplift rate (1 mm/y); iv) 

scenario 4 characterised by high discharge (150 m3/s) and high uplift rate (2 mm/y). 

 

4.2.8.2 Results 

Scenario 1. (Fig. 4.15 scenario 1). In the context of low rates of uplift and discharge 

the valley is characterised by a dominance of silty sedimentation, although downstream 
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of the uplifted area, sandy sedimentation occurs. Fluid elements path shows that the 

uplift block, which is strongly eroded, does not dam the flow. The uplift degradation is 

visible from the cross-sections A-A’ (Fig. 4.15), whereas downstream thinning of syn-

tectonic layers is shown by the layer-index cross-section B-B’. All valley-fill deposits are 

organised in thin layers. 

 

Figure 4.15: Sketch of scenarios, function of uplift rate and discharge. Every scenario corresponds to one 
simulation and it is displayed in plan view and two along-valley sections highlighting grain-size 
distribution and layer index (time). Flow is expressed in red lines. See the text for more details. 

 

Scenario 2. (Fig. 4.15 scenario 2). The plan-view displays a dominance of muddy-

sandy deposition within the valley with a coarser deposition on correspondence to the 

fault. Accumulation of fine-grained deposits in the upstream sector propagates upstream 
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in time. Moreover, the flow is dammed by the uplift, emphasised also by the lacking of 

syn-tectonic deposits in the downstream portion (layer-index cross-sections D-D’).  

Scenario 3. (Fig. 4.15 scenario 3). The plan-view shows as gravelly deposits 

accumulate along the whole valley trunk, although their thicknesses are reduced in the 

uplifted zone, where erosion is also occurring. Coarse sediments accumulated 

downstream of the uplifted area. Sediment distribution becomes finer when moving 

downstream. In this scenario the flow is able to pass over the uplifted portion (F-F’ 

presents) and no damming effect of the fault are shown. 

Scenario 4. This scenario shows a complex grain-size distribution  (Fig. 4.15 

scenario 4). Gravels are accumulated in the most upstream portion followed by sandy 

deposits just upstream of the fault.  These sand are thicker close to the fault and pinch 

out upstream. Gravels are also accumulated across and just downstream of the uplifted 

zone and sediment distribution turns into sandy deposits downstream. The flow is not 

dammed by the uplifted block, but is shifted from the main valley axis and is confined 

toward the left-hand flank of the valley. 

 

4.2.9 Discussions 

4.2.9.1 The Ambra Valley simulation vs. The Ambra Valley succession 

Experiment 1 provides insights to compare the virtual landscape evolution with 

the field study case and discuss the main steps of this evolution in terms of spatial and 

temporal dynamics of the alluvial system (Fig. 4.16). 

During the run of the first part of the experiment (0 – 700 years), the sediment 

accumulated within the valley and reached the steady state after the 500 yrs, when the 

virtual river lost its capacity to deliver or acquire sediments and assumed an equilibrium 
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configuration dominated by sediment bypass (Whipple, 2004, Blum et al., 2013). The 

period is a virtual timing required to the river for reaching this stage corresponds to 135 

kyr, and can be considered as the intrinsic response time (or equilibrium time) introduced 

by Paola et al. (1992); it was thought for basin filling (Paola et al., 1992), whereas Blum et 

al. (2013) extended the definition also for river system in valley. The achievement of the 

steady represents therefore the tendency of the inland valley system to equilibrate its 

local profile beyond the marine or lacustrine influence bodies (Gibling et al., 2011). Since 

the deposits accumulated during the achievement of the steady state are thinner in 

respect to those of unit V1, slightly different conditions (e.g. localized subsidence, higher 

sediment supply) probably framed sedimentary dynamics of the Ambra River succession 

during the pre-tectonic phase. 

