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“Nothing in life is to be feared, it is only to be understood. Now is the time to
understand more, so that we may fear less.”

Marie Curie





A B S T R A C T

This thesis focuses on generalized moment problems and their applications in the
framework of information engineering. Its contribution is twofold: The first part deals
with multivariate spectral estimation, which is a key topic in system identification,
whereas the second one is devoted to assessing performance of physical layer authen-
tication techniques in modern wireless communication systems.

part i: new convex-optimization based techniques for
multivariate spectral estimation

Multivariate spectral estimation amounts to the key task of describing the second order
stochastic properties of a stationary process with many components. Modeling signals
by means of stochastic processes is a well-established procedure in modern informa-
tion engineering, with applications that spread from automatic control to telecommu-
nications. Multivariate processes, in particular, play a major role when measurements
provided by an array of sensors are simultaneously available and a joint stochastic
model is sought. Under mild assumptions, estimating the spectral density of a pro-
cess is equivalent to describing it by means of a finite memory linear model, which
can be then used for smoothing and prediction, for instance. Of course, the interest in
such models goes beyond engineering. Indeed, dealing with data in the form of mul-
tivariate signals is extremely common in a wide variety of disciplines, ranging from
econometrics to medicine.

This thesis proposes two new techniques for tackling multivariate spectral estima-
tion efficiently: Relative entropy rate estimation and multivariate circulant rational covari-
ance extension.

Relative entropy rate estimation

This procedure provides a very natural multivariate extension of a state-of-the-art ap-
proach for scalar parametric spectral estimation with a complexity bound, known as
THREE (Tunable High-Resolution Estimator). It allows to take into account available
a priori information, which is modeled as a prior spectral density. In the framework of
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THREE estimation, it is also assumed that the data samples feed a linear filter, whose
output covariance is known. The filter can be designed arbitrarily and this possibil-
ity allows the user to impose interpolation constraints on the estimate. In particular,
an accurate design implies high resolution of the estimate on prescribed frequency
ranges, at the price of higher maximum complexity of the solution. Since the prior
spectral density does not obey, in general, to the moment conditions imposed by the
filter, a constrained approximation problem arises, whose solution is given by the
spectral density which best approximates the prior while obeying to the interpolation
constraints. It is worthwhile to notice that the possibility of achieving good results in
the multivariate framework heavily relies on the choice of the metric which is used in
order to evaluate the consistency of the candidate solution with the information en-
coded by the prior. The procedure that is described in the thesis is based on the choice
of a pseudo-distance index which hinges on the notion of relative entropy rate for
multivariate Gaussian processes. This choice makes the optimization problem strictly
convex. Thus, a Newton-like algorithm can be used for computing the solution. Nu-
merical examples show that this technique exhibits high-resolution features and that
it is very efficient also in the case of short data records.

Multivariate circulant rational covariance extension

The problem of spectral estimation for periodic multivariate processes is studied. This
framework resembles classic covariance extension, which is a tool for spectral estima-
tion that hinges on the one-to-one correspondence between the infinite covariance lags
sequence and the spectral density of a stationary process. However, periodicity may
be viewed as the fact that the spectral density is defined on the discrete unit circle,
and so a finite number of covariance lags provides a complete second order statis-
tic description. Thus, a finite covariance extension problem arises. It is also shown
that this issue is equivalent to a matrix completion problem for Hermitian, block-
Toeplitz, block-circulant positive definite matrices. A convex optimization approach
is proposed, in which the computation of the solution can be tackled efficiently by
means of Fast Fourier Transform. Numerical examples show that this procedure pro-
vides an efficient tool for approximating regular covariance extension for multivariate
processes. In addition, the interpretation of bilateral ARMA models paves the way to
an insightful connection with the literature about reciprocal processes.
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part ii: assessment of the performance of physical
layer authentication over rayleigh fading channels

The second part of the thesis deals with physical layer channel authentication. Physical
layer security is complementary to higher layers security techniques and provides an
effective defence mechanism for secure communication. Indeed, not only has it the
capability of resisting the attacks based on massive computational capabilities which
may be available in the near future; it also entails analytically predictable performance,
because it is based on information theoretic arguments.

Authentication of the source of a message is a key task in secure communication:
Indeed, every time a message is received, the receiver has to decide whether it was
sent by the legitimate source or by an eavesdropper.

In the framework which is considered in this thesis, authentication is based on the
channel estimate obtained by the receiver. Indeed, channel characteristics may allow
to identify the link between a specific source and the receiver: This happens in many
wide-band wireless systems, where even small changes in the position of the transmit-
ter have a significant impact on the channel.

The authentication is performed in two steps. During a preliminary stage, the re-
ceiver can obtain an estimate of the legitimate channel recurring to higher layer se-
curity techniques. At the same time, also the eavesdropper performs channel estima-
tion so, in the following phase, which corresponds to operating condition, it can pre-
process its messages in order to deceive the receiver. In the second stage, the receiver
performs channel estimation every time it is reached by a message, and it compares
the resulting estimate with the legitimate pattern which was obtained in the first stage.
Based on the comparison, the message is deemed as authentic or forged by the eaves-
dropper. Thus, a hypothesis testing problem arises. As a consequence, the worst case
performance of the authentication scheme can be assessed by computing the tightest
bound on the type I/II error probability region which corresponds to the optimal at-
tacking strategy that can be carried out by the eavesdropper. Therefore, a non trivial
constrained optimization problem arises, which may be recast as a moment problem
where the joint probability density corresponding to the optimal attacking strategy
has to be computed, and the constraints stem from the features of the communication
setup and the fact that the eavesdropper has access to some side information about
the legitimate channel. Once the optimization problem is modeled in terms of joint
probability densities, its solution is approximated by means of a fixed point algorithm.
Numerical examples suggest that this procedure is effective in assessing worst case
channel authentication performance.
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S O M M A R I O

La tesi affronta il problema dei momenti generalizzato e le sue applicazioni nell’ambi-
to dell’ingegneria dell’informazione. Il contributo proposto è duplice: la prima parte
della tesi verte sul problema della stima della densità spettrale per processi stocastici
multivariati, che sorge frequentemente nel contesto dell’identificazione dei sistemi di-
namici, mentre la seconda parte è dedicata allo studio delle prestazioni delle tecniche
di autenticazione a livello fisico nei moderni sistemi di comunicazione wireless.

i parte: nuove tecniche per la stima spettrale multi-
variata basate sull’ottimizzazione convessa

La stima spettrale multivariata ha il fondamentale obiettivo di descrivere le proprietà
statistiche del secondo ordine di un processo stazionario a più componenti. Modellare
i segnali di interesse come processi stocastici è una prassi consolidata nella moderna
Ingegneria dell’Informazione, con ambiti d’applicazione che spaziano dal controllo
automatico alle telecomunicazioni. I processi multivariati, in particolare, giocano un
ruolo fondamentale nel caso in cui si vogliano modellare in maniera congiunta le
diverse misure prodotte simultaneamente da una serie di sensori.

Le tecniche di stima spettrale offrono uno strumento utile per raggiungere questo
obiettivo. Sotto certe ipotesi, infatti, stimare la densità spettrale di un processo è equi-
valente a un calcolare un modello lineare a memoria finita che ne descrive le proprietà
statistiche del secondo ordine. La conoscenza di un modello del genere permette di
implementare potenti tecniche di elaborazione di segnale, quali per esempio filtraggio
e predizione.

Un altro aspetto motivante è che che il ricorso a segnali a più componenti per
descrivere le misure a disposizione sta diventando sempre più comune nell’ambi-
to di una grande varietà di discipline, che spaziano dall’econometria alla medicina,
per cui l’interesse per modelli stocastici multivariati va di gran lunga oltre l’ambito
ingegneristico.

Questa tesi propone due nuove tecniche per affrontare efficacemente il problema
della stima spettrale multivariata: la stima basata sul tasso di entropia relativa tra
processi e l’estensione di covarianza razionale per processi multivariati e periodici.
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Stima spettrale basata sul tasso di entropia relativa

Questa procedura estende in modo molto naturale un approccio che rappresenta lo
stato dell’arte per quanto riguarda la stima spettrale per processi scalari con un vin-
colo sulla massima complessità della soluzione. Questo approccio, noto come TH-
REE - Tunable High Resolution Estimator, è scelto per la sua flessibilità: infatti, permette
all’utente di tenere in considerazione le informazioni sulla densità spettrale vera del
processo eventualmente disponibili, che sono codificate sotto forma di una densità
spettrale a priori. Inoltre, all’interno di questo schema si fa anche l’assunzione che i
dati vengano utilizzati per alimentare un filtro lineare di cui la covarianza di stato è
nota: questo filtro può essere progettato liberamente e permette all’utente di imporre
dei vincoli di interpolazione che possono essere utilizzati per ottenere una risoluzione
elevata in corrispondenza ad alcuni intervalli di frequenza predeterminati, al prezzo
di una maggiore complessità massima della soluzione. Dato che, in generale, la sti-
ma a priori della densità spettrale non soddisfa i vincoli imposti dal filtro, sorge un
problema di ottimizzazione vincolata, la cui soluzione è data dalla densità spettrale
che meglio approssima la densità a priori pur obbendendo alle condizioni di interpo-
lazione. E’ significativo sottolineare che la possibilità di ottenere buoni risultati nel
caso multivariato dipende significativamente dalla scelta della metrica utilizzata per
valutare quanto una possibile soluzione si discosta dalla densità a priori. In questa
tesi, si è scelto di introdurre una pseudo-distanza che deriva dal concetto di tasso di
entropia relativa per processi Gaussiani. Questa soluzione rende il problema di otti-
mizzazione strettamente convesso, per cui la densità spettrale che lo risolve può essere
calcolata per mezzo di un algoritmo simile a quello di Newton. Infine, alcuni esempi
numerici illustrano che questa tecnica permette di ottenere stime ad alta risoluzione in
corrispondenza a particolari intervalli di frequenze prestabiliti. Inoltre, la procedura
proposta si rivela molto efficace anche nel caso di scarsa numerosità campionaria dei
campioni a disposizione.

Estensione circolare di covarianza per processi multivariati

Viene studiato il problema della stima spettrale per processi multivariati periodici, che
si rifà al problema classico dell’estensione di covarianza. Questo è uno strumento
fondamentale per la stima spettrale e si basa sulla corrispondenza biunivoca tra cono-
scenza dello spettro di un processo stazionario e conoscenza della sequenza infinita
dei suoi coefficienti di covarianza. Tuttavia, a differenza del caso classico, nel caso di
interesse, un numero finito di coefficienti di covarianza fornisce una statistica del se-
condo ordine sufficiente. Infatti ad un processo stazionario periodico corrisponde una
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densità spettrale definita sul cerchio unitario discreto nel piano complesso ed essa è
univocamente determinata risolvendo un problema di estensione finita della sequenza
dei coefficienti di covarianza. Si dimostra anche che questo problema è equivalente
ad un problema di completamento per matrici di Toeplitz a blocchi, definite positive
e con struttura circolante a blocchi. La tesi propone un approccio di ottimizzazione
convessa nel quale la soluzione può essere ricavata efficentemente ricorrendo agli al-
goritmi per il calcolo della trasformata di Fourier veloce (FFT - Fast Fourier Transform).
Alcuni esempi numerici illustrano che questa procedura fornisce uno strumento effica-
ce per approssimare l’estensione di covarianza per processi in generale non periodici.
Inoltre, l’interpretazione dei modelli ARMA bilaterali corrispondenti stabilisce una
connessione significativa con la letteratura inerente i modelli per processi reciproci.

i i parte: valutazione delle prestazioni dell’autenti-
cazione a livello fisico per canali con dissolvenza di
rayleigh

La seconda parte della tesi si occupa del problema dell’autenticazione della sorgente
di un messaggio, attuata a livello fisico. Gli schemi implementati a livello fisico sono
complementari ai meccanismi adottati nei livelli superiori ed offrono uno strumento
di difesa efficace per garantire la sicurezza nelle comunicazioni. Non solo hanno la
capacità di resistere ad attacchi basati su capacità di calcolo estremamente elevate, che
potrebbero essere disponibili nel prossimo futuro, ma offrono anche garanzie analiti-
camente predicibili sulle prestazioni che possono essere ottenute, poichè si basano su
argomenti derivanti dalla Teoria dell’Informazione.

L’autenticazione della sorgente di un mesaggio è un compito fondamentale per ga-
rantire la sicurezza della comunicazione. Infatti, ogni volta che un messaggio viene
ricevuto, il destinatario deve decidere se esso sia stato inviato dalla sorgente legittima
o da una fraudolenta.

Nel contesto che viene analizzato nella tesi, l’autenticazione di basa su un test di
ipotesi inerente la stima del canale di comunicazione effettuata dal ricevitore. Infatti,
le caratteristiche del canale possono permettere di identificare un collegamento tra una
sorgente specifica ed il ricevitore: questo accade per essempio in molti sistemi wireless
a banda larga, nei quali variazioni anche minime nella posizione del trasmettitore
hanno un impatto significativo sul canale. Quindi, l’autenticazione è attuata in due fasi.
Inizialmente, il ricevitore può ottenere una stima del canale che lo lega alla sorgente
legittima, ricorrendo a tecniche di sicurezza più sofisticate ed onerose implementate
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a livelli più elevati. Allo stesso tempo, anche la sorgente fraudolenta può stimare
le caratteristiche dei canali che la collegano alla sorgente legittima ed al ricevitore,
rispettivamente. Sulla base delle stime ottenute, successivamente potrà elaborare i
messaggi inviati al ricevitore in modo che risultino simili a quelli inviati dalla sorgente
legittima. A regime, il ricevitore effettua una stima di canale ogni qual volta riceve
un messaggio e la confronta con le caratteristiche del canale legittimo che ha ottenuto
durante la prima fase. Sulla base di questo confronto il messaggio può essere accettato
come legittimo, oppure considerato contraffatto.

Quindi, l’analisi al caso pessimo delle prestazioni dello schema di autenticazione
può essere ottenuta valutando la regione ammissibile per le probabilità di commettere
errori di I e di II specie, rispettivamente, nel caso in cui la sorgente fraudolenta attui
la strategia d’attacco ottima. Di conseguenza, sorge un problema di ottimizzazione
vincolata tutt’altro che banale: si tratta di un problema dei momenti in cui deve esse-
re valutata una probabilità congiunta che descrive la strategia d’attacco ottima per la
sorgente fraudolenta, con vincoli che derivano dalle caratteristiche del sistema di co-
municazione e dal fatto che la sorgente fraudolenta ha accesso ad alcune informazioni
sul canale legittimo. Una volta che il problema è formalizzato in termini di probabilità
congiunte, viene proposto un algoritmo che approssima la soluzione ottima. Infine, al-
cuni esempi numerici suggeriscono che questa procedura è efficace per l’analisi delle
prestazioni al caso pessimo delle tecniche di autenticazione di canale.
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1 M A I N C O N T R I B U T I O N S

Part I: New convex-optimization based techniques for multivariate spectral estimation

The first part of this dissertation proposes two new approaches to multivariate spectral
estimation. This issue is recast as a generalized moment problem that can be solved
efficiently by means of convex optimization techniques.

Chapter 3 introduces relative entropy rate spectral estimation. The results were
published in

• A. Ferrante, C. Masiero and M. Pavon, A New Metric for Multivariate Spectral
Estimation Leading to Lowest Complexity Spectra, in Proceedings of the 50th IEEE
Conference on Decision and Control and European Control Conference (CDC-
ECC), Orlando, FL, USA, December 12-15, 2011;

• A. Ferrante, C. Masiero and M. Pavon, Time and Spectral Domain Relative Entropy:
A New Approach to Multivariate Spectral Estimation, in IEEE Transactions on Auto-
matic Control, Vol. 57, N. 10, October 2012.

Chapter 4 deals with rational covariance extension for multivariate periodic pro-
cesses, that provides an efficient approximating technique for the regular covariance
extension problem. This topic is the subject of

• A. Lindquist, C. Masiero and G. Picci, On the Multivariate Circulant Rational Co-
variance Extension Problem, in Proceedings of the 52th IEEE Conference on Deci-
sion and Control (CDC), Florence, Italy, December 10-13, 2013;

Part II: Assessment of the performance of physical layer authentication over Rayleigh
fading channels

Chapter 5 proposes a new technique for assessing the performance of physical layer
authentication in wireless communication systems. This issue can be tackled in the
framework of hypothesis testing. Then, the tightest bound of the region correspond-
ing to the type I/II error probability is evaluated by solving a generalized moment
problem. The results appear in

1



2 main contributions

• A. Ferrante, N. Laurenti, C. Masiero, M. Pavon and S. Tomasin, On the Achievable
Error Region of Physical Layer Authentication Techniques over Rayleigh Fading Chan-
nels, submitted to IEEE Transactions on Information Theory, http://arxiv.org/
abs/1303.0707

http://arxiv.org/abs/1303.0707
http://arxiv.org/abs/1303.0707
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2 I N T R O D U C T I O N

2.1 motivations

Stochastic processes play a key role in modern information engineering. Indeed, they
provide a very natural model for random signals, whose introduction outperforms
the traditional deterministic viewpoint. For instance, in this framework mechanisms
such as information transmission or the presence of disturbances in control systems
can be dealt with naturally. Moreover, even in a non-probabilistic framework, a simple
statistical model may be more useful than a deterministic one, especially when the
latter turns out to have very high complexity. As a result, stochastic processes find
applications in a wide variety of fields.

Multivariate stochastic processes, in particular, are getting more and more popular
because they can model measurement processes where many sensors provide data
simultaneously and a joint statistic description is sought. This situation is often en-
countered in practice. Just to mention a few important applications, we recall that in
medicine different parameters are simultaneously evaluated in order to determine the
state of a patient (Avventi, Lindquist, and Wahlberg [1]). Multivariate stochastic pro-
cesses can also be successfully applied in monitoring air pollutants (see Dahlhaus [28]).
Finally, they can be used in finance for analyzing stock markets (Songsiri and Vanden-
berghe [95]). Of course, the applications we can think of go far beyond. They embrace
communications, control, econometrics, image processing, fault detection, surveillance,
seismology, psychology, social sciences and so on.

Under stationarity assumptions (see Section A.5), the second order properties of a
stochastic process are completely defined by its spectral density. In some real world
situations, the hypothesis that the process of interest is stationary may appear too
restrictive. However, even if it is not satisfied, if we focus our analysis on short time
windows of the process this simplification roughly holds, so it still makes sense to
perform spectral estimation. Thus, despite being a classic issue (see e.g. McClellan [77],
Stoica and Moses [97]), spectrum estimation for multivariate stochastic processes keeps
generating widespread interest in the natural and engineering sciences (Georgiou [48,
50], Ramponi, Ferrante, and Pavon [89], Rosen and Stoffer [91], Zorzi [105]).
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6 introduction

2.2 spectral estimation as a generalized moment prob-
lem

If the process is purely non deterministic (see Section A.9) and its spectral density is
rational, spectral estimation provides a finite memory state space linear model for the
process which can be used for filtering and estimation, for instance (see Section A.10).
Usually there is a trade-off between descriptive power and complexity. Models whose
order is low require less computational and memory burden. Thus, the identified
model is often required not to exceed a certain complexity, in practice.

In the case of interest complexity is evaluated in terms of the McMillan degree of
the estimated rational spectral density. Notice that finding an input process that is con-
sistent with the estimated covariance matrix and has rational spectrum of prescribed
maximum degree turns into a Nevanlinna-Pick interpolation problem with bounded
degree (Blomqvist, Lindquist, and Nagamune [5], Georgiou [52]). The latter can be
viewed as a generalized moment problem which is advantageously recast in the frame of
various convex optimization problems. An example is provided by the covariance exten-
sion problem and its generalization, see Byrnes, Georgiou, and Lindquist [11], Byrnes,
Gusev, and Lindquist [13], Byrnes and Lindquist [20], Byrnes et al. [21], Georgiou [47,
50]. These problems pose a number of theoretical and computational challenges for
which the reader is also referred to Byrnes and Linquist [17], Ferrante, Ramponi, and
Ticozzi [42], Georgiou [49, 54], Georgiou and Lindquist [56], Pavon and Ferrante [85],
Zorzi [106]. Besides signal processing, significant applications of this theory are found
in modeling and identification (Byrnes, Enqvist, and Linquist [10], Enqvist and Karls-
son [37], Georgiou and Lindquist [55]), H∞ robust control (Byrnes et al. [19], Georgiou
and Lindquist [57]), and biomedical engineering (Nasiri Amini, Ebbini, and Georgiou
[80]).

Along the same line, the first part of this dissertation introduces two novel ap-
proaches to spectral estimation for multivariate processes. They both rely on recasting
spectral estimation as a generalized moment problem, and can be implemented effi-
ciently by means of convex optimization techniques.

In Chapter 3 we introduce relative entropy rate estimator, which allows the user
to take into account available information on the spectrum, in the form of a prior
spectral density. Moreover, interpolation conditions on the estimated spectral density
can be imposed by properly designing a bank of filters, and this paves the way to
high-resolution features.

Chapter 4 deals with the problem of multivariate circulant rational covariance exten-
sion, that is rational covariance extension for multivariate periodic processes. Not only



2.2 spectral estimation as a generalized moment problem 7

is this problem interesting in itself, in view of the important role played by periodic
processes in many information engineering issues (for example, see Section 4.7 for an
application to image processing). The approach we propose for solving multivariate
circulant rational covariance extension also provides an efficient approximating tech-
nique for dealing with the regular multivariate rational covariance extension problem.





3 R E L AT I V E E N T R O P Y R AT E E S T I M AT I O N

3.1 introduction to relative entropy rate estimation

This chapter introduces a new procedure for multivariate spectral estimation, which
draws inspiration from a scalar spectral estimation technique called THREE (see Byrnes,
Georgiou, and Lindquist [12], Georgiou [51]). THREE-like paradigm aims at estimat-
ing rational spectral densities by resorting to convex optimization techniques. It entails
extremely interesting features:

1. It is robust in case of short data records;

2. It exhibits high resolution in prescribed frequency ranges;

3. The maximum complexity of the estimate is tunable.

A peculiarity of this approach is that available data are processed by means of a bank
of filters. Then, information on the input power spectrum is extracted based on the
output covariance of the filter. Thus, spectral estimation is recast in the form of a
generalized moment problem. Another feature of THREE-like estimation is that it is
possible to take available information into account: Indeed, a prior spectral density can
be provided as an input to the estimation procedure. Since the prior spectral density
in general does not satisfy the moment conditions imposed by the filter, a constrained
approximation problem arises. Therefore, one looks for a density which is consistent
with the constraints and best approximates the prior. This implies that an adequate
cost function has to be introduced in order to evaluate the quality of the approxi-
mation. One possibility is to consider Kullback-Leibler divergence, as proposed in
Byrnes, Georgiou, and Lindquist [12]. This choice is also motivated by the connection
with prediction error methods, see e.g. Lindquist [72], Stoorvogel and Van Schuppen
[98].

In the multivariate framework, however, the selection of an adequate cost function is
a challenging issue. Indeed, this step is crucial, because the chosen metric should guar-
antee that the corresponding optimization problem can be solved efficiently. Moreover,
the distance index also affects the maximum complexity of the estimate, which is ex-
pressed in terms of its McMillan degree. Of course, one may think of generalizing
scalar indexes to the multichannel scenario. However, this is not obvious at all.

9
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In Georgiou [48] a multivariate version of Kullback-Leibler pseudo-distance inspired
by the von Neumann-Umegaki’s relative entropy of statistical quantum mechanics
(see e.g. Vedral [100], Von Neumann [101]) is considered. However, the corresponding
spectrum approximation problem leads to computable solutions of bounded McMillan
degree only if the prior spectral density is the identity matrix multiplied by a scalar
pseudo-polynomial. This limitation was first circumvented by Ferrante, Pavon, and
Ramponi [40], who introduced a suitable extension of the scalar Hellinger distance.
Indeed, no assumption on the prior spectral density is required (except for rationality).
The McMillan degree of the resulting solution, however, is higher than in the original
scalar THREE method.

The approach we propose is a THREE-like multivariate spectral estimation tech-
nique which allows to overcome these difficulties. It relies on the choice of a metric
which stems from relative entropy rate for Gaussian processes. Remarkably this method
features an upper bound on the complexity of the solution which is equal to the one
featured by THREE in the scalar case. Like all previous THREE-like methods, rela-
tive entropy rate estimator - also referred to as RER in the following - exhibits high
resolution features and works extremely well, outperforming classical identification
methods, in the case of short observation records.

Furthermore, the choice of our distance measure between spectra is also motivated
by a novel information-theoretic result. Indeed, after introducing the notion of spectral
entropy rate for stationary Gaussian processes, we prove that the time and spectral
domain relative entropy rates are equal.

This chapter is outlined as follows. Sections 3.2 collects some information-theoretic
results for Gaussian vector processes. Section 3.3 gives a brief overview on spectral
representation for stationary Gaussian processes. Section 3.4 provides more details
about THREE-like spectral estimation methods and introduces a new metric leading
to relative entropy rate multivariate spectral estimation. In Section 3.5, further mo-
tivation for the choice of the new metric is given, based on a profound connection
between time and spectral domain relative entropy rates for Gaussian processes. In
Section 3.6 the new approach is introduced and a non-trivial result on the existence
of the optimum solution for the corresponding optimization problem is established.
A globally convergent, matricial Newton-type algorithm for computing the solution
is presented in Section 3.8 In Section 3.9, both scalar and multivariate examples are
studied via simulation. Conclusions and future work are presented in Section 3.10
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3.2 preliminary information-theoretic results for gaus-
sian processes

Here we extend the notions provided in Section A.2 to the framework of Gaussian
processes. More details can be found e.g. in Cover and Thomas [27], Ihara [59], Pinsker
[88].

Consider a multivariate discrete-time Gaussian process y(t) = {y(k); k ∈ Z} taking
values in Rm. Let Y[−n,n] be the random vector obtained by considering the window
y(−n), y(−n+ 1), · · · , y(0), · · · , y(n− 1), y(n), and let pY[−n,n] denote the correspond-
ing joint density.

Definition 3.2.1. The (differential) entropy rate of y(t) is defined by

hr(y) := lim
n→∞ 1

2n+ 1
H(pY[−n,n]), (3.1)

if the limit exists.

The following fundamental result holds (see Kolmogorov [64]):

Theorem 3.2.1. Let y(t) = {y(k); k ∈ Z} be a Rm - valued, zero-mean, Gaussian, stationary,
purely nondeterministic stochastic process with spectral density Φy. Then

hr(y) =
m

2
log(2πe) +

1

4π

∫π
−π

log detΦy(ejϑ)dϑ. (3.2)

The multivariate Szegö-Kolmogorov formula establish a fundamental connection
between the quantity appearing in (3.2) and the optimal one-step-ahead predictor. In-
deed, it reads

detR = exp
{
1

2π

∫π
−π

log detΦy(ejϑ)dϑ

}
, (3.3)

where R is the error covariance matrix corresponding to the optimal predictor.
Let y(t) = {y(k); k ∈ Z}, z(t) = {z(k); k ∈ Z} be two zero-mean, jointly Gaussian,

stationary, purely nondeterministic processes taking values in Rm. Let Y[−n,n] and
Z[−n,n] be defined as above.

Definition 3.2.2. The relative entropy rate between y(t) and z(t) is defined by

Dr(y‖z) := lim
n→∞ 1

2n+ 1
D(pY[−n,n] ‖pZ[−n,n]) (3.4)

if the limit exists.

