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Riassunto 

Gli insetti del legno sono organismi particolarmente importanti per il loro impatto sugli 

ecosistemi forestali e sul valore economico dei prodotti di tali ecosistemi. I recenti 

cambiamenti ambientali, collegati al cambiamento climatico globale, hanno portato a 

variazione nella distribuzione e nell’impatto delle specie di insetti del legno in molte aree 

forestali. A questo scenario si aggiunge un incremento delle merci trasportate in tutto il 

mondo e dei loro imballaggi, spesso di natura legnosa, e con essi aumenta il rischio di 

importazione di specie di insetti del legno in nuovi ecosistemi. 

Questo lavoro si basa sul monitoraggio tramite trappole di coleotteri del legno, 

principalmente Buprestidi (Coleoptera: Buprestidae), Cerambicidi (Coleoptera: 

Cerambycidae), Curculionidi (Coleoptera: Curculionidae) e Scolitidi (Coleoptera: 

Curculionidae: Scolytiane), al fine di valutare la presenza di specie invasive esotiche e 

l’effetto del clima, in particolare della temperatura, sulla distribuzione e sulla performance 

di alcune tra le principali specie più comuni dell’area Alpina. A questo si aggiunge uno 

studio sull’applicazione di nuove metodologie per il monitoraggio basate sull’utilizzo di 

telecamere digitali controllabili a distanza via web. 

Un primo studio richiama le principali specie di insetti del legno invasive per l’Europa e le 

tecniche per il loro monitoraggio e controllo, a cui segue la sperimentazione di un 

dispositivo per il monitoraggio remoto di coleotteri del legno. 

Il secondo studio riguarda la distribuzione degli insetti del legno lungo un gradiente 

altitudinale, utilizzato come analogo spaziale del cambiamento climatico, e mostra l’effetto 

positivo della temperatura sull’abbondanza delle specie maggiormente aggressive a carico 

dell’abete rosso (Picea abies). 

Il terzo studio indaga l’effetto delle alte temperature estive sulla performance di Ips 

acuminatus all’interno della stessa stagione e tra anni successivi, dimostrando che 

temperature particolarmente alte sembrano influenzare positivamente la crescita della 

popolazione nello stesso anno, ma negativamente quella dell’anno successivo. 

Il quarto studio presenta un’applicazione delle trappole fotografiche controllate in remoto 

per la early detection dei Cerambicidi del genere Monochamus spp., considerati pericolosi 

in quanto vettori del nematode del pino Bursaphelenchus xylophilus. Alle trappole 

fotografiche è stato associato un sistema di identificazione molecolare sul campo basato 
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sulla tecnica denominata LAMP-PCR. Il risultato è un sistema integrato in grado di 

concentrare gli sforzi di controllo delle trappole e analisi molecolare in campo alle sole 

trappole che mostrano la presenza delle specie target. 

A dimostrazione dei diversi ambiti di applicabilità delle nuove tecnologie proposte, al 

termine di questo lavoro viene aggiunto un o studio svolto in Nuova Zelanda nel quale la 

tecnologia delle foto trappole fotografiche vengono utilizzate per il monitoraggio di una 

specie dannosa per i frutteti. 



11 

 

Summary 

Wood-boring insects are extremely important organisms because of their impact on forest 

ecosystems and on the economic value of forest products, wood in particular. Recent 

environmental modifications, linked to global climate change, lead to a variation in both 

distribution and impact of wood insects species in many forest areas. New trade pattern are 

added to this scenario, with an increase exchange of goods and their packaging, often 

wood-made, and with them an increase in risk of spreading wood insect species in new 

ecosystems. 

This work is based on trap monitoring of wood-boring beetles, mainly jewel beetles 

(Coleoptera: Buprestidae), Longhorn beetles (Coleoptera: Cerambyciadae), weevils 

(Coleoptera: Curculionidae) and bark beetles (Coleoptera: Curculionidae: Scolytinae), in 

order to evaluate the effect of climate, and in particular of temperature, on distribution and 

performance of some of the main species in the Alpine area. Furthermore, this works 

includes a study on the application of new monitoring tools based on the application of 

digital cameras remotely checked through the web, able to improve the early detection 

strategies for invasive species. 

A first study recalls the main wood-boring insect species invasive for Europe and their 

detection and monitoring techniques, and it is followed by the experimental trial of a new 

device for remote monitoring of wood-boring beetles. 

The second study concerns the distribution of wood-boring insects along an elevational 

gradient, considered as a spatial analogue of climate change, and it shows the positive 

effect of temperature on the abundance of most aggressive species against Norway spruce 

(Picea abies). 

The third study evaluates the effect of warm summer temperatures on the performance of 

Ips acuminatus, a bark beetle associated with Scots pine in the Alps, in the same season and 

between consecutive years. It shows that particularly high temperatures are likely to affect 

positively the population growth in the same season, but negatively the population growth 

of the following year. 

The fourth study presents an application of remote controlled photographic traps to the 

early detection of longhorn beetles belonging to the genus Monochamus spp., considered 

dangerous for being the vector of the pine wood nematode Bursaphelenchus xylophilus. 
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Camera traps have been associated to a molecular analysis device for the species 

identification based on a technique named LAMP-PCR. The result is an integrated system 

able to focus the efforts of trap checking and field molecular analysis only to those traps 

showing the presence of the target species. 

To show the wide applicability of the new proposed technologies, at the end of this work is 

added a study carried on in New Zealand in which remote camera traps are applied to study 

the phenology of a stone fruit pest. 



13 

 

 

 

 

 

 

Chapter 1 

 

Introduction 



14 

 



15 

 

The impact of both native and invasive insect species in forest ecosystems is extremely 

important to assess and predict in order to protect the multiple services provided by these 

complex ecosystems, such as timber production, soil protection and landscape and 

biodiversity conservation (Alfaro et al., 2010). Changing environmental conditions, such as 

global warming, may significantly modify the activity of plant-feeding insects both directly 

(e.g., offspring abundance, phenology, voltinism, winter survival), as well as indirectly by 

acting on the host plants (e.g., water stress) (Hodkinson, 2005) and natural enemies 

(Berggren et al., 2009). Modifications in environmental conditions (both biotic and abiotic) 

can lead to optimal colonization conditions for alien species (also called non-native, non-

indigenous, foreign, exotic) in new environments. 

Invasions by alien species are considered an important component of global environmental 

change, affecting – mainly negatively – economic value, biological diversity and function 

of invaded ecosystems (Wittenberg & Cock, 2001), and biological invasions of alien 

species are forecasted to increase with changing global conditions (Sala et al., 2000).  

Alien terrestrial invertebrates represent one of the most numerous groups of introduced 

organisms in Europe, and insects are the taxonomic category far more represented, being 

the 80% of the total number of invertebrate species established in Europe (Roques et al., 

2009) and being able to adapt to almost all ecosystems. Invasive forest insects are 

considered a major treat to forest health (Gandhi & Herms, 2010), in particular those 

species related to wood, like ambrosia and bark beetles (Coleoptera: Curculionidae: 

Scolytinae), can cause important economic damage to trees all around the world (Marini et 

al., 2011). 

Invasion of alien species has to pass through tree stages, defined as ecological barriers or 

filters: arrival, establishment, and spread (Liebhold & Tobin, 2008), often the first stage is 

human-induced and is expected to grow – in the case of wood-related insects – with 

increasing in global trade (e.g. Haack, 2006), especially along the pathways associated with 

the commerce of live plants, plant products, wood packaging materials in cargo containers, 

where it is hard to detect them (Work et al., 2005, Brockerhoff et al., 2006; Colunga-Garcia 

et al., 2009). Furthermore, an inventory on the phytosanitary interceptions in wood and 

wood products during the period 1995-2004 revealed that wood boring beetles largely 
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dominated the forest community associated to this pathway (Roques & Auger-Rozenberg, 

2006). 