During the tectonic phase, aggradation of fine-grained sediments upstream of the 

fault zone fits with the V2fls deposits of the Ambra succession (Bianchi et al., submitted), 

agrees with laboratory experiments (Ouchi, 1985) and modern river examples (Holbrook 

& Schumm, 1999). Upstream pinching of the fine-grained deposits imitates the backfilling 

architecture (sensu Schumm, 1993) of alluvial valley fills genetically linked with relative 

sea-level rises (Boyd et al., 2006). The edge of the uplifted block represents, in this case, 

the base level of the system (Blum & Tornqvist, 2000). Higher will the block will be 

uplifted and longer the aggradation will propagate upstream.  The time needed by the 

fault to affect valley sedimentary dynamics is referred as time reaction and it is expressed 

by the simple formula (Blum et al., 2013 and references therein):  

T*= T/Teq 

where Teq is the equilibrium time for the system to reach the steady-state configuration, 

and T is the time scale of the tectonic forcing (Paola et al., 1992; Marr et al., 2000; 
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Swenson, 2005; Blum et al., 2013). Swenson (2005) referred “slow” variation to T* >> 1, 

whereas “fast” variation to T* <<1. In the case of the Experiment 1, simulated fluvial 

system has a rapid time reaction to tectonic forcing since its T* is calculated to be 0.4. 

Thickness of the virtual V2fla agrees with this classification and fits with increase of 

overbank sedimentation due to augment of flooding events  (Hole, 2011).  

In the uplifted block degradation occurred (Fig. 4.16A) as documented in the 

Ambra River area (Bianchi et al., submitted) and in similar tectono-morphological settings 

(Holbrook & Schumm, 1999). The narrowness valley trunk, which was cut on the uplifted 

bedrock, reflects that the river incision rate is comparable with the uplift rate (Whipple, 

2004). The experiment highlights also that the lateral change in fault displacement is not 

the only forcing on valley shift across the uplifted block. This process was also influenced 

by the fault trend, which is not closely orthogonal to the valley axis, as observed during 

lateral drainage adjustment into active margin setting (e.g. Carizzo Plain, Schumm, 1986). 

The high incision rate in the uplifted area prevents development of terraced surfaces 

(Lavé & Avouac, 2001). The model show also that the eastward valley shift was probably 

further enhanced by the activation of the Terre Rosse fault, which generated a localized 

depocentre which attracted the main watercourse. 

Aggradation of virtual coarse sediment downstream of the uplifted block finds its 

equivalent in the V2flb deposits of the Ambra River succession (Fig. 4.16A), and fits with 

laboratory experiments (Ouchi, 1985) and some modern examples (Holbrook & Schumm, 

1999). This aggradation was triggered by a significant increase in sediment supply from a 

point source (i.e. uplifted block) and can be labelled as downfilling process (sensu 

Schumm, 1993), which caused shifting of the river equilibrium profile above the valley 

floor (Blum & Tornqvist, 2000). Although downfilling and backfilling processes are 
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commonly considered as typical of upstream and downstream valley reaches respectively 

(Schumm, 1993; Zaitlin et al., 1994; Boyd et al., 2006), it is noteworthy that both in the 

experiment and in the Ambra River case they occur with the opposite distribution (Fig. 

4.16B). Although the alluvial architecture stemmed out from the experiment clearly 

resemble the Ambra River succession, the experiment show that aggradation of V2flb unit 

postdates accumulation of V2fla (Fig. 4.13). This diachrony highlights that the lowering of 

fluvial transport capability induced by localized uplift is followed by an immediate 

aggradation upstream of the deformed zone, which allow the river to reach a new 

equilibrium profile. On the contrary, aggradation in the downstream sectors is strictly 

dependent by the amount of sediments eroded from the uplifted area, which is, in turn, 

linked with the ratio between the rate of uplift and that of fluvial incision. This diachrony 

has been detected in some natural examples (e.g. New Madrid earthquake, Russ, 1982; 

Schumm, 1986).  

The post-tectonic documents the achievement of a second steady state and 

occurs over 1000 years of virtual time. Upstream of the fault zone, accumulation of 

alluvial fan deposits along the left-hand flank of the valley occurred during the post-

tectonic phase as consequence of the reduced fluvial transport capacity associated with 

the renewed equilibrium profile assumed by the river. Although similar deposits occurs 

also in the Ambra River succession (Bianchi et al., submitted), this experiment highlights 

that alluvial fans prograded during the achievement of the post-tectonic steady state, 

confirming that these deposits represents the relaxation phase the upsetting of a tectonic 

disturbance (Sømme et al., 2013; Fidolini et al., 2013b).  