A key result is stated by the following theorem (see Ihara [59], Stoorvogel and Van
Schuppen [98]):
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Theorem 3.2.2. Let y(t) = {y(k); k ∈ Z} and z(t) = {z(k); k ∈ Z} be Rm - valued, zero-
mean, Gaussian, stationary, purely nondeterministic processes with spectral density functions
Φy and Φz, respectively. Assume, moreover, that at least one of the following conditions is
satisfied:

1. ΦyΦ−1
z is bounded;

2. Φy ∈ L2 (−π,π) and Φz is coercive (i.e. ∃α > 0 s.t. Φz(ejϑ) −αIm > 0 a.e. on T).

Then

Dr(y‖z) =
1

4π

∫π
−π

{
log det

(
Φ−1
y (ejϑ)Φz(e

jϑ)
)

+Tr
[
Φ−1
z (ejϑ)

(
Φy(e

jϑ) −Φz(e
jϑ)
)]}

dϑ. (3.5)

3.3 on the spectral representation of stationary gaus-
sian processes

We now state a few basic facts about the spectral representation of a stationary process
that can be found, for instance, in Kramer and Leadbetter [65], Lindquist and Picci
[73], Rozanov [92]. Let y = {y(k); k ∈ Z} be a Rm - valued, zero-mean, purely non-
deterministic, Gaussian, stationary process and let Cl := E

[
y(k+ l)y(k)>

]
, l ∈ Z, be

its covariance lags. Then

Cl =
1

2π

∫π
−π
ejlϑdF(ϑ), (3.6)

where F is a bounded, non-negative, matrix-valued measure called spectral measure.
The stationary process y(t) admits itself the spectral representation

y(k) =
∫π
−π
ejkϑdŷ(ejϑ), (3.7)

where ŷ is a m-dimensional stochastic orthogonal measure, see Rozanov [92]. It may
be obtained by defining, as in Lindquist and Picci [73, pag. 44],

χk(ϑ1, ϑ2) :=

e
−jϑ2k−e−jϑ1k

−2πjk if k 6= 0
ϑ2−ϑ1
2π if k = 0

, (3.8)

and setting

ŷ(ejϑ1 , ejϑ2) := lim
N→+∞

N∑
k=−N

χk(ϑ1, ϑ2)y(k) (3.9)
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where the sequence converges in mean square. We use the notation dŷ(ejϑ) as a short-
hand for ŷ(ejϑ, ej(ϑ+dϑ)) (with dϑ > 0). It is well known that

E
[
dŷ(ejϑ)dŷ(ejϑ)∗

]
= dF(ϑ). (3.10)

Since the process y(t) is assumed to be purely nondeterministic, then dF(ϑ) = Φy(ejϑ)dϑ,
where Φy is the spectral density function.

Proposition 3.3.1. Suppose ϑ1, ϑ2 ∈ (−π,π], then ŷ(e−jϑ2 , e−jϑ1) = ŷ(ejϑ1 , ejϑ2). If, more-
over, ϑ1, ϑ2 have the same sign, then, ŷ(ejϑ1 , ejϑ2) is a circularly symmetric, normally dis-
tributed random vector. Finally, let ϑ1, ϑ2, ϑ3, ϑ4 be such that [ϑ1, ϑ2] ∩ [ϑ3, ϑ4] = [ϑ1, ϑ2] ∩
[−ϑ4,−ϑ3] = ∅. Then, ŷ(ejϑ1 , ejϑ2) and ŷ(ejϑ3 , ejϑ4) are independent random vectors.

Proof. Observe that ŷ(ejϑ1 , ejϑ2) is a complex-valued random vector that may be written
as ŷ(ejϑ1 , ejϑ2) = ŷr(ejϑ1 , ejϑ2) + jŷi(ejϑ1 , ejϑ2). In view of (3.9) the real part ŷr(ejϑ1 , ejϑ2)

and the imaginary part ŷi(ejϑ1 , ejϑ2) are jointly Gaussian real random vectors, so
ŷ(ejϑ1 , ejϑ2) is a complex-valued Gaussian vector. Since y(t) = is a Rm - valued pro-
cess, ŷ(ejϑ1 , ejϑ2) (which may be thought of as an integrated version of a “Fourier
transform”) has the Hermitian symmetry or equivalently ŷ(e−jϑ2 , e−jϑ1) = ŷ(ejϑ1 , ejϑ2).
Moreover, for ϑ1 and ϑ2 with the same sign, ŷ(ejϑ1 , ejϑ2) and ŷ(e−jϑ2 , e−jϑ1) are orthog-
onal. Thus, we get

0 = E
[
ŷ(ejϑ1 , ejϑ2)ŷ(e−jϑ2 , e−jϑ1)∗

]
= E

[
ŷ(ejϑ1 , ejϑ2)ŷ(ejϑ1 , ejϑ2)>

] (3.11)

or, equivalently, ŷ(ejϑ1 , ejϑ2) is circularly symmetric normally distributed. Finally, it
is easy to see that two complex Gaussian random vectors v1, v2 are independent if
and only if E

[
v1v>2

]
= E

[
v1v∗2

]
= 0. In our case, by the orthogonality property, we

have E
[
ŷ(ejϑ1 , ejϑ2)ŷ(ejϑ3 , ejϑ4)∗

]
= 0 and, by taking into account that ŷ(ejϑ3 , ejϑ4)> =

ŷ(e−jϑ4 , e−jϑ3)∗, we also have E
[
ŷ(ejϑ1 , ejϑ2)ŷ(ejϑ3 , ejϑ4)>

]
= 0.

3.4 three-like estimation and generalized moment prob-
lems

Our purpose is solving the following

Problem 3.4.1 (Spectral estimation for multivariate processes). Suppose that the avail-
able data {yi}

N
i=1 are generated by an unknown, zero-mean, m-dimensional, Rm - val-

ued, purely nondeterministic, stationary Gaussian process y(t) = {y(k); k ∈ Z}.
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Task: Based on the data sample, estimate the spectral density of the process y(t).
Let Φ be such density. It is required that Φ ∈ Sm×m+ , i.e. the family of bounded and
coercive spectral densities defined on T := {z ∈ : |z| = 1} of Rm - valued processes.

As mentioned above, we resort to an approach that draws inspiration from scalar
THREE spectrum estimation. This section provides further details about this paradigm.
A general THREE-like approach is sketched in Fig. 1 and hinges on the following
elements:

1. A rational filter to process the available data. The filter has transfer function

G(z) = (zI−A)−1B, (3.12)

where A ∈ Rn×n has all its eigenvalues inside the unit circle, B ∈ Rn×m is full
rank, n > m, and (A,B) is a reachable pair;

2. An estimate of the steady-state covariance Σ of the output process x(t), defined
by

x(t+ 1) = Ax(t) +By(t); (3.13)

3. A prior spectral density Ψ ∈ Sm×m+ ;

4. A metric that measures the distance between two spectral densities.

G(z)
G(z)

Φy

sample data
{yi}

N
i=1

filter state x(t)

Moment constraints

Ψ

Prior spectral density

d(Φ,Ψ)

Metric

+ +

= Constrained approximation problem

Estimate Σ̂ of
Σ := E[xx>]

Figure 1: Scheme of THREE-like estimation paradigm. The red blocks denote the design pa-
rameters.

Rational filter G(z)

The filterbank (3.12), which can be arbitrarily designed by the user, imposes interpola-
tion conditions. This occurs because Φ must satisfy∫

GΦG∗ = Σ (3.14)
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G(z)

G2(z)

G1(z)

Gn(z)

y

x1

x2

xn

Figure 2: Block diagram of the bank of filters

(here and throughout the chapter, integration - when not otherwise specified - is on the
unit circle with respect to normalized Lebesgue measure). The next example shows
how the filter provides Nevanlinna-Pick interpolation data for the positive real part
Φ+ of Φ, see Byrnes, Georgiou, and Lindquist [12, Section II].

Example 3.4.1 (THREE: Connection with Nevanlinna-Pick interpolation). It is conve-
nient to write the transfer function G(z) in the form

G(z) =


G1(z)

G2(z)
...

Gn(z)

 . (3.15)

whose corresponding block diagram representation is shown in figure 2.

For the sake of simplicity, assume now that the wide-sense stationary stochastic
process y(t) is scalar. Suppose that Gk(z) is a first order stable filter, i.e.

Gk(z) =
z

z− pk
, |pk| < 1. (3.16)

Therefore

xk(t) = y(t) + pkxk(t− 1), (3.17)
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and we can write xk(t) =
∑∞
h=0 pk

hy(t− h). Based on the results provided in Section
A.10 we can conclude that the output process xk(t) is stationary. If pk is real, the
output process is also real too and we get

E
[
x2k(t)

]
= E

( ∞∑
h=0

pk
hy(t− h)

)2
= E

[(
y(t) + pky(t− 1) + pk2y(t− 2) + . . .

)2]
= E[y2(t)]

(
1+ p2k + p

4
k + . . .

)
+ 2pkE [y(t)y(t− 1)]

(
1+ p2k + p

4
k + . . .

)
+ 2pk

2E [y(t)y(t− 2)]
(
1+ p2k + p

4
k + . . .

)
+ . . .

= r0
(
1+ p2k + p

4
k + . . .

)
+ 2pkr1

(
1+ p2k + p

4
k + . . .

)
+ 2pk

2r2
(
1+ p2k + p

4
k + . . .

)
+ . . .

=
2

1− pk2

(
1

2
r0 + r1pk + r2pk

2 + . . .

)
=

2

1− pk2
Φ+(pk

−1),

(3.18)

where the last equality can be written thanks to the additive decomposition of the
spectrum (A.26). Thus, we conclude that

Φ+(pk
−1) =

1

2

(
1− pk

2
)

E
[
x2k(t)

]
, (3.19)

which can be read as an interpolation condition on Φ+, as soon as we estimate
E
[
x2k(t)

]
. If pk is a complex pole, instead, the covariance of the output process is

given by

E
[
|xk(t)|2

]
=

1

1− |pk|2

(
Φ+(pk

−1) +Φ+(pk
−1)
)

, (3.20)

where pk is the complex conjugate of pk.

Assume Gk(z) is given by (3.16), for each k = 1, . . . ,n. We can obtain it by means of
the state space realization

x(t+ 1) = Ax(t) +By(t), with A =


p1 0 . . . 0

0 p2 . . . 0
...

...
. . .

...
0 0 . . . pn

 , B =


1

1
...
1

 . (3.21)
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Therefore, the covariance matrix of the n-dimensional output process x(t) reads

Σ = E [x(t)x̄(t)]

=


w1+w̄1
1−p1p̄1

w1+w̄2
1−p1p̄2

. . . w1+w̄n
1−p1p̄n

w2+w̄1
1−p2p̄1

w2+w̄2
1−p2p̄2

. . . w2+w̄n
1−p2p̄n

...
...

. . .
...

wn+w̄1
1−pnp̄1

wn+w̄2
1−pnp̄2

. . . wn+w̄n
1−pnp̄n

 ,
(3.22)

where, by means of (A.25),

wk = Φ+(pk
−1) =

1

4π

∫π
−π

e−jθ + pk
e−jθ − pk

Φ(ejθ)dθ, k = 1, . . . ,n. (3.23)

Thus, the covariance has the form of a Pick matrix. The problem of parameterizing
the set of spectral density functions that satisfy (3.14) can be recast in the form of a
classical Nevanlinna-Pick interpolation problem. Recall that, since Σ > 0, such a problem
is feasible. If the covariance is a positive definite matrix, then there are infinitely many
solutions.

Next, we show that THREE-like estimation allows to deal with rational covariance
extension, too. The latter is the problem of computing a rational spectral density
which is consistent with the available covariance lags. This is a classical issue in partial
stochastic realization, system identification and control theory (see e.g. Byrnes, Gusev,
and Lindquist [14], Byrnes et al. [21], Enqvist [34, 35], Enqvist and Karlsson [37]).
Recall that the covariance lags up to order n are the first n+ 1 coefficients of the series
expansion of Φ+(z) near infinity. Thus, we can interpret the information they convey
as interpolation constraints on the input spectral density.

Example 3.4.2 (THREE: Connection with covariance extension problem). Again, for
the sake of simplicity, let y(t) be scalar. Assume that the filter realizes the transfer
function

G(z) =


1

z−1

...
z−n+2

z−n+1

 , (3.24)
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whose state-space realization can be obtained by means of the matrices

A =


0 1 0 . . . 0

0 0 1 . . . 0
...

...
. . . . . .

...
0 0 . . . 0 1

0 0 . . . 0 0

 , B =


0

0
...
0

1

 . (3.25)

The k-th component of output of the filter, fed by y(t), is given by its time-delayed
version y(t− k+ 1). Therefore, the covariance of the output process is equal to

Σ =


r0 r1 . . . rn−1

r̄1 r0 . . . rn−2
...

...
. . .

...
r̄n−1 r̄n−2 . . . r0

 . (3.26)

Thus, we find that the class of functions that satisfy (3.14) is given by all the possible
solutions of the covariance extension problem of completing the sequence r0, . . . , rn−1
up to a positive, infinite sequence. As in the previous case, this set is nonempty since
Σ > 0 and has infinitely many elements if Σ > 0.

Thus, by means of a proper choice of G(z) we can recast traditional issues in system
identification and control in the framework of THREE paradigm. In addition, we can
also model the effect of linear measurement tools used for processing the available
data. There is even more: Indeed, a clever choice of the location of the filterbank poles
can improve the resolution of the estimate in the corresponding frequency range (see
Section 3.9 and [12, 62]). As one may expect, there is also a trade-off: High order
filters lead to solutions of higher complexity, see Section 3.6. Therefore, the choice of
the filter can be also interpreted as a mechanism that permits tuning.

Output covariance estimate

In order to initialize our estimation procedure, we need an adequate estimate Σ̂ of the
output covariance Σ. This step is crucial in guaranteeing the feasibility of the corre-
sponding optimization problem. Indeed, the output covariance of a linear filter G(z)
has to obey to some structure constraints (see e.g. Burg, Luenberger, and Wenger [8],
Georgiou [54]). In the following, Qm ⊂ Rm×m denotes the m(m+ 1)/2-dimensional,
real vector space ofm-dimensional symmetric matrices. Let Cm×mR+ be the set of contin-
uous spectral densities of m-dimensional Rm - valued processes defined on the unit
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circle T. We indicate by V
(
Cm×mR+

)
the linear space generated by Cm×mR+ . Consider the

linear operator defined by

Γ : V
(
Cm×mR+

)
→ Qn

Γ(Φ) :=

∫
GΦG∗. (3.27)

Then, the output covariance belongs to Range Γ . However, the sample covariance

Σs :=
1

N

N∑
k=1

xkx
>
k (3.28)

usually does not. Thus, the following problem needs to be solved:

Problem 3.4.2 (Computation of Σ̂). Given G(z) and {yk}
N
k=1, find a positive definite

matrix Σ̂ such that

1. it is compatible with the filter, i.e. Σ̂ ∈ Range Γ ;

2. it is “close” to the sample covariance Σs.

In Georgiou [54] a method for computing a basis of Range Γ was first proposed.
Then, problem 3.4.2 was solved in Ramponi, Ferrante, and Pavon [89] by means of a
projection-based technique. In the following, we will resort to a more recent technique,
that was proposed in Ferrante, Pavon, and Zorzi [41]. It is based on the solution of an
ancillary optimization problem, so that the “best” approximant Σ̂ is chosen as

Σ̂ = arg min
Σ∈Range Γ ,Σ>0

1

2

[
log detΣs−1Σ+ TrΣ−1Σs −n

]
, (3.29)

where Σs is the sample covariance (3.28). Numerical results in Ferrante, Pavon, and
Zorzi [41] suggest that this technique can be implemented efficiently and that it out-
performs the previously available ones.

Prior spectral density

In practice, it is often the case that some information on the input spectral density
is available. Our estimation procedure allows to take such a priori information into
account. In particular, it is encoded in the form of a spectral density Ψ, which is used
to initialize the estimation algorithm. For example, Ψ may simply be a coarse estimate
of the true spectrum. When no prior information on Φ is available, the prior Ψ is set
equal either to the identity matrix or to the sample covariance of the available data
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{yi}
N
i=1. Section 3.6 – see inequality (3.69) – shows that the prior Ψ yields a smooth

parametrization of solutions with bounded degree. Thus, the choice of Ψ, as well
as the design of the filter G(z), allows the user to define the trade-off between the
complexity of the solution and its capability of achieving high resolution or capturing
rich dynamics. Thus, it can be also interpreted as a tuning parameter.

Metric

In general, the prior spectral density Ψ does not obey to the interpolation conditions
(3.14). Thus, we have to compute a spectral density satisfying (3.14) which is as "close"
as possible to Ψ. Therefore, it is necessary to introduce an adequate distance index.
This is a frequently encountered problem in spectral estimation. Similarly, one may
also want to compare all the densities in a given family in an informative, quantitative
manner. Thus, it is very important to develop problem-specific metrics (see e.g. Geor-
giou [44, 45, 53], Jiang, Ning, and Georgiou [60]). Moreover, distances between power
spectra can be used quite effectively in identifying transitions, changes, and affinity
between time series or even spatial series. Applications include automated phoneme
recognition, for instance. In that case, suitable metrics allow to identify natural tran-
sition time markers in speech. In a similar fashion, this idea can be fruitfully applied
to image segmentation. Indeed, two-dimensional distributions can be identified on
the inside and outside of a curve. Then, the curve is evolved using geometric active
contours to ensure maximal separation of the spectral content of two regions. This
idea has been recently applied to visual tracking (see e.g. Sandhu, Georgiou, and
Tannenbaum [94]).

As briefly explained in Section 3.1, the crucial choice of the metric used for com-
paring spectral densities in the framework of multivariate THREE-like estimation is
dictated by the following essential requirements:

1. The variational analysis should lead to a computable solution;

2. The solution should be rational of low McMillan degree at least when the prior
Ψ is such.

In the scalar case described in Byrnes, Georgiou, and Lindquist [12], Georgiou and
Lindquist [56], the authors chose to minimize the following Kullback-Leibler type cri-
terion, which features both of the above specifications:

dKL(Ψ,Φ) =

∫
Ψ log

Ψ

Φ
. (3.30)



3.4 three-like estimation and generalized moment problems 21

In the multivariable case, however, it is not obvious at all how to choose a proper
metric. In Georgiou [48], a multivariate generalization of Kullback-Leibler divergence
was introduced. This choice drew inspiration from Von Neumann-Umegaki’s relative
entropy (see e.g. Nielsen and Chuang [82]), frequently employed in statistical quan-
tum mechanics. The resulting spectrum approximation problem, however, leads to
computable solutions of bounded McMillan degree only in the case when the prior
spectral density has the form Ψ(z) = ψ(z)I, where ψ(z) is a scalar spectral density.
When Ψ = I, in particular, this apporach yields the maximum entropy solution, as de-
scribed in Blomqvist, Lindquist, and Nagamune [5], Georgiou [48, 50]. This limitation
was first overcome in Ferrante, Pavon, and Ramponi [40], where the following exten-
sion of Hellinger distance was suggested:

dH(Ψ,Φ)2 := inf
WΨ,WΦ

Tr
∫
(WΨ −WΦ) (WΨ −WΦ)

∗ ,

such that WΨW
∗
Ψ = Ψ and WΦW

∗
Φ = Φ. (3.31)

The cost function (3.31) is just the L2-distance between the sets of square spectral factors
of the two spectra. Thus, in contrast with Kullback-Leibler divergence, this is a bona fide
distance. Moreover, the variational analysis can be carried out explicitely also in the
case of a general rational prior density, leading to a computable rational solution. The
complexity of the solution, however, is usually noticeably higher than in the original
scalar THREE approach.

Now we introduce a new metric based on relative entropy rate for Gaussian pro-
cesses. Based on this cost function, in the next section we propose a new multivariate
THREE-like spectral estimation technique, which turns out to be rather effective and
achieves the performance of scalar THREE spectral estimator in terms of maximum
complexity of the solution. Motivated by relation (3.5), we define a new pseudo-
distance among spectra in Sm×m+ :

dRER(Φ,Ψ) :=
1

4π

∫π
−π

{
log det

(
Φ−1(ejϑ)Ψ(ejϑ)

)
+ Tr

[
Ψ−1(ejϑ)

(
Φ(ejϑ) −Ψ(ejϑ)

)]}
dϑ.

(3.32)

Notice that in the case of scalar spectra, dRER(Φ,Ψ) = 1/2dIS(Φ,Ψ), where

dIS(Φ,Ψ) =
1

2π

∫π
−π

{
Φ(ejϑ)

Ψ(ejϑ)
− log

Φ(ejϑ)

Ψ(ejϑ)
− 1

}
dϑ (3.33)

is the classical Itakura-Saito distance, which is related to maximum likelihood estima-
tion and is frequently encountered in speech processing (Basseville [4], Gray et al. [58]).
Further motivation for this distance choice is provided by a novel information-theoretic
result relating time and spectral domain relative entropy rates, stated in Section 3.5.
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3.5 spectral relative entropy rate

Consider two zero-mean, jointly Gaussian, stationary, purely nondeterministic stochas-
tic processes y(t) = {y(k); k ∈ Z} and z(t) = {z(k); k ∈ Z} taking values in Rm with
spectral representation

y(k) =
∫π
−π
ejkϑdŷ(ejϑ), E

{
dŷ(ejϑ)dŷ(ejϑ)∗

}
= Φy(e

jϑ)dϑ, (3.34)

z(k) =
∫π
−π
ejkϑdẑ(ejϑ), E

{
dẑ(ejϑ)dẑ(ejϑ)∗

}
= Φz(e

jϑ)dϑ. (3.35)

Let ϑk = πk
n , and consider the complex Gaussian random vectors δŷk := ŷ(ejϑk , ejϑk+1)

and δẑk := ẑ(ejϑk , ejϑk+1), with k = 0, 1 . . . , 2n. Define now the random vectors

Ŷk :=


δŷ0

...
δŷk−1

 , Ẑk :=


δẑ0

...
δẑk−1

 , k = 1, . . . , 2n, (3.36)

and denote their joint probability density by p(Ŷk) and p(Ẑk), respectively.

Definition 3.5.1. The spectral relative entropy rate between between y and z is defined
by the following limit, provided it exists:

Dr(dŷ‖dẑ) := lim
n→∞ 1

2n
D(p

(
Ŷ2n

)
‖p
(
Ẑ2n

)
). (3.37)

We now establish a remarkable connection between time-domain and spectral-domain
relative entropy rates. First we need the following lemma:

Lemma 3.5.1 (Dai Pra, [29]). Let u, v be k-dimensional, real random vectors with probability
distributions P,Q, respectively. Let f : Rk → Rh be measurable and Pa,Qa be the probability
distributions of the augmented vectors [u> f(u)>]> and [v> f(v)>]>, respectively. Then

D(Pa ‖Qa) = D(P ‖Q). (3.38)

Proof. Recall the variational formula for relative entropy Dembo and Stroock [31]:

D(P ‖Q) = sup
ϕ∈φ

{
E[ϕ(v)] − log E

[
eϕ(u)

]}
, (3.39)

where φ is the set of all measurable and bounded functions ϕ : Rk → R. Consider a
measurable and bounded function ϕ : Rk → R. Define ϕa : Rk+h → R by

ϕa([x
> x ′>]>) := ϕ(x), (3.40)
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where x ′ ∈ Rh. Obviously, ϕa is bounded and measurable, and

E[ϕ(v)] − log E
[

eϕ(u)
]
= E[ϕa(va)] − log E

[
eϕa(ua)

]
6 D(Pa ‖Qa).

(3.41)

By taking the supremum, we get that D(P ‖Q) 6 D(Pa ‖Qa). The opposite inequality
can be proven along the same lines. Indeed, let ψa : Rh+k → R be a measurable and
bounded function. Define ψ : Rk → R by ψ(x) := ψa(x, f(x)). Then, ψ is measurable
and bounded too, so that

E[ψa(va)] − log E
[

eψa(ua)
]
= E[ψ(v)] − log E

[
eψ(u)

]
6 D(P‖Q).

(3.42)

In view of (3.39), we now get D(Pa ‖Qa) 6 D(P ‖Q).

Now we can prove the main result:

Theorem 3.5.1. Let y and z be as above. Assume that both Φy and Φz are piecewise continu-
ous, coercive spectral densities. The following equality holds:

Dr(y‖z) = Dr(dŷ‖dẑ). (3.43)

Proof. In view of proposition 3.3.1, the last n components of Ŷ2n are functions (the
complex conjugate) of the first n and the same holds for Ẑ2n. Hence, in view of lemma
3.5.1, we have D(p

(
Ŷ2n

)
‖p
(
Ẑ2n)

)
) = D(p

(
Ŷn
)
‖p
(
Ẑn
)
). Using again proposition

3.3.1, we have that the elements of Ŷn are independent random vectors and the same
holds for the elements of Ẑn. Hence, we have the following additive decomposition:

D(p
(
Ŷ2n

)
‖p
(
Ẑ2n

)
) = D(p

(
Ŷn
)
‖p
(
Ẑn
)
) =

n−1∑
k=0

D (p(δŷk)‖p(δẑk)) , (3.44)

with p(δŷk) and p(δẑk) being the probability densities of the random vector δŷk =

ŷ(ejϑk , ejϑk+1) and δẑk =ẑ(ejϑk , ejϑk+1), respectively. Since δŷk and δẑk are jointly Gaus-
sian and circularly symmetric, by (A.16) and (3.34)-(3.35), we get,

D(p(δŷk) ‖p(δẑk)) = log det
[
Q−1
y (ϑk, ϑk+1)Qz(ϑk, ϑk+1)

]
+ Tr

[
Q−1
z (ϑk, ϑk+1)Qy(ϑk, ϑk+1)

]
−m,

(3.45)

where, by virtue of the orthogonal increments property,

Qy(ϑk, ϑk+1) :=
∫ϑk+1
ϑk

Φy(e
jξ)dξ, (3.46)

Qz(ϑk, ϑk+1) :=
∫ϑk+1
ϑk

Φz(e
jξ)dξ. (3.47)



24 relative entropy rate estimation

By piecewise continuity and the mean value theorem, we have that, except for a finite
number of k’s,

D(p(δŷk) ‖p(δẑk)) = log det
[(
Φy(e

jϑ̄k)
π

n

)−1
Φz(e

jϑ̄k)
π

n

]
+ Tr

[(
Φz(e

jϑ̄k)
π

n

)−1
Φy(e

jϑ̄k)
π

n

]
−m

= log det[Φy(ejϑ̄k)−1Φz(e
jϑ̄k)]

+ Tr
[
Φz(e

jϑ̄k)−1Φy(e
jϑ̄k)
]
−m,

(3.48)

where ϑk 6 ϑ̄k < ϑk+1. By employing the latter expression together with (3.44) and
(3.37), we get

Dr(dŷ‖dẑ) = lim
n→∞ 1

2n
D
(
Ŷn‖Ẑn

)
= lim
n→∞ 1

2n

n−1∑
k=0

D (p(δŷk)‖p(δẑk))

= lim
n→∞ 1

2n

n−1∑
k=0

log detΦy(ejϑ̄k)−1Φz(e
jϑ̄k)

+ Tr
[
Φ−1
z (ejϑ̄k)

(
Φy(e

jϑ̄k) −Φz(e
jϑ̄k)
)]

= lim
n→∞ 1

2π

n−1∑
k=0

{
log detΦy(ejϑ̄k)−1Φz(e

jϑ̄k)

+Tr
[
Φ−1
z (ejϑ̄k)

(
Φy(e

jϑ̄k) −Φz(e
jϑ̄k)
)]} π

n

=
1

2π

∫π
0

{
log det

(
Φ−1
y (ejϑ)Φz(e

jϑ)
)

+Tr
[
Φ−1
z (ejϑ)

(
Φy(e

jϑ) −Φz(e
jϑ)
)]}

dϑ

=
1

4π

∫π
−π

{
log det

(
Φ−1
y (ejϑ)Φz(e

jϑ)
)

+Tr
[
Φ−1
z (ejϑ)

(
Φy(e

jϑ) −Φz(e
jϑ)
)]}

dϑ,

(3.49)

which, by (3.5), is (3.43).