The establishment, and the consequent spread, of an alien species in a new environment 

depends on many abiotic and biotic factors (Holmes et al., 2009; Roura-Pascual, 2011), 

including climatic features of the new environment, host species, habitat area, and 

interaction with native species. For bark and ambrosia beetles, climate and import values 

seems to be strong predictors for the establishment of new species in both Europe and USA 

(Marini et al., 2011). 

Early detection of alien species is extremely important in order to enhance the probability 

of interception and the chance of eradication. Early detection activities are usually 

developed by national plant health authorities under the framework set by international 

organizations (IPPC and EPPO), which develop standards aimed at intercepting and 

identifying incursions of alien pests (FAO, 2011). Coordination of data obtained from high-

risk entry sites, such as ports and airports, is crucial to implement monitoring and 

prevention strategies; a recent study in Italian ports (Rassati et al., 2013) shows that a 

monitoring protocol including the forest areas surrounding the potential entry site is a 

useful complement to port surveillance, giving information on the port surveillance itself 

and on the effective possibility of establishment of alien species. 

 

Climate change is known to be an important factor able to influence insect distribution and 

impact in many ecosystem, especially mountain forests (Hodkinson, 2005), but it is also 

recognized to be – together with increasing globalization of economic activities – one of the 

main drivers accelerating biological invasions (Perrings et al., 2005; Pautasso et al., 2010). 

Climate change can affect invasion processes from the uptake of the alien organism in its 

native area to the establishment and spreading in a new environment, affecting both the 

adaptive capability of the invasive organism and the resistance capacity of the invaded 

environment (Pautasso et al., 2010) The effect of climate change on forest insects 

communities affects both directly and indirectly plant-feeding insects (Klapwijk et al., 

2012). Direct effects involve the insect life cycle, affecting development time, 

overwintering survival voltinism and diapauses; development rate increases with 

temperature especially in mid to high latitudes (Hodkinson, 1999), and an increased 
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development rate can affect voltinism in facultative multivoltine species (Tobin et al., 

2008). Winter mortality is likely to decrease with increasing temperature (Ayres & 

Lombardero, 2000; Tran et al., 2007; Jepsen et al., 2008) while non-diapausing species can 

feed and develop in periods that were previously too cold (Bale et al., 2002).  

Indirect effects of climate change involve host plants and natural enemies of plant-feeding 

insects. Plants response to climatic variations involve both phenological development and 

defensive strategies, and insect response to such variation can vary according to biological 

traits of the herbivorous species, mainly those affecting phenology, and its ecological guild 

(Klapwijk et al., 2012). In the case of bark beetles and other wood-related species, which 

normally reproduce on dead or deadly wood but in some case may cause epidemic tree 

mortality (Bentz et al., 2010), warmer conditions are often associated to stress conditions 

for host plants and consequently lower attack densities are needed to overcome defense 

reactions in host plants and trigger high beetle reproduction rates (Waring & Pitman, 1985; 

Raffa et al., 2008; Jactel et al., 2012). Natural enemies of phytophagous insects (i.e. 

predators and parasitoids) are affected by climate change and usually respond in a prey 

density-dependent way to environmental changes (Hoekman, 2010). Of course climate 

changes influences herbivores and their enemies in a similar way, affecting overwintering 

survival, development rate and biological activity (Humble, 2006; Hance et al., 2007), so 

the matching of response to climate variation between herbivores and their enemies is 

crucial in order to control possible outbreaks of phytophagous insects (Klapwijk et al., 

2012), considering that temperature sensitivity might increase with trophic level (Berggren 

et al., 2009). 

 

The aim of this three-years study is twofold. First, to experiment and improve new tools for 

monitoring invasive species of wood-related insects in order to propose new early detection 

strategies. Wood infesting insects are the most likely to be transported to new countries 

when trees are cut and processed into wood packaging material such as pallets, crating and 

dunnage (Haack & Brockerhoff, 2011), and considering the impact of bark beetles and 

wood borers in forest ecosystems it is crucial to understand the effect on environmental 

conditions on both native and invasive species; in the same way, it is important to study and 

to develop new strategies for monitoring and early detection of potentially threatening 



18 

 

species. Second, to investigate the effect of temperature – as the main component of climate 

change – on native populations of wood-related insects, in particular bark beetles 

(Coleoptera: Curculionidae: Scolytinae), Longhorn beetles (Coleoptera: Cerambycidae), 

weevils (Coleoptera: Curculionidae) and jewel beetles (Coleoptera: Buprestidae). The 

results can be taken as a model to predict the effects of climate change to native and alien 

species. 

The activities necessary to get the aim have been included in the European projects 

BACCARA (Biodiversity And Climate Change A Risk Analysis) and Q-DETECT 

(Developing quarantine pest detection methods for use by national plant protection 

organizations (NPPO) and inspection services) and have been developed with the 

collaboration of the New Zealand Institute for Plant and Food Research supervised by Dr. 

D.M. Suckling and the precious collaboration of the SCION research institute 

(Christchurch, New Zealand) under the coordination of Dr. E.G. Brockerhoff. 
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Abstract 

International trade of timber and woody plants, and the large and increasing use of wood 

packaging materials, call for new and more efficient surveillance methods of wood-boring 

insects. We review here the information available for the most important invasive alien 

species of wood-boring beetles in Europe, namely jewel beetles (Coleoptera: Buprestidae), 

longhorn beetles (Coleoptera: Cerambycidae), weevils and bark beetles (Coleoptera: 

Curculionidae and Scolytinae). Methods used for early detection as well as for monitoring 

of established species are scrutinized and discussed in relation to their possible application 

at local, national, and international scale. The increasing availability of devices for the 

remote detection of insects in traps has solicited the development of a tool specific for 

wood-boring insects. This has been developed thanks to EU-funded research and has 

brought to a prototype which is presented here. It consists of a camera-trap taking pictures 

of the caught items and sending them to a safe repository accessible through the web. In a 

pilot application of the technology we were able to detect a number of alien and native 

species in Italian harbors. The method could be exploited at best in surveillance networks 

targeted at containing the risk of introduction of alien invasive species of wood-boring 

insects. 
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2.1 Introduction 

 

Economic and environmental implications of alien invasive species are increasing 

worldwide year by year because of the large amount of commodities quickly exchanged all 

over the world (Baker et al., 2005; Roques, 2010). Cultivation of alien plant species as 

ornamental trees or new crops, the expansion of the European Union borders, and climate 

change are additional factors triggering biological invasions (Augustin et al., 2012). 

Because living inside fresh timber, often used as packaging material without specific 

countermeasures (e.g. those indicated in ISPM 15, 2009), wood boring beetles, are among 

the best colonizers of new environments through human-mediated dispersion (Kirkendall & 

Faccoli, 2010; Sauvard et al., 2011). For the scope of this review, they include jewel beetles 

(Coleoptera: Buprestidae), longhorn beetles (Coleoptera: Cerambycidae), weevils and bark 

beetles (Coleoptera: Curculionidae and Scolytinae). 

Early detection of pests entering new areas is a crucial task in order to prevent ecological 

and economical damage. International trade of timber and woody plants, and the large and 

increasing use of wood packaging materials (WPM) often concentrated and stored in 

specific key-points, such as ports and airports (Haack, 2001; Liebhold et al., 2006), call for 

new and more efficient surveillance methods (Brockerhoff et al., 2006; Bashford, 2008; 

Wylie et al., 2008).  

The aim of the present paper is to briefly summarize the knowledge concerning the 

occurrence and spread of the main wood boring beetles invasive to Europe. Then the 

different methodologies and tools available for detection of arrival of new species at the 

entrance points and for monitoring the dispersal of species already introduced are 

presented. Finally, a new tool for pest surveillance using web-based technology is also 

presented. 
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2.2 Main wood-boring beetles invasive to Europe  

 

2.2.1 Jewel beetles  

 

The number of jewel beetles alien to Europe is low, with only three species (Denux & 

Zagatti, 2010). While two of them , Buprestis decora and Chrysobothris dorsata 

respectively from North America and Africa, have minor economic importance (Denux & 

Zagatti, 2010; Augustin et al., 2012), the emerald ash borer (Agrilus planipennis), a 

particularly threatening Asian species, was introduced close to Moscow (Baranchikov et 

al., 2008; Straw et al., 2013). This species attacks many ash species (Fraxinus spp.), 

although in the native area is reported also on elms (Ulmus spp.) and walnuts (Juglans spp.) 