The aggradation/degradation map (Fig. 4.7) highlighted the results of differential 

erosion on bedrock and unconsolidated substratum. Hard substrate promotes the  
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Figure 4.16: Grid of cross-sections in the valley with enlargements of portion downstream, across and 
upstream of the fault area., highlighting grain-size (A) and time (B). Note in B architectures in backfilling 
upstream and architectures in downfilling downstream. 

 

development of narrow and deep valleys, whereas a soft substrate will lead to 

development of wide a shallow valley as consequence of the capacity that has a river to 

shift laterally (Blum et al., 2013). Where the modelled valley is cut onto a rocky substrate, 

its W/T ratio (Gibling, 2006) is about 11.6, whereas this value rises to 175 where the 
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valley is cut onto the soft substrate. These two values correspond respectively to the field 

of “Valley Fills on Bedrock Unconformities” and “Valley Fills within Alluvial and Marine 

strata” as defined by Gibling (2006) and fit well with those observed for the V1 and V2 

units of the Ambra Valley succession (Bianchi et al., submitted). 

 

4.2.9.2 Generic models: role of tectonics in variable-discharge systems  

Experiment 2 allows to analyse and discuss the sedimentary response of a system 

with a tectono-morphological configuration resembling the Ambra River setting under 

variable fluvial discharge and fault uplift rate (Fig. 4.15). Experiment 2 shows that fluvial 

discharge has a remarkable control on along-valley grain size distribution (Fig. 4.15). In all 

the scenarios, sediments accumulated upstream of the fault are always finer that those 

deposited downstream, but low-discharge systems are dominated by finer sedimentation 

and reduced thicknesses, whereas high-discharge systems are associated with coarser 

sedimentation and accumulation of thick successions (Paola et al., 1992; Blum & 

Tornqvist, 2000; scenario 3 and 4 in Fig. 4.15). Systems characterised by low discharge, 

are extremely sensitive to localized upwarpings, which easily induce dramatic decreases 

in fluvial transport capability (Doornkamp & Temple, 1966; Rasanen et al., 1987; Dumont, 

1992, 1993; Marple & Talwani, 1993). On the contrary, systems with high discharge are 

scarcely affected by tectonic perturbation with a reduced uplift rate (Holbrook & 

Schumm, 1999; Ethridge & Schumm, 2007), as attested by development of a reduced 

along-valley facies heterogeneity in  scenario 3 (Fig. 4.15). 

If the uplift rate increases, high-discharge rivers became able to store fine 

sediments (i.e. sand) upstream of the uplifted area (scenario 4 Fig. 4.15), and are also 

affected by a remarkable channel organization across the uplifted zone. Specifically, 



Tectonically-driven deposition within upland incised valleys 

 

 116 

under these conditions the channel network appears to be sensitive to the fault 

orientation (Ethridge & Schumm, 2007; Schumm, 1986) and channels tend to converge 

into the funnel formed between the valley flank and the uplifted block, possibly as a 

consequence of the scarce erodibility of the upwarped rocks (Alexander & Leeder, 1987; 

Bridge & Mackey, 1993; Blum & Price, 1998).  

 

4.2.10 Conclusions 

This study is based on a previous work (Bianchi et al., submitted) that focused on a 

palaeovalley, draining the northern margin of the Siena Basin (Ambra, Northern 

Apennines, Italy). In particular this work aimed at monitoring the fluvial anomalies 

developed across a syn-depositional uplift zone, with high resolution in grain-size and 

sedimentary architectures. Through the numerical modelling we assessed and time-

constrained the tectonic control on aggradation of the studied valley fill. The study 

described also the main effects of uplift rate on variable-discharge systems. 

Physical and hydrological laws that constrain numerical modelling validated our 

tectono-sedimentary scenario, derived from field observations. The assessment is 

expressed in the similarity between the modelling results and sedimentary features of 

Ambra palaeovalley, reproducing the two differential and characteristic aggradations 

within the valley.  

Temporal control, taking advantage of numerical modelling, highlighted that 

aggradations occurred time-shifted. The time span between the two aggradations results 

necessary for the achieving of the potential energy that leads to the required stream 

power, responsible of the uplift incision.  
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The generalisation of tectonic role on aggradation of variable-discharge systems 

reveals that low- and high-discharge systems respond to minor and major uplift rates, 

respectively. In both low- and high-discharge systems, the increasing of uplift rate 

promoted the facies heterogeneity, through an abrupt variation of grain-size distributed 

in sectors and characterised by a fining tendency moving toward the uplift. 

It is important also to recognise as model uncertainties or its codified 

simplifications can limit the relevance of the modelling outcomes. For this reason it was 

necessary to provide a meticulous and continuous calibration of the parameters 

concerned, aiming to find of the best-fit equations between natural cases, reconstructive 

and predictive models. 
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CHAPTER 5 

CONCLUSIONS 

 

5.1 OVERVIEW 

Through the integration between a “classical” field approach”, which involved 

field mapping, facies and structural analysis and geophysical investigations, and numerical 

modeling, the present study discussed the tectono-sedimentary evolution of the Pliocene 

– Pleistocene inland Ambra paleovalley (Northern Apennines, Italy). The Ambra palaeo-

valley drained the northern margin of the Siena Basin crossing a set of NW-SE and NE-SW 

trending extensional and transtensional active faults. This tectono-sedimentary 

interaction resulted in a 90 m thick fluvial valley-fill succession, which is characterized by 

marked downstream facies heterogenity. 

 

5.2 THE PLIOCENE – PLEISTOCENE AMBRA VALLEY SUCCESSION 

Field evidence allowed to discuss the role of longitudinal and lateral floodplain 

tilting as forcing on fluvial aggradation and valley avulsion. Longitudinal tilting was due to 

an upstream-dipping normal fault. This particular geometry encompassed fluvial 

aggradation both upstream and downstream of a central uplifted area, which produced 

instead landscape degradation. Two distinct knickpoints were stemmed out by the onset 

of faulting: the upstream one responds to local increase of valley slope, whereas the 

downstream one reacts to increased stream power due to upstream bedload trap. In the 

upstream zone, migration of the knickpoint triggered a progressive valley backfilling, 

which developed a stratal architecture similar to that of sea-level-controlled, coastal 

incised valleys. Downstream of the fault zone, aggradation occurred as a downfilling 
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related to an overwhelming sediment supply, which caused the fluvial equilibrium profile 

to rise above the valley floor. Lateral tilting affected the fluvial morphodynamics in 

distinct ways: the activity of a normal fault striking parallel to the valley axis was 

associated with a down-dip shift of the trunk system; lateral increase in displacement 

along faults striking transverse to the valley axis also involved a shift of the trunk system 

towards the faulted valley flank. The latter process was counter-balanced by the 

activation of fault-sourced, supply-dominated alluvial fans that generated positive 

topography and shifted back the trunk system towards the valley axis. The study case 

attests therefore that both backfilling and downfilling architecture can develop in inland 

valleys as consequence of specific tectono-sedimentary interaction, and that lateral shifts 

of several mechanisms can interact to cause lateral shifting of alluvial valleys and related 

rivers.  

 

5.3 NUMERICAL MODELLING  

Numerical modeling allowed to assess the spatial and temporal constraints 

concerning tectonic control on aggradation of the studied valley fill and to investigate the 

effect of lifting rate on variable-discharge systems. 

Physical laws, on which is based the fluvial simulation, verified the tectono-

sedimentary scenario, stemmed out from sedimentological investigations. Model 

approximations and simplifications can restrict the bearing of the modelling outcomes. 

For this reason it was necessary to provide a careful calibration of the parameters 

considered, in order to find the best-conformity equations between natural cases, 

reconstructive and predictive models. The confirmation is expressed by comparing the 

modelling outcomes with the sedimentary and architectural features of the Ambra 
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palaeovalley succession. Using the numerical reconstruction, we were able to understand 

that downstream aggradation post-dated the upstream one. The time span between 

them corresponds to the time required by the river to incise partially the uplifted block, 

leading to the valley avulsion. This incision comes out from river potential energy and 

stream power. 

The generalisation of tectonic forcing on aggradation of variable-discharge fluvial 

systems reveals that low-discharge systems are sensitive to minor uplift rates, whereas 

high-discharge settings are influenced solely by major uplift rates. In both low- and high-

discharge systems, the increasing of uplift rate develops facies heterogeneity, through an 

orderly pattern of grain-size characterised by a fining tendency moving toward the uplift 

region. 
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