Remark 3.5.1. As is well known, the fundamental property of the Fourier transform
is that it is isometric. The above result may be interpreted as a further invariance
principle of the Fourier transform: the relative entropy rate is the same in the time and
spectral domain.
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3.6 rer estimation: preliminary results

Based on the choice of (3.32) as a metric for evaluating the “distance” between mul-
tivariate spectral densities, we propose a new THREE-like spectral estimator for mul-
tivariate processes, the so-called RER (Relative Entropy Rate) estimator. It solves the
following

Problem 3.6.1 (RER constrained spectrum approximation problem). Let Ψ ∈ Sm×m+ ,
G(z) as in (3.12) and Σ = Σ> > 0. Find Φ◦ that solves

minimize dRER(Φ,Ψ) over
{
Φ ∈ Sm×m+ |

∫
GΦG∗ = Σ

}
. (3.50)

Remark 3.6.1. Alternatively, we could also minimize the distance index (3.32) with re-
spect to the second argument. This would be consistent with the usual choice in
dealing with some minimum prediction error and model reduction problems, see
Lindquist and Picci [73]. However, this approach is not suitable for our purposes.
Indeed, it may lead to a non rational solution, even if the prior Ψ is rational. Consider

dRER(Ψ,Φ) =

∫
1

2

[
log

detΦ
detΨ

+ Tr(Φ−1Ψ) −m

]
. (3.51)

The corresponding Lagrangian function is defined by

L̃Ψ(Φ,Λ) =
∫ [

log
det(Φ)

det(Ψ)
+ Tr(Φ−1Ψ) + Tr(ΛGΦG∗)

]
− TrΛ. (3.52)

and the first directional derivative can be written as

δL̃Ψ(Φ,Λ; δΦ) =

∫
Tr
{[
Φ−1 −Φ−1ΨΦ−1 +G∗ΛG

]
δΦ
}

. (3.53)

The condition that has to be satisfied by stationary points, i.e. δL̃Ψ(Φ,Λ; δΦ) = 0, for
all δΦ ∈ C(T), is equivalent to ask that

Φ−1 −Φ−1ΨΦ−1 +G∗ΛG = 0. (3.54)

This equality allows to obtain an expression for stationary points in terms ofΛ. Indeed,

Φ−Ψ+ΦG∗ΛGΦ = 0 (3.55)

Assume WΛ such that G∗ΛG =WΛ
∗WΛ. Then

0 = Φ−Ψ+ΦG∗ΛGΦ

=WΛΦWΛ
∗︸ ︷︷ ︸

ΦΛ

−WΛΨWΛ
∗︸ ︷︷ ︸

ΨΛ

+WΛΦWΛ
∗WΛΦWΛ

∗

= ΦΛ −ΨΛ +ΦΛ
2.

(3.56)



26 relative entropy rate estimation

Equation (3.56) is solved by choosing

ΦΛ = −
1

2
I+

(
1

4
I+ΨΛ

) 1
2

, (3.57)

as can be proven by substitution:

−
1

2
I+

(
1

4
I+ΨΛ

) 1
2

−ΨΛ +
1

4
I−

(
1

4
I+ΨΛ

) 1
2

+
1

4
I+ΨΛ = 0 (3.58)

Therefore, we can obtain the following expression for the optimal solution Φ◦

Φ◦ = −
1

2
(G∗ΛG)−1 +WΛ

−1

(
1

4
I+WΛΨWΛ

∗
) 1
2

WΛ
−∗ (3.59)

which may be not rational, even for rational Ψ.

3.6.1 Feasibility

First we deal with the issue of feasibility of problem 3.6.1: Does exist Φ ∈ Sm×m+ (T)

satisfying (3.14), where G is the transfer function of the bank of filters (3.12) and Σ is
the steady-state covariance of the output process?

A major role is played by the operator (3.4). The following result can be obtained
along the same lines of Georgiou [54] (see also Ramponi, Ferrante, and Pavon [89]).1

Theorem 3.6.1. Consider Σ = Σ> ∈ Rn×n and a filter defined as in (3.12). Then:

1. Σ is in Range(Γ) if and only if there exists H ∈ Rm×n such that

Σ−AΣA> = BH+H>B>. (3.60)

2. Let the Σ ∈ Rn×n be positive definite. Then, there exists H ∈ Rm×n that solves (3.60)
if and only if there exists Φ ∈ Cm×mR+ such that Γ(Φ) = Σ.

From now on we assume feasibility of problem 3.6.1. In view of the previous result,
this is equivalent to the fact that Equation (3.60) admits a solution H̄. Moreover, to
simplify the exposition, we assume that Σ = I. This can be done without loss of
generality. In fact, if Σ 6= I, it suffices to replace G with G ′ := Σ−1/2G and (A,B) with
(A ′ = Σ−1/2AΣ1/2,B ′ = Σ−1/2B) to obtain an equivalent problem where Σ = I.

1 In Georgiou [54] the general case was considered when A ∈ Cn×n, B ∈ Cn×m and the process y(t)
is complex-valued, too. In that case, it was proven that the Hermitian matrix Σ ∈ Cn×n belongs to
Range(Γ) if and only if there exists H ∈ Cm×n solving the feasibility equation Σ−AΣA∗ = BH+H∗B∗.
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3.6.2 Form of the optimum solution

For the sake of simplicity, notice that problem 3.6.1 is equivalent to minimizing, over
Sm×m+ ,

2dRER(Φ,Ψ) +m =

∫ {
log det

(
Φ−1Ψ

)
+ Tr

(
Ψ−1Φ

)}
, (3.61)

subject to (3.14). Recall that the inner product in Qn is defined by 〈M,N〉 = Tr[MN].
Thus, the Lagrangian reads

LΨ(Φ,Λ) = 2dRER(Φ,Ψ) +m+ 〈Λ,
∫
GΦG∗ − Σ〉

=

∫ [
log

det(Ψ)
det(Φ)

+ Tr(Ψ−1Φ) + Tr(ΛGΦG∗)
]
− TrΛ,

where it is assumed that Σ = I and the Lagrange parameter Λ ∈ Qn. Notice that
each Λ ∈ Qn can be uniquely decomposed as Λ = ΛΓ +Λ⊥, where ΛΓ ∈ Range (Γ)
and Λ⊥ ∈ (Range (Γ))⊥. Each Λ⊥ ∈ (Range (Γ))⊥ is such that G∗(ejϑ)Λ⊥G(e

jϑ) ≡ 0
(see Ramponi, Ferrante, and Pavon [89, Section III]). Moreover, Tr[Λ⊥] = 〈Λ⊥, I〉 = 0,
because I ∈ Range (Γ) in view of the feasibility assumption. Hence, a term Λ⊥ ∈
(Range (Γ))⊥ gives no contribution to the Lagrangian (3.62). Therefore, from now on,
we will assume that the Lagrange parameter Λ belongs to Range(Γ).

Now we aim at computing the form of the optimum solution. Notice that LΨ(·,Λ)
in (3.62) is strictly convex on Sm×m+ . thus, in order to find the minimizer, we impose
the first variation to be zero in each direction δΦ ∈ Lm×m2 . Recall that, for a positive
definite matrix X, the directional derivative of log det(X) in direction δX is given by

δ log det(X; δX) = Tr(X−1δX). (3.62)

Thus, we find

δL(Φ,Λ; δΦ) =

∫ [
−Tr(Φ−1δΦ) + Tr(Ψ−1δΦ) + Tr(G∗ΛGδΦ)

]
=

∫
〈−Φ−1 +Ψ−1 +G∗ΛG, δΦ〉.

(3.63)

Since
[
−Φ−1 +Ψ−1 +G∗ΛG

]
∈ Lm×m2 , (3.63) vanishes ∀ δΦ ∈ Lm×m2 if and only if

Φ = Φ◦(Λ) :=
[
Ψ−1 +G∗ΛG

]−1
. (3.64)

Let WΨ be the stable and minimum phase spectral factor of Ψ,2 and G1(ejϑ) be defined
by

G1(e
jϑ) := G(ejϑ)WΨ(e

jϑ). (3.65)

2 Since Ψ ∈ Sm×m+ , WΨ exists. It is unique up to multiplication on the right by a constant orthogonal
matrix.
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We can also compute an alternative form of (3.64)

Φ◦(Λ) =WΨ(I+G
∗
1ΛG1)

−1W∗Ψ. (3.66)

Since Φ◦ is required to be a bounded spectral density, we need, as indicated by (3.66),
to restrict the Lagrange multiplier Λ to the subset L+, where

L+ := {Λ ∈ Qn | I+G∗1ΛG1 > 0 a.e. on T} . (3.67)

In conclusion, the natural set for the Lagrangian multiplier Λ is

LΓ+ := L+ ∩Range (Γ). (3.68)

3.6.3 Complexity of the solution

Notice that (3.64) yields an upper bound on the McMillan degree deg[Φ◦] of the opti-
mum approximant Φ◦. Indeed, it follows from (3.64) that

deg[Φ◦] 6 deg[Ψ] + 2n, (3.69)

where n is the McMillan degree of G(z). The McMillan degree can be regarded as
a measure of complexity. It is worthwhile that RER estimation improves on the best
so far available upper bound on the complexity of the solution in the framework of
THREE-like multivariate spectral estimation. Indeed, the method proposed in Fer-
rante, Pavon, and Ramponi [40], which hinges on a multivariate extension of Hellinger
distance (see also Section 3.4), entails a complexity upper bound which is equal to
deg[Ψ] + 4n.

In light of (3.69), it emerges that better resolution – which requires G(z) to have
poles in the prescribed frequency range, and thus higher degree n, see Section 3.9 –
can be attained at a price of higher complexity of the solution. At the same time, the
prior acts as a tuning parameter, too, since it affects the McMillan degree of Φ◦.

3.7 the dual problem

To sum up, the main result of the previous section is that for each Λ ∈ LΓ+ there exists
a unique Φ◦ ∈ Sm×m+ , whose form is given by (3.64), that minimizes the Lagrangian
functional. The solution has maximum McMillan degree equal to 2n+ degΨ. If we
can find a Λ◦ s.t. Φ◦(Λ◦) satisfies the integral constraints (3.14), such a Φ◦(Λ◦) is the
solution of problem 3.6.1. Thus, we resort to duality theory: Indeed, the dual problem
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is finite dimensional, in contrast with the primal one. Moreover, duality allows us to
prove uniqueness and existence of the solution to Problem 3.6.1.

Instead of maximizing

inf
Φ
L(Φ,Λ) = L(Φ◦,Λ) =

∫
log det(I+G∗1ΛG1) +n− TrΛ, (3.70)

we will equivalently minimize the dual functional:

JΨ(Λ) := −L(Φ◦(Λ),Λ) +n

=

∫
[TrΛ− log det(I+G∗1ΛG1)] .

(3.71)

Recall that, given a matrix A = A∗ > 0, we have
∫

log detA =
∫

Tr logA. Hence, we
can express the dual functional also as

JΨ(Λ) =

∫
Tr [Λ− log(I+G∗1ΛG1)] . (3.72)

Given δΛ ∈ Qn, by means of (3.62) we can evaluate its first variation:

δJΨ(Λ; δΛ) = ∇JΨ,Λ(δΛ)

=

∫ {
Tr [δΛ] − Tr

[
(I+G∗1ΛG1)

−1G∗1δΛG1

]}
.

(3.73)

The results of this section show that there exists a unique Λ◦ ∈ LΓ+ minimizing
JΨ(Λ) in (5.44). Such a Λ◦ annihilates the directional derivative (3.73) in any direction
δΛ ∈ Qn, namely

〈I−
∫
G1(I+G

∗
1Λ
◦G1)

−1G∗1, δΛ〉 = 0 ∀δΛ ∈ Qn, (3.74)

or, equivalently,

I =

∫
G1(I+G

∗
1Λ
◦G1)

−1G∗1 =

∫
GΦ◦(Λ◦)G∗. (3.75)

This means that the corresponding spectral density Φ◦ := Φ(Λ◦) =
[
Ψ−1 +G∗Λ◦G

]−1,
satisfies constraint (3.14) and is therefore the unique solution of problem 3.6.1.

Uniqueness of the minimizing Λ0 ∈ LΓ+ is an obvious consequence of the following
result.

Theorem 3.7.1. The dual functional JΨ(Λ) belongs to C2(LΓ+) and is strictly convex on LΓ+.

Proof. Consider a sequence Mn ∈ Range (Γ), such that Mn → 0, and define, for N ∈
Qn, QN(z) = I+G∗1(z)NG(z). By Lemma 5.2 in Ramponi, Ferrante, and Pavon [89],
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Q−1
Λ+Mn

converges uniformly to Q−1
Λ , so that it is bounded above. Hence, applying

the bounded convergence theorem, we get

lim
n→∞

∫
Tr
[
Q−1
Λ+Mn

G∗1δΛG1

]
=

∫
Tr
[
Q−1
Λ G∗1δΛG1

]
, (3.76)

so that JΨ(Λ) belongs to C1(LΓ+). Consider now the second variation. Let us denote
the matrix inversion operator by R : M 7→ M−1 and recall that its first derivative in
direction δM is given by δR (M, δM) = −M−1δMM−1. Then, for δΛ1 and δΛ2 in Qn,
we have

δ2JΨ(Λ; δΛ1, δΛ2) =
∫

Tr
[
(I+G∗1ΛG1)

−1G∗1δΛ2G1(I+G
∗
1ΛG1)

−1G∗1δΛ1G1

]
, (3.77)

so that JΨ(Λ) is C2(LΓ+). The bilinear form HΛ(·, ·) := δ2JΨ(Λ; ·, ·) is the Hessian of JΨ
at Λ. For δΛ ∈ Range(Γ), which implies that (Λ+ εδΛ) ∈ LΓ+ for sufficiently small ε,
consider HΛ(δΛ, δΛ) = δ2JΨ(Λ; δΛ, δΛ). We get

HΛ(δΛ, δΛ) =
∫

Tr
[
(I+G∗1ΛG1)

−1G∗1δΛG1(I+G
∗
1ΛG1)

−1G∗1δΛG1

]
=

∫
Tr
[
Q

− 1
2

Λ G∗1δΛG1Q
−1
Λ G∗1δΛG1Q

− 1
2

Λ

] (3.78)

which vanishes if and only if the integrand is identically zero. Moreover G∗1δΛG1 =

W∗ΨG
∗δΛGWΨ is identically zero on T if and only if δΛ ∈ Range(Γ)⊥. On the other

hand we have assumed δΛ ∈ Range(Γ), so that the integrand is identically zero if and
only if δΛ = 0. In conclusion, the Hessian is positive-definite and the dual functional
is strictly convex on LΓ+.

The next and most delicate step is to prove that, although the set LΓ+ is open and
unbounded, a Λ◦ minimizing JΨ over LΓ+ does exist. To this aim, first we prove that the
function JΨ(Λ) is inf-compact, i.e. ∀α ∈ R, the set

{
Λ ∈ LΓ+ | JΨ(Λ) 6 α

}
is compact.

To establish this fact, define LΓ+ to be the closure of LΓ+, i.e. the set

LΓ+ =
{
Λ = Λ> ∈ Rn×n |Λ ∈ Range(Γ), I+G∗1ΛG1 > 0, ∀ejϑ ∈ T

}
. (3.79)

Given that, for Λ belonging to the boundary ∂LΓ+, the Hermitian matrix I+G∗1ΛG1 is
singular, in at least one point of T, it is useful to introduce the following sequence of
functions on LΓ+:

JnΨ(Λ) =

∫
Tr
[
Λ− log

(
I+G∗1ΛG1 +

1

n
I

)]
, n > 1. (3.80)
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Recall that a real-valued function f is said to be lower semicontinuous at x0 if, ∀ ε > 0,
there exists a neighborhood U of x0 such that, ∀ x ∈ U, f(x) > f(x0) − ε. Recall also
that, given f : Rn×n → R, its epigraph epi (f) is defined by

epi (f) :=
{
(x,a) ∈ Rn×n ×R |a > f(x)

}
. (3.81)

Moreover, f is a lower semicontinuous (convex) function if and only if its epigraph is
closed (convex), see e.g. Rockafellar [90]. The following lemmata allow to conclude
that JΨ(Λ) is inf-compact over LΓ+.

Lemma 3.7.1. The pointwise limit J∞Ψ (Λ), defined as J∞Ψ (Λ) := limn→∞ JnΨ(Λ), exists and
is a lower semicontinuous and convex function defined over LΓ+, with values in the extended
reals.

Proof. The additive term 1
nI ensures that, for each n, JnΨ(Λ) is a continuous and con-

vex function of Λ on the closed set LΓ+. From the properties of JnΨ(Λ), it follows that
epi (JnΨ(Λ)) is a closed and convex subset of Rn×n ×R. In addition, the pointwise
sequence is monotonically increasing, since JnΨ(Λ) < J

n+1
Ψ (Λ). Therefore, it converges

to J∞Ψ (Λ) := supn J
n
Ψ(Λ). Since the intersection of closed sets is closed and the inter-

section of convex sets is convex, epi J∞Ψ (Λ) = ∩nepi JnΨ(Λ) is closed and convex. As a
consequence, J∞Ψ (Λ) is lower semicontinuous and convex.

Lemma 3.7.2. Assume that the feasibility condition (3.60) holds. Given Λ ∈ LΓ+, there exist
two real constants µ > 0 and α such that:

Tr [Λ] > µTr
[∫

(G∗1ΛG1 + I)

]
+α. (3.82)

Proof. Since Σ = I, by feasibility, there exists ΦI ∈ Sm×m+ such that
∫
GΦIG

∗ = I. Thus,

Tr [Λ] = Tr
[∫
GΦIG

∗Λ

]
= Tr

[∫
G∗ΛGΦI

]
= Tr

[∫
W∗ΨG

∗ΛGWΨW
−1
Ψ ΦIW

−∗
Ψ

]
= Tr

[∫
G∗1ΛG1Ξ

]
,

(3.83)

where the cyclic property of the trace was employed and the auxiliary spectral density
Ξ :=W−1

Ψ ΦIW
−∗
Ψ has been defined. By defining α := −Tr

[∫
Ξ
]
, it follows that

Tr [Λ] = Tr
[∫

(G∗1ΛG1 + I)Ξ

]
− Tr

[∫
Ξ

]
= Tr

[∫
(G∗1ΛG1 + I)Ξ

]
+α.

(3.84)
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Let ∆ be such that (G∗1ΛG1 + I) = ∆∗∆ (recall that we are assuming Λ ∈ LΓ+ so
that G∗1ΛG1 + I is positive definite on T and admits a right spectral factor ∆) so that
Tr
[
(G∗1ΛG1 + I)Ξ

]
= Tr [∆Ξ∆∗] . Given that Ξ = W−1

Ψ ΦIW
−∗
Ψ is a coercive spectrum,

because both ΦI and Ψ belong to Sm×m+ , there exists µ > 0 s.t. Ξ(ejϑ) > µI, ∀ ejϑ ∈ T.
Recalling that the trace and the integral are monotonic functionals, it is possible to
conclude that

Tr [Λ] = Tr
[∫

(G∗1ΛG1 + I)Ξ

]
+α

> µTr
[∫

(G∗1ΛG1 + I)

]
+α.

(3.85)

Lemma 3.7.3. Let B :=
{
Λ ∈ ∂LΓ+ | det

(
G∗1ΛG1 + I

)
= 0, ∀ejϑ ∈ T

}
and consider its

complement set Bc :=
{
Λ ∈ ∂LΓ+ |Λ /∈ B

}
. Then, under feasibility assumption:

1. J∞Ψ (Λ) is bounded from below on LΓ+;

2. J∞Ψ (Λ) = JΨ(Λ) on LΓ+;

3. J∞Ψ (Λ) is finite over Bc.

The proof can be found in the Appendix.

Proof.

1. As a consequence of the previous lemma,

JnΨ(Λ) =

∫
Tr
[
Λ− log(I+G∗1ΛG1 +

1

n
I)

]
>
∫

Tr
[
µ(I+G∗1ΛG1) − log(I+G∗1ΛG1 +

1

n
I)

]
+α.

(3.86)

Let {xi} be the eigenvalues of (I+G∗1ΛG1). Then,

JnΨ(Λ) =

∫
Tr
[
µ(I+G∗1ΛG1) − log(I+G∗1ΛG1 +

1

n
I)

]
+α

=

∫
µ

m∑
i=1

xi −

m∑
i=1

log
(
xi +

1

n

)
+α =

∫
ρ (x1, . . . , xm) +α,

(3.87)

where ρ(x1, . . . , xm) := µ
∑m
i=1 xi −

∑m
i=1 log

(
xi +

1
n

)
. Moreover,

∂

∂xi
[ρ(x1, . . . , xm)] = µ−

1

xi +
1
n

∀ i. (3.88)



3.7 the dual problem 33

The minimum of ρ is thus attained by choosing xi = 1
µ − 1

n , ∀ i. Therefore,

ρ(x1, . . . , xm) > m−
µm

n
+m logµ (3.89)

The fact that JnΨ(Λ) is bounded from below over LΓ+ now follows:

JnΨ(Λ) > α+m+m logµ−
µm

n
> α+m+m logµ. (3.90)

2. Beppo Levi’s Theorem allows to conclude that J∞Ψ (Λ) = JΨ(Λ) in LΓ+:

J∞Ψ (Λ) =
∫

Tr[Λ] −
∫

Tr
[

lim
n→∞ log(I+G∗1ΛG1 +

1

n
I)

]
= JΨ(Λ). (3.91)

3. Since, for Λ ∈ Bc, the rational function det (I+G∗1ΛG1) is not identically zero,
its logarithm is integrable over T. Hence, J∞Ψ (Λ) is finite. J∞Ψ (Λ) = +∞ instead
for Λ ∈ B.

Lemma 3.7.4. If the feasibility hypothesis holds, then, for Λ ∈ LΓ+,

lim
‖Λ‖→+∞ JΨ(Λ) = +∞. (3.92)

Proof. In view of lemma 3.7.2

Tr [Λ] > µTr
[∫

(G∗1ΛG1 + I)

]
+α > α, (3.93)

so that Tr [Λ] is bounded from below. Consider a sequence {Λk}k∈N ∈ LΓ+, such that

lim
k→∞ ‖Λk‖ = +∞. (3.94)

Let Λ0k := Λk
‖Λk‖ . Since LΓ+ is convex and Λ = 0 belongs to LΓ+, ∀ ξ ∈ [0, 1], ξΛ ∈ LΓ+.

Therefore Λ0k ∈ LΓ+ for sufficiently large k. Let η := lim inf Tr
[
Λ0k
]

In view of (3.93)

TrΛ0k =
1

‖Λk‖
TrΛk >

1

‖Λk‖
α → 0, (3.95)

for ‖Λk‖ → ∞, so η > 0. Thus, the sequence
{
Λ0k
}

has a subsequence such that the
limit of its trace is η. Given that Λ0k belongs to the surface of the unit ball, which is

compact, the subsequence contains a subsubsequence
{
Λ0km

}
km∈N

that is convergent.

Define
Λ0∞ := lim

km→∞Λ0km . (3.96)
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The next step is to prove that Λ0∞ ∈ LΓ+. To this aim, notice that Λ0∞ is the limit of a
convergent sequence in the finite-dimensional linear space Range (Γ). Therefore it be-
longs to Range (Γ). Moreover, recall that the primary sequence {Λk}k∈N has elements
belonging to LΓ+. It means that, for each Λk, (I+G∗1ΛkG1) > 0. As a consequence, it
holds that, for each m, (

1

‖Λkm‖
I+G∗1Λ

0
km
G1

)
> 0 on T . (3.97)

Taking the pointwise limit for m→∞, it results that G∗1Λ
0∞G1 is positive semidefinite

on T, and so (I+G∗1Λ
0∞G1) is strictly positive definite on T. Therefore, Λ0∞ ∈ LΓ+.

The next step is to prove that TrΛ0∞ > 0. If the feasibility condition (3.60) holds,
there exists ΦI such that I =

∫
GΦIG

∗. Therefore, it is possible to write:

TrΛ0∞ = Tr
∫
GΦIG

∗Λ0∞ =

∫
Tr
[
W−∗
Ψ W∗ΨG

∗Λ0∞GWΨW−1
Ψ ΦI

]
=

∫
Tr

G∗1Λ0∞G1W−1
Ψ ΦIW

−∗
Ψ︸ ︷︷ ︸

Ξ

 =

∫
Tr
[
Ξ
1
2G∗1Λ

0∞G1Ξ 12
]

,
(3.98)

where the coercive spectral density Ξ is defined as in lemma 3.7.2. Since G∗1Λ
0∞G1 > 0,

in order to prove that Tr
[
Λ0∞] is positive, in view of (3.98) it is sufficient to show that

G∗1Λ
0∞G1 is not identically zero. Assume by contradiction that G∗1Λ

0∞G1 ≡ 0. As a
consequence, ∀ ejϑ ∈ T,

0 ≡ G∗1Λ0∞G1 =W∗ΨG∗Λ0∞GWΨ. (3.99)

Therefore, G∗Λ0∞G ≡ 0. However, this means that Λ0∞ ∈ Range(Γ)⊥. But it has already
been proven that Λ0∞ ∈ Range(Γ). Moreover, Λ0∞ 6= 0, since it belongs to the surface of
the unit ball. This is a contradiction. Thus, G∗1Λ

0∞G1 is not identically zero, and from
(3.98) it follows that η = TrΛ0∞ > 0. It follows that there exists K such that TrΛ0k >

η
2 for

all k > K. Notice that G∗1G1 is positive definite on T (and indeed coercive). Moreover,
G∗1Λ

0
kG1 6 G

∗
1G1, since Λ0k belongs to the unit ball. Therefore,

lim inf
k→∞ JΨ(Λk) = lim inf

k→∞
∫

Tr [Λk − log(I+G∗1ΛkG1)]

= lim inf
k→∞ Tr

[
‖Λk‖Λ0k

]
− lim inf

k→∞
∫

Tr
[

log
[
‖Λk‖

(
1

‖Λk‖
I+G∗1Λ

0
kG1

)]]
> lim inf

k→∞ ‖Λk‖η2 − lim inf
k→∞

∫
log ‖Λk‖− lim inf

k→∞
∫

Tr
[

log
(

1

‖Λk‖
I+G∗1G1

)]
= lim inf

k→∞ η

2

(
‖Λk‖−

4π

η
log ‖Λk‖

)
− lim inf

k→∞
∫

Tr
[

log
(

1

‖Λk‖
I+G∗1G1

)]
= +∞.
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Then, by Weierstrass’ Theorem we can conclude that there exists a minimum point
Λ◦ ∈ LΓ+. More can be proven:

Theorem 3.7.2. If the feasibility condition (3.60) holds, then the problem of minimizing JΨ(Λ)
over LΓ+ admits a unique solution Λ◦ ∈ LΓ+.