(Haack et al., 2002; Baranchikov et al., 2008). The species, native from Japan, north-

eastern China, Korean peninsula, Taiwan and Russian Far East (Jendek, 1994; Haack et al., 

2002), was introduced in north America in 2002 (Haack et al., 2002) where is responsible 

of huge damage in both forests and urban areas (EPPO, 2013). Even if the majority of 

adults disperse only for a few hundreds of meters from the source (McCollough et al., 

2005; Mercader et al., 2009), a single insect can potentially fly for several kilometers 

increasing the potential spreading (Taylor et al., 2007; 2010; Siegert et al., 2008; 2009). A 

standard protocol is available for the species control (EPPO, 2013).  

 

2.2.2 Longhorn beetles  

 

Similarly to jewel beetles, longhorn beetle species are generally associated to weakened 

trees or fresh timber leading to tree death and wood degradation (Evans et al., 2004). Some 

species may, however, infest also manufactured wood or even healthy trees. 

Recently, a couple of Asian cerambycids, the Asian longhorn beetle Anoplophora 

glabripennis and the citrus longhorn beetle A. chinensis, deserved special attention 

worldwide as potential invasive species in Europe and North America (Hu et al., 2009; 

Haack et al., 2010) where are listed as quarantine pests (USDA-APHIS, 1998; EU Council 

Directive 2000/29).  
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On one hand, A. glabripennis infests healthy trees growing in urban and suburban areas 

(Haugen, 2000; Nowak et al., 2001), with deep impact especially on maples (Acer spp.), 

elms (Ulmus spp.), poplars (Populus spp.), and willows (Salix spp.).  On the other hand, A. 

chinensis is more threatening on various fruit and ornamental trees (Lingafelter & Hoebeke, 

2002).  

Native species of pine sawyer beetles of the genus Monochamus have been shown or are 

suspected to vector the alien pine wood nematode Bursaphelenchus xylophilus, one of the 

most dangerous threats to European forestry  

 

2.2.3 Weevils  

 

Weevils are an extremely heterogeneous group of phytophagous beetles (Hill, 1997; 

Sauvard et al., 2010), many of them harmful to woody plants in orchards, plantations and 

forests (Augustin et al., 2012). 

  

The two Australian eucalyptus weevils, Gonipterus gibberus and Gonipterus scutellatus, 

are among the most important alien species associated to trees in Europe (Sauvard et al., 

2010). They had a large negative impact on eucalyptus plantations everywhere they were 

introduced worldwide (EPPO, 2005). 

Another important tree-related species recorded in the last years in the European countries 

of the Mediterranean Basin is the red palm weevil Rhynchophorus ferrugineus, native of 

south-eastern Asia and affecting as a pest more than 20 species of palms (Kehat, 1999; 

Faleiro, 2006). The pest rapidly spread in middle-east, Africa and Europe (Murphy & 

Briscoe, 1999), killing palms by the larval feeding activity carried out in the host stem, with 

important economic damage (Faleiro, 2006).  

 

2.2.4 Bark and Ambrosia beetles  

 

Bark and Ambrosia beetles (Coleptera Curculionidae Scolytinae) are here considered 

separately from weevils because of their special life history.  
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Invasive scolytids are a threat for the worldwide forests (Brockerhoff et al., 2006; Marini et 

al., 2011). All non-European scolytinae are included in quarantine lists, alert lists, and 

national or regional lists of harmful organisms (Augustin et al., 2012). Some alien species 

can have an extremely negative economic damage at both local and national scale, 

associated with ecological impacts such as displacement of indigenous species, disrupting 

of food webs and modification of functional traits of ecosystems (Kenis et al., 2009). At 

least 20 alien species of scolytids are considered established in Europe (Kirkendall & 

Faccoli, 2010; Faccoli et al., 2012; Montecchio & Faccoli, 2013). 

Besides physical damage due to insect boring activities, bark and ambrosia beetles are 

known to be often associated to pathogenic fungi (Kirisits, 2004). The introduction of 

invasive species in new environments can thus lead also to serious forest diseases. For 

instance, the recent introduction of Pityophthorus juglandis in Europe allowed the 

introduction also of Geosmithia morbida, the pathogen causing the thousand cankers 

disease on walnut (Montecchio & Faccoli, 2013).   

 

 

2.3 Surveillance of alien invasive species of wood-boring beetles  

 

The International Plant Protection Convention (IPPC) define surveillance as an official 

process which collects and records data on pest occurrence or absence by survey 

monitoring or other procedures (Augustin et al., 2012). Detection, monitoring and control 

of invasive pest populations is a fundamental point in order to avoid the spreading of newly 

introduced alien species and to understand the ecological patterns of a species introduced to 

a new environment. While the first detection of alien species is often a fortuitous event, 

monitoring and control efforts invested after detection are usually calibrated proportionally 

to the potential impact of the alien species on the invaded ecosystem and to the spreading 

risk. Monitoring of invasive alien species recently introduced in new habitats is usually 

difficult to perform because of the low population density (Augustin et al., 2012). The most 

recent field techniques which can be used for both early detection and monitoring are 

briefly illustrated according to the main considered groups of wood-boring beetles. 
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2.3.1 Jewel beetles  

 

Because symptoms of larval activity are not visible in the first year of infestation, detection 

and monitoring of invasive buprestids are usually based on adult trapping (Augustin et al., 

2012). Most of the information available has been developed recently in North America, 

after the invasion of the emerald ash borer. It is possible that the suggested methods are 

considered effective also for other jewel beetle species but this requires further testing. 

 

Trapping adults of A. planipennis is possible by sex and aggregation pheromones (Bartelt et 

al., 2007; Leito et al., 2009; Silk et al., 2009), but their effect on early stages of infestation 

is considered limited (Augustin et al., 2012). Early infestations are thus monitored by 

purple prism-shaped sticky traps (Crook et al., 2008, Francese et al., 2008) baited with a 

blend composed by 80% of Manuka oil and 20% of phoebe oil (distilled respectively from 

the New Zealand Manuka tea tree, Leptospermum scoparium, and Brazilian walnut, Phoebe 

porosa), added with volatiles of green ash (Crook et al., 2008; Marshall et al., 2010). Trap 

location should be along woodland edges, open areas and parks, but the method is effective 

also for sites exposed to a risk of infestation because of wood transport (especially 

firewood). Traps should be placed as high as possible (at least 6 meters from the ground), in 

the canopy of dominant trees (Francese et al., 2006). 

Other methods for monitoring the emerald ash borer include detection of stressed trees, in 

which the presence of larvae and emerging holes is checked (McCullough & Siegert, 2006), 

and the use of sticky bands set up on trunks and logs of the host trees to trap landing adults 

(Lyons et al., 2009). All these methods are, however, far less effective than traps (Augustin 

et al., 2012). 

 

2.3.2 Longhorn beetles  

 

Similarly to buprestids, monitoring of longhorn beetles is based mainly on adult trapping 

because of the impossibility of visual assessment of larval activity, especially during the 

first larval development stages. Adults can be attracted using kairomones, including plant 

volatiles and bark beetle pheromones, and both long- and short-range sex pheromones. 
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Repellents and oviposition stimulants and plant defensive substances can be used as well 

(Allison et al., 2004); Specific sex and aggregation pheromones produced by males are 

known only for five species (Ray et al., 2006). 

Multi-funnel and cross-vane traps are the most effective traps to catch longhorn adults. 

Trap color is important in trapping effectiveness, with a higher catching rate with black 

traps (Rassati et al., 2012). 

During last years many efforts were spent in order to identify volatiles attractive to 

Anoplophora species with the aim to facilitate their early detection and monitoring (Haack 

et al., 2010). Although many studies show the potential attractiveness of volatiles released 

both by females (Li et al., 1999) and males (Zhang et al., 2002), and combinations with 

other chemical blends for A. glabripennis (Nehme et al., 2009), the use of generic 

kairomones is an available option (Allen & Humble, 2002); recently, a contact sex 

pheromone was discovered for A. chinensis as well (Mori, 2007; Yasui et al., 2007). 

Studies on dispersion of A. glabripennis were conducted using capture-mark-releasing 

techniques, showing that in average this species can actively disperse 20m per day and that 

colonization of nearby plants is related to beetle density, weather conditions, beetle size and 

tree size (Bancroft & Smith, 2005). 

Differently from Anoplophora spp., a blend of generic host volatiles (including alpha-

pinene, ethanol and 3-carene) is very attractive for Monochamus spp. (Fan et al., 2007; 

Costello et al., 2008). The addition of bark beetles pheromones, such as ipsenol, seems to 

increase trap efficiency (Allison et al., 2001), with some exception probably due to low 

population density (Miller, 2006; Fan et al., 2010). The combination of generic host 

volatiles with the male-produced specific aggregation pheromone – allowing high captures 

of both males and females (Pajares et al., 2010) –  is so far the most efficient combination 

known to catch adults of Monochamus galloprovincialis (Rassati et al., 2012). 

 

2.3.3 Weevils  

 

Weevils normally show good responses to both general baits, such as host volatiles, and 

specific long- and short-range pheromones (Augustin et al., 2012). Differences between 
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species in physiology and behavior make, however, impossible to find a generic blend 

effective for the whole group. 

A male aggregation pheromone was identified for R. palmarum (Rochat et al., 1991), 

although higher trapping performances are obtained adding to the pheromone blend either 

plant material (palm fronds and sugarcane) (Oehlschlager et al., 1993) or a mixture of 5-

10% acetoin on ethyl acetate (Said et al., 2005).  

R. ferrugineus can be trapped as well with a mixture of food bait (plant material) and 

pheromones (Faleiro, 2006). A key aspect for detection Is to check damaged plants 

presenting attack symptoms;  new technologies based on acoustic sensor and image 

processing softwares are developed in order to detect larval activity inside palm trunks 

(Potamitis et al., 2009; Hussein et al., 2010; Al-Saquer & Hassan, 2011). 

 

2.3.4 Bark and Ambrosia beetles  

 

Differently from other groups,  surveillance of bark and ambrosia beetle populations is 

commonly performed by checking infested wood material or by capturing flying adults  

with baited traps. Monitoring of infested wood is mainly based on the identification of the 

species-specific gallery patterns occurring in tree phloem, in case of bark beetles, or in 

sapwood in case of ambrosia beetles. Species identification by morphological analysis of 

larvae is instead extremely difficult (Augustin et al., 2012). The easiest way to survey bark 

and ambrosia beetle populations is using black multi-funnel, cross-vane or panel traps. Trap 

efficiency can vary according to the different target species and the environment in which 

the monitoring is carried out, suggesting to use species-specific trap designs (Nageleisen & 

Bouget, 2009). Scolytids can be attracted using specific aggregation pheromones or more 

generic attractant lures, such as host volatiles and alcohol (Byers, 2004). An example is 

provided by Rassati et al. (2013) who successfully used generic traps to detect wood-boring 

insects, and especially bark beetles, at ports of entry in Italy. 
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2.4 Pest surveillance using web-based technology 

 

The demand of automatic devices for remote monitoring of ecological variables is 

increasing because the quick improvement of technical facilities and the need of saving 

time, reducing or avoiding direct field observations, solving logistic problems, and 

improving data consistency (Richardson et al., 2007; Garrity et al., 2010; Ryu et al., 2010). 

In the past, remote cameras were used mainly in plant studies (Ahrends et al., 2009; 

Richardson et al., 2009; Graham et al., 2010; Ide & Oguma, 2010; Migliavacca et al., 

2011; Sonnentag et al., 2011). Nonetheless, few recent studies focused on the possible use 

of cameras for detection and monitoring of insect occurrence and activity, with various 

prototypes under development. For instance, the system proposed by Jian et al. (2008) and 

tested on the oriental fruit fly, B. dorsalis, consists of a high precision automated trapping 

and counting device. The device counts the number of trapped flies and then sends the 

information to a remote monitoring platform in the form of a short cell phone message 

through a wireless Global System of Mobile Communication (GSM). Because the trapped 

flies are counted as they cross an infrared interruption sensor of a double-counting optical 

mechanism (Lin et al., 2006), the monitoring system gives only the number of trapped 

insects assuming that all these are really and only oriental fruit flies. This tool is, hence, 

suitable only for monitoring species provided of specific attractants and for which is not 

required the identification but only the assessment of the population density, i.e. number of 

insects. In case of traps catching many species belonging to different families, as recorded 

in the present study, the need to identify the trapped species is the main purpose. In this 

respect, Lopez et al. (2012) proposed a monitoring system able to capture and send images 

of the trap content to a remote control station. Nevertheless, to increase the battery life-

span, the device was based on a low-cost sensor producing low-resolution images allowing 

the prompt identification only of very large species, such as the Red Palm Weevil 

(Rhynchophorus ferrugineus), on which the device was tested. A large improvement of the 

image quality was obtained with the automatic electronic traps designed by Guarnieri et al. 

(2011) to monitor the codling moth, C. pomonella. The traps were developed to survey the 

flight of moth males attracted to sexual pheromone, for a better definition of both pest 

density and spraying time.  
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Wood-boring insects are among the best candidates for such a technology because of their 

ability to move inside timber and untreated wood packaging material carried worldwide 

through international trade (Kirkendall & Faccoli, 2010; Sauvard et al., 2011). Traps set up 

for the detection of invasive alien species must be frequently inspected and specific actions 

can be immediately taken in case of interception of a quarantine species. Hence, any 

technology which concurs to optimize a surveillance program, reducing checking time and 

improving the precision of the method, warrants specific investigations. 

A prototype camera-trap specifically designed for the remote detection of wood-boring 

beetles has been developed in two EU-funded projects, PRATIQUE and Q-DETECT. Is it 

based on a specifically modified security camera (BioCam, Mi5 Security, Auckland, New 

Zealand) (Fig. 1), composed by a wide-angle lens, 1 MegaPixels sensor, rechargeable 

battery pack and internal modem for General Packet Radio Service (GPRS) connection was 

used. The interval between images taken by the camera can be programmed and saved in a 

Secure Digital (SD) memory card. The images can be stored in the same SD card and 

simultaneously sent to a safe repository accessible through the web, from which they are 

downloadable. On the same repository it is possible to check the level of battery charge of 

each camera and the GPRS coverage as well. 

The camera was coupled with a multi-funnel trap composed by 12 black overlapped funnels 

connected with a drained collector (Econex Multi-Embudos
®
, Spain). The trap was baited 

with a blend of the generic lures (‒)α-pinene and ethanol (Serbios
©

, Italy), known to be 

attractive to many wood boring beetle species (Moeck, 1981; Joseph et al., 2000; Kelsey & 

Joseph, 2000; Brockerhoff et al., 2006; Rassati et al., 2012), and a commercial kit specific 

for Monochamus galloprovincialis (Galloprotect 2D® - SEDQ®). The trap collector was 

modified adding a transparent plastic pipe ending with a tiny net bottom to drain water (Fig. 

2). The new collector length was then optimized in order to reach the ideal focus distance 

between the camera and the collector bottom (about 20 cm). 

After some preliminary tests carried out in laboratory (November 2011 to January 2012) 

taking pictures from sample insects put inside the trap collector, a camera-trap was set up in 

two experimental field tests. The first test was conducted from March 26
th

 to May 11
th

 2012 

(39 days in total) placing the trap along the edge of a bush in the campus of the University 
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of Padova (Agripolis, Legnaro, Italy). The second field test was carried out in the 

Monfalcone port (NE Italy) from July 10
th

 to August 10
th

 2012 (30 days). In both the 

experiments the camera was set up to take 4 images per day every 6 hours (at 6 am, 12 am, 

6 pm and 12 pm) in order to test different light conditions. Trapped insects were first 

identified from the pictures sent by the camera to the repository accessible through the web. 

Every second week, the trap was checked on-site and the trapped insects taken to the 

laboratory for identification at species level by morphological traits. Insect identifications 

performed from pictures were then compared with those done on collected specimens to 

give the level of accuracy of the off-site detection. 

A total of 50 beetles belonging to 4 species of longhorn and 6 species of bark beetles were 

analyzed during both lab and field tests (Tab. 1, Fig. 2). As expected, the image analysis 

was less reliable than the direct morphological identification, which was possible for all 

trapped insects. While all trapped beetles were correctly identified at family level in the 

image analysis (Tab. 1), the correct identification at genus level was possible only for 

longhorn beetles and one genus of bark beetles (Ips) (Tab. 1). The image quality was not 

high enough to allow a correct species identification for any of the specimens collected.The 

use of 4 pictures per day gave at least one high quality image (normally at 6 am and/or 6 

pm), avoiding problems associated with darkness or overly direct light. In both field tests 

the camera-trap had a battery life of about 22 days, with four shots a day. 

The device is a promising tool for the remote check of traps deployed for the detection of 

alien wood-associated beetles. Many camera-traps can be used simultaneously and 

independently in as many sites as needed, avoiding complex and expensive logistic 

organization. On-site checking of the trap is needed whenever the change of battery pack or 

lure is necessary, or when the collection of the insects is required. 

The effectiveness of the off-site detection would largely increase in case of single target 

species (or group of similar species) responding to a specific aggregation lure, as in the case 

of Monochamus galloprovincialis, the vector of the pine wood nematode Bursaphelenchus 

xylophilus (Pajares et al., 2004; 2010). Here, the morphological identification of the trapped 

individuals is usually not required, because the use of specific lure usually excludes the 

capture of non-target species. Moreover, large target species (such as many longhorn 

beetles) can be identified directly from pictures, at least at genus level. In case of small and 
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hardly recognizable target species (such as bark beetles), the device allows the user to focus 

the on-site checking only on those traps showing the presence of specimens with 

morphological features similar to those of the target species, reducing the general costs of 

the surveillance. In this respect, if target species are particularly rare, such as alien species 

included in the lists of the quarantine organisms, then lower costs should result from 

avoiding the checking of empty traps (Augustin et al., 2012). Although only one alien 

species was caught during the trial for the testing of the device (the ambrosia beetle 

Xyleborus atratus), some of the species were clearly coming with commodities or wood 

packing material. This is the case of the spruce bark beetle Ips typographus at University 

campus and the European fir engraver beetle Pityokteines vorontzovi found in Monfalcone 

port, which can be considered as not occurring in the study areas, and likely move with the 

trade of coniferous wood. 

 

Beside to be suitable for both large and small species, provided or not with specific 

attractants, the device is immediately ready for application without the need for other 

components to be connected (except for the SIM card for GPRS connection), and requires 

only a very low maintenance effort, limited to the periodical recharge of the batteries and 

the removal of insects from the trap collector. In addition, the picture repository accessible 

through the web allows a safe, shared, quick and simultaneous access of the users to the 

stored pictures. User-friendly software’s for web setup and managing require a few skills, 

with no need for long and complex training activities. Although the camera trap presented 

here is already a promising tool for off-site detection of wood boring insects, further 

development of the technology is desirable. This may consist of a better integration of the 

camera in the trap, i.e., miniaturizing the camera components, and an increasing of image 

quality and battery life. 

The large-scale availability of web-based surveillance, combined with the development of 

efficient trapping devices and other technologies (acoustic detection, electronic noses, 

radiography, dogs, on-site DNA probing) may pave a new way for a successful detection 

and monitoring of invasive alien species of wood-boring beetles as well as of other insects. 

They can be deployed at local, national, and international scale and must be incorporated in 

collaborative networks in order to be exploited at best. Due to the high unpredictability of 
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the nature of invasive alien species, the development of generic methods should be given 

priority, in order to maximize the detection efficiency by keeping costs as low as possible. 

The adoption of an efficient surveillance network together with a strict application of the 

existing international measures (ISPM 2009) and with eradication plans may hopefully 

contribute to reduce the threat of invasive wood-boring insects. 
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Figure 1: Structure of the automatic camera: front (left) and inside (right). Main 

components: a. 3.7 mm lens. b: remote controller sensor (to arm/disarm the camera). c: 

motion detector (not used in this study) and status light signs. d: Rechargeable battery pack. 

e: modem for GPRS connection and SIM card. f: SD memory card (contains settings and 

pictures).  
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Figure 2: Sample pictures taken by the camera in laboratory conditions showing longhorn 

beetles of the genus Arhopalus (5 individuals) and Spondylis (4 individuals) (left). Picture 

taken in the field (Monfalcone) with catch of several small bark beetles, four longhorn 

beetles, and one large non-target beetle (right). Insects have been later identified as in table 

1. 
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Location Q.ty Image identification Direct identification 

Family Genus Family Genus Species 

Laboratory 7 Cerambycidae Arhopalus Cerambycida

e 

Arhopalus A. ferus 

 2 Cerambycidae Monochamus Cerambycida

e 

Monochamus M. galloprovincialis 

 4 Cerambycidae Spondylis Cerambycida

e 

Spondylis S. buprestoides 

 9 Scolytinae Ips Scolytinae Ips I. typographus 

University campus 2 Scolytinae Unidentified Scolytinae Hylurgus H. ligniperda 

 2 Scolytinae Ips Scolytinae Ips I. typographus 

 3 Scolytinae Unidentified Scolytinae Orthotomicus O. erosus 

 2 Scolytinae Unidentified Scolytinae Xyleborus X. atratus 

 6 Scolytinae Unidentified Scolytinae Xyleborinus X. saxesenii 

Monfalcone port 1 Cerambycidae Chlorophoru

s 

Cerambycida

e 

Chlorophorus C. varius 

 5 Cerambycidae Spondylis Cerambycida

e 

Spondylis S. buprestoides 

 4 Scolytinae Unidentified Scolytinae Hylurgus H. ligniperda 

 3 Scolytinae Ips Scolytinae Ips I. typographus 

 1 Scolytinae Unidentified Scolytinae Pityokteines P. vorontzovi 

 

 

Table 1: List of scolytid and cerambycid species identified by visual analysis of the 

pictures and corresponding identification by direct observation. 
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Abstract 1 Temperature is probably the most important driver of insect response to climate
change and has many implications at both individual and population levels. The
present study explored how elevation, as a proxy for temperature, affects the
abundance and diversity of bark and wood-boring beetles associated with Norway
spruce (Picea abies) along its southern range.

2 We selected three elevational gradients (approximately 900–1500 m) in spruce
stands in the south-eastern Alps, each consisting of four locations. From April to
September 2011, four traps of different types were installed at each location: three
baited with generic lures (α-pinene and ethanol) and one baited with a pheromone
specific for Ips typographus . In addition, three fresh spruce logs were exposed on
the same locations.

3 Species richness did not vary significantly with elevation, whereas the abundance
of most individual species did. Generally, aggressive species responded positively
to higher temperature, whereas most non-aggressive species responded negatively.

4 In a warming scenario, it is likely that spruce forests will face increasing damage
from aggressive species. This will threaten the growth and survival of Norway
spruce at low elevation, especially at southern latitudes.

Keywords Alps, climate change, Coleoptera, Ips typographus , pests, Picea ,
temperature, trap.

Introduction

Climate change is considered as an important factor with
respect to modifying natural ecosystems, directly or indirectly
affecting all trophic levels (Bale et al., 2002). Temperature is
probably the most important driver of insect response and has a
number of implications at both individual and population levels
(Klapwijk et al., 2012). Global warming may significantly
modify herbivores both directly (e.g. offspring abundance,
phenology, voltinism, winter survival), as well as indirectly by
acting on the host plants (e.g. water stress) (Hodkinson, 2005)
and natural enemies (Berggren et al., 2009).

Forests are of crucial importance when assessing the
consequences of global warming because they provide multiple
ecosystem services, such as timber production, soil protection
and landscape conservation (Alfaro et al., 2010). Climate can
also affect the abundance, composition and phenology of insect
communities, as shown for stable flies (Gilles et al., 2008), with

Correspondence: Fabio Chinellato. Tel.: +39 049 827 2811;
fax: +39 049 827 2810; e-mail: chinellato.f@gmail.com

a more evident effect on generalist species than on specialist
ones (Scheidel et al., 2003). In some cases, environmental and
climatic changes can lead to dramatic ecosystem and economic
damage, as recorded in western North America with outbreaks
of the mountain pine beetle Dendroctonus ponderosae (Kurz
et al., 2008) and in Europe with the expansion of the
outbreak range of the pine processionary moth Thaumetopoea
pityocampa (Battisti et al., 2005) and the spruce bark beetle
Ips typographus (Marini et al., 2012).

Geographical gradients are often used as a proxy for sim-
ulating climate change effects (Hodkinson, 2005). Latitudinal
and elevational gradients have been commonly used for testing
the effects of temperature at different spatial scales (Andrew
& Hughes, 2005; Adams & Zhang, 2009; Röder et al., 2010).
Because latitudinal gradients are often distributed over very
large areas where many environmental factors may change
along the gradient (e.g. day length, mean precipitation, inclina-
tion of solar radiation, forest composition and tree phenology),
steep elevational gradients are generally recommended to sep-
arate the effect of temperature from other factors as efficiently
as possible (Hodkinson, 2005).

© 2013 The Royal Entomological Society
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Norway spruce Picea abies (Karsten) is one of the most
important forest tree species in Europe (Schmidt-Vogt, 1977),
in terms of both timber production and the large area covered.
Insect communities related to Norway spruce are expected
to respond to global warming as this species grows in
temperate-cold and boreal regions. Responses to the increase
of temperature along elevational gradients can be investigated
with respect to both diversity and the abundance of organisms.
Diversity of species has been addressed in two studies
conducted in central Europe for wood-boring beetles and their
enemies (Tykarski, 2006; Röder et al., 2010). In both studies,
species richness decreased slightly with increasing elevation,
although there was no consistency among major guilds. Insect
abundance and impact have been shown to generally decrease
with elevation (Garibaldi et al., 2011). The effect of temperature
on spruce pests has been studied especially for I. typographus ,
which is considered to be the most dangerous spruce pest in
Europe (Schelhaas et al., 2003). An increase in temperature
can lead to a higher occurrence of a second or even third
generation (Jönsson et al., 2007, 2011; Faccoli, 2009) and it has
been generally associated with greater forest damage (Marini
et al., 2012). Hylobius abietis , another important pest on spruce
seedlings, has been shown to respond positively to temperature,
with the prediction of a larger impact with global warming
(Inward et al., 2012).

Because an understanding of the dynamics of the individual
species and communities in response to climate change
is crucial for enabling the forecast of future hazards and
optimizing forest management, the present study aimed to
assess the possible effects of temperature on species richness
(i.e. number of species) and the abundance of bark and wood-
boring beetles associated with Norway spruce. Species were
classified as aggressive and non-aggressive in accordance with
the ranking proposed by Grégoire and Evans (2004), based
on the frequency of damage detection in European countries.
We selected steep elevation gradients in the Southern Alps
where Norway spruce is at the southern edge of its distribution
range. A recent study carried out on damage by I. typographus
in the same area has shown that spring drought events elicit
outbreaks (Faccoli, 2009) and that these occur mainly in low
elevation stands because of more frequent drought events
(Marini et al., 2012). Based on the potential higher frequency

of aggressive species of bark and wood-boring beetles at low
elevations, we expect that species such as I. typographus
and the weevil H. abietis are positively affected by warmer
temperatures.

Materials and methods

Study areas

Three spruce forests were selected in the south-eastern Alps
(Veneto and Friuli Venezia Giulia regions, north-east Italy):
Mauria, Pramosio and Tualis (Table 1). The investigated stands,
chosen to be as similar as possible in age, composition and
slope facing, were characterized by a dominance of Norway
spruce, with other scattered woody species (mainly Fagus
sylvatica L. and Larix decidua Miller) occurring at low density.
To avoid confounding effects associated with local outbreaks,
we selected sites under non-outbreak conditions (i.e. lack of tree
mortality close to the experimental sites). An elevation gradient
of a minimum of 600 m was selected at each site to obtain
a substantial temperature gradient according to the generally
accepted lapse rate of 0.64 ◦C every 100 m. All gradients were
located in mature stands (>90 years old) with a density of
300–450 trees per ha and served by a logging road. Along
each gradient, four locations separated from each other by
approximately 200 m of elevation were selected (Table 1). At
each location, air temperature was recorded hourly at 1 m above
soil level using a data-logger (HOBO® U23 Pro v2-, resolution
0.02 ◦C with a RS1 solar radiation shield; Onset Corp., Bourne,
Massachusetts). Hourly temperature was used to calculate the
daily mean temperature from 20 April to 1 September 2011
(Table 1).

Target species and trap types

Our goal was to sample all species of bark and wood-boring
insects within the Norway spruce sample stands. Insect trap-
ping was performed using four types of traps (i.e. cross-vane,
pitfall, trunk, and multi-funnel) to obtain the maximum
information about the community of insects associated with
bark and wood. The cross-vane traps (Polytrap™ PET, Model

Table 1 Description of the geographical and climatic characteristics of the investigated gradients

Gradient Location Coordinates Elevation (m a.s.l.)
Average daily temperature (◦C)
(20 April to 1 September)

Mauria M1 46◦28′30′ ′N 12◦27′49′ ′E 922 14.51
M2 46◦27′40′ ′N 12◦29′41′ ′E 1122 13.06
M3 46◦27′14′ ′N 12◦30′47′ ′E 1308 12.14
M4 46◦27′10′ ′N 12◦30′12′ ′E 1550 11.81

Pramosio P1 46◦34′05′ ′N 13◦00′49′ ′E 868 14.70
P2 46◦34′23′ ′N 13◦01′26′ ′E 1181 13.20
P3 46◦34′37′ ′N 13◦01′49′ ′E 1344 12.14
P4 46◦35′03′ ′N 13◦01′29′ ′E 1470 11.46

Tualis T1 46◦32′23′ ′N 12◦52′34′ ′E 998 14.92
T2 46◦32′30′ ′N 12◦53′03′ ′E 1286 13.15
T3 46◦32′55′ ′N 12◦53′33′ ′E 1432 12.08
T4 46◦33′14′ ′N 12◦53′16′ ′E 1769 10.31

© 2013 The Royal Entomological Society, Agricultural and Forest Entomology, doi: 10.1111/afe.12040



Norway spruce bark and wood beetles along altitude 3

2010; Ecole d’Ingénieurs de Purpan, France) were composed
of two transparent perpendicularly crossed panels, a funnel
and a drained collector with insecticide added (Sed-Q, Spain).
The trap was baited with the generic lures (−) α-pinene
and ethanol (Serbios, Italy) to catch bark and wood-boring
beetles attracted by stressed plants (Gandhi et al., 2009). Bait
and insecticide were changed every 6 weeks. Pitfall traps
(Econex Eostrap, Spain) were a variant of the pine weevil trap
(Nordlander, 1987) with four holes at ground level to intercept
walking insects, lured by a dispenser of ethanol (Serbios,
Italy), as already tested by Moeck (1981). Dry insecticide
(Sed-Q, Spain) was added to the collector; bait and insecticide
were changed every 6 weeks. Trunk traps (Stammfallen; http://
www.pulapkibezobslugowe.com/index/html/index_DE.html)
consisted of a collar placed around a tree stem at approxi-
mately 1.5 m from the ground to intercept insects climbing
the stem, such as weevils. A collector with dry insecticide
(Sed-Q, Spain), changed every 6 weeks, was located at the
top of the collar. No bait was used with this type of trap.
The multi-funnel traps (Econex Multi-Embudos, Spain) were
composed of 12 black overlapped funnels and a drained col-
lector with a dry insecticide added (Sed-Q, Spain), and baited
with a commercial pheromone specific for I. typographus
(Superwood; Serbios, Italy). This bait generally also attracts
other species of wood-boring beetles (Valkama et al., 1997).
Bait and insecticide were changed every 6 weeks. The whole
trap set has been studied to collect the highest number of
species, considering that different species can be attracted by
different lures and different traps; data obtained by all the trap
set have been considered as an unique value of abundance for
the location.

On 15 April 2011, one trap of each type was set up in
each location of the three selected gradients. Each trap was
checked and emptied every 2 weeks until end of September
2011. Trapped insects were stored in alcohol and then identified
to species level.

Logs

Three fresh spruce logs of (diameter 20 cm, length 50 cm)
were exposed in each location to study the effective wood
and bark colonization by the species caught by traps, and
to include those species that do not respond to traps. Logs
were cut in March from a tree growing at the bottom of each
transect. Each log was baited with one-third of the commercial
dispenser of I. typographus pheromone (Superwood) to help
initial colonization but, at the same time, avoid overcrowding
as a result of the attractiveness of a full pheromone dispenser
(Schlyter et al., 1987). Logs were set out in each location on
April 2011, laying them close to each other on a mulch mat.
One of the three logs per location was randomly selected and
removed on April 2012 to measure the overall performance of
both univoltine and multivoltine species. The logs were stored
in pipe-cages for drying, and emerging insects were collected
until July 2012. Each log was then debarked to identify and
count maternal (for bark beetles) or larval (for wood-boring
insects) galleries. Attack density was reported as number of
galleries per m2 of bark.

Statistical analysis

To test the effect of hourly mean temperature calculated across
the whole period on both species richness (considered as
number of species) and insect abundance in traps, we used
a generalized linear mixed model (GLMM), with temperature
of the location as fixed factor and gradient as random factor.
We used a Poisson distribution with a log-link function for
count data of species richness and individual abundance in
traps. The total number of species and the abundance of each
species were pooled for the whole trapping season (April to
September) and for all types of traps used in the experiment.
The effect of temperature on attack density of each species
colonizing logs was tested using general linear mixed models
because the response variable was not a count. Significance of
effects was based on α = 0.05. GLMMs were performed using
the package lmer in r (R Development Core Team, 2012).

Results

Traps

A total of 51 672 insects were trapped, distributed in 15
species and two families (Curculionidae and Cerambycidae)
of bark and wood-boring beetles (a complete list of captured
insects per trapping device is provided in Table 2). Two
bark beetles (I. typographus and Cryphalus abietis) and
one ambrosia beetle (Xyloterus lineatus) were the most
common trapped species, with 46 628, 363 and 4030 trapped
adults, respectively. Four other bark beetle species (Hylurgops
palliatus , Hylastes cunicularius , Dryocoetes autographus and
Xylechinus pilosus) were trapped in lower numbers (284,
182, 69 and 47, respectively), whereas two other bark beetle
species were only seldom recorded (Pityogenes chalcographus
and Phthorophloeus spinulosus). Hylobius abietis was the
only weevil observed (37 individuals) and, together with
I. typographus , H. cunicularius and X. lineatus , is part
of the collected species considered aggressive (Grégoire &
Evans, 2004). Longhorn beetles included five species (Rhagium
bifasciatum , Pogonocherus fasciculatus , Rhagium sycophanta ,
Oxymirus cursor and Ropalopus hungaricus), with only few
individuals caught.

The number of bark and wood-boring insect species
marginally increased as mean hourly temperature increased
(slope = 0.14, t = 3.597, P = 0.078). All species of bark beetles
responded to temperature, either positively or negatively (Figs 1
and 2 and Table 3). A strong positive trend was shown for
I. typographus and a less strong one for both H. palliatus and
H. cunicularius; the weevil H. abietis also responded positively
to increased temperature. Negative responses to temperature of
similar magnitude were shown for C. abietis , D. autographus
and X. pilosus . The only ambrosia beetle found, X. lineatus ,
also showed a negative response to increased temperature.

Logs

The galleries found in the exposed spruce logs belonged to six
beetle species (Table 4): three bark beetles (D. autographus ,
I. typographus and H. palliatus , with a mean number of

© 2013 The Royal Entomological Society, Agricultural and Forest Entomology, doi: 10.1111/afe.12040



4 F. Chinellato et al.

Table 2 List of insect species caught in traps according to family/subfamily, decreasing abundance and trap type

Abundance

Family Subfamily Species Total CV MF PF TT

Cerambycidae Cerambycinae Ropalopus hungaricus 1 1 0 0 0
Cerambycidae Lamiinae Pogonocherus fasciculatus 6 0 4 0 2
Cerambycidae Lepturinae Rhagium bifasciatum 11 3 6 2 2
Cerambycidae Lepturinae Rhagium sycophanta 3 3 0 0 0
Cerambycidae Lepturinae Oxymirus cursor 3 3 0 0 0
Curculionidae Molytinae Hylobius abietis* 37 1 0 17 19
Curculionidae Scolytinae Ips typographus* 46 628 120 46 508 0 0
Curculionidae Scolytinae Xyloterus lineatus* 4030 3994 36 0 0
Curculionidae Scolytinae Cryphalus abietis 363 355 8 0 0
Curculionidae Scolytinae Hylurgops palliatus 284 276 8 0 0
Curculionidae Scolytinae Hylastes cunicularius* 182 180 2 0 0
Curculionidae Scolytinae Dryocoetes autographus 69 63 6 0 0
Curculionidae Scolytinae Xylechinus pilosus 47 46 1 0 0
Curculionidae Scolytinae Pityogenes chalcographus 7 7 0 0 0
Curculionidae Scolytinae Phthorophloeus spinulosus 1 0 1 0 0

Species marked with an asterisk are considered aggressive (Grégoire & Evans, 2004).
CV, cross-vane; MF, multifunnel; PF, pitfall; TT, trunk trap.

Table 3 Results of the generalized linear mixed model applied considering the pooled number of individuals caught in different traps and the density of
galleries found in the logs for each species of wood insects with respect to the temperature gradient

Traps Logs

Family Subfamily Species Slope SE P Slope SE P

Cerambycidae Lepturinae Rhagium bifasciatum NS 0.410 0.158 < 0.05
Curculionidae Molytinae Pissodes herciniae – NS
Curculionidae Molytinae Hylobius abietis 1.399 0.462 < 0.01 –
Curculionidae Scolytinae Cryphalus abietis −0.413 0.049 < 0.01 –
Curculionidae Scolytinae Dryocoetes autographus −0.489 0.146 < 0.01 −0.438 0.150 < 0.05
Curculionidae Scolytinae Hylastes cunicularius 0.305 0.059 < 0.01 –
Curculionidae Scolytinae Hylurgops palliatus 0.342 0.045 < 0.01 NS
Curculionidae Scolytinae Ips typographus 0.980 0.005 < 0.01 0.570 0.135 < 0.01
Curculionidae Scolytinae Xylechinus pilosus −0.350 0.161 0.029 –
Curculionidae Scolytinae Xyloterus lineatus −0.334 0.013 < 0.01 NS

NS, slope not significantly different from 0; –, data not available.

galleries per m2 of 33, 26.9 and 15.2, respectively), one
ambrosia beetle (X. lineatus; 0.83 galleries/m2), one longhorn
beetle (Rhagium bifasciatum; 9.8 galleries/m2) and one weevil
species (Pissodes herciniae; 2.3 galleries/m2) (Table 4). All
of these species, with the exception of P. herciniae, were
also found in traps. Log infestation density increased with
increased temperature for I. typographus , whereas it decreased
for D. autographus (slope = 0.57, t = 4.230, P < 0.01 and
slope = −0.44, t =−2.926, P < 0.05, respectively), showing
the same trend observed in traps (Fig. 1). The longhorn beetle
R. bifasciatum responded positively to increased temperature
(slope = 0.41, t = 1.305, P < 0.05). X. lineatus , H. palliatus
and P. herciniae did not show temperature dependent trends
of log colonization (slope = 0.01, P = 0.731; slope = 0.03,
P = 0.564; and slope =−0.114, P = 0.38, respectively).

Discussion

Temperature affected the abundance of bark and wood-boring
beetle species associated with Norway spruce at the southern

edge of its range in the south-eastern Alps, whereas the number
of species was not significantly affected. In particular, higher
temperatures recorded at low elevation positively affected
the abundance of some of the most aggressive species of
wood beetles in Europe (I. typographus , H. cunicularius and
H. abietis) (Grégoire & Evans, 2004), whereas only one
of the aggressive species (X. lineatus) showed a decreasing
trend with increased temperature. Conversely, non-aggressive
species showed a general decreasing trend in three cases
(D. autographus , C. abietis and X. pilosus), whereas only
H. palliatus responded positively to increased temperature.
Because temperature is the most biologically relevant factor
changing along steep elevational gradients, we consider that it
mainly explains the variation observed (Hodkinson, 2005). The
low number of non-aggressive species at low elevation sites
can be explained by an increased competition with aggressive
species (especially I. typographus), as well as by a niche
shifting to cooler sites; because plant resources tend to be
also limited at cooler sites, this would lead to a shrinking
of the range, with a potential loss of biodiversity (Parmesan,
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Figure 1 Results of the generalized linear mixed model (GLMM) for the two species showing a significant response to temperature both for captured
adults (left column) and density of maternal galleries in logs (right column). Solid lines represent the fitted values obtained from the GLMM and dotted
lines represent the 95% confidence intervals. Tickmarks on the x-axis show the mean temperature of each location (M3 and P3 overlapping).

Table 4 List of insect species that colonized wood logs according to family/subfamily, decreasing abundance and elevational locations

Gradients and Locations

Mauria Pramosio Tualis

Family Subfamily Species M1 M2 M3 M4 P1 P2 P3 P4 T1 T2 T3 T4

Cerambycidae Lepturinae Rhagium bifasciatum 7.6 14.5 0.0 0.0 18.6 15.5 22.7 5.3 19.4 11.9 0.0 3.2
Curculionidae Molytinae Pissodes herciniae 0.0 0.0 0.0 0.0 0.0 9.3 0.0 0.0 0.0 11.9 0.0 6.4
Curculionidae Scolytinae Dryocoetes autographus 7.6 2.9 79.1 55.4 5.3 3.1 6.5 37.2 11.1 59.5 68.2 60.5
Curculionidae Scolytinae Hylurgops palliatus 25.5 34.7 0.0 0.0 5.3 37.1 6.5 5.3 8.3 8.9 13.0 38.2
Curculionidae Scolytinae Ips typographus* 76.4 26.1 0.0 0.0 45.3 6.2 16.2 10.6 121.6 11.9 3.2 6.4
Curculionidae Scolytinae Xyloterus lineatus* 0.0 2.2 1.7 0.0 2.2 0.8 0.0 0.0 1.3 0.0 0.7 1.1

Species marked with an asterisk are considered aggressive (Grégoire & Evans, 2004). Values represent the number of maternal (for bark beetles) or
larval (for other wood-boring insects) galleries per m2 of bark.

2005). The low number of species trapped, however, did not
allow further analyses on species diversity along the gradients,
and a new experimental setting targeted at maximizing species
number would be needed.

Although latitudinal range expansions of bark beetle out-
breaks have been reported for various species (Logan & Powell,
2001; Jönsson et al., 2009; Safranyik et al., 2010), the response

of bark beetles to elevational gradients is poorly known and
with contrasting results. Williams et al. (2008) did not find the
responses of the bark beetle community to be associated with
ponderosa pine forests in Arizona, whereas Tykarski (2006)
and Röder et al. (2010) found a slight decrease of species rich-
ness and abundance with increasing elevation in Norway spruce
forests of central Europe. Models based on I. typographus
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Figure 2 Results of the generalized linear mixed model (GLMM) for the six beetle species showing a significant response to temperature only for
captured adults. Solid lines represent the fitted values obtained from the GLMM and dotted lines represent the 95% confidence intervals. Tickmarks on
the x-axis show the mean temperature of each location (M3 and P3 overlapping).

life-history traits predict an increase of outbreak range and
damage with decreasing elevation as a result of temperature
warming (Baier et al., 2007; Seidl et al., 2009; Marini et al.,
2012). The contrasting results may be a result of the fact that
some studies used elevational gradients over a large latitudinal
span, probably sampling geographically separated populations
that may respond numerically more to the history of local
dynamics than to temperature (Williams et al., 2008; Röder
et al., 2010). In addition, it is not always clear whether or not

the sampling areas were close to outbreaks, which may affect
the abundance pattern, as in the study of Tykarski (2006). Con-
versely, the present study was conducted on steep gradients
distributed over a very short topographical distance (only a few
kilometres between the lowest and highest location), allowing
minimization of the effect of local variables affecting insect
populations, with the exception of temperature. In addition, the
lack of outbreak areas within the chosen gradients reduces the
noise that could affect the local catch pattern.

© 2013 The Royal Entomological Society, Agricultural and Forest Entomology, doi: 10.1111/afe.12040
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The mechanisms involved in the response of wood beetles to
temperature can be both direct and indirect. Direct mechanisms
are possibly associated with a better performance and faster
development, eventually leading to multiple generations per
year (Jönsson et al., 2009). Indirect mechanisms are mainly
driven by changes in host plant quality because trees may
become more susceptible to beetle colonization when they
grow under conditions of water stress (Jactel et al., 2012),
as is typical of the low elevation forests of the south-eastern
Alps (Marini et al., 2012). The different thermal thresholds
required for emergence by the aggressive species found in the
present study may explain the differences observed along the
temperature gradient. Xyloterus lineatus emerges early in spring
with a mean air temperature of approximately 12 ◦C (Chararas,
1962; Annila et al., 1972), whereas the other aggressive species
have an emerging threshold of approximately 18 ◦C (Chararas,
1962; Christiansen & Bakke, 1988). The low X. lineatus density
recorded at low elevation (i.e. higher temperature) suggests
that traps were probably deployed too late (mid-April), when
most of the adults had already emerged and moved into new
host-trees. Instead, the abundance of secondary, non-aggressive
species in many cases showed a positive trend related to
elevation, with the only exception of H. palliatus .

The analysis of the log infestation confirms the general trend
observed in the traps, with aggressive species (I. typographus)
showing a positive response to the thermal gradient, whereas
non-aggressive species (D. autographus) have a negative trend.
Although I. typographus and D. autographus were the only two
species showing a significant response to elevation in both traps
and logs, some species were collected in only one of the two.
In the case of H. abietis , which was found in high numbers
only in traps, this result is not unexpected considering that the
species colonizes tree stumps more actively than trunks and
logs (Von Sydow & Birgersson, 1997). The opposite trend was
observed for the weevil P. herciniae, which is found only in
logs and never in traps baited with generic lures or bark beetle
pheromones; this can be explained by the high selectivity of the
genus Pissodes to its host trees and the lower attractiveness
of traps (Bratti et al., 1998). Lastly, some species, such as
H. palliatus , X. lineatus and P. herciniae, occurred only in a
few logs or with a few individuals, making trend estimation
or statistical comparison with traps unfeasible. Overall, it may
appear that aggressive species outcompete the non-aggressive
ones at low elevation, whereas the latter thrive at higher
elevation, although often with low population density.

In conclusion, the results of the present study suggest that,
in a warming environment scenario, spruce forests may face
increasing damage as a result of aggressive species, whereas
the abundance of non-aggressive species will probably decline
because of host limitation. This could be exacerbated especially
at the southern edge of spruce distribution, as in the study
area. Attacks by aggressive species, especially I. typographus ,
could become more frequent as a result of both increasing
insect populations and increasing spruce susceptibility. In this
respect, the predicted global warming (Solomon et al., 2007)
will probably expose Norway spruce to new outbreaks and
infestation of wood-boring beetles, increasing the rates of
timber loss and inducing an upward shift in their attacks.
Considering the increased susceptibility of spