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Abstract

Nonlinear heteroscedastic regression models are a widely used class of models in applied
statistics, with applications especially in biology, medicine or chemistry. Nonlinearity and
variance heterogeneity can make likelihood estimation for a scalar parameter of interest
rather inaccurate for small or moderate samples. In this paper, we suggest a new approach
to point estimation based on estimating equations obtained from higher-order pivots for the
parameter of interest. In particular, we take as an estimating function the modified directed
likelihood. This is a higher-order pivotal quantity that can be easily computed in practice for
nonlinear heteroscedastic models with normally distributed errors, using a recently developed
S-PLUS library (HOA, 2000). The estimators obtained from this procedure are a refinement
of the maximum likelihood estimators, improving their small sample properties and keeping
equivariance under reparameterisation. Two applications to real data sets are discussed.

Keywords: Likelihood asymptotics; Modified directed likelihood; Nonlinear heteroscedastic
models; Parameterisation equivariance

1 INTRODUCTION

Nonlinear regression models are widely used in applied statistics. Here we consider the normal
heteroscedastic nonlinear model of the form

yijzu(xi;ﬁ)+eij, i=1,...,q, J=1...,mi, (1)

where ¢ is the number of design points, m; the number of replicates at the design point i,
y;; represents the response of the jth experimental unit in the ith group, and the errors €;; are
independent N (0, ¢7) random variables. The mean response of the model is given by the nonlinear
function p(z;3), called the mean function, which depends on an unknown regression coefficient
3. The definition of the model is completed by assuming o} = o2V%(z;; B, p), where V?(-), called
the variance function, represents the variance of the observations at different levels of covariates
and o2 and p are variance parameters. If V2(-) is constant, we obtain as a special case the
homoscedastic nonlinear regression model. However, in many applications, the variability of the
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error is not constant; this is often the case in immunological and biological studies where the
correct specification of the variance function becomes crucial for calibration purposes and for
determination of limits of detection.

Several methods have been proposed to fit model (1); they are summarised in Seber and Wild
(1989, Chap. 2). The most frequently used estimating procedures are generalised nonlinear least
squares (Carroll and Ruppert, 1988, Chap. 2) and maximum likelihood estimation. However, as
shown in Bellio and Brazzale (1999), nonlinearity of the mean and variance heterogeneity can lead
to substantial inaccuracies of these methods, if the sample size is small or moderate. The problem
is mostly present when the parameter of interest is one of the variance parameters.

To overcome this drawback, in this paper we discuss an alternative practical approach to point
estimation when inference about an arbitrary one-dimensional parameter of interest is desired
‘1 the context of nonlinear heteroscedastic regression models. Point estimators can be defined
as zero-level confidence intervals obtained from a class of two-sided equi-tailed rejection regions.
A natural implementation of this idea is to consider estimating functions based on higher-order
pivotal quantities for the parameter of interest (see Pace and Salvan, 1999, and Giummolé and
Ventura, 2001). In particular, we consider the modified directed likelihood 7* which is a higher-
order adjustment of the signed square root r of the usual generalised loglikelihood ratio statistic.
Since the estimating equations based on 7 give the maximum likelihood estimator (MLE), the
proposed solution is essentially a correction to the MLE that improves its small sample properties,
respecting the requirement of parameterisation equivariance.

The paper is organised as follows. Section 2 gives a short review of point estimation based on
the modified directed likelihood in the context of nonlinear heteroscedastic models. In Section 3 the
proposed method is illustrated on two application examples, showing that the resulting estimators
are accurate and improve on the MLE.

[t is important noticing that the statistic r* and consequently the proposed estimators can be
casily computed in practice for nonlinear heteroscedastic regression models with normal errors. In
fact. a recently developed library for higher-order asymptotics (HOA, 2000) implements likelihood-
based solutions, including r*, for a wide class of models of practical interest in many areas of

statistics.

2 BACKGROUND RESULTS

Let us assume that the d-dimensional parameter w = (8,02 p) in model (1) is of the form w =
(1. \), where 1 is a scalar parameter of interest and \ a (d — 1)-dimensional nuisance parameter.
In many applications, ¥ is a unidimensional component of the variance parameters or a scalar
combination of the parameters of the model, like the value of the mean function or its inverse (in
range where p is monotone) at a fixed point o (see Schwenke and Milliken, 1991, for an example
of such kind of problems). Sometimes, as in Examples 1 and 2 of Section 3, one is interested in
particular scalar functions such as the proportion of maximum (see (6)) or the function ED; (see
Bellio et al. (2000), Sec. 4).

Let @ = (1), A) be the MLE of w and @ = (¢, Ay), with Ay the MLE of X for a given value of 1.
The profile loglikelihood function for v is £p(¢)) = £p(®) = £(1h, Ay), where £(w) is the loglikelihood
function for w. As in Barndorff-Nielsen and Cox (1994), a tilde over a likelihood quantity is used
when the quantity is evaluated at (w,j\d,), while a hat denotes evaluation at (1/},5\) Usually,



inference about the scalar parameter of interest 1 is based on the directed likelihood

() = sgn(l - 0) 20t ) ~ L))

which null distribution is standard normal with first order accuracy. A higher-order modification
of the directed likelihood has been proposed by Barndorff-Nielsen (1991) and in useful equivalent
versions by Skovgaard (1996) and Severini (1998, 1999). The modified directed likelihood can be
written as

log(v(%))
r(y)

where (1)) is a suitable higher-order correction term (see e.g. Skovgaard, 1996). The normal
approximation for the null distribution of r* is exact up to third order and, moreover, its expression
is parameterisation invariant (see e.g. Barndorff-Nielsen and Cox, 1994, §6.6).

As explained in Giummoleé and Ventura (2001), the modified directed likelihood gives rise to
a simple estimating equation of the form

r* () =r(¥) - (2)

r(¢)=0. (3)

A numerical procedure is usually required in order to solve (3). The existence and uniqueness of
the solution, denoted by *, is asymptotically guaranteed, at least in a neighbourhood of . The
estimator ¥* is a refinement of 1, with the estimating equation (3) giving implicitly a higher-order
correction to the MLE. An explicit close form for * is given in Giummolé and Ventura (2001,
Sec. 3). Nevertheless, a recent library for higher-order asymptotics (HOA, 2000) gives directly the
statistic 7*(¥) for model (1), making it easier to numerically solve equation (3) than to implement
the closed form expression of 1&*.

In view of the properties of 7*, the estimating equation (3) is mean unbiased as well as median
unbiased at the third-order of accuracy. The median unbiasedness property also holds for the cor-
responding estimator *, under the condition that the estimating equation is a monotone function
of the parameter of interest. For nonlinear heteroscedastic regression models, monotonicity of 7*
is verified in many practical situations, independently of the sample size (Bellio, 2000). Moreover,
since the modified directed likelihood r* is invariant under interest respecting reparameterisations,
1)* is an equivariant estimator of 9. Numerical investigations (see Giummolé and Ventura, 2001)
show that the estimators based on r* improve on the MLE.

In the context of nonlinear heteroscedastic regression models with normal errors, the modified
directed likelihood (2) is rather simple to calculate. In fact, it is possible to rewrite these models
as curved exponential families, for which the expression for the v(¢) term in (2) remarkably
simplifies. The loglikelihood function for the parameter w = (8, o2, p) corresponding to model (1)
is

q ) q ) q mi o . 2
(p.o*p) == Tloga® =y TrlogVHwi B,0) = DD (g — pls 7)) (4)

=1 i=1 i=1 j=1 202V2($Z7/6’p) ’
and can be written as
£(B3,0,p) = 0(w) - t(y) — K (0(w)) ,
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with

Ow) = (911(w)a912(w)"°"0q1(w)’902(w))

N ( w(z1; B) . 1 w(zg; B) B 1 )
o?V2(z1;8,p)  20°V2(z1;B,p) 0 Vi(eg B,p) 202V(xgiB,p))

ty) = (tn(y), t2() - ta(y), te(y))

mi mi Mg Mg
- (zyu,zy@,...,zyqj,zys,-) |
1 1

J=1 J= j=1 j=
- ! my; 2 m: 02
K(0w) = - Z 5 log(—26;2) — Z Z‘H’_l
1=1 i=1 12
imi lo (02)+imil (V2( ,6 ))_I__imz /1’2('7:1)13)
- 9 e L0 Ti5 Py SRRl ) ¢
2 g £ ) g p 2472 V2 (z; )

Following Skovgaard (1996), the correction term (1) in (2) can be written as

) = —
Sllil2 (3 — SSiidn)

In (5), i and j denote respectively the expected and observed information matrices,

¢ () 0 (%),

i AR e s o
g ( aé)mw)(e(w) o(@)) |

and the notation jy,, €.g., identifies the observed information matrix once the row and columns
corresponding to 1 are deleted. X is the variance-covariance matrix of the sufficient statistic t(Y)
and can be easily computed by calculating the second order derivatives of the function K (6) with
respect to the components of 6. is block-diagonal and each block Y i=1,...q,is a2 X2
matrix with

Yi(w) = var,(ta(Y)) = m;o2V2(zi; 8, p)

Sh(w) = Bh(w) = covu(ta(Y) ta(Y)) = 2mp(wi; B)0°V? (i3 8, p)
Sho(w) var, (t(Y)) = 2mio*V*(zi; B, p) + 4maps® (i3 B)0”V*(zi: B, p) -

Il

Using the preceding derivation, one can easily make his own program for calculating r*. How-
ever, higher-order asymptotics for the class of models (1), can be directly computed using the
nlreg section of the S-PLUS library HOA (2000) (see Example 1 in Section 3, and Brazzale, 2000,
Chap. b, for examples and applications). In the next section we discuss two practical examples of
the use of this library for point estimation purposes.



3 APPLICATION EXAMPLES

3.1 Example 1: Weed Data

Nonlinear models are widely used in herbicide bioassays. In a typical experiment a dose-response
relation is established by measuring the growth of a plant corresponding to different levels of doses
of herbicide. Figure 1 shows the logarithm of the callus area of a tissue culture of Brassica napus
corresponding to different doses of a sulfonylurea herbicide, metsulfuron methyl. In the following,
we will refer to this data set as to the weed data. This data set is presented in Seiden et al. (1998,
data set M,) and is also discussed in Bellio et al. (2000). The experiment consists of ¢ = 8 doses
and b5 replications at each level. The mean response of the model is given by the four parameter
log-logistic function

u(w,ﬁ)=10g[ﬁ1+ P — /i }

{1+ (z/B4)P}

Moreover. the model assumes that the error term e in (1) follows a centered normal distribution
with variance function

oV3(z;B,p) = o> (1 + zf)? |

with o2, p > 0. This function is usually called the power of the z (POX) variance function. Other
variance functions could also be used (see Carroll and Ruppert, 1988).

(FIGURE 1 here)

The S-PLUS code for analysing this data set through the statistics 7 and 7* is given in the
library HOA (2000). In particular, the nlreg fitting routine of the nlreg section allows to easily
fit model (1) by maximum likelihood. The S-PLUS commands to fit the model are:

weed.nl <- nlreg( formula = log(y) ~ log(bl+(b2-b1)/(1+(x/b4)"b3)),
weights="(1+x"exp(g))~2, hoa=T, data=m2.data,
start=c (b1=130,b2=2474,b3=1.7,b4=0.07,g=10g(0.2)))

where, for computational reasons, we have used p = exp(g). The starting values given in start
have been fixed following the analysis of Bellio et al. (2000).

The profile method of the nlreg section gives the directed likelihood r and the modified
directed likelihood (2). Denoting by 1 the scalar parameter of interest, we can obtain r and 7* as:

weed.profs <- profile(weed.nl,offset=psi)

[Figure 2 gives the plots of the directed likelihood statistic and of the higher-order solution
r* (on the logarithmic scale for the variance parameters), for the six parameters of the nonlinear
heteroscedastic model for the weed data. Every single plot can be easily obtained as:

plot(weed.profs$r,type="1")
lines (weed.profs$rs,lty=6)
abline(h=0,1ty=2)



parameter | 7* estimate | MLE
1 139.148 138.92
B 2482.106 | 2474.00
B3 1.697 1.707
on 0.076 0.077
o? 0.026 0.022
p 0.288 0.285

Table 1: Point estimates based on 7* and MLE for the parameters of the nonlinear regression
model for the weed data.

(FIGURE 2 here)

Figure 2 is straightforward to interpret. If a parameter is estimated with good accuracy by
maximum likelihood, the corresponding r and r* profiles are almost linear and very close to each
other. It is noticeable from Figure 2 how first-order methods are satisfactory for those parameters
that enter the regression function in a linear fashion, like B; and (. On the other hand, a big
difference between r and r* profiles indicates poor behaviour of the first-order methods. For the
weed data, this gap is more significant for the variance parameter o2. The profile of 7* is shifted
rightwards from that of r. This means that the MLE for o2 is biased and that the modified
directed likelihood corrects for most of this bias.

Point estimates 3 and * for the parameter of interest 1 can be easily read off from the plots
in Figure 2 as the values of the r-coordinate in the intersection point of the 7 and r* functions
with the horizontal line y = 0. To find the numerical solution to () = 0, i.e. the point estimate
for the parameter of interest 9, we suggest the following S-PLUS procedure:

1. Compute r*(1) for a range of values around the MLE.
2. Interpolate the points by a smoothing method.
3. Invert the interpolating function and find the corresponding value in 0.

Step 1 is directly solved for nonlinear regression models by the profile command. Step 2 and 3
can be implemented by means of the following S-PLUS commands:

smoother <- smooth.spline(rstar,rstar.range)
estim.star <- predict.smooth.spline(smoother,0)$y

where rstar is the vector of values of 7* calculated in an appropriate range rstar.range. For
the weed data the S-PLUS commands are:

rstarfun <- weed.profs$rs
smoother <- smooth.spline(rstarfun$y, rstarfun$x)
estim.star <- predict.smooth.spline(smoother, x=0)8$y

Table 1 gives the values of the MLE and of the point estimates based on r* for the six parameters
of the model for the weed data.



&2 6’2*

BI MSE PU BI MSE PU
-0.0715 0.0407 0.6457 | -0.0113 0.0360 0.5029

Table 2: Comparison for the nonlinear regression model for the weed data. The parameter of
interest is the scale parameter o2.

To assess the finite-sample properties of the proposed estimators in comparison with the MLE,
a Monte Carlo experiment (based on 10,000 trials) has been performed, being o? the parameter of
interest. The estimators are compared in terms of the probability of underestimation (PU), that
gives median bias. Moreover, the usual centering and dispersion measures, i.e. bias (BI) and mean
square error (MSE), are considered even if they depend on the parameterisation of the model.
The results are presented in Table 2, showing the improvement of &% on the MLE.

3.2 Example 2: Calcium Data

A simple example of nonlinear regression model is discussed in Davison and Hinkley (1997, Ex-
ample 7.7). The data concern the calcium uptake of cells y as a function of time z, after being
suspended in a solution of radioactive calcium (Rawlings, 1988, p. 403). For these data, called
calcium data, a suitable mean function is

H(m;ﬂ) = Bofl - eXP(—ﬁlfﬂ)} )

where 3, and (; are unknown regression coefficients. Moreover, we have ¢ = 27 and m = 1,
and the error term ¢ is assumed to follow a centered normal distribution with unknown variance
o2. The data are available in the calcium data frame of the S-PLUS library boot (Davison and
Hinkley, 1997, Chap. 11).

(FIGURE 3 here)

The S-PLUS code for analysing this data set through the statistics r and 7* is given in the
library HOA (2000). Again, the nlreg fitting routine of the nlreg section allows to easily fit model
by maximum likelihood. Moreover, the profile method gives the directed likelihood 7 and the
modified directed likelihood r*. Figure 4 gives the plots of the directed likelihood statistic and of
the higher-order solution r* (on the logarithmic scale for the variance parameter), for the three
parameters of the considered model. As in the previous example, for the variance parameter the
profile of r* is shifted rightwards from that of 7. This means that the MLE for ¢ is biased and
that the estimator based on the modified directed likelihood corrects for most of this bias.

(FIGURE 4 here)

Table 3 gives the values of the MLE and of the point estimates based on r* for the three
parameters of the model for the calcium data.

Davison and Hinkley (1997, p. 356) consider not only inference on the mean function u(z; B),
but also on other aspects of the model such as the proportion of mazimum,

m=1—exp(—fz) - (6)
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parameter | 7* estimate | MLE
Bo 4.29 4.31
o 0.21 0.20
o? 0.307 0.275

Table 3: Point estimates based on r* and MLE for the parameters of the nonlinear regression
model for the calcium data.
Y Y
BI MSE PU BI MSE PU

r | 0401 1.94 0.40 |0.292 1.67 0.497
o? | -0.12 0.10 0.647 | -0.01 0.03 0.502

Table 4: Comparison for the nonlinear regression model for the calcium data. The parameters of
interest are the proportion of maximum 7 and the variance parameter 0.

For the time z = 15 they give the estimate # = 0.95. We may obtain the higher-order analogue
both by using the equivariance property of the point estimate based on r* and by reparameterising
the mean curve into (Bp,7) and re-computing the point estimate for 7. From the estimating
equation 7*(¢)) = 0, we obtain #* = 0.96.

To assess the finite-sample properties of the MLE and the estimates based on 7* a Monte
Carlo study has been performed, considering 7 or o2 as the parameter of interest. The results are
presented in Table 4, showing the improvement of #* and #2* on the corresponding MLE.

4 FINAL REMARKS

This paper presents a new approach to point estimation when inference about an arbitrary one-
dimensional parameter of interest is desired in the context of nonlinear heteroscedastic regression
models. This method is generally applicable to nonlinear regression models with normal errors,
using the recently developed S-PLUS library HOA (2000). The application examples considered
show that the proposed estimators improve on the MLE.

FFor cases when the dimension of the parameter of interest is greater than one, Skovgaard (2001)
proposed a generalisation of r* useful for inference on multidimensional parameters. This is a
modification of the usual loglikelihood ratio test improving its small sample properties. However,
the use of this new statistic for point estimation purposes requires further investigation. The
resulting estimators could be computationally very intensive, since the evaluation of the statistic
on a large grid of values is required.
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Weed Data
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Figure 1: Plot of the weed data.
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Figure 2: Plot of the directed likelihood (solid line) and of the modified directed likelihood (dashed
line) for the weed data.
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Calcium Data
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[igure 4: Plot of the directed likelihood (solid line) and of the modified directed likelihood (dashed

line) for the calcium data.
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