Proof. Since JΨ(Λ) is inf-compact over LΓ+, it admits a minimum point Λ◦ there. Ob-
viously, Λ◦ /∈ B, since JΨ(Λ) = +∞ on B (lemma 3.7.3). Suppose Λ◦ ∈ Bc. In this
case, det

(
G∗1ΛG1 + I

)
is a non-zero rational function, whose inverse is then a well

defined rational function having (a finite number of) poles on the unit circle T. Hence,(
I+G∗1Λ

◦G1
)−1 is a well defined matrix-valued rational function having (a finite num-

ber of) poles on the unit circle T and taking positive definite values at all z = ejϑ that
are not poles. Hence Tr

[(
I+G∗1Λ

◦G1
)−1] is a positive rational function having (a

finite number of) poles on T. This gives
∫

Tr
[(
I+G∗1Λ

◦G1
)−1]

= ∞. Moreover, by

lemma 3.7.3 again, it follows that JΨ(Λ◦) is finite. By convexity of LΓ+, ∀ ε ∈ [0, 1],
Λ◦ + ε(I−Λ◦) ∈ LΓ+, since the feasibility condition (3.60) ensures that I ∈ LΓ+. The
one-sided directional derivative is

δJΨ+(Λ
◦; I−Λ◦) = lim

ε↘0

[
JΨ (Λ◦ + ε (I−Λ◦)) − JΨ(Λ

◦)

ε

]
= Tr [I−Λ◦] −

∫
Tr
[
(I+G∗1Λ

◦G1)
−1G∗1 (I−Λ

◦)G1

]
= Tr [I−Λ◦] −

∫
Tr
[
(I+G∗1Λ

◦G1)
−1 (I+G∗1G1) − I

]
6 Tr [2I−Λ◦] −

∫
Tr
[
(I+G∗1Λ

◦G1)
−1
]
= −∞.

(3.100)

As a consequence, the minimum point cannot belong to ∂LΓ+. Thus, Λ◦ ∈ LΓ+.

Tu sum up, this section shows that

• A Λ◦ ∈ LΓ+ that minimizes JΨ(Λ) in (5.44) does exist;

• Λ◦ is unique;

• Λ◦ annihilates the directional derivative (3.73) in any direction δΛ ∈ Q(n), namely

〈I−
∫
G1(I+G

∗
1Λ
◦G1)

−1G∗1, δΛ〉 = 0 ∀δΛ ∈ Q(n), (3.101)
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or, equivalently,

I =

∫
G1(I+G

∗
1Λ
◦G1)

−1G∗1 =

∫
GΦ◦(Λ◦)G∗. (3.102)

This means that the corresponding spectral density

Φ◦(Λ◦) =
[
Ψ−1 +G∗Λ◦G

]−1
(3.103)

satisfies constraint (3.14)

Therefore, the solution of the dual problem Λ◦ is in one-to-one correspondence with
the solution of RER spectrum estimation problem 3.6.1.

3.8 efficient implementation of a matricial newton-
like algorithm

In the same vein of Ferrante, Pavon, and Zorzi [41], Ramponi, Ferrante, and Pavon [89],
we propose a matricial Newton-like algorithm in order to compute the minimizer of
the dual functional JΨ(Λ). First we set the starting point for the minimizing sequence
{Λi}i∈N to Λ0 = 0. Then, at each step of we perform the following tasks:

1. Compute the Newton search direction ∆Λi

2. Once the search direction is found, compute the Newton step length tki .

Remark 3.8.1. By setting Λ0 = 0, the algorithm starts from the candidate solution
Φ0 = Ψ. Thus, it keeps adjusting the prior spectral density at each step until it satisfies
the integral constraints (3.14).

3.8.1 Search Direction

The matricial nature of the problem makes the the computation of the search direction
rather delicate. Indeed, no matricial expression of the Hessian and the gradient, which
would allow us to compute the search direction ∆x as ∆x = −Hx

−1∇fx, is available.
As a consequence, in order to compute ∆Λi, given Λi ∈ LΓ+, one has to solve the
following equation for the unknown ∆Λi:

HΛi(∆Λi, ·) = −∇JΨ,Λi(·). (3.104)
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This can be explicitly written as:∫
G1(I+G

∗
1ΛiG1)

−1G∗1∆ΛiG1(I+G
∗
1ΛiG1)

−1G∗1 =

∫
G1(I+G

∗
1ΛiG1)

−1G∗1 − I.

(3.105)
To this aim, compute a basis of Range(Γ). It can be readily obtained, by recalling

that Σk ∈ Range(Γ) if and only if ∃Hk ∈ Rm×n s.t. Σk −AΣkA> = BHk +Hk
>B>

(see e.g. Georgiou [54]). Therefore, considering a basis {H1, . . . ,HL} for Rm×n, a set of
generators

{
Σ ′1, . . . ,Σ ′L

}
can be found by solving L Lyapunov equations. After that a

basis
{
Σ ′1, . . . ,Σ ′N

}
can be easily computed. Since I ∈ Range Γ , we can add to each Σi

the matrix αiI, and, for suitable (large) αi, get a basis {Σ1, . . . ,ΣN} of Range(Γ) made
of positive definite matrices. The search direction can now be computed by applying
the following procedure:

1. Compute

Y =

∫
G1(I+G

∗
1ΛiG1)

−1G∗1 − I (3.106)

2. For each generator Σk, compute

Yk =

∫
G1(I+G

∗
1ΛiG1)

−1G∗1ΣkG1(I+G
∗
1ΛiG1)

−1G∗1 (3.107)

3. Find {αk} s.t. Y =
∑
k αkYk;

4. Set ∆Λi =
∑
k αkΣk.

The most challenging step is to compute Y and Yk. A sensible approach is to employ
spectral factorization techniques in order to compute the integrals, along the same
lines described in Ramponi, Ferrante, and Pavon [89, Section VI]. Indeed, the integrand
that appears in equation (3.106) is a coercive spectral density and the same holds
for the integrand in (3.107), since we have chosen the generators Σi to be positive
definite. For the computation of Y, let us focus onQΛi(z) = I+G

∗
1(z)ΛiG1(z). Assume

that a realization of the stable minimum phase spectral factor WΨ(z) is given (or has
been computed from Ψ). Then, we can easily obtain a state-space realization G1(z) =
C1(zI−A1)

−1B1 of G1. Since Λi ∈ LΓ+, QΛi(z) is positive definite on T, so that the
following ARE admits a positive definite stabilizing solution P = P> > 0 (see, e.g.
Lemma 6.4 in Ramponi, Ferrante, and Pavon [89]):

P = A>1 PA1 −A
>
1 PB1(B

>
1 PB1 + I)

−1
B>1 PA1 +C

>
1 ΛiC1. (3.108)

Moreover, QΛi(z) can be factorized as QΛi(z) = ∆∗Λi(z)∆Λi(z), where ∆Λi(z) can be
explicitly written in term of the stabilizing solution P:

∆Λi(z) = (B>1 PB1 + I)
− 1
2B>1 PA1(zI−A1)

−1B1 + (B>1 PB1 + I)
1
2 . (3.109)
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It is now easy to compute a state space realization of ∆−1
Λi

and then of the stable filter

WY := G1∆
−1
Λi

= C1(zI−Z1)
−1B1(B

>
1 PB1 + I)

− 1
2 , (3.110)

with
Z1 := A1 −B1(B

>
1 PB1 + I)

−1
B>1 PA1 (3.111)

being the closed-loop matrix. The computation of (3.106) is now immediate. In fact,

Y + I =

∫
G1(I+G

∗
1ΛiG1)

−1G∗1

=

∫
G1∆

−1
Λi
∆−∗
Λi
G∗1 =

∫
WYW

∗
Y .

(3.112)

The latter integral is thus the steady-state covariance of the output of the stable
filter WY driven by normalized white noise. It can be obtained by computing the
unique solution of the Lyapunov equation R − Z1RZ

>
1 = B1(B

>
1 PB1 + I)

−1
B>1 and

setting Y + I = C1RC>1 , so that
Y = C1RC

>
1 − I. (3.113)

A similar procedure may be employed to compute also the matrices Yk’s.

3.8.2 Step length

The backtracking line search is implemented by halving the step ti until both the
following conditions are satisfied:

Λi + t
k
i∆Λi ∈ LΓ+; (3.114)

JΨ(Λi + t
k
i∆Λi) < JΨ(Λi) +αt

k
i∇JΨ,Λi∆Λi, (3.115)

where 0 < α < 0.5.
The first condition can be easily evaluated by testing whether QΛi+tki∆Λi admits

a factorization of the kind introduced in the previous subsection or, equivalently,
whether the corresponding ARE (3.108) admits a solution P = P> > 0.

The only difficulty in checking the second condition is in computing

JΨ(Λ) = Tr
∫
[Λ− log(I+G∗1ΛG1)]

= TrΛ−

∫
log det(I+G∗1ΛG1).

(3.116)

The evaluation of the latter integral can be attained straightforwardly in the light of
Szegö-Kolmogorov formula (3.3). In our caseQ(z) = QΛ(z) may be factorized asQΛ =
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∆∗∆, where ∆ is a stable and minimum phase filter for which a minimal realization can
be computed as in 3.109 on page 37. Since log detQΛ = log det [∆∗∆] = log det [∆∆∗],
detR is given by det[∆(∞)∆∗(∞)] which may be explicitly written in terms the solution
P of the corresponding ARE as det[B>1 PB1 + I]. Therefore,∫

log det(I+G∗1ΛG1) = log det
(
B>1 PB1 + I

)
. (3.117)

3.8.3 Convergence of the proposed algorithm

A sufficient condition for global convergence of the algorithm is that the following
requirements are satisfied Boyd and Vandenberghe [6, Chapter 9]:

1. JΨ(·) is twice continuously differentiable;

2. Λ0 ∈ LΓ+ and the sublevel set S :=
{
Λ ∈ LΓ+|JΨ(Λ) 6 JΨ(Λ0)

}
is closed;

3. JΨ(·) is strongly convex, i.e. ∃ m s.t. H(JΨ)(Λ) > mI, ∀ Λ ∈ S.

4. The Hessian is Lipschitz continuous in S, i.e. ∃L such that:∥∥∥HΛ1 −HΛ2∥∥∥
2
< L

∥∥∥Λ2 −Λ1∥∥∥
2
∀Λ1,Λ2 ∈ S. (3.118)

In this case, it is possible to prove not only that the algorithm converges, but also
that, after a certain number of iterations, the backtracking line search always selects
the full step (i.e. t = 1). During the last stage the rate of convergence is quadratic,
since there exists a constant C such that ‖Λi+1 −Λ◦‖ 6 C‖Λi −Λ◦‖2.

Let us examine the requirements one by one.

• The continuous differentiability of the dual function has already been proven in
Section 3.7.

• Theorem 3.7.2 states that the sublevel sets of the dual function JΨ are compact,
and hence closed (recall that, in a finite dimensional vector space, a set is compact
if and only if it is closed and bounded).

• It is possible to conclude straightforwardly on strong convexity and Lipschitz
continuity of the Hessian. Indeed, let us consider the sublevel set

S =
{
Λ ∈ LΓ+ | JΨ(Λ) 6 JΨ(Λ0)

}
. (3.119)

Notice that, assuming that Λ0 is the starting point, the minimizing sequence
computed by the Newton algorithm with backtracking line search is such that,
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∀ k > 0, Λk ∈ S. The continuity of the Hessian over LΓ+ has already been
proven in Section 3.7. Moreover, since the map from a Hermitian matrix to its
minimum eigenvalue is continuous (see lemma 5.1 in Ramponi, Ferrante, and
Pavon [89]), the map from Λ ∈ LΓ+ to the minimum eigenvalue of HΛ(δΛ, δΛ)
is continuous, being a composition of continuous maps. Since S is compact,
Weierstrass’ Theorem holds. Therefore, there exists a minimum m in the set
of eigenvalues of the Hessian HΛ(δΛ, δΛ), ∀Λ ∈ S. Recall that the hypothesis
of strict convexity holds (as proven in Theorem 3.7.1). As a consequence, the
Hessian HΛ is a positive definite matrix ∀Λ ∈ S, therefore m > 0. In conclusion,
there exists m > 0 such that HΛ > mI, ∀Λ ∈ S, i.e. JΨ(Λ) is strongly convex.

• Concerning the Lipschitz continuity of the Hessian of JΨ(Λ), it is easy to see that
HΛ is C1(LΓ+). Indeed the third variation δ3JΨ(Λ; δΛ1, δΛ2, δΛ3) can be explicitly
computed and its continuity can be proven along the same line developed in the
proof of Theorem 3.7.1 (the result can be extended, leading to the conclusion that
JΨ(Λ) is C∞(LΓ+). Continuous differentiability implies Lipschitz continuity on a
compact set. Therefore, the Hessian is Lipschitz continuous on S.

In conclusion, global convergence of the Newton algorithm is guaranteed, so that the
proposed procedure is an effective computational tool to solve the spectral estimation
problem 3.6.1.

3.9 simulation results

Next we test RER spectral estimation procedure. In the user’s perspective, it can be
outlined as follows:

1. Consider a finite sequence {y1, . . . ,yN}. It is assumed to be a sample realization
of the zero-mean Gaussian process y(t) = {y(k); k ∈ Z} with values in Rm,
whose spectrum is Φ(ejϑ).

2. Design a filter G(z) with the same structure as (3.12). Recall from Section 3.4 that
the filter imposes interpolation constraints on the input spectral density. It also
affects the complexity of Φ◦, as shown by (3.69).

3. Feed the filter with the data sequence {y1, . . . ,yN}, collect the output data xi
and compute a consistent estimate Σ̂ of the output covariance matrix. As stated
in Section 3.4, we will recur to the technique described in Ferrante, Pavon, and
Zorzi [41].
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4. Choose a prior spectral density Ψ, as suggested in Section 3.4, according to the
available a priori information and keeping in mind that the order of Ψ is related
to the complexity of Φ◦, in light of (3.69).

5. Solve Problem 3.6.1 by running the algorithm described in Section 3.8 with
G(z),Ψ and Σ̃ as inputs.

3.9.1 Scalar Case

Next we test our estimation technique in a scalar case. Our aim is to highlight its high-
resolution features. We will also compare it with original THREE method. One of
the most interesting features of THREE-like estimation procedures is that an adequate
choice of the filterbank poles can improve the estimate’s resolution. Indeed, a higher
resolution can be attained in a prescribed frequency range by selecting poles which are
close to the unit circle and have arguments in the range of interest. This was already
noticed in Byrnes, Georgiou, and Lindquist [12]. Recently, further results on poles
placement policy were established in Karlsson and Georgiou [62]. Our aim is detecting
spectral lines in colored noise. This is a classical problem in spectrum estimation. In
particular, we are going to analyze the same setting as the one described in Byrnes,
Georgiou, and Lindquist [12, Section IV.B].

We consider a process y(t) that obeys to the following difference equation:

y(t) = 0.5 sin(ω1t+φ1) + 0.5 sin(ω2t+φ2) + z(t),

z(t) = 0.8z(t− 1) + 0.5ν(t) + 0.25ν(t− 1),

where the variables φ1, φ2 and ν(t) are Gaussian, independent, with zero-mean and
unit variance. Matrix B is a column of ones. Matrix A was chosen as a block-diagonal
matrix; its real eigenvalues are 0, 0.85 and −0.85 and there are also five pairs of com-
plex eigenvalues, whose arguments are equispaced in a narrow range of frequency
where the sinusoids lie. Firstly, the spectral lines were fixed in ω1 = 0.42 rad/s and
ω2 = 0.50 rad/s, and so the complex poles of G(z) were chosen as:

0.95e±j0.42, 0.95e±j0.44, 0.95e±j0.46, 0.95e±j0.48, 0.95e±j0.50.

By considering the constant prior, equal to the sample covariance of the available
data, the proposed method was able to approximately detect both lines, as shown in
Figure 3.

Then we considered the more challenging task whenω1 = 0.45 rad/s andω2 = 0.47
rad/s. This choice makes the value of the distance between the two lines lower than
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Figure 3: Estimation of spectral lines in colored noise (ω1 = 0.42 rad/s and ω2 = 0.50 rad/s).
The chosen prior is the sample covariance of the data {yk}. The radius of the complex
poles is equal to 0.95.
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Figure 4: Estimation of close spectral lines in colored noise (ω1 = 0.45 rad/s and ω2 = 0.47
rad/s). The chosen prior is the sample covariance of the data {yk}. The radius of the
complex poles is equal to 0.95. Both RER and THREE indicate the presence of the
two lines.

the resolution limit of the periodogram, which amounts to 2π
N (which in our case

is 2π
300 ' 0.021 rad/s). Nevertheless, the RER estimator was still able to detect the

presence of two lines. Figure 4 compares its performances with those achieved by the
original THREE method for scalar spectral estimation. In simulations, RER turns out
to perform at least as well as THREE in scalar spectral estimation. Another result is
that, in general, poles which are closer to the unit circle imply both the resolution
and the variance of the estimates get higher. The same trade-off was first described
in Byrnes, Georgiou, and Lindquist [12] and seems to be typical of all THREE-like
methods.

3.9.2 Multivariate Case

In order to test the performances of the proposed method in multivariate spectral
estimation, we considered the same example described in Ramponi, Ferrante, and
Pavon [89, Section VIII.C]. The process y(t) was obtained by filtering a bivariate Gaus-
sian white noise process with zero mean and variance equal to the identity through a
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Figure 5: Multivariate spectrum estimation, N = 300, PEM(3) prior. Comparison between the
approximant and the true spectrum.

square shaping filter of order 40. The filter coefficients were chosen at random, except
for one fixed complex poles pair, 0.9e±j0.52 and the zeros pair (1− 10−5)e±j0.2.

The filter G(z) was designed by choosing four complex poles pairs with radius 0.7
and arguments equispaced in the range [0,π]. We assumed N = 300 samples of the
process y(t) to be available. As for the the prior, it was set equal to a simple PEM
model of order 3, obtained by means of the standard function pem provided in Matlab.
Figure 5 shows the real spectrum and the estimate computed by the RER approach.

We then compared the performance of the proposed technique to those achieved by
two other THREE-like approaches to multivariate spectral estimation:

• Maximum Entropy – ME – estimator, described in Georgiou [50];

• Hellinger distance-based estimator, see Ferrante, Pavon, and Ramponi [40].

In order to make the comparison as independent as possible of the specific data set, we
performed 50 trials by feeding the shaping filter with independent realizations of the
input noise process. Then we measured the average estimation error at each frequency,
defined as

E#(ϑ) :=
1

50

50∑
i=1

‖Φ̂#(ejϑ) −Φ(ejϑ)‖, (3.120)

where the spectral norm (i.e. the largest singular value) is considered. Figure 6 shows
that RER estimator performed better than ME estimator. It seems also to slightly
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outperform the Hellinger-distance approach. It worthwhile that in Hellinger estima-
tor computed a solution of order 19, while the solution provided by RER estimator
had just McMillan degree 11. As for ME estimator, the corresponding solution had
degree 8.
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Figure 6: Comparison of THREE-like approaches in terms of average estimation error. N = 300

available data. Both RER and Hellinger estimator are provided with a PEM(3) prior.
All the considered methods make use of the same filter G(z)

The case when only a few samples of the process y(t) are available, which is very
relevant in practice, is a challenging scenario. Indeed, shortness of the available data
record can heavily affect the estimates obtained by classical methods such as Matlab’s
PEM and N4SID by introducing artifacts. On the contrary, RER method, as well as the
other THREE-like approaches, seems to be quite robust. Figure 7 shows the results
obtained in a case where only N = 100 samples are available. Both PEM and N4SID
estimates are affected by artifacts. On the contrary, the proposed approach is not. This
result seems to suggest that RER estimation is suitable to tackle spectral estimation
issues where only short data records of the process of interest are available.
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Figure 7: Comparison of Matlab’s PEM, Matlab’s N4SID and RER in terms of average esti-
mation error. N = 100 available samples. The prior considered for RER is a PEM(2)
model. The filter G(z) has a pole in the origin and four complex conjugate poles
pairs with radius 0.7. Notice that RER does not exhibit artifacts, whereas PEM and
N4SID do.
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3.10 conclusions and future work

Relative entropy rate (RER) estimator is a new approach to multivariate spectral es-
timation. It draws inspiration from a paradigm known as THREE (Tunable High
Resolution Estimator, see Section 3.4), where a priori information on the process is
taken into account and, by means of a bank of filters which can be designed arbitrar-
ily, it is possible to impose interpolation constraints on the estimated spectral density.
Therefore, spectrum estimation is recast as a generalized moment problem that can be
solved efficiently by means of convex optimization techniques.

RER relies on a remarkable information-theoretic result that relates time and spec-
tral domain relative entropy rates for stationary Gaussian processes. Thus, it provides
a very natural extension of maximum entropy methods for multivariate spectral esti-
mation when a prior estimate of the spectrum is available.

Moreover, it features an upper bound on the complexity of the estimate which is
equal to the one provided by the original THREE method in the scalar context, and
thus it improves sensibly on the best one so far available in the multichannel setting
with prior estimate.

Finally, it inherits all the desirable properties of THREE-like methods. Indeed, it
exhibits high resolution features, which can be tuned by placing the filterbank poles
suitably. In addition, RER estimator is robust with regard to short observation records,
outperforming PEM and N4SID (in their standard Matlabimplementation) in this
framework, which is definitely significant in practice.

As for future research directions, one of them could be applying the theory under-
lying RER estimator to graphical models identification. Graphical models describe
Gaussian multivariate stochastic processes with the property that some pairs of com-
ponents are conditionally independent given the others. Such processes find interest
in a widespread variety of fields, e.g. image processing, econometrics, bioinformat-
ics, chemistry, medicine and so on (see e.g. Avventi, Lindquist, and Wahlberg [1],
Brillinger [7], Dahlhaus [28], Materassi and Innocenti [75], Songsiri and Vandenberghe
[95] and references therein). In this framework it is natural to represent the process
by means of a graph, in which each component is a node and the lack of an edge
between two nodes implies that they are conditionally independent, given the others.
It is worthwhile to notice that conditionally independent joint Gaussian processes are
also conditionally orthogonal. Consider the process x(t) = {x(k) ; k ∈ Z} with values
in Rm. Denote by x1, . . . , xm its scalar components. Let Sm+ be the set of the spectral
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densities which are positive definite and integrable on the interval (−π,π] and assume
the spectrum of x(t) is Φ(ejϑ) ∈ Sm+ . It can be shown (see e.g. Dahlhaus [28]) that[

Φ(ejϑ)
−1
]
kl

= 0, ϑ ∈ (−π,π] (3.121)

for pairs (k, l) such that xk and xl are conditionally independent, given the rest of the
components of x.

Let us now introduce the interaction graph G = (V ,E), such that

V = {x1, . . . , xm}; E ⊆ V × V (3.122)

and
(k, l) /∈ E⇔ k 6= l,X{k} ⊥ X{l} |XV\{k,l} (3.123)

where, given an arbitrary set I ⊂ V , XI := span{xj(t) : j ∈ I, t ∈ Z}. An example is
shown in Fig. 8.

x1 x2

x3x4

Figure 8: A graphical model for a Gaussian process of size 4. Note that x1 is conditionally
independent of x2, given x3 and x4

In order to identify a graphical model for a Gaussian process, we could draw in-
spiration from the approach described in Avventi, Lindquist, and Wahlberg [1], which
computes a rational spectral density of the form

Φ(ejϑ) = ψ(ejϑ)Q(ejϑ)−1 (3.124)

where ψ(ejϑ) is a scalar pseudo-polynomial. Thus, the topology of the interaction
graph is defined completely by the matricial pseudo-polynomial Q(ejϑ). Indeed,

(k, l) /∈ E ⇔ Qkl(ejϑ) ≡ 0 on T. (3.125)

Then, three steps lead to identification of a graphical model for the Gaussian process
of interest:

1. Compiling a list of candidate topological patterns;

2. Solving a spectral estimation issue for each of them, based on the available co-
variance lags sequence;
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3. Selecting the solution that provides the best trade off between moments matching
and model complexity.

Suppose that M covariance lags are available:

R(0),R(1), . . . ,R(M− 1).

Next, let us focus just on the second step. If, once the topology is fixed, we impose
the interpolation conditions only to the entries of the spectral density corresponding
to existing edges in the partial correlation graph, i.e.∫

Φ(l,m)(e
jϑ)ejkϑ

dϑ

2π
= R(k)(l,m) ∀ (l,m) ∈ E, ∀ k = 0, 1, . . . ,M− 1, (3.126)

the solution turns out to automatically satisfy the conditional orthogonality structure
imposed by the interaction graph (see Avventi, Lindquist, and Wahlberg [1, Section
4]). This fact can also be interpreted in light of the geometric results on constrained
optimization of information theoretic indexes proved in Pavon and Ferrante [84]. We
could exploit the same result in RER estimation framework. In principle, by using
a RER-like approach, it should be possible to identify more general ARMA models,
i.e. models where the moving average part can be an arbitrary matricial pseudo-
polynomial instead of ψ(ejϑ)I. Suppose that M covariance lags are available:

R(0),R(1), . . . ,R(M− 1).

In this context, we aim at solving

Problem 3.10.1 (ARMA identification of graphical models based on RER estimation).
Let Ψ be an available prior spectral density. Minimize

dRER(Φ‖Ψ) :=
1

2

∫
log detΦ−1Ψ+ Tr

[
Ψ−1 (Φ−Ψ)

] dϑ
2π

, (3.127)

under the constraints (3.126).

By discarding the negligible terms, the corresponding Lagrangian is

LΨ(Φ, {λk(l,m)}) =

∫ {
− log detΦ+ Tr

[
Ψ−1Φ

]
+ Tr

[
Φ(ejϑ)Λ(ejϑ)

]} dϑ
2π

−

M−1∑
k=0

Tr [Λ∗(k)R(k)] .
(3.128)

Denote the vector of size m whose unique non-zero entry is the one in position k by
ek. Then,

Λ(k) :=
∑

(l,m)∈E

λk(l,m)ele
>
m (3.129)
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and

Λ(ejϑ) :=
1

2

[
M−1∑
k=0

Λ(k)e−jkϑ +

M−1∑
k=0

Λ(k)∗ejkϑ

]
. (3.130)

By variational analysis, it turns out that the optimum solution has the form

Φ̂ = [Ψ−1 +Λ]
−1

. (3.131)

Therefore, the inverse density is given by

Φ̂−1 = Ψ−1 +Λ. (3.132)

By definition, all the entries of Λ whose position corresponds to a missing edge in the
partial correlation graph are equal to zero. Thus, we can conclude that if the prior Ψ
satisfies the topology constraints imposed by E, then Φ̂ exhibits the same topological
pattern, too. First, existence and uniqueness of the solution of Problem 3.10.1 have to
be investigated. When the solution exists and is unique, it can be computed by solving
the corresponding dual problem, which is finite-dimensional. If that is the case, the
next step is developing an efficient optimization procedure. Finally, choosing the prior
Ψ so that it is consistent with the topology is another key issue to tackle.



4 M U LT I VA R I AT E C I R C U L A N T R AT I O N A L
C O VA R I A N C E E X T E N S I O N

4.1 introduction to multivariate circulant rational co-
variance extension

This chapter focuses on rational covariance extension for multivariate periodic pro-
cesses. Basically, rational covariance extension aims at estimating a spectral density
in such a way that the estimate is rational and consistent with the available covari-
ance lags. Given the rational spectral density of a stationary process, the latter can be
modeled easily as the output of a finite memory linear filter fed by white noise (see Sec-
tion A.10). Thus, rational covariance extension can be also interpreted as a technique
that paves the way to filtering, estimation and prediction, for instance. Therefore, it
plays a key role in systems and control, see e.g. Byrnes, Enqvist, and Linquist [9, 10],
Byrnes, Gusev, and Lindquist [13, 14], Byrnes and Lindquist [20], Byrnes et al. [21],
Enqvist [36], Georgiou [46, 47], Kalman [61], Pavon and Ferrante [84] and references
therein.

Covariance extension was already mentioned in Section 3.4. In particular, it was
proved that it could be recast in the framework of THREE-like spectral estimation. In
the following we will follow a different path. Indeed, we will deal with covariance
extension for periodic processes. First, this problem is interesting per se. Second, since
it leads to partial stochastic realizations in the form of bilateral ARMA models, it
also connects up to a rich realization theory for reciprocal processes, see e.g. Carli et
al. [24], Carli et al. [25], Krener [66], Krener, Frezza, and Levy [67], Levy and Ferrante
[70], Levy, Frezza, and Krener [71]. Finally, covariance extension for periodic processes
also provides an efficient tool for approximating regular covariance extension, as it is
based on fast Fourier transforms (FFT). This was first noticed in Lindquist and Picci
[74]. In the following, we shall provide numerical evidence that this also holds in the
multivariable case.

Rational covariance extension for periodic processes is strictly related to (block) cir-
culant Toeplitz matrix completion problems. Thus, in the following it will be also
referred to as circulant rational covariance extension. Recently it was discovered that
this problem can be recast in the context of the optimization-based theory of moment
problems with rational measures developed in Blomqvist, Lindquist, and Nagamune

51
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[5], Byrnes, Enqvist, and Linquist [10], Byrnes, Georgiou, and Lindquist [11], Byrnes,
Gusev, and Lindquist [13, 14], Byrnes and Lindquist [15, 16], Georgiou [49], Georgiou
and Lindquist [56]. A complete theory for the scalar case was presented in Lindquist
and Picci [74]. Here we provide a first step in generalizing this theory to the multivari-
able case.

The chapter is organized as follows: Section 4.2 recalls some preliminary results
about regular multivariable rational covariance extension and harmonic analysis on
the discrete unit circle. Then, in Section 4.3, we present our main result on the mul-
tivariable circulant rational covariance extension problem, that provides a complete
parametrization the family of solutions. In Section 4.4 we show how logarithmic mo-
ments can be used to determine the best particular solution. In Section 4.6 we provide
numerical examples which suggest that circulant covariance extension is a powerful
tool for approximation. Finally, Section 4.7 concludes the chapter with some final
remarks. It also proposes some future research directions.

4.2 preliminaries

4.2.1 Stationary periodic vector processes

We can consider a finite collection of 2N random vectors of dimension m as an m-
dimensional stochastic process y = {y(k), k = −N+ 1, . . . ,N} defined on the finite in-
terval [−N+ 1,N] ⊂ Z. Let

y :=



y(−N+ 1)
...

y(0)
...

y(N)


. (4.1)

Then the process y is said to be stationary if

E [y(j)y(k)∗] = Cj−k, for all i, j = −N+ 1, . . . ,N, (4.2)

i.e. it only depends on the difference between the time indexes. In this case, the
covariance matrix

Σ := E [yy∗] (4.3)

is a block Toeplitz matrix.
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Consider now a stationary multivariate process ỹ defined on Z, with period 2N, i.e.
such that

ỹ(k+ 2N) = ỹ(k), almost surely for all k ∈ Z. (4.4)

Notice that a stationary process of period 2N can be considered as a process indexed
on Z2N := {−N+ 1, . . . , 0, . . . ,N} with arithmetic mod 2N, as shown in Fig. 9. The

y(−N+ 1) y(N)y(0)· · · · · ·

y(0)

y(1)

y(N)

y(−N+ 1)

Z2N

Process defined on Z, with period 2N

Process defined on [−N+ 1,N]

with mod 2N arithmetics

...

...

Figure 9: A periodic process of period 2N can be interpreted as a process indexed on Z2N

following important result holds (see Carli et al. [24]):

Proposition 4.2.1. A stochastic process y defined on [−N+ 1, . . . , 0, . . . ,N] is the restriction
to the interval of a wide-sense stationary periodic process of period 2N defined on Z, if and
only if its covariance matrix is Hermitian and block-circulant.

Block-circulant matrices are block Toeplitz matrices whose block columns (or, equiv-
alently, block rows) are shifted cyclically:

Circ{Λ0,Λ1, . . . ,Λν} :=


Λ0 Λν Λν−1 · · · Λ1

Λ1 Λ0 Λν · · · Λ2

Λ2 Λ1 Λ0 · · · Λ3
...

...
...

. . .
...

Λν Λν−1 Λν−2 · · · Λ0

 . (4.5)

Thus, we can write the covariance matrix Σ of a process which is the restriction on
[−N+ 1, . . . , 0, . . . ,N] of a stationary process of period 2N defined on Z as

Σ = Circ{C0,C1,C2, . . . ,CN,C∗N−1, . . . ,C∗2,C∗1}, (4.6)

where
Ck := E [y(t+ k)y(t)∗] . (4.7)
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4.2.2 Harmonic analysis in Z2N

Harmonic analysis in Z2N can be performed by means of the discrete Fourier trans-
form (DFT). Let g = {g(k); k = −N + 1, . . . , N}, with g(k) ∈ Cm for k = −N +

1, . . . , N. Let

D := Cm ×Cm × · · · ×Cm︸ ︷︷ ︸
2N times

. (4.8)

Then, we can define DFT as a map

D → D

g 7→ F[g] = G

where G = {G(ζk); k = −N+ 1, . . . , N} and

G(ζk) :=

N∑
h=−N+1

g(h)ζ−hk , k = −N+ 1,−N+ 2, . . . ,N. (4.9)

and ζh := ejh
π
N . Here we defined the discrete variable ζ running counterclockwise on

the discrete unit circle T2N. In particular, we have ζh = (ζ1)
h and ζ−h = ζh. The

inverse DFT F−1 is given by

g(k) =
1

2N

N∑
h=−N+1

ζhkG(ζh), k = −N+ 1,−N+ 2, . . . ,N, (4.10)

which can also be written as a Stieltjes integral

g(k) =
∫π
−π
eikθG(eiθ)dν(θ), k = −N+ 1,−N+ 2, . . . ,N, (4.11)

where ν is a step function with steps 1
2N at each ζh; i.e.,

dν(θ) =

N∑
h=−N+1

δ(eiθ − ζh)
dθ

2N
. (4.12)

With H being the DFT of {h},

N∑
j=−N+1

g(j)h(j)∗ =
1

2N

N∑
k=−N+1

G(ζk)H(ζ−k)
∗

=

∫π
−π

G(eiθ)H(eiθ)∗dν,

(4.13)
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which is Plancherel’s Theorem for DFT. From this we see that

〈G,H〉 :=
∫π
−π

Tr
[
G(eiθ)H(eiθ)∗

]
dν =

N∑
j=−N+1

Tr [g(j)h(j)∗] (4.14)

is computed exactly as in (4.46) despite the change of measure in the integral. Hence
results such as (4.48) hold also with the Stieltjes measure dν.

We also provide a matricial expression for the discrete Fourier transform (4.9). With
a slight abuse of notation we denote by g the vector[

g(−N+ 1)> g(−N+ 2)> · · · g(N)>
]> ∈ C2Nm (4.15)

and by G the vector[
G(ζ−N+1)

>G(ζ−N+2)
> · · · G(ζN)

>]> ∈ C2Nm. (4.16)

Then we can write
G = Fg, (4.17)

where F is the nonsingular 2mN× 2mN block Vandermonde matrix

F =



ζN−1
−N+1Im ζN−2

−N+1Im · · · ζ−N−N+1Im
...

... · · ·
...

ζN−1
0 Im ζN−2

0 Im · · · ζ−N0 Im
...

... · · ·
...

ζN−1
N Im ζN−2

N Im · · · ζ−NN Im


. (4.18)

Likewise, it follows from (4.10) that

g =
1

2N
F∗G, (4.19)

i.e., F−1 corollary responds to 1
2NF∗. Consequently, FF∗ = 2N I, and hence F−1 =

1
2NF∗ and (F∗)−1 = 1

2NF.
Next consider a zero-mean stationary m-dimensional process y defined on Z2N;

i.e., a stationary process defined on a finite interval [−N + 1, N] of the integer line
Z and extended to all of Z as a periodic stationary process with period 2N. Let
C−N+1,C−N+2, . . . ,CN be the m×m covariance lags, defined as in (4.7), and define
its discrete Fourier transformation

Φ(ζk) :=

N∑
h=−N+1

Chζ
−h
k , k = −N+ 1, . . . ,N, (4.20)
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which is a positive, Hermitian matrix-valued function of ζ. Then, as seen from (4.10)
and (4.11),

Ck =
1

2N

N∑
h=−N+1

ζhkΦ(ζh)

=

∫π
−π
eikθΦ(eiθ)dν, k = −N+ 1, . . . ,N.

(4.21)

The m×m matrix function Φ is the spectral density of the vector process y. In fact, let

ŷ(ζk) :=
N∑

h=−N+1

y(h)ζ−hk , k = −N+ 1, . . . ,N, (4.22)

be the discrete Fourier transformation of the process y. Since

1

2N

N∑
h=−N+1

(ζkζ
∗
`)
h = δk`, (4.23)

the random variables (4.22) are uncorrelated, and

1

2N
E{ŷ(ζk)ŷ(ζ`)∗} = Φ(ζk)δk`. (4.24)

This yields a spectral representation of y analogous to the usual one, namely

y(k) =
1

2N

N∑
h=−N+1

ζhk ŷ(ζk) =
∫π
−π
eikθdŷ(θ), (4.25)

where dŷ := ŷ(eiθ)dν.

4.2.3 Block-circulant matrices

In the multivariate circulant rational covariance extension problem we consider Hermi-
tian circulant matrices of the same kind as (4.6). In general, they are defined as

M := Circ{M0,M1,M2, . . . ,MN,M∗N−1, . . . ,M∗1}, (4.26)

and can be represented in the form

M =

N∑
k=−N+1

S−k ⊗Mk, M−k =M∗k (4.27)
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where ⊗ is the Kronecker product and S is the nonsingular 2N× 2N cyclic shift matrix

S :=


0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 0 1

1 0 0 0 0

 . (4.28)

The m×m pseudo-polynomial

M(ζ) =

N∑
k=−N+1

Mkζ
−k, M−k =M∗k (4.29)

is called the symbol of M. Let S be the 2mN× 2mN cyclic shift matrix

S = S⊗ Im =


0 Im 0 . . . 0

0 0 Im . . . 0
...

...
...

. . .
...

0 0 0 0 Im

Im 0 0 0 0

 . (4.30)

Clearly S2N = S0 = I := I2mN, and

Sk+2N = Sk, S2N−k = S−k = (Sk)>. (4.31)

Moreover,
SMS∗ = M, (4.32)

is both necessary and sufficient for M to be circulant. With g defined as in (4.15), we
have

[Sg]k = g(k+ 1), k ∈ Z2N. (4.33)

Then, in view of (4.9), ζF(g)(ζ) = F(Sg)(ζ), from which we have

F(Mg)(ζ) =M(ζ)F(g)(ζ), (4.34)

where the m ×m matrix fuction M(ζ) is the symbol (4.29) of the circulant matrix
M. An important property of circulant block matrices is that they can be block-
diagonalized by the discrete Fourier transform. More precisely, it follows from (4.34)
that

M =
1

2N
F∗diag

(
M(ζ−N+1), . . . ,M(ζN)

)
F, (4.35)
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where “diag” denotes block diagonal. Hence the inverse is

M−1 =
1

2N
F∗diag

(
M(ζ−N+1)

−1, . . . ,M(ζN)
−1
)
F, (4.36)

and, since

S =
1

2N
F∗diag

(
ζ−N+1, . . . , ζN

)
F

S∗ =
1

2N
F∗diag

(
ζ−1−N+1, . . . , ζ−1N

)
F,

(4.37)

we have
SM−1S∗ = M−1. (4.38)

Hence M−1 is also a circulant block matrix with symbol M(ζ)−1. In general, in view
of the circulant property (4.27) and (4.31), quotients of symbols are themselves pseudo-
polynomials of degree at mostN and hence symbols. More generally, if A and B are cir-
culant block matrices of the same dimension with symbols A(ζ) and B(ζ) respectively,
then AB and A + B are circulant matrices with symbols A(ζ)B(ζ) and A(ζ) + B(ζ), re-
spectively. In fact, the circulant matrices of a fixed dimension form an algebra, and
the DFT is an algebra homomorphism of the set of circulant matrices onto the pseudo-
polynomials of degree at most N in the variable ζ ∈ T2N.

4.2.4 The multivariable rational covariance extension problem

Before stating multivariate circulant rational covariance extension problem, we review
some basic results on regular rational covariance extension problem for multivariate
stochastic processes. More details can be found in Blomqvist, Lindquist, and Naga-
mune [5], Byrnes and Lindquist [16].

Problem 4.2.1 (Multivariate rational covariance extension). Given a sequence

C0,C1, . . . ,Cn, Ck ∈ Cm×m for k = 0, . . . ,n,

with C0 Hermitian symmetric, such that the block Toeplitz matrix

Tn =


C0 C∗1 C∗2 · · · C∗n
C1 C0 C∗1 · · · C∗n−1
C2 C1 C0 · · · C∗n−2
...

...
...

. . .
...

Cn Cn−1 Cn−2 · · · C0

 (4.39)
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is positive definite, find an infinite extension Cn+1,Cn+3,Cn+3, . . . such that, the se-
ries expansion

Φ(eiθ) =

∞∑
k=−∞Cke

−ikθ, C−k = C∗k, (4.40)

converges for all θ ∈ [−π,π] to a positive m×m spectral density that takes the rational
form

Φ(z) = P(z)Q(z)−1. (4.41)

Notice that (4.40) imposes the following interpolation conditions on the spectral
density Φ: ∫π

−π
eikθΦ(eiθ)

dθ

2π
= Ck, k = 0, 1, . . . ,n. (4.42)

Thus, a generalized moment problem arises.
Here we take a first step in establishing a complete theory for the multivariable case.

Indeed, for technical reasons, we confine our ARMA models to those whose transfer
function has a matrix representation with a scalar numerator polynomial. Thus, P is a
symmetric trigonometric polynomial of the form

P(eiθ) =

n∑
k=−n

pke
−ikθ, p−k = p̄k, (4.43)

of degree at most n, whereasQ is a symmetric trigonometricm×mmatrix polynomial

Q(eiθ) =

n∑
k=−n

Qke
−ikθ, Q−k = Q∗k. (4.44)

Let P(m,n)
+ be the set of matrix polynomials (4.44) which are positive definite for all

θ ∈ [−π,π]. This is a convex cone, the closure of which we shall denote P
(m,n)
+ . Now,

defining the trigonometric matrix polynomial

C(eiθ) =

n∑
k=−n

Cke
−ikθ, C−k = C∗k, (4.45)

we have

〈C,Q〉 :=
∫π
−π

Tr
[
C(eiθ)Q(eiθ)∗

] dθ
2π

=

n∑
k=−n

Tr [CkQ
∗
k] . (4.46)

If Q ∈ P
(m,n)
+ , then there is a stable spectral factor

A(z) = A0 +A1z
−1 + · · ·+Anz−n (4.47)
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such that Q(z) = A(z)A(z)∗, and consequently

〈C,Q〉 =
∫π
−π

Tr
[
A(eiθ)C(eiθ)A(eiθ)∗

] dθ
2π

= Tr [ATnA∗] , (4.48)

where A := (A0,A1, . . . ,An). Let C
(m,n)
+ be the interior of the dual cone of all (4.45)

such that
〈C,Q〉 > 0 for all Q ∈ P

(m,n)
+ . (4.49)

This is an open convex cone. It follows from (4.48) that C ∈ C
(m,n)
+ if and only if Tn is

positive definite.
Next, consider the optimization problem to maximize the generalized entropy

IP(Φ) =

∫π
−π
P(eiθ) log detΦ(eiθ)

dθ

2π
(4.50)

over all Φ that are positive definite on the unit circle subject to the moment conditions
(4.42).

A fundamental result which allows to compute a solution for Problem 4.2.1 is the
following

Theorem 4.2.1 (Blomqvist, Lindquist, and Nagamune [5]). For each (P,C) ∈ P
(1,n)
+ ×

C
(m,n)
+ , the problem to maximize (4.50) subject to the moment conditions (4.42) has a unique

solution Φ̂, and it has the form
Φ̂(z) = P(z)Q̂(z)−1, (4.51)

where Q̂ ∈ P
(m,n)
+ is the unique solution to the dual problem to minimize

JP(Q) = 〈C,Q〉−
∫π
−π
P(eiθ) log detQ(eiθ)

dθ

2π
(4.52)

over all Q ∈ P
(m,n)
+ .

Consequently, a large subclass of all multivariable rational covariance extensions,
namely those for which Φ takes the form (4.41), are completely parameterized by the
P ∈ P

(1,n)
+ .

4.3 the multivariate circulant rational covariance ex-
tension problem

Our purpose it to solve the following
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Problem 4.3.1 (Multivariate circulant rational covariance extension problem). Given
C := (C0,C1, . . . ,Cn) ∈ C

(m,n)
+ for some n < N, find an m×m spectral density Φ of

the form
Φ(ζ) = P(ζ)Q(ζ)−1

such that ∫π
−π
eikθΦ(eiθ)dν = Ck, k = 0, 1, 2, . . . ,n. (4.53)

It turns out that this yields an extension

Ck =

∫π
−π
eikθΦ(eiθ)dν, k = n+ 1,n+ 2, . . . ,N (4.54)

such that the banded Hermitian block-circulant matrix

C = Circ{C0,C1, . . . ,Cn, 0, . . . , 0,C∗n, . . . ,C∗1} (4.55)

with symbol (4.45) is extended to a Hermitian block-circulant matrix

Σ := Circ{C0,C1,C2, . . . ,CN,C∗N−1, . . . ,C∗2,C∗1} (4.56)

that is positive definite with symbol Φ.
Next we solve Problem 4.3.1 in terms of symbols. As already mentioned in Sec-

tion 4.1, circulant rational covariance extension for multivariate processes can be re-
cast as a block-circulant Toeplitz matrix completion problem. This will be the topic of
Subsection 4.3.2.

4.3.1 Circulant rational covariance extension in terms of symbols

The main result of this section is that Problem 4.3.1 is feasible and that it can be solved
by means of convex-optimization techniques.

Define the cone P
(m,n)
+ (N) ⊃ P

(m,n)
+ of m×m matrix-valued trigonometric polyno-

mials (4.44) such that

Q(ζk) > 0 k = −N+ 1,−N+ 2, . . . ,N. (4.57)

Then P
(m,n)
+ (N) ⊃ P

(m,n)
+ (2N) ⊃ P

(m,n)
+ (4N) ⊃ · · · ⊃ P

(m,n)
+ , and the corresponding

dual cones satisfy

C
(m,n)
+ (N) ⊂ C

(m,n)
+ (2N) ⊂ C

(m,n)
+ (4N) ⊂ · · · ⊂ C

(m,n)
+ . (4.58)

The next theorem states that Problem 4.3.1 is feasible.
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Theorem 4.3.1. Let C ∈ C
(m,n)
+ (N). Then, for each P ∈ P

(1,n)
+ (N), there is a unique

Q ∈ P
(m,n)
+ (N) such that

Φ = PQ−1 (4.59)

satisfies the moment conditions (4.53).

Proof of Theorem 4.3.1. We begin by proving that the moment map FP : P
(m,n)
+ (N) →

C
(m,n)
+ (N), defined by

FPk(Q) =

∫π
−π
eikθP(eiθ)Q(eiθ)−1dν, k = 0, 1, . . . ,n, (4.60)

is proper for each fixed P ∈ P
(1,n)
+ (N); i.e., the inverse image (FP)−1(K) is compact

for any compact K ⊂ C
(m,n)
+ (N). To this end, we first show that (FP)−1(K) is bounded.

Clearly,

〈FP(Q),Q〉 =
n∑

k=−n

Tr
[(
Q∗k

∫π
−π
eikθPQ−1dν

)]
= m

∫π
−π
Pdν =: κ (4.61)

However, in view of (4.48) modified as in (4.14), 〈FP(Q),Q〉 = 〈C,Q〉 = Tr [ATnA∗].
Moreover, since K is compact, the eigenvalues of Tn > 0 are bounded away from zero,
and hence there is an ε > 0 such that Tn > εI for any C ∈ K. Hence 〈FP(Q),Q〉 >
ε‖A‖2, and therefore ‖A‖2 6 κ/ε. Since A is bounded, then so is Q ∈ (FP)−1(K).
Consequently, for any convergent sequence

(
C(k)

)
in K converging to Ĉ, there is a

convergent subsequence
(
Q(k)

)
in (FP)−1(K) (for convenience also indexed by k) con-

verging to some limit Q̂. To prove properness, we need to show that Q̂ ∈ (FP)−1(K),
which can fail only if Q̂ ends up on the boundary of P(m,n)

+ (N); i.e., only if Q̂(ζj) > 0

is singular for some j = −N+ 1, . . . ,N. We need to rule this out. Indeed, taking the
limit,

lim
k→∞〈PIm,C(k)〉 = 〈PIm, Ĉ〉 =

∫π
−π
P2Q̂−1dν, (4.62)

which is finite, since
(
C(k)

)
belongs to the compact set K. However,∫π

−π
P2Q̂−1dν =

1

2N

N∑
j=−N+1

P(ζj)
2Q̂(ζj)

−1, (4.63)

where P(ζj) > 0. Hence Q̂(ζj) cannot be singular. This establishes that the moment
map FP is proper.

Next we show that FP is injective. To this end, note that

δ2JP(Q; δQ) =

n∑
k=−n

n∑
`=−n

Tr
[(
δQ`

∫π
−π
ei(`−k)θPQ−2dν δQ∗k

)]
> 0 (4.64)
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That is, the Hessian is positive definite, and hence JP is strictly convex. Therefore the
moment map FP is injective.

Since FP : P
(m,n)
+ (N) → C

(m,n)
+ (N) is a continuous, injective, proper map between

spaces of the same finite dimension, it is a homeomorphism Byrnes and Linquist [18,
Theorem 2.6].

The following theorem provides an algorithm for computing the solution.

Theorem 4.3.2. For each (P,C) ∈ P
(1,n)
+ (N) × C

(m,n)
+ (N), the problem to maximize the

functional

IP(Φ) =

∫π
−π
P(eiθ) log detΦ(eiθ)dν (4.65)

subject to the moment conditions (4.53) has a unique solution Φ̂, and it has the form

Φ̂(z) = P(z)Q̂(z)−1, (4.66)

where Q̂ ∈ P
(m,n)
+ (N) is the unique solution to the dual problem to minimize

JP(Q) = 〈C,Q〉−
∫π
−π
P(eiθ) log detQ(eiθ)dν (4.67)

over all Q ∈ P
(m,n)
+ (N).

Proof of Theorem 4.3.2. consider the (primal) problem to maximize the generalized en-
tropy gain

IP(Φ) =

∫π
−π
P(eiθ) log detΦ(eiθ)dν (4.68)

subject to the moment conditions (4.53). The corresponding Lagrangian is then given
by

L(Φ,Q) = IP(Φ) + Tr

[
n∑

k=−n

Q∗k

(
Ck −

∫π
−π
eikθΦ(eiθ)dν

)]

=

∫π
−π
P(eiθ) log detΦ(eiθ)dν+ 〈C,Q〉−

∫π
−π

Tr
[
Q(eiθ)Φ(eiθ)

]
dν,

(4.69)

where Q0,Q1, . . . ,Qn are Lagrange multipliers, and where Q is defined as in (4.44)
with Q−k = Q∗k. Since log detΦ = Tr [logΦ], the Lagrangian may be written

L(Φ,Q) = Tr
[∫π

−π

[
P(eiθ) logΦ(eiθ) −Q(eiθ)Φ(eiθ)

]
dν

]
+ 〈C,Q〉 (4.70)
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Since the dual functional supΦ L(Φ,Q) is finite only if Q ∈ P+(N), we may restrict
the Lagrange multipliers to that set. Therefore, for each Q ∈ P+(N), consider the
directional derivative

δL(Φ,Q; δΦ) = Tr
[∫π

−π

(
PΦ−1 −Q

)
δΦdν

]
,

which equals zero for all variations δΦ if and only if (4.59), which inserted into (4.70)
yields

sup
Φ

L(Φ,Q) = JP(Q) +

∫π
−π
P(eiθ)

[
log detP(eiθ) − 1

]
dν, (4.71)

where

JP(Q) = 〈C,Q〉−
∫π
−π
P(eiθ) log detQ(eiθ)dν (4.72)

and the last term is constant. Hence we may take (4.72) as the dual functional.
Taking the directional derivative of (4.72) we have

δJP(Q; δQ) = Tr

[
n∑

k=−n

(
Ck −

∫π
−π
eikθPQ−1dν

)
δQ∗k

]
, (4.73)

which shows that provided there is a stationary point Q̂ it will have the property that
Φ̂ := PQ̂−1 satisfies the moment conditions (4.53). However, by Theorem 4.3.1, there
is a unique such solution. By standard duality theory we see that Φ̂ is the optimal
solution of the primal problem.

4.3.2 Circulant rational covariance extension in terms of matrices

Next we reformulate the optimization problems in terms of circulant matrices. To this
end, we define the circulant matrix

Σ =
1

2N
F∗diag

(
Φ(ζ−N+1), . . . ,Φ(ζN)

)
F (4.74)

with symbol (4.59) and the banded numerator matrix

P =
1

2N
F∗diag

(
Im ⊗ P(ζ−N+1), . . . , Im ⊗ P(ζN)

)
F (4.75)

of degree at most n with symbol P(ζ)Im, where the scalar pseudo-polynomial P is
given by (4.43). It can also be shown that

logΣ =
1

2N
F∗diag

(
logΦ(ζ−N+1), . . . , logΦ(ζN)

)
F. (4.76)
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Therefore, since log detΦ = Tr [logΦ], the primal functional (4.68) may be written∫π
−π
P(eiθ) log detΦ(eiθ)dν

=
1

2N

N∑
j=−N+1

Tr
[
P(ζj) logΦ(ζj)

]
=

1

2N
Tr [P logΣ]

(4.77)

and the moment conditions (4.53) as

1

2N
Tr
[
SkΣ

]
= Ck, k = 0, 1, . . . ,n, (4.78)

or, equivalently, as

E>nΣEn = Tn, where En =

[
Imn

0

]
. (4.79)

Consequently, the primal problem amounts to maximizing Tr [P logΣ] over all Her-
mitian, positive definite 2mN× 2mN block matrices subject to (4.78) or (4.79). This
reduces to the primal problem presented in Carli et al. [24] in the special case P ≡ 1,
except that in Carli et al. [24] there is an extra condition insuring that Σ is circulant.
However, in Carli and Georgiou [23] it was shown that this condition is automatically
satisfied and is therefore not needed.

Similarly the dual functional (4.72) can be written∫π
−π
C(eiθ)Q(eiθ)∗dν−

∫π
−π
P(eiθ) log detQ(eiθ)dν

=
1

2N
Tr [CQ] −

1

2N
Tr [P log Q] ,

(4.80)

where
Q =

1

2N
F∗diag

(
Q(ζ−N+1), . . . ,Q(ζN)

)
F (4.81)

and C is the banded circulant block matrix (4.55) formed from C0,C1, . . . ,Cn. There-
fore, given C ∈ C+(N), it follows from Theorem 4.3.1 that, for each Hermitian, positive-
definite circulant block matrix P with symbol of the form P(ζ)Im, where P is a pseudo-
polynomial of degree at most n, there is a unique Σ given by

Σ = Q−1P, (4.82)

where Q is the unique solution of the problem to minimize

JP(Q) =
1

2N
Tr [CQ] −

1

2N
Tr [P log Q] (4.83)
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over all Hermitian, circulant block-banded matrices

Q = Circ{Q0,Q1, . . . ,Qn, 0, . . . , 0,Q∗n,Q∗n−1, . . . ,Q∗1}

that are positive definite. For the maximum-entropy solution corresponding to P = I
this reduces to an optimization problem that is different from the one presented in
Carli et al. [24].

As observed in Carli et al. [24] the condition Tn > 0 is necessary, but not a suffi-
cient, for feasibility of the circulant block-banded covariance extension problem. In
the present setting we see that the Toeplitz condition Tn > 0 is equivalent to C ∈
C
(m,n)
+ , whereas, by Theorem 4.3.1, C ∈ C

(m,n)
+ (N) is required for feasibility. Since

C
(m,n)
+ (N) ⊂ C

(m,n)
+ , it follows that the Toeplitz condition cannot be sufficient in gen-

eral. However, as proved in Carli et al. [24], feasibility is achieved for a sufficiently
large N. This can also be seen by noting that the set {ζj; j = −N+ 1, . . . ,N} becomes
dense on the unit circle as N → ∞, and therefore P+(N) → P+. Consequently,
C+(N)→ C+, and the convergence is monotone in the sense of (4.58). Therefore, since
C+ is an open set, there is an N0 such that any C ∈ C+ will sooner or later end up in
C+(N) and remain there as N > N0 increases.

4.4 determining P from logarithmic moments

We have parameterized a large class of solutions to the multivariable circulant rational
covariance extension problem in a smooth manner by the numerator trigonometric
polynomials P ∈ P

(1,n)
+ (N), or, equivalently, by their corresponding banded circulant

matrices P. Next, we show how P can be determined from the logarithmic moments

γk =

∫π
−π
eikθ log detΦ(eiθ)dν, k = 1, 2, . . . ,n. (4.84)

Such moments are known as cepstral coefficients in speech processing. Let Γ(ζ) be the
pseudo-polynomial

Γ(ζ) =

n∑
k=−n

γkζ
−k, (4.85)

where γ−k = γ̄k, k = 1, 2, . . . ,n and γ0 is real.
Consider the problem of finding the spectral densityΦ, or, equivalently, the circulant

block matrix Σ, that maximizes the entropy gain

I(Φ) =

∫π
−π

log detΦ(eiθ)dν =
1

2N
Tr [logΣ] (4.86)
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subject to the two sets of moment conditions (4.53) and (4.84). Such a problem was
apparently first considered in the usual trigonometric moment setting in an unpub-
lished technical report Musicus and Kabel [79] and then, independently and in a more
elaborate form, in Byrnes, Enqvist, and Linquist [9, 10], Enqvist [36].

Setting up the Lagrangian a straightforward calculation yields the dual problem to
minimize

J(P,Q) = 〈C,Q〉−
∫π
−π
P(eiθ) log detQ(eiθ)dν

−〈Γ ,P〉+
∫π
−π
P(eiθ) logP(eiθ)dν,

(4.87)

over (P,Q) ∈ P̂
(1,n)
+ (N)×P

(m,n)
+ (N), where P̂

(1,n)
+ (N) is the bounded subset

P̂
(1,n)
+ (N) := {P ∈ P

(1,n)
+ (N) | p0 = 1} (4.88)

of the cone P
(1,n)
+ (N).

The following theorem is a multivariable version of Theorem 8 in Lindquist and
Picci [74] and the proof is analogous.

Theorem 4.4.1. Suppose that C ∈ C
(m,n)
+ (N) and that γ1, . . . ,γn are complex numbers.

Then there exists a solution (P̂, Q̂) that minimizes J(P,Q) over all (P,Q) ∈ P̂
(1,n)
+ (N)×

P
(m,n)
+ (N), and, for any such solution

Φ̂ = P̂Q̂−1 (4.89)

satisfies the covariance moment conditions (4.53). If, in addition, P̂ ∈ P
(1,n)
+ (N), (4.89) also

satisfies the logarithmic moment conditions (4.84) and is an optimal solution of the primal
problem to maximize the entropy gain (4.86) given (4.53) and (4.84). Then Q̂ ∈ P

(m,n)
+ (N),

and the solution is unique. In fact, J is strictly convex on P̂
(1,n)
+ (N)×P

(m,n)
+ (N).

Provided C ∈ C+(N), minimizing J(P,Q) over all (P,Q) ∈ P̂
(1,n)
+ (N)×P

(m,n)
+ (N)

will always produce a spectral density with the prescribed covariance lags C0,C1,. . . ,Cn.
If the moments C0,C1, . . . ,Cn and γ1, . . . ,γn come from the same theoretical spectral
density, the optimal solution (4.89) will also match the cepstral coefficients. In practice,
however, they will be estimated from different data sets, so there is no guarantee that
P̂ does not end up on the boundary of P

(1,n)
+ (N) without satisfying the logarithmic

moment conditions. Then the problem needs to be regularized, leading to adjusted
values of γ1, . . . ,γn consistent with the covariances C0,C1, . . . ,Cn.
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Such a regularization was proposed in Enqvist [36] in the context of the usual ra-
tional covariance extension problem. The regularized dual problem to find a pair
(P,Q) ∈ P̂

(1,n)
+ (N)×P

(m,n)
+ (N) minimizing

Jλ(P,Q) = J(P,Q) − λ

∫π
−π

logP(eiθ)dν (4.90)

for some λ > 0 will always lead to a solution where P ∈ P
(1,n)
+ (N). Indeed, (4.90) will

take an infinite value for P ∈ ∂P(1,n)
+ (N), since then P(ζk) = 0 for some k, and hence

the minimum will be in the interior. In circulant form (4.90) becomes

Jλ(P,Q) =
1

2N
Tr [CQ] −

1

2N
Tr [ΓP]

+
1

2N
Tr
[
P log PQ−1

]
−
λ

2N
Tr [log P] ,

(4.91)

where
Γ =

1

2N
F∗diag

(
Im ⊗ Γ(ζ−N+1), . . . , Im ⊗ Γ(ζN)

)
F. (4.92)

Then both sets (4.53) and (4.84) of moments are matched provided one adjusts the
logarithmic moments γ1,γ2, . . . ,γn to γ1 + ε1,γ2 + ε2, . . . ,γn + εn, where

εk =

∫π
−π
eikθ

λ

P(eiθ)
dν =

λ

2N

N∑
j=−N+1

ζkj

P(ζj)

=
λ

2N
Tr
[
SkP−1

]
.

(4.93)

4.5 implementation details

Simulations suggest that a straightforward implementation of Newton-like algorithm
with backtracking line search can be heavily affected by the high condition number of
the Hessian. Unfortunately, ill-conditioning is often encountered when dealing with
this kind of optimization problems, as pointed out in Enqvist [34]. In that paper, an
effective homotopy continuation method was proposed for solving rational covariance
extension with degree constraint. A generalization of this approach is not obvious in
the case we are interested in, thus we propose to rephrase the problem so that it can
be solved efficiently by means of robust off-the-shelf optimization methods as the ones
featured by Matlab.

For the sake of simplicity, next we deal with the minimization of (4.72) in case y is
scalar and real-valued. The same procedure was extended to the general case with
y taking values in Cm and to the minimization of (4.87). In order to be consistent
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with the implementation of DFT featured by Matlab’s fft method, in this section we
consider T = 2N and ζk := ej

2π
T k, with k on the interval [0, T − 1] instead of [−N+ 1,N].

Thus, the values Q(ζk) for k = 0, . . . , T − 1, are given by the DFT of the T -dimensional
sequence

q :=
[
q0 q1 . . . qn 0 . . . 0 qn . . . q1

]
. (4.94)

Let us introduce the notations

γ :=
[
C(ζ0) C(ζ1) . . . C(ζT−1)

]>
, (4.95)

ρ :=
[
P(ζ0) P(ζ1) . . . P(ζT−1)

]>
. (4.96)

Now define the array x such that

xk := Q(ζk), for k = 0, 1, . . . , T − 1. (4.97)

Then, minimizing (4.72) is equivalent to minimize

J̃P(x) := γ>x − ρ> log x, (4.98)

where
log x :=

[
log x0 log x1 . . . log xT−1

]
under the following constraints:

positivity : Since Q(ζk) has to be positive on the discretized unit circle, we require

xk > 0 for k=0,1,. . . ,T-1

symmetry : Symmetry of Q(ζk) requires that xk = xT−k for k = 1, . . . , T2 − 1. Thus,
we impose the constraint

Ax = 0 (4.99)

where A is the T2 − 1× T matrix defined by

A :=


0 1 0 . . . 0 0 0 . . . 0 −1

0 0 1 . . . 0 0 0 . . . −1 0
...

...
. . .

...
. . .

...
0 0 0 . . . 1 0 −1 . . . 0 0

 . (4.100)

order of Q(ζ) : Recall that Q(z) =
∑n
k=−n qkζ

−k and the sequence of qk’s is given
by inverse DFT of x. Thus, the constraint on the order of the pseudo-polynomial
Q can be expressed in terms of the DFT matrix F as

[F∗]n+1:N−n−1 x = 0, (4.101)
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where [F∗]n+1:N−n−1 stands for matrix given by the rows of F∗ of index n +

1,n+ 2, . . . , T −n− 1. However, standard optimization software requires the ma-
trices appearing in the constraints to have real valued entries. Therefore, based
on the structure of the inverse DFT matrix the last constraint can be written as

Mx = 0, (4.102)

where

M :=

[
<
{
[F∗]n+1:N−n−1

}
=
{
[F∗]n+1:N−n−1

}]

In conclusion, we can rephrase the original problem of minimizing (4.72) over P(1,n)
+ (N)

so that it reads

Problem 4.5.1.
x◦ = arg min

x
γ>x − ρ> log x

s.t.


A
M

 x = 0

x > 0

(4.103)

Thus standard optimization methods can be used for solving it efficiently. For ex-
ample, we resorted to Matlab’s fmincon. Finally, the coefficients q0,q1, . . . ,qn are
obtained by inverse DFT of x◦, according to the pattern shown in (4.94).

4.6 numerical examples

Given a P ∈ P
(1,n)
+ and a sequence C0,C1, . . . ,Cn of m ×m covariance lags with

a positive definite block Toeplitz matrix (4.39), Theorem 4.2.1 states that there is a
unique Q ∈ P

(m,n)
+ such that Φ := PQ−1 satisfies the moment conditions (4.42). As

pointed out above, for a sufficiently large N the sequence C will also belong to the
somewhat smaller cone C

(m,n)
+ (N), and then, by Theorem 4.3.1, there will be a unique

QN ∈ P
(m,n)
+ (N) such that ΦN := PQ−1

N satisfies (4.53). Next we shall give some
numerical results illustrating how Φ can be approximated by ΦN for various values
of N.

In our first example Φ is a 2× 2 spectral density corresponding to an AR process of
order n = 8 with poles as depicted in Fig. 10.

Given the theoretical covariance sequence C0,C1, . . . ,Cn from this Φ, we solve the
corresponding circulant moment problem (4.53) for various values of N to obtain a
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Figure 10: Autoregressive 2× 2 model, with order n = 8.

bilateral AR representation of order n = 8 with spectral density ΦN. Fig. 11 illustrates
the approximation error ‖Φ(eiθ) − Φ̂(eiθ)‖2 for N = 16, 32 and 64. It turns out that
there is no need to go for high values of N.
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Figure 11: Norm of the spectral estimation error for bilateral AR models with N = 16, 32, 64.

In the second example we start from a two-dimensional ARMA process with a spec-
tral density Φ := PQ−1, where P is a scalar pseudo-polynomial of degree three and Q
is a 2× 2matrix-valued pseudo-polynomial of degree n = 6. Its zero poles map is illus-
trated in Fig. 12. Given its covariance sequence C0,C1, . . . ,Cn and cepstral sequence
γ1,γ2, . . . ,γn, we apply the combined covariance and cepstral procedure described
in Section 4.4 to determine a pair (PN,QN) for n = 6 and a corresponding bilateral
ARMA model. For comparison we also compute an bilateral AR approximation with
n = 12 fixing P = 1. As illustrated in Fig. 13, the bilateral ARMA model of order
n = 6 computed for N = 32 compares favorably to the bilateral AR model with n = 12

which is obtained by fixing N = 64.
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Figure 12: ARMA 2× 2 model, with order n = 6.
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Figure 13: Comparison between a bilateral AR of order 12 for N = 64 and a bilateral ARMA
of order 6 for N = 32: estimated spectral densities.
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4.7 conclusions and future work

In this chapter we took a first step towards multivariate circulant rational covariance
extension, which provides an effective method for computing an approximate solution
of the regular covariance extension problem for multivariate, stationary processes. In-
deed, it results in a convex optimization problem which can be solved efficiently by
means of fast routines for DFT and off-the-shelf optimization algorithms.

The next step is to allow for arbitrary pseudo-polynomials P(ζ). In addition, as
stated in Subsection 4.3.2, the set {ζj; j = −N+ 1, . . . ,N} becomes dense on the unit
circle as N → ∞, and therefore P+(N) → P+. Thus, there is an N0 such that any
C ∈ C+ will end up in C+(N). Either determining suchN0 or being able of establishing
whether, given N, a sequence C ∈ C+ also belongs to C+(N) is essential in order to
guarantee the feasibility of Problem 4.3.1. Moreover, it would be very significant to
evaluate analytically the convergence of the approximate solution to the actual one (i.e.
the one corresponding to the regular covariance extension problem).

The multivariate circulant rational covariance extension problem, however, is also
interesting per se. In particular, one of the most promising research directions is estab-
lishing a connection between the proposed approach and the literature about recipro-
cal processes defined on the discretized unit circle (Carli et al. [24], Carli et al. [25],
Chiuso, Ferrante, and Picci [26], Krener [66], Levy and Ferrante [70], Levy, Frezza, and
Krener [71], Picci and Carli [86], Sand [93]). A regular reciprocal process y(t) can be
considered as a one-dimensional Markov field. Here we are interested in stationary pe-
riodic reciprocal processes, which are defined on a finite interval U := [−N+ 1, . . . ,N]

with arithmetic modulo 2N. It is convenient to represent them as processes defined on
the discretized circle by folding the interval U. Consider t1 < t2 such that t1, t2 ∈ U
and define

y(t1,t2) : values taken by y(t) on (t1, t2);

y(t1,t2)c : values taken by y(t) in the complementary set of (t1, t2) in U.

Now let “⊥” denote independence. Then, a reciprocal process of order n defined on
the discretized unit circle corresponding to U with arithmetic modulo 2N is character-
ized by the following property:

y(t1,t2) ⊥ y(t1,t2)c | {y(t1−n,t1] ∨ y[t2,t2+n)}.

For instance, if n = 1, we have that the values taken by the process inside the interval
(t1, t2) are conditional independent of the values taken outside the interval, given yt1
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Ê[ y(t1,t2) | y(s), s ∈ (t1, t2)c ]

Ê[ y(t1,t2) | y[t1−n,t1) ∨ y(t2,t2+n] ]
=

y(t2)

y(t1)

y(t1 −n)

y(t2 +n)

Figure 14: Gaussian reciprocal processes on the discretized unit circle

and yt2 . In case a reciprocal process of order n is Gaussian, conditional independence
implies conditional uncorrelation, and so we have

Ê
[
y(t1,t2) |y(t1,t2)c

]
= Ê

[
y(t1,t2) | {y(t1−n,t1] ∨ y[t2,t2+n)}

]
(4.104)

as show in Fig. 14.
A Gaussian reciprocal process y(t) of order n defined on [−N + 1,N] admits the

representation (see e.g. Carli et al. [24])

n∑
k=−n

Qky(t− k) = e(t), t ∈ Z2N, (4.105)

where e(t) is noise with correlation bandwidth equal to n. In terms of matrices, we
have

Qy = e, (4.106)

where

y :=



y(−N+ 1)
...

y(0)
...

y(N)


, e :=



e(−N+ 1)
...

e(0)
...

e(N)


, (4.107)

Q := Circ{Q0,Q1, . . . ,Qn, 0, . . . , 0,Q∗n, . . . ,Q∗1}. (4.108)

Since E [ye] = I, we have
E [ee∗] = E [Qye∗] = Q (4.109)

and
Σ := E [yy∗] = Q−1. (4.110)
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(a) Example of texture

y(t) := I(t, :)
y(t+ 1)

y(t− 1)

...

...

N

M

I(n, m)

(b) Texture modeled by means of a reciprocal process.

Figure 15: Application of reciprocal processes to image processing of textures

Recall that, after solving the circulant rational covariance extension problem, we end
up with a bilateral ARMA model:

n∑
k=−n

Qky(t− k) =
n∑

k=−n

Pke(t− k), t ∈ Z2N. (4.111)

Thus, it seems that the approach we propose yields models that may somewhat gener-
alize (4.105) and (4.106). This is a subject of current research.

If such connection can be established, we could take advantage of the proposed
approach in dealing with the problems where reciprocal processes have been success-
fully applied, such as image processing of textures. Indeed, textures can be considered
spatially stationary, periodic processes (see e.g. Chiuso, Ferrante, and Picci [26], Picci
and Carli [86]). An example of texture is shown in Fig. 15a, taken from Picci and Carli
[86]. In that paper, textures are modeled by introducing a Gaussian reciprocal process
y(t) = {y(k) ;k ∈ [0, . . . ,N]} of order one, where y(k) is an M-dimensional random
vector corresponding to the k-th row in the image, as shown in Fig. 15b. Then, a bilat-
eral autoregressive model of the same kind as (4.105) is estimated by means of an ad
hoc algorithm. This problem could be solved by means of the approach we propose.
Moreover, it would be interesting to figure out whether the moving average part that
appears in (4.111) can play a role in achieving better results.
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5 O N T H E A C H I E VA B L E E R R O R R E G I O N O F
P H Y S I C A L L AY E R A U T H E N T I C AT I O N

5.1 introduction

Physical layer security refers to secure communication techniques which are imple-
mented at the lowest layer of OSI (Open Systems Interconnection) reference model
shown in Fig. 16 (ISO/IEC 7498-1, see e.g. Zimmermann [104]). This topic keeps
arousing great interest in modern communications. Indeed, it provides an effective de-
fense mechanism which is complementary to higher layer security techniques. On the
one hand, it has the potential of resisting the attacks based on massive computational
capabilities that may be feasible in the near future, e.g., by quantum computing. On
the other, security implemented at the physical layer is usually based on information
theoretic arguments, so it entails analytically predictable performance irrespective of
the attacker capabilities.

Layer 7

Layer 6

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

Application

Presentation

Session

Transport

Network

Data-link

Physical

Figure 16: OSI reference model ISO/IEC 7498-1.

Next we focus on the authentication of the message source based on channel estima-
tion, that hinges on using physical layer features as authentication keys. This is one

79
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of the most desirable mechanisms of physical layer security. Indeed, its performance
can be evaluated analytically by means of information theoretic results. Moreover, it
significantly reduces the burden of authentication protocols, such as keyed hashed
functions (see e.g Katz and Lindell [63], Menezes, Oorschot, and Vanstone [78]), at the
network and higher layers.

In particular, we are interested in analyzing channel authentication performance in
the framework of wireless communication systems. Under the assumption that there
is correlation between the channels, physical layer authentication can be conveniently
recast into a hypothesis testing problem (as in Lai, El Gamal, and Poor [69], Maurer
[76]). Consider the scheme of Fig. 17: Whenever he receives a message, the receiver
(Bob) has to decide between hypothesis H0 that the message was effectively sent by
the legitimate source (Alice), and hypothesis H1 that it was forged by the attacker
(Eve).

Eve (E)

Bob (B)

hBE

Alice (A)

hAE

hAB

Figure 17: Sketch of the wireless channel authentication model

Physical layer authentication has been addressed by considering either device-specific
non-ideal transmission parameters extracted from the received signal (Daniels, Mina,
and Russell [30]), or channel characteristics in order to identify the link between a spe-
cific source and the receiver (Baracca, Laurenti, and Tomasin [2], Faria and Cheriton
[38], Xiao et al. [103]). This chapter focuses on the latter case, which finds application
in many wide-band wireless systems, where even small changes in the position of the
transmitter have a significant impact on the channel, due to small scale fading effect
(see Section 5.2). In particular, we consider the approach proposed in Baracca, Lau-
renti, and Tomasin [2], where the test is performed in two phases. In the first phase,
the receiver gets an authenticated noisy estimate x of the channel with respect to the
legitimate transmitter, hAB. In the second phase, upon reception of a message, the
receiver gets a new estimate u of the channel with respect to the source of the received



5.1 introduction 81

message and compares it with x. Then, he must decide whether u is an estimate of the
legitimate channel or the channel forged by an eavesdropper.

The performance of a binary hypothesis testing scheme is measured by the probabil-
ity of type I (false alarm), and type II (missed detection) errors. Therefore, theoretical
bounds on the achievable error probability region are of great importance to establish
the effectiveness of practical schemes.

For instance, Maurer considered the traditional authentication scenario in which the
legitimate parties can make use of a shared cryptographic key that is kept perfectly
secret to the attackers. There, an outer bound on the achievable error region was de-
rived, that holds irrespectively of the decision rule implemented by the receiver. Then,
by fixing the false alarm probability, the outer bound is turned into a lower bound on
the missed detection probability (see Maurer [76]). An analogous approach was used
in Cachin [22] and Barni and Tondi [3] within the different contexts of steganography
and fingerprinting, respectively. Similarly, in Lai, El Gamal, and Poor [69], such lower
bound is paired with an asymptotic upper bound, and both are derived also in the
case that the legitimate parties share correlated sequences, instead of an identical key.

In the above cases, since the attacker has no information on the shared sequences, the
optimal attack strategy with respect to the outer bound is to present forged signals that,
albeit independent of the legitimate shared key, are generated from the same marginal
distribution as the legitimate signals. In our framework, on the contrary, the legitimate
authentication signal is the actual realization of a fading wireless channel. In particular,
the estimates z performed by the attacker provide Eve with some side information on
the legitimate channel, because the channels hAE and hBE are in general correlated
with hAB. Therefore, our main contribution is threefold:

1. We derive an outer bound to the error probability region, in terms of the attacker
strategy;

2. we prove the existence of a strategy v, jointly Gaussian with z, that yields the
tightest bound, and characterize the joint covariance matrix through the solution
of a system of two matrix equations;

3. we give an efficient technique for the numerical evaluation of the optimal attack
strategy and the corresponding bound.

This chapter is outlined as follows: First, Section 5.2 provides some preliminaries.
Then, Section 5.3 introduces the problem formally, so that the theoretical results can
be derived in Section 5.4. Based on those results, in Section 5.5 we propose an efficient
algorithm for the numerical evaluation of the optimal attack strategy. Next, in Section
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5.6 we give examples of numerical results, and eventually we draw conclusions in
Section 5.7.

5.2 preliminaries

Next we introduce the wireless channel model we are going to consider in the fol-
lowing sections. The wireless channel is affected by fading. While large scale fading
represents the average signal power attenuation which occurs as the mobile moves
over large areas, due to distance and shadowing, small scale fading is a consequence of
multi-path propagation. Indeed, in wireless communication systems many objects in
the propagation environment scatter the signal, so transmission takes place over mul-
tiple reflective paths. As a consequence interference occurs, and also small changes
in spatial separation can give rise to dramatic oscillations in the received signal’s am-
plitude and phase. Rayleigh fading provides a statistical model for these small scale
effects. Starting from the continuous-time multi-path fading channel model, it is pos-
sible to derive a discrete-time baseband model which is described in terms of channel
filter taps (see e.g. Tse and Viswanath [99]). Then, under the assumption that there
is a large number of statistically independent reflected and scattered paths with ran-
dom amplitudes in the delay window corresponding to a single tap, the Central Limit
Theorem allows to conclude that the tap gains are circularly symmetric complex Gaus-
sian distributed. As a consequence, the magnitude of the each tap can be modeled
as a Rayleigh random variable. Rayleigh fading is the usual choice in modeling wire-
less transmissions, including those using orthogonal frequency division multiplexing
(OFDM) or multi-antenna (multiple-input multiple-output, MIMO). In MIMO systems
each agent may have an arbitrary number of antennas. Thus, the channel vectors are
assumed to have different size, in general. All transmissions are corrupted by additive
white Gaussian noise with zero mean. Therefore, we model channel estimates per-
formed by each agent in Fig. 17 as zero-mean circular symmetric complex Gaussian
vectors with correlated entries (see Section A.4).

In our notation, if a ∈ Cn and b ∈ Cm are (zero-mean) random vectors, Kab denotes
the n×m covariance matrix of vectors a and b, i.e.

Kab := E [ab∗] ,

whereas K[a
b

] stands for the (n+m)× (n+m) variance matrix

E
[[ a

b
][ a

b
]∗] .

The symbol A∗ denotes the complex conjugate transpose of matrix A.
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5.3 problem statement

5.3.1 Authentication Procedure

The authentication is performed via a two phase procedure, as detailed in Baracca,
Laurenti, and Tomasin [2]:

first phase In the first phase Alice transmits one or more messages, whose au-
thenticity is guaranteed by higher layer techniques. Bob gets a noisy estimate x of the
channel with respect to Alice (hAB) and replies with acknowledge messages. More-
over, upon Alice and Bob transmissions, Eve gets (possibly noisy) estimates of her
own channel with respect to both the other agents (hAE and hBE): the set of these two
estimates is denoted with z.

second phase In the second phase, either Alice or Eve transmits messages. Bob
authenticates the received messages by getting a new noisy channel estimate u and
comparing it with his template x. If this decision process D deems the message as
coming from Alice, the binary flag b̂ is set to zero, otherwise it is set to one. In
this phase, Alice performs transmissions in the same fashion of the first phase, while
Eve performs a pre-processing of her own messages in order to induce an equivalent
channel estimate by Bob that is as close as possible to x.

This physical layer authentication scheme is shown in Fig 18.

In view of our assumptions, the channel estimates are complex, circular symmetric
Gaussian random vectors. In particular, x and y are n-dimensional, while z is a m-
dimensional. As for v, i.e. the channel forged by the attacker, it is an n-dimensional,
complex, random vector whose probability density is not specified as it will be chosen
by the attacker in order to obtain better mimetic features.

An abstract representation of the authentication scenario in terms of an hypothesis
testing problem is given in Fig. 19. We assume that Eve is able to forge any equivalent
channel v to Bob, through a probabilistic strategy, based on her observations z, which
can be characterized by the conditional distribution pv|z. Although constraints on
power and channel characteristics may in practice prevent this, the assumption is a
worst case scenario, which is of interest to derive performance bounds. On the other
hand, estimates of Alice-Bob channel in both the first and the second phase are not
identical, in general, due to independent noise that affects both estimates. Let y denote
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A B

E+ +

+

wAE wBE

wB

hAB D

hBE

g

hAE hEB

b̂

Figure 18: Physical layer authentication scheme. Agents collect noisy channels estimates. D

denotes the decision process, while g represents the preprocessing performed by
the attacker in order to deceive the receiver.

a realization of the random channel estimate of the Alice-Bob channel. Given the
channel estimate u, Bob decides between the two hypotheses

H0 : u = y message is from Alice, (5.1)

H1 : u = v message was forged. (5.2)

In Fig. 19, being in hypothesis H0 or H1 is obtained by setting b = 0 or 1, respectively.
Correct authentication is achieved when b̂ = b.

pxyz

pv|z DHb

x

y

z

v u b̂

Figure 19: Abstract model for physical layer authentication recast as an hypothesis testing
problem.
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We denote the set of all possible conditional distributions (forging strategies) pv|z(·|·)
as

Q =

{
q(·|·) : Cn × Cm → R,q(b|c) > 0,

∫
q(b|c)db = 1

}
. (5.3)

Performance of the authentication system are assessed by type I error probability α,
i.e., the probability that Bob discards a message as forged by Eve while it is coming
from Alice

α = P[b̂ = 1|H0] , (5.4)

and the type II error probability β, i.e., the probability that Bob accepts a message
coming from Eve as legitimate

β = P[b̂ = 0|H1] . (5.5)

The aim of a clever design for the authentication scheme is to make both error
probabilities α and β as small as possible. Since it is trivial to achieve α+β = 1 with a
random decision strategy that outputs b̂ = 1 with probability α, independently of the
observation u, we are only interested in values of α, β in the region

R0 = {(α,β) : α > 0,β > 0,α+β 6 1} . (5.6)

5.3.2 Error Region Bounds for a Given Attacking Strategy

A first bound on the error region for a given attacking strategy can be obtained by
applying the fundamental data processing inequality for the Kullback-Leibler (KL)
divergence Kullback [68] to our binary hypothesis decision scheme D. In fact, from
Cachin [22], Maurer [76] we have1

D
(
pb̂|H1

||pb̂|H0

)
6 D

(
pxu|H1

||pxu|H0

)
. (5.7)

First we observe that pb̂|H0
(1) = α, pb̂|H0

(0) = 1 − α, and similarly pb̂|H1
(0) = β,

pb̂|H1
(1) = 1−β. Therefore, introducing the function2

f (ϕ,ψ) = ϕ log
ϕ

1−ψ
+ (1−ϕ) log

1−ϕ

ψ
, ϕ,ψ ∈ [0, 1] (5.8)

we can rewrite (5.7) as

f(β,α) 6 D
(
pxu|H1

||pxu|H0

)
. (5.9)

1 Note that the symmetric bound D
(
pb̂|H0

||pb̂|H1

)
6 D

(
pxu|H0

||pxu|H1

)
also holds true (see also

Baracca, Laurenti, and Tomasin [2]).
2 Notice that f(ϕ,ψ) is the KL divergence between two Bernoulli probability distributions of parameters ϕ

and 1−ψ, respectively.
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Since the observation z encloses all the information the attacker can exploit in order
to deceive the receiver, we can assume that the forging strategy v is conditional indepen-
dent of the secure template x, given z. Then the divergence on the right side of (5.9)
can be written explicitly for a given attacking strategy q(·|·) ∈ Q as

D(q) = D
(
pxu|H1

||pxu|H0

)
= D (pxv ||pxy)

=

∫∫ {[∫
pxz(a, c)q(b|c)dc

]
×
[

log
(∫
pxz(a, c)q(b|c)dc

)
− logpxy(a,b)

]}
dadb .

(5.10)

Let f0 > 0 be given and set

R (f0) :=
{
(α,β) ∈ R0 : f(β,α) 6 f0

}
. (5.11)

Then (5.9) can be rewritten as

(α,β) ∈ R (D(q)) . (5.12)

5.3.3 Error Region Bounds for Any Attacking Strategy

Each outer bound in (5.12) is clearly looser than

R∩ =
⋂
q∈Q

R (D(q)) = R (D?) (5.13)

where

D? = inf
q∈Q

D(q) . (5.14)

Note that the region in (5.13) is not strictly speaking an outer bound of the type
(5.12), since the infimum (5.14) may, in general, not be achievable. In that case, (5.13)
represents a worst case performance for the authentication system, over all possible
attacking strategies. On the other hand, for the attacker, approaching (5.14) represents
the possibility to effectively carry out an impersonation attack.

Our main goal is to evaluate the tightest bound (5.13). Indeed, we provide an attack-
ing strategy achieving (5.14), under the assumption that the observation z encodes all
the information about the secure template x the attacker can rely on in order to deceive
the receiver. We have just shown that this is equivalent to the following constrained
optimization problem:
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Problem 5.3.1. Given the zero-mean, circular symmetric, jointly Gaussian random vec-
tors x, y, z with joint covariance matrix

K[ x
y
z

] :=
Kxx Kxy Kxz

Kyx Kyy Kyz

Kzx Kzy Kzz

 , (5.15)

find a joint probability distribution pxvz ∈ L1(C2n+m) such that its marginal pxv
minimizes D (pxv ||pxy) under the constraints:
1. The marginal distribution of x, z (corresponding to pxvz) is equal to the given
distribution pxz.
2. The random vectors v and x are conditionally independent given z.

5.4 main results

In this section, we address Problem 5.3.1. In particular, we show that the problem is
feasible, that it admits an optimal solution and that this solution is Gaussian. Finally,
we show how to reformulate this problem in terms of the solution of two coupled
matrix equations. The first issue to be considered is the feasibility of Problem 5.3.1,
namely the existence of a distribution pxvz satisfying the constraints and such that
D (pxv ||pxy) is finite.

Lemma 5.4.1. Problem 5.3.1 is feasible.

Proof. Let v be an n-dimensional, complex, zero-mean, circular symmetric Gaussian
random vector (with arbitrary covariance) independent of x and of z. It is imme-
diate to check that the corresponding pxvz satisfies the constraints and is such that
D (pxv ||pxy) is finite.

Lemma 5.4.2. Let x and z be jointly Gaussian. For any attacking strategy pxv having finite
second moment and in which v and x are conditionally independent given z, they are also
conditionally orthogonal given z, that is

E
[
(x − Ê[x|z])(v − Ê[v|z])

]
= 0, (5.16)

where Ê[·|z] stands for the best linear estimator of · given z

Proof. We have

E
[
(x − Ê[x|z])(v − Ê[v|z])

]
= E

[
E
[
(x − Ê[x|z])(v − Ê[v|z])|z

]]
(5.17)

= E
[
E
[
(x − Ê[x|z])|z

]
E
[
(v − Ê[v|z])|z

]]
(5.18)

= E
[(

E[x|z] − Ê[x|z]
) (

E[v|z] − Ê[v|z]
)]

, (5.19)



88 on the achievable error region of physical layer authentication

where (5.17) and (5.18) follow from the Total Expectation Theorem and the definition
of conditional independence, respectively. Since x and z are jointly Gaussian, we have
that E [x|z] = Ê [x|z]. Thus, we can conclude that the right-hand side of (5.19) is equal
to zero.

In general, conditional independence does not imply conditional orthogonality, al-
though for jointly Gaussian variables they are equivalent. However, we have proved
that conditional independence of x and v given z implies that x and v are conditionally
orthogonal given z, thanks to x and z being jointly Gaussian.

Consider now the joint covariance matrix

K[x
v
z

] :=
Kxx Kxv Kxz

Kvx Kvv Kvz

Kzx Kzv Kzz

 . (5.20)

Notice that, since the attacker knows the joint probability density pxyz, the corner
elements of (5.20) are known. For the sake of simplicity, we introduce the following
symbols for the unknown blocks of (5.20):

X := Kvv, Y := Kxv, Z := Kvz. (5.21)

Hence, we can write

K[x
v
z

] =
Kxx Y Kxz

Y∗ X Z

K∗xz Z∗ Kzz

 . (5.22)

Recall that the conditional orthogonality of x and v given z is equivalent to the follow-
ing zero-block pattern in its inverse3

K−1[
x
v
z

] =
∗ 0 ∗
0 ∗ ∗
∗ ∗ ∗

 . (5.23)

In this way we have expressed the second constraint of Problem 5.3.1 in terms of the
structure of the inverse of the covariance matrix. Thus, a generalized moment problem
arises: Notice that it is possible to enforce the zero pattern in the inverse by resorting to
a “maximum entropy" completion as described e.g. in Dempster [32]. See also Ferrante
and Pavon [39], Pavon and Ferrante [84] for more general results.

Lemma 5.4.3. If qG is a circular symmetric Gaussian distribution, then, among all distribu-
tions p that share the same mean vector µ and covariance matrix K, the one that minimizes
D (p ||qG) is circular symmetric and Gaussian.

3 A proof can be worked out in the same vein of Speed and Kiiveri [96, Section 2].



5.4 main results 89

Proof. Let pG be a circular symmetric Gaussian probability density on Cn and let p 6= pG
be any density having the same first and second moment as pG. We denote by h(p)
the differential entropy of the density p, i.e. h(p) := −

∫
p(a) logp(a)da. Then (see

Neeser and Massey [81, Theorem 2]), we have the inequality

h(p) < h(pG). (5.24)

Now let qG be any proper Gaussian density on Cn. Under the same hypotheses, we
have ∫

logqG(x)p(x)dx =
∫

logqG(x)pG(x)dx, (5.25)

because logqG(x) is a quadratic function of x. In view of (5.24) and (5.25), we now
have

D (p ||qG) =

∫
log

p(x)

qG(x)
p(x)dx

= −h(p) −

∫
logqG(x)p(x)dx

= −h(p) −

∫
logqG(x)pG(x)dx

> −h(pG) −

∫
logqG(x)pG(x) = D (pG ||qG) ,

with equality iff pG is circular symmetric and Gaussian. Thus, if p is the solution of
any minimum entropy problem with circular symmetric Gaussian prior, p has to be
circular symmetric and Gaussian.

Lemma 5.4.4. If the second moment of pxv is not finite then D (pxv ||pxy) =∞.

Proof. We assume that D (pxv ||pxy) is finite and show that the second moment of pxv
is finite. Let us first recall the variational formula for the relative entropy Deuschel
and Stroock [33, page 68]:

D (pxv ||pxy) = sup
ϕ∈Φ

{∫
C2n

ϕ(a)pxv(a)da− log
[∫

C2n
exp[ϕ(a)]pxy(a)da

]}
(5.26)

where Φ is the set of bounded functions. Observe now that, since pxy is a Gaussian
probability density, there exists ε > 0 such that

L := Epxy [exp[ε‖a‖2]] =
∫

C2n
exp[ε‖a‖2]pxy(a)da

is finite. Let us now consider the following sequence of bounded functions:

ϕl(a) :=

{
ε‖a‖2, if ‖a‖2 6 l,
0, if ‖a‖2 > l.
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From (5.26) we get that for all l = 1, 2, . . . ,

D (pxv ||pxy) + log
[∫

C2n
exp[ϕl(a)]pxy(a)da

]
>
∫

C2n
ϕl(a)pxv(a)da, (5.27)

or, equivalently,

1

ε

{
D (pxv ||pxy) + log

[∫
C2n

exp[ϕl(a)]pxy(a)da
]}

>
∫
Ωl

‖a‖2pxv(a)da, (5.28)

where Ωl := {a ∈ C2n : ‖a‖2 6 l}. As l → ∞, the left-hand side of (5.28) converges
to 1
ε [D (pxv ||pxy) + L] while the right hand side converges to the trace of the second

moment of pxv. Such a trace is therefore finite and thus also the second moment of
pxv is finite.

We are now ready to consider the existence problem. As in many optimization prob-
lems this is one of the most delicate issue.

Theorem 5.4.1. There exists an optimal solution p?xv of Problem 5.3.1.

Proof. Let d? be the infimum of D (pxv ||pxy) over pxv, satisfying the constraints of
Problem 5.3.1. Let pjxvz, j = 1, 2, . . . , be a sequence of probability densities satisfying
the constraints of Problem 5.3.1 and such that the corresponding marginals pjxv satisfy

lim
j→∞D

(
pjxv ||pxy

)
= d?.

In view of Lemma 5.4.4, we can assume that all pjxvz have finite mean vector µj and
covariance matrix K̄j. Let mj and Kj be the mean and covariance of [ xv ], i.e. mj are
the first 2n components of µj and Kj is the 2n× 2n upper-left block of K̄j. Now notice
that, as j→∞, ‖Kj‖ and ‖mj‖ remain bounded. In fact, in view of Lemma 5.4.3,

D
(
pjxv ||pxy

)
> D

(
pGjxv ||pxy

)
= Tr

[
K−1[
x
y

]Kj]+m∗jK−1[
x
y

]mj − ln

 det[Kj]
det[K[ x

y

]]
− 2n,

(5.29)
where pGjxv is the Gaussian distribution having mean vector mj and covariance matrix
Kj. It is easy to check that the right-hand side of (5.29) diverges if at least one of ‖Kj‖
and ‖mj‖ does. Hence, both ‖Kj‖ and ‖mj‖ remain bounded. Thus, also µj and K̄j
remain bounded. Therefore, there exists a subsequence pjixvz such that K̄ji and µji
converge. Let K̄? and µ? be their limits and let K? and m? be the limits of Kji and
mji . Notice now that each density of the corresponding sequence pGjixvz satisfies the
constraints of Problem 5.3.1. In fact, the marginal pxz does not change and, in view
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of (5.23), the second constraint only depends on the variance matrix. Therefore, also
the Gaussian distribution pG?

xvz, whose mean and variance are K̄? and µ?, satisfies the
constraints of Problem 5.3.1. Let pG?

xv be the corresponding marginal. We have

d? = lim
i→∞D

(
pjixv ||pxy

)
> lim
i→∞D

(
pGjixv ||pxy

)
= lim

i→∞Tr[K−1[
x
y

]Kji ] +m∗jiK−1[
x
y

]mji − ln

 det[Kji ]
det[K[ x

y

]]
− 2n

= Tr[K−1[
x
y

]K?] + (m?)∗K−1[
x
y

]m? − ln

 det[K?]

det[K[ x
y

]]
− 2n

= D
(
pG?
xv ||pxy

)
. (5.30)

Thus pG?
xvz solves Problem 5.3.1.

Notice that from (5.30) it is immediate to see that the optimal solution not only exists
but is Gaussian distributed with zero mean.

Corollary 5.4.1. Let x and y be jointly Gaussian. Then the solution of Problem 5.3.1 is zero
mean and Gaussian.

We are now ready to find the solution of our problem.

Theorem 5.4.2. The solution of Problem 5.3.1 is the zero mean circular symmetric Gaussian
density p?xvz whose covariance matrix is

K[x
v
z

](Z,C) =

 Kxx KxzK
−1
zz Z

∗ Kxz

ZK−1
zz K

∗
xz ZK−1

zz Z
∗ +CC∗ Z

K∗xz Z∗ Kzz

 , (5.31)

where Z and C solveC∗ = C∗(ZK−1
zz BK

−1
zz Z

∗ +CC∗)−1A

Z∗ = KzxK
−1
xxKxy +BK

−1
zz Z

∗(ZK−1
zz BK

−1
zz Z

∗ +CC∗)−1A
(5.32)

with

A := Kyy −K
∗
xyK

−1
xxKxy, (5.33)

B := Kzz −K
∗
xzK

−1
xxKxz. (5.34)
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Proof. We have already shown that the optimal solution is a zero-mean Gaussian dis-
tribution having covariance matrix of the form

K[x
v
z

] =
Kxx Y Kxz

Y∗ X Z

K∗xz Z∗ Kzz

 , (5.35)

where

K[x
z

] := [Kxx Kxz

K∗xz Kzz

]
> 0

is given. Clearly in this way the first constraint of Problem 5.3.1 is automatically
satisfied for any X, Y,Z. We now show that the second constraint is equivalent to
impose

Y = KxzK
−1
zz Z

∗.

Indeed, in view of Lemma 5.4.2, x and v are conditional orthogonal given z, so that the
inverse of Kxvz must exhibit the zero-block pattern (5.23). Based on this information,
we can compute Y as a function of Z and X by employing the block-matrix inversion
formula:

M1 =

[
A1 B1

C1 D1

]
⇒ M−1

1 =

[
(A1 −B1D

−1
1 C1)

−1
−A−1

1 B1(D1 −C1A
−1
1 B1)

−1

−D−1
1 C1(A1 −B1D

−1
1 C1)

−1
(D1 −C1A

−1
1 B1)

−1

]
.

(5.36)
We partition K[x

v
z

] as

K[x
v
z

] = [A1 B1

C1 D1

]
, (5.37)

where

A1 := Kxx, B1 :=
[
Y Kxz

]
, C1 :=

[
Y∗

K∗xz

]
, D1 :=

[
X Z

Z∗ Kzz

]
.

Therefore, the block in position (1, 2) of K−1
xvz (with respect to the partition (5.37)) is

given by

−A−1
1 B1(D1 −C1A

−1
1 B1)

−1
= −Kxx

−1
[
Y Kxz

]([ X Z

Z∗ Kzz

]
−

[
Y∗

Kzx

]
Kxx

−1
[
Y Kxz

])−1

= −Kxx
−1
[
Y Kxz

]

[
X− Y∗Kxx

−1Y Z− Y∗Kxx
−1Kxz

Z∗ −KzxK
−1
xx Y Kzz −KzxK

−1
xxKxz

]
︸ ︷︷ ︸

:=M2


−1

.
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In order to impose the zero-block pattern (5.23) to the inverse, we make the block in
position (1, 1) in −A−1

1 B1(D1 −C1A
−1
1 B1)

−1
vanish. Note that we need to compute

explicitely only the elements in the first column block of M2
−1. Let[

A2 B2

C2 D2

]
:=

[
X− Y∗Kxx

−1Y Z− Y∗Kxx
−1Kxz

Z∗ −KzxK
−1
xx Y Kzz −KzxK

−1
xxKxz

]
=M2

Thus, in view of the matrix inversion lemma, the first column block in M−1
2 is given

by [
(A2 −B2D2

−1C2)
−1

−D2
−1C2(A2 −B2D

−1
2 C2)

−1

]
.

Therefore, orthogonality of x and v given z implies

0 = −Kxx
−1
[
Y Kxz

] [ (A2 −B2D2
−1C2)

−1

−D2
−1C2(A2 −B2D

−1
2 C2)

−1

]
= −Kxx

−1Y(A2 −B2D2
−1C2)

−1
+Kxx

−1KxzD2
−1C2(A2 −B2D

−1
2 C2)

−1

= Y −KxzD2
−1C2,

so that

Y = Kxz
(
Kzz −KzxK

−1
xxKxz

)−1 (
Z∗ −KzxK

−1
xx Y

)
=
[(
I+Kxz

(
Kzz −KzxK

−1
xxKxz

)−1
KzxKxx

−1
)]−1

Kxz
(
Kzz −KzxK

−1
xxKxz

)−1
Z∗

= KxzK
−1
zz Z

∗.

In this way, we have parametrized all the matrices K[x
v
z

] whose inverse has the spec-

ified structure. At this point, we could minimize the divergence D (pxv ||pxy) over Z
and X. This turns out to be an easy problem that can be solved in closed form. This
solution, however, is not the solution4 of our original problem since there is yet an-
other (hidden) constraint that we need to impose. Namely we have to impose that the
matrix

K[x
v
z

] =
 Kxx KxzK

−1
zz Z

∗ Kxz

(KxzK
−1
zz Z

∗)∗ X Z

K∗xz Z∗ Kzz

 (5.38)

4 Here we mention this simplified optimization problem because, as discussed later, it turns out to be very
useful as the first step of an efficient numerical procedure that computes the solution of our original
problem.
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is a bona fide covariance matrix, i.e. it is positive semidefinite. Since K[x
z

] is positive

definite, this constraint is equivalent to

X−
[
(KxzK

−1
zz Z

∗)∗ Z
] [Kxx Kxz

K∗xz Kzz

]−1 [
KxzK

−1
zz Z

∗

Z∗

]
> 0

which, with simple algebraic manipulations, is seen to be equivalent to

X−ZK−1
zz Z

∗ > 0. (5.39)

The positivity constraint is then automatically satisfied if we re-parametrize the un-
known matrix X in term of a new matrix C in the form

X = ZK−1
zz Z

∗ +CC∗. (5.40)

The optimal solution can be now easily obtained by solving the following unconstrained
optimization problem

arg min
C,Z

D (pxv ||pxy) . (5.41)

Since

K[x
v

](Z,C) :=

[
Kxx KxzK

−1
zz Z

∗

Z(KxzK
−1
zz )
∗ ZK−1

zz Z
∗ +CC∗

]
, K[ x

y

] := [Kxx Kxy

K∗xy Kyy

]
, (5.42)

solving (5.41) is equivalent to compute

arg min
Z,C

{
− log det

(
K[x
v

](Z,C)K[ x
y

]−1)+ Tr
[
K[ x
y

]−1KxvK[x
v

](Z,C)
]}

. (5.43)

We are then led to the formulation of Problem 5.3.1. Let

J(K[x
v

](Z,C)) := − log det
(
K[x
v

](Z,C)K−1[
x
y

])+ Tr
[
K−1[
x
y

]K[x
v

](Z,C)
]

. (5.44)

Its first variation is provided by

D[J(Kxv(Z,C)); δKxv(Z,C)]

= Tr
[[
(−K−1

xv +Kxy
−1)δKxv

]]
= Tr

(−K−1
xv +Kxy

−1)︸ ︷︷ ︸
=:∆

[
0 KxzK

−1
zz δZ

∗

δZ(KxzK
−1
zz )
∗ δZK−1

zz Z
∗ +ZK−1

zz δZ
∗ + δCC∗ +CδC∗

]
= Tr

[[[
∆11 ∆12

∆21 ∆22

][
0 KxzK

−1
zz δZ

∗

δZ(KxzK
−1
zz )
∗ δZK−1

zz Z
∗ +ZK−1

zz δZ
∗ + δCC∗ +CδC∗

]]]

= Tr

[[
∆12δZ(KxzK

−1
zz )
∗ ∗

∗ ∆21KxzK
−1
zz δZ

∗ +∆22
[
δZK−1

zz Z
∗ +ZK−1

zz δZ
∗ + δCC∗ +CδC∗

]]] .
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By the properties of the trace and the Hermitian symmetry, we get that the first varia-
tion vanishes if and only if

Tr
[[(

(KxzK
−1
zz )
∗∆12 +Z

∗K−1
zz ∆22

)
δZ+C∗∆22δC

]]
= 0. (5.45)

This holds for all δZ, δC if and only if(KxzK
−1
zz )
∗∆12 +K

−1
zz Z

∗∆22 = 0

C∗∆22 = 0
(5.46)

The first equation in (5.46) can be simplified so that it reads

Kxz∆12 +Z
∗∆22 = 0. (5.47)

The matrix inversion lemma allows to compute an explicit expression for matrix ∆

∆12 = −K−1
xxKxy(Kyy −KyxK

−1
xxKxy)

−1+

K−1
xxKxzK

−1
zz Z

∗ [ZK−1
zz (Kzz −KzxK

−1
xxKxz)K

−1
zz Z

∗ +CC∗
]−1

,

∆22 =
(
Kyy −KyzK

−1
xxKxy

)−1
−
[
ZK−1

zz (Kzz −KzxK
−1
xxKxz)K

−1
zz Z

∗ +CC∗
]−1

.

Now, let A := Kyy −KyxK
−1
xxKxy, and B := Kzz −KzxK

−1
xxKxz. Then we can write

∆12 = −K−1
xxKxyA

−1 +K−1
xxKxzK

−1
zz Z

∗ [ZK−1
zz BK

−1
zz Z

∗ +CC∗
]−1

,

∆22 = A
−1 −

(
ZK−1

zz BK
−1
zz Z

∗ +CC∗
)−1

.

Therefore, after some manipulation, we conclude that the optimum solution is pro-
vided by C,Z such thatC∗ = C∗(ZK−1

zz BK
−1
zz Z

∗ +CC∗)−1A

Z∗ = KzxK
−1
xxKxy +BK

−1
zz Z

∗(ZK−1
zz BK

−1
zz Z

∗ +CC∗)−1A
. (5.48)

In view of (5.10) and (5.13), Theorem 5.4.2 provides the tightest bound to the error
region (5.13). Indeed, let K[x

v

] be a shorthand notation for the 2n × 2n upper-left

corner of (5.31). Then, D? is given by

D? = D (p?xv ||pxy) = − log det
(
K[x
v

]K−1[
x
y

])+ Tr
[
K−1[
x
y

] (K[x
v

] −K[ x
y

])] . (5.49)



96 on the achievable error region of physical layer authentication

Consider the circular symmetric Gaussian density p?xvz, with zero mean and vari-
ance

K[x
v
z

] =
 Kxx KxzK

−1
zz Z

∗ Kxz

ZK−1
zz K

∗
xz ZK−1

zz Z
∗ +CC∗ Z

K∗xz Z∗ Kzz

 . (5.50)

Note that it is such that x and v are conditionally independent given z. Then, by
marginalizing and conditioning, we can obtain an optimum attacking strategy p?v|z(·|a)
which achieves (5.13). It is given by the proper Gaussian density whose mean and
variance are defined by

µv|z := ZK
−1
zz a (5.51)

Kv|z := Kvv −KvzK
−1
zz K

∗
vz = CC

∗ (5.52)

5.5 efficient computation of the tightest bound

In view of Theorem 5.4.2, in order to provide the expression of the optimal solution
p?xvz, we have to compute matrices C,Z which solve the system of nonlinear matrix
equations (5.32). This appears however to be a highly non trivial task. Thus, we
propose a two stage algorithm:

1. Feasible (projected) Solution. To begin with, we deal with an optimization
problem which can be considered a relaxed version of Problem 5.3.1, since no
positivity constraints on the matrix K[x

v
z

] are imposed. This task turns out to be

much simpler to achieve. Indeed, the solution can be computed in closed form.
Then, we project the solution to the relaxed problem onto the feasible set, i.e. the
set of pairs (X,Z) which make K[x

v
z

] positive definite.

2. Iterative Algorithm. We use the projection as a starting point for an iterative
update procedure whose fixed point satisfies (5.32).

Next we provide some details for each phase.
Feasible Solution. Minimizing (5.10) with no constraints on the positivity of K[x

v
z

] is

equivalent to solve

Problem 5.5.1.

arg min
X,Z

J(K[x
v

](Z,X)) :=
{
− log det

(
K[x
v

](Z,X)K−1[
x
y

])+ Tr
[
K−1[
x
y

]K[x
v

]]} (5.53)
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where

K[x
v

](Z,X) :=

[
Kxx KxzK

−1
zz Z

∗

Z(KxzK
−1
zz )
∗ X

]
, K[ x

y

] := [Kxx Kxy

K∗xy Kyy

]
. (5.54)

In the same vein of the proof of Theorem 5.4.2, based on the analysis of the first
variation D[J(K[x

v

](Z,X); δK[x
v

]], we work out the optimality conditions that have to

be satisfied by X and Z. Some easy algebraic calculations lead us to the closed form of
an optimal solution (Z,X):


Z = K∗xyKxx

−1Kxz(K
∗
xzK

−1
xxKxz)

†Kzz,

X = Kyy −K
∗
xyKxx

− 1
2

[
I−K

− 1
2

xx Kxz(K
∗
xzKxx

−1Kxz)
†K∗xzK

− 1
2

xx

]
Kxx

− 1
2Kxy

(5.55)

where “ † ” denotes Moore-Penrose pseudo inverse.

If the obtained x and z are such that X−ZK−1
zz K

∗ > 0, the algorithm terminates. Oth-
erwise, a pair (C,Z) is obtained as follows. Let T be a unitary matrix such that ΣT :=

T∗(X− ZK−1
zz K

∗)T = diag(d1,d2, . . . ,dk, δ1, δ2, . . . , δh), where di are positive and in
decreasing order, and δi are negative or zero. Let Σ ′T := diag(d1,d2, . . . ,dk, ε, ε, . . . , ε),
where ε := (dk/100) > 0 is a “small" parameter. Let Σ ′ := TΣ ′TT

∗ > 0 and C be such
that CC∗ = Σ ′.

Iterative Algorithm. We use the pair (C,Z) as a starting point for the iterations

C∗(k+ 1) = C∗(k)(Z(k)K−1
zz BK

−1
zz Z

∗(k) +C(k)C∗(k))−1A,

Z∗(k+ 1) = KzxK
−1
xxKxy +BK

−1
zz Z

∗(k)(Z(k)K−1
zz BK

−1
zz Z

∗(k) +C(k)C∗(z))−1A

(5.56)
where

A := Kyy −K
∗
xyK

−1
xxKxy (5.57)

B := Kzz −K
∗
xzK

−1
xxKxz. (5.58)

By the the iterative process we aim at finding a fixed point for (5.56), which provides
the solution of Problem 5.3.1. The iterative process can be stopped either after a fixed
number of iterations, or when the variation of D∗ over one iteration is smaller than a
given percentage.
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5.6 numerical results

5.6.1 Uncorrelated Channels

In order to assess the performance of the proposed algorithm for the computation of
the tightest bound, we first consider the case wherem = n and the covariance matrices
are identities, i.e.

K[ x
y
z

] =
 In σIn ρIn

σ∗In In τIn

ρ∗In τ∗In In


This scenario corresponds for example to an OFDM transmission with uncorrelated
channel frequency response. Beyond being an asymptotic case widely considered
in the literature, this is also a practical scenario, when a subset of subcarriers with
cardinality smaller than the number of channel taps is considered, and the channel
taps are independent Gaussian variables. The parameter ρ dictates the correlation
between channel estimates performed by Eve and the legitimate channel.
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Figure 20: Cost of the solution computed by the iterative algorithm as a function of the maxi-
mum number of iterations, with n = m = 64, for ρ = 0.1, 0.3, 0.5

First we assess the performance of the iterative algorithm. Fig 20 shows the values
of the cost of the optimum solution D∗ as a function of the number of iterations
for the iterative algorithm, with n = m = 64, and various values of ρ. We observe
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that the iterative algorithm always converges to a fixed point for (5.56) and that the
convergence to a solution with good accuracy takes less than 100 iterations. Thus, in
the following we consider this value for the maximum number of iterations.

Figure 21: Bound of the region type II (β) vs type I (α) error probability for various values of
the correlation parameter ρ, with Kxx = In×n, Kzz = Im×m, and Kxz = ρIn×m.

Fig. 21 shows the bound of the type II (β) – type I (α) error probability region
for various values of the correlation parameter ρ, and for n = m = 64, as obtained
from the proposed iterative approach. As expected, we observe that for increasing
values of ρ, the region of achievable values of α and β gets wider. In particular, for
the considered scenario, the type II error probability is larger than 10−1 already for
ρ = 0.4.

In Fig. 22 we report the results obtained for both the initial feasible solution (projec-
tion of the solution of (5.55)) and final solution of the iterative algorithm, as a function
of n, for ρ = 0.1,0.5,0.7. For the sake of clarity, we also show the cost of the solutions
provided by the iterative algorithm in Tab. 1.

Table 1: Cost of the solution provided by the iterative solution.

D∗ n = 2 n = 4 n = 8 n = 16 n = 32 n = 64

ρ = 0.1 1.6099 3.2199 6.4397 12.8795 25.7589 51.5179
ρ = 0.5 0.3047 0.6094 1.2189 2.4378 4.8756 9.7511
ρ = 0.7 0.0005 0.0011 0.0021 0.0042 0.0085 0.0169
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Figure 22: Cost function D∗ as a function of n for various values of the correlation parameter
ρ, with Kxx = In×n, Kzz = Im×m, and Kxz = ρIn×m. Both projection and iterative
algorithms are considered.

We note that the iterative algorithm remarkably lowers the value of the cost func-
tion from the initial feasible solution, thus motivating its use, although it comes at
a cost of more computations. Also, as expected, the cost function increases with n.
For the considered case of OFDM transmission, this means that more dispersive chan-
nels having independent taps provide potentially a better authentication system. This
phenomenon has been already seen in Baracca, Laurenti, and Tomasin [2].

5.6.2 Correlated Channels

We now consider channels with random correlation. We let m = n and generate K[ x
y
z

]
as a realization of a 3n× 3n real Wishart matrix5. Even in this case we verified that
setting the maximum number of iteration to 100 is enough for the convergence of the
iterative algorithm. Fig. 23.a shows the cumulative distribution function (CDF) of D∗

for two values of n = m, at the convergence of the iterative algorithm. Also in this

5 A n× n real (resp., complex) Wishart matrix is a random matrix W that can be written as W = AA∗,
where A is a n× n random matrix with independent identically distributed (iid) real (resp., circularly
symmetric complex) Gaussian entries. In our case, the entries of A have zero mean and unit variance.
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Figure 23: CDF of the cost function for two values of n.

case we observe that a larger n provides a larger value of D∗. We also report in Fig.
23.b the CDF for the initial feasible solution obtained by projection.

For the random correlation case, Tab. 2 shows the probability that the closed form
solution of the relaxed problem (5.55) satisfies the positivity constraint, as a function
of n.

Table 2: Probability that (5.55) is feasible, as a function of n.

n 2 4 8 16 32 64

p [%] 43 10 0 0 0 0

Note that as n increases this probability goes fast to zero, thus making the projection
step necessary to obtain an initial feasible solution for the iterative algorithm.

In order to compare the iterative solution to the one provided by (5.55), which may
not fulfill the positivity constraints on the joint covariance matrix, Fig. 24 shows the
percentage increase of the cost (5.44) defined as

η := 100×
[
J∗iter
J∗cf

− 1

]
, (5.59)

where J∗iter is the cost of the solution provided by the iterative algorithm, whereas J∗cf
is the cost of the one computed in closed form through (5.55). The analyzing of the
increment with regard to J∗ is convenient because D∗cf can vanish. Indeed, recall that,
if K[ x

y

] is a n× n matrix, it holds that D∗ = J∗ − 2n. We note that the increase is in

the range of 20% to 30% for the considered scenario. Moreover, it is diminishing as n
increases. This seems to suggest that, for growing values of n, the solution computed
by means of (5.55) corresponds to a matrix of the form (5.38) which gets closer to the
cone of positive definite matrices of size (2n+m).
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Figure 24: Percentage improvement η as a function of n. Random correlation matrices and
n = m. Perturbation analysis results are included.

We also provide results for the perturbation analysis. In particular, we evaluate the
effects of small perturbations of Z and C generated as Gaussian random variables with
norm 0.01‖Z‖ and 0.01‖C‖, respectively. Fig. 24 reports the maximum cost function
achieved for all perturbed values, showing that it provides negligible improvement
with respect to the solution of the iterative approach. This supports the conclusion
that the iterative approach reaches a minimum point for J(K[x

v

](Z,C)). We also ap-

plied the iterative algorithm starting from the perturbed solutions which led to cost
improvements. Results, not reported here, show that this procedure achieves very
small improvements with an increase of the cost function of 0.01% .
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5.7 conclusions

We have considered the problem of deriving a universal performance bound for a
message source authentication scheme based on channel estimates in a wireless fading
scenario, where an attacker may have correlated observations available and possibly
unbounded computational power. We have formulated an outer bound to the region
of achievable false alarm and missed detection probabilities, which is universal across
all possible decision rules by the receiver.

Under the assumption that the channels are represented by multivariate complex
Gaussian variables, we have proved that the tightest bound corresponds to a forging
strategy that produces a zero mean signal that is jointly Gaussian with the attacker
observations. Furthermore, we have derived a characterization of their joint covariance
matrix through the solution of a system of two nonlinear matrix equations. Based
upon this characterization, we have also devised an efficient iterative algorithm for
its computation: The solution to the matricial system appears as fixed point of the
iteration.

From numerical results, we conclude that the proposed iterative approach for the
best attacking strategy always converges. Moreover, from the perturbation analysis,
we deduce that the limit point is a local minimum. We have therefore provided an
effective method for the attacking strategy that yields the tightest bound on the error
region of the message authentication procedure.





A A P P E N D I X

For the sake of completeness, here we collect some preliminary notions in Probability,
Information Theory, and Identification which will be useful throughout this disserta-
tion. For more details, the reader is referred to Cover and Thomas [27], Lindquist and
Picci [73], Papoulis and Pillai [83], Rozanov [92], Stoica and Moses [97]

a.1 random variables and vectors

We first introduce real-valued random variables. Consider the probability space (Ω,F,P),
where Ω is a set (also known as sample space), F is a σ-algebra defined on Ω and P
is a probability measure on F1. Given the measurable space (R,B(R)), where B(R)

denotes the Borel σ-algebra defined on R, the function y : Ω → R is a (real-valued)
random variable if and only if, for each B in B(R)

{ω : y(ω) ∈ B} ∈ F, (A.1)

or, equivalently, if and only if

{ω : y(ω) 6 b} ∈ F, ∀b ∈ R. (A.2)

In the following, we will often write y instead of y(ω).
The probability distribution of y is given by the function

Fy(b) := P [{ω : y(ω) 6 b}] , ∀b ∈ R. (A.3)

If it is absolutely continuous, we can introduce the probability density function fy

such that

Fy(b) =

∫b
−∞ fy(x)dx, ∀b ∈ R. (A.4)

1 Recall that P : F → [0, 1] is a probability measure if and only if

• P(Ω) = 1;

• P(∪∞n=1Fn) =∑∞n=1 P(Fn) for every sequence {Fn}
∞
n=1 of pairwise disjoint elements.

105
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Then the mean and variance of y are given by

E [y] :=
∫

R

xfy(x)dx, (A.5)

and
Var [y] :=

∫
R

x2fy(x)dx, (A.6)

respectively.
Analogously, we can define an m−dimensional random vector

y : Ω→ Rm (A.7)

by considering the same probability space (Ω,F,P) and the measurable set (Rm,B(Rm)).
Along the same line, it is possible to introduce complex-valued random variables and
vectors.

Example A.1.1 (Multivariate normal distribution). Let y be an m−dimensional, real-
valued Gaussian vector, with mean µ = E [y], and variance Σ := E

[
yy>

]
. Then, its

density function is given by

fy(x1, . . . , xm) :=
1√

(2π)m detΣ
exp

[
−
1

2
(x− µ)>Σ−1(x− µ)

]
, (A.8)

where x := [x1 · · · xn]>. Thus, Gaussian random vectors are completely described by
their second order properties.

a.2 notions in information theory

Next a few fundamental notions in Information Theory are recalled.

Definition A.2.1 (Entropy rate). Let y be a real-valued random variable, described by
the probability density f. Then, the entropy rate of y is given by

h(y) := −

∫
R

f(x) log xdx. (A.9)

Example A.2.1 (Gaussian vector). Consider an n-dimensional Gaussian random vector
x of variance Σ. Its entropy rate is

h(x) =
n

2
(1+ log 2π) +

1

2
log detΣ. (A.10)
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Definition A.2.2 (Relative entropy). Let f, g be two probability density functions de-
fined on the same set S. Then, the relative entropy D(f ‖g) is defined as

D(f ‖g) =
∫

R

f(x) log
f(x)

g(x)
dx. (A.11)

Relative entropy is also known as Kullback-Leibler divergence. It exhibits the following
properties:

• D(f ‖g) = 0 if and only if f = g (a.e.);

• D(f ‖g) > 0 for all probability density functions f and g.

Note that it is not a proper distance, because it is not symmetric neither it obeys to the
triangular inequality.

Example A.2.2 (Relative entropy between Gaussian distributions). Consider the ran-
dom the variables x ∼ N(µx,Σx), y ∼ N(µy,Σy). Then, we have

D(N(µx,Σx) ‖N(µy,Σy)) = −
1

2
log

detΣx
detΣy

+
1

2
Tr
[
Σy

−1Σx
]
−
n

2
+

1

2
(µx − µy)

> Σy
−1 (µx − µy) .

(A.12)

a.3 complex gaussian random vectors

In the following, complex-Gaussian random vectors will play an important role. Here
we recall some basic notions. Let x and y with values in Rk be jointly Gaussian
random vectors, i.e. such that ∀ i, j ∈ {1, . . . ,k} the vector

[
x1 · · · xi y1 · · · yj

]> is
Gaussian distributed. Then, we say that z := x + jy has the complex normal distribution.
Its statistical description is given by the following three parameters:

• Mean µ := E [z];

• Covariance matrix Γ := E
[
(z − µ) (z̄ − µ̄)>

]
;

• Relation matrix C := E
[
(z − µ) (z − µ)>

]
.

Here z̄ and denotes the complex conjugate of z. Notice that the covariance matrix
is Hermitian and positive semi-definite, while the relation matrix is symmetric. It is
useful to define the extended covariance matrix

R :=

[
Γ C

C̄> Γ̄

]
.
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The density function of the z is the joint probability density of the 2n-dimensional
compound vector v = [x>y>]>. The differential entropy of the n-dimensional, zero
mean, complex Gaussian vector z, whose probability density is p, is given by

H(p) := H(z) = −

∫
R2n

log(p(x))p(x)dx

=
1

2
log(detR) +

1

2
(2n) (1+ log(2π)) ,

(A.13)

where R is the covariance matrix of the 2n-dimensional vector γ. Similarly, the relative
entropy between two zero-mean n-dimensional complex Gaussian densities p and q
is given by

D(p ‖q) := 1

2

[
log det(R−1p Rq) + Tr(R−1q Rp) − 2n

]
, (A.14)

where Rp and Rq are the covariance matrices of the 2n-dimensional vectors zp and zq
corresponding to the densities p and q, respectively.

a.4 circular symmetric complex gaussian random vec-
tors

If the zero-mean Ck-valued Gaussian random vector z has the property that the re-
lation matrix is zero, i.e. E

[
zz>

]
= 0, we say that z is a circular symmetric normally

distributed random vector. Then, we have

p(z) =
1

πk det Γ
exp {−z̄>Γ−1z}. (A.15)

Remark A.4.1. Given the Ck−valued vector z = x + jy, the fact that it is circular sym-
metric implies that, ∀n, m ∈ [1, . . . ,k], the following conditions hold:

E [xnxm] = E [ynym]

E [xnym] = −E [xmyn]

If p and q are two n-dimensional complex Gaussian distribution with circular sym-
metry, the expression of the relative entropy simplifies to the formula

D(p ‖q) = log det(P−1Q) + Tr(Q−1P) −n, (A.16)

where P and Q are the covariance matrices of zp := xp + jyp and zq := xq + jyq,
respectively.
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a.5 stochastic processes

Let T ⊆ R. Then y(t,ω) = {y(k,ω), k ∈ T }, where y(k,ω), for each k, is a random vari-
able defined with regard to (Ω,F,P) and (R,B(R)), is a (real-valued) stochastic pro-
cess. A stochastic process can be seen as a family of deterministic signals parametrized
by ω. Indeed, by fixing the value of ω, we obtain a particular trajectory (or realization)
of the process. Next, we will be mainly interested in discrete-time processes, that occur
whenever T ⊆ Z.

Consider a discrete time random process y(t,ω). Its complete statistical description
is given by the family {Fn, n ∈N} of the probability distributions of the random vari-
ables y(t1,ω), . . . , y(tn,ω), for each possible choice of the sequence {tk}

n
k=1, such that

ti 6= tj for i 6= j2. Given n, we have

Fn : Rn ×Zn → [0, 1]

Fn(x1, . . . , xn; t1, . . . , tn) = P[y(t1,ω) 6 x1, . . . , y(tn,ω) 6 xn], ∀ xi ∈ R, ∀ ti ∈ Z.

If Fn is absolutely continuous, an equivalent description of the process is given by the
probability density of order n

fn(x1, . . . , xn; t1, . . . , tn) :=
∂nFn(x1, . . . , xn; t1, . . . , tn)

∂x1 · · ·∂xn
, ∀ xi ∈ R, ∀ ti ∈ Z. (A.17)

In the following, we will drop the dependency on ω and denote a stochastic process
by the short hand notation y(t). Then, we can compute the mean as

m(t) := E [y(t)] :=
∫

R

xf1(x; t)dx, ∀ t ∈ Z (A.18)

and the correlation as

r(t, s) := E [y(t)y(s)] :=
∫

R2
x1x2f2(x1, x2; t, s)dx1 dx2, ∀ t, s ∈ Z. (A.19)

Notice that correlation is a symmetric and positive semi-definite function.
A key property for stochastic processes is stationarity. A process is strict-sense sta-

tionary if, for all n ∈N, for all τ ∈ Z,

Fn(x1, . . . , xn; t1, . . . , tn) = Fn(x1, . . . , xn; t1 + τ, . . . , tn + τ), ∀ xi ∈ R, ∀ ti ∈ Z.
(A.20)

In the following, we assume that a weaker condition holds. Indeed, we require the
process to be wide-sense stationary, i.e. such that

2 Notice that the family {Fn, n ∈N, . . . ,n} must satisfy some compatibility conditions.
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1. m(t) = m, ∀ t ∈ Z

2. r(t, s) = r(t+ τ, s+ τ), ∀ t, s, τ ∈ Z

From now on, the mean is assumed to be zero. Since for wide-sense stationary pro-
cesses the correlation only depends on the difference between time indexes, with a
slight abuse of notation we will drop the dependence on the second index and write
simply r(t− s) instead of r(t, s). A second order process is the equivalence class of all
the processes with the same mean and correlation.

The stochastic properties of a wide-sense stationary random process can also be
studied in the frequency domain. Indeed, under the assumption that the Fourier
series converges we can define the spectral density of the process

Φ(ejϑ) :=
∞∑

k=−∞ r(k)e
−jkϑ, ϑ ∈ T, (A.21)

where T denotes the interval (−π,π]. Then, it holds that

r(τ) :=

∫
T

Φ(ejϑ)ejkϑ
dϑ

2π
, ϑ ∈ T, (A.22)

By Bochner’s theorem, since the correlation function is positive semi-definite it turns
out that Φ(ejϑ) > 0 on T. Since the r(τ) is even and real, we also have that Φ(ejϑ) =
Φ(ejϑ) = Φ(e−jϑ), for all ϑ ∈ T.

We briefly introduce multivariate processes. Given the probability space (Ω,F,P), a
discrete-time m-dimensional stochastic process is defined as a function

y(t,ω) : Z×Ω→ Rm (A.23)

such that its scalar components y1(t,ω), . . . , ym(t,ω) are random variables defined on
the probability space, for all t ∈ Z. In the following we will just write y(t) instead of
y(t,ω). For wide-sense stationary, multivariate stochastic processes we have

R(τ) := E
[
y(t+ τ)y(t)>

]
,

R(τ) = R(−τ)
>

.

As for the spectral density, it satisfies

Φ(ejϑ) = Φ(ejϑ)∗. (A.24)

where the notation A∗ denotes the complex conjugate and transpose of A.
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Consider now the positive real part Φ+ of the spectral density Φ:

Φ+(z) =
1

2

∫
T

Φ(ejϑ)
z+ ejϑ

z− ejϑ
dϑ

2π
(A.25)

This is a positive real function, i.e. it is analytic with positive real part in |z| > 1. Thus,
the power spectral density can be expressed as

Φ(ejϑ) = Φ+(ejϑ) +Φ+(ejϑ)∗, (A.26)

and Φ+ admits the following representation for |z| > 1:

Φ+ =
1

2
R(0) +

∞∑
k=1

R(k)z−k. (A.27)

As we already mentioned, each set of second order properties defines a class of
equivalence rather than a specific process. Among the elements of such class, it is
often convenient to consider the Gaussian representative, because it is completely
specified by the second order description. Recall that a process y(t) is Gaussian if
and only if, for every finite set of indexes t1, . . . , tk in the index set Z, we have that[
y(t1)> · · · y(tk)>

]> is a multivariate Gaussian vector.

a.6 circular symmetric gaussian processes

Consider a discrete time multivariate stochastic process z(t) with values in Ck. Let
x(t) := <z(t) and y(t) := =z(t), so that

z(t) = x(t) + jy(t).

Assume the processes is zero-mean. Then, its second order description is given by

Rxx(t1, t2) := E
[
x(t1)x(t2)>

]
,

Ryy(t1, t2) := E
[
y(t1)y(t2)>

]
,

Rxy(t1, t2) := E
[
x(t1)y(t2)>

]
.

Thus, the vector covariance Γz(t1, t2) := E [z(t1)z(t2)∗] is not a sufficient statistics: In-
deed, in order to convey the same information given by the previously introduced
functions, it is necessary to consider also the relation function (also known as comple-
mentary covariance)

Cz(t1, t2) := E
[
z(t1)z(t2)>

]
. (A.28)
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A special case is given by circular symmetric (or proper) processes, see Fuhrmann [43],
Picinbono and Bondon [87], Wahlberg and Schreier [102]: A multivariate complex-
valued process z(t) is circular symmetric if

E [z(t1)z(t2)] = 0 ∀ t1, t2 ∈ Z (A.29)

This means that each scalar process zi(t), i ∈ {1, . . . ,k} is circular symmetric. Moreover,
zi(t), zj(t) are jointly circular symmetric ∀ i, j ∈ {1, . . . ,k}. Denote by x(t) and y(t) the
real and imaginary part of z(t), respectively. Then a circular symmetric process is such
that:

1. ∀ t1, t2, ∈ Z, Rxx(t1, t2) = Ryy(t1, t2);

2. ∀ t1, t2, ∈ Z, Rxy(t1, t2) = −Ryx(t1, t2);

Let us focus on second order stationary complex-valued processes, i.e. such that
Γ(t1, t2) = Γ(t1 − t2) and C(t1, t2) = C(t1 − t2). Circular symmetry implies that
the cross-covariance function is such that Rxy(0) = 0, i.e. ∀ t ∈ Z, x(t) and y(t) are
uncorrelated.

a.7 a geometric perspective

Consider a family of real-valued random variables defined on the probability space
(Ω,F,P), such that their mean is zero and they have finite variance. They generate a
linear vector space H and we can define the inner product 〈·, ·〉H by

〈x, y〉H = E [xy] . (A.30)

It induces the norm
‖y‖H := E

[
y2
]
= var [y] . (A.31)

It can be proved that H, equipped with ‖ · ‖H, is a complete space, so it is Hilbert.
Convergence with regard to the induced norm is called quadratic mean convergence.
This notion can be extended to random vectors. Analogously, we can deal with the
m−dimensional stochastic process y(t), by introducing the the Hilbert space H(y) as
the closure in L2(Ω,P) of all the finite linear combinations of the random variables
yk(t), for k = 1, . . . ,m, t ∈ Z, i.e.

H(y) := span {y1(t), . . . ,ym(t); t ∈ Z}. (A.32)

Then, linear estimation has a very natural interpretation in terms of projection. Of
course, we can consider also subspaces of H(y). For instance, in facing prediction
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problems, it is useful to introduce the vector space generated by past values of the
process x(t):

Ht(y) := span {y1(s), . . . ,ym(s); s < t}. (A.33)

a.8 linear systems

For the sake of clarity, next we recall some notions about discrete-time LTI systems. A
linear time invariant map from u to y is represented by the convolution

y(k) =
∑
l∈Z

h(l)u(k− l), (A.34)

where h is called impulse response of the system, by considering the Kronecker delta as
input signal for the system, we get

y(k) =

∞∑
l=−∞h(l)δ(k− l) = h(k). (A.35)

If we introduce the formal series

U(z) =
∑
k=Z

u(k)z−k,

Y(z) =
∑
k=Z

y(k)z−k,

H(z) =
∑
k=Z

h(k)z−k,

where z−1 denotes the unitary delay operator, we can write

Y(z) = H(z)U(z). (A.36)

With a slight abuse of notation, we will often write y(t) = H(z)u(t) instead of (A.36).
In the following, we will consider multivariate signals and rational transfer function,
so we can write

H(z) = B(zI−A)−1C+D, (A.37)

and thus obtain a state-space model for the system:x(k+ 1) = Ax(k) +Bu(k)y(k) = Cx(k) +Du(k)
.
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a.9 purely non deterministic processes

Consider the remote past of a second order process y(t), i.e.

H−∞(y) := ∩t6kHt(y). (A.38)

In light of Wold’s theorem, the processes whose remote past is trivial, i.e. such that
H−∞(y) = 0, are purely non deterministic. By Szëgo-Kolmogorov theorem, full rank
processes whose spectral power distribution is absolutely continuous are purely non
deterministic if and only if ∫

T

log detΦ(ejϑ)
dϑ

2π
> −∞. (A.39)

Another fundamental result in Wold’s theory is that wide-sense stationary, purely
non deterministic processes can be represented as the output of a causal `2−stable
time invariant linear filter driven by white noise, i.e.

y(t) =
∞∑
k=0

w(k)e(t− k), (A.40)

with E [e(k)e(s)∗] = Iδsk.

a.10 linear filtering of stochastic processes

The main result on linear filtering of stochastic processes is that the output signal
of a BIBO linear time-invariant filter with impulse response H fed by a wide-sense
stationary process x(t) is a stochastic process defined in mean square sense by

y(t) =
∑
k∈Z

h(k)x(t− k) (A.41)

This process is jointly stationary with regard to the input process x(t). Let H(ejϑ) be
the frequency response of the filter. Then, the spectral density of y(t) is given by the
Wiener-Kintchine formula:

Φy(ejϑ) = H(ejϑ)Φx(ejϑ)H(ejϑ)∗. (A.42)

As a consequence of Wold’s theorem, if

y(t) =
∞∑
k=0

w(k)e(t− k), (A.43)
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with Var [e(t)] = I, we obtain the spectral factorization

Φy(ejϑ) =W(ejϑ)W(ejϑ)∗. (A.44)

If W is rational we can write it as

W(z) = Q(z)−1P(z), (A.45)

where Q(z) and P(z) are multivariate matrix-valued polynomials. Thus, we can intro-
duce the auto regressive moving average (ARMA) representation

n∑
k=0

Qky(t− k) =
n∑
k=0

Pke(t− k) (A.46)

where e is m-dimensional white noise. If Q(z) = I we get a moving average (MA)
representation

y(t) = P(z)e(t), (A.47)

whereas if P(z) = I we obtain an auto regressive (AR) representation

Q(z)y(t) = e(t). (A.48)

a.11 moment problems

Suppose we want to compute a measure µ such that it is consistent with some given
moments

mk :=

∫
xkdµ(x), k ∈ K. (A.49)

Then, a moment problem arises. Generalized moment problems occur when the task
is inverting the map from the measure µ to a sequence of generalized moments

gk :=

∫
Gk(x)dµ(x), (A.50)

where {Gk}k∈K ∈ is a family of arbitrary functions.

To our purposes, generalized moment problems play a key role. In particular, the
measures we are going to deal with will be either spectral densities or probability
density functions.
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a.12 hypothesis testing

Hypothesis testing is a well-established procedure in decision theory. Here we con-
sider the simplest case. Assume we collect n observations x1, . . . , xn of i.i.d. random
variables distributed according to the density function Q(x). We want to decide which
of the following hypotheses best fits the observations:

• Q = H0, where H0 is the null hypothesis,

• Q = H1, where H1 is the alternative hypothesis.

The decision can be modeled by means of a function

g : Rn → {0, 1}

g(x1, . . . , xn) 7→

0 if H0 is accepted

1 if H1 is accepted

Since g can take only two values, it can be equivalently modeled by considering the
region A ⊂ Rn such that g(x1, . . . , xn) = 0, ∀ [x1, · · · , xn]

> ∈ A. Let Ac be the com-
plementary set of A in Rn. Then, we can introduce two error probabilities:

type i error probability α := P [g(x1, . . . , xn) = 1 |H0 is true] = PH0(A
c)

type ii error probability β := P [g(x1, . . . , xn) = 0 |H1 is true] = PH1(A)

The capability of correctly rejecting H0 when it is false is measured by 1− β and is
called power of the test.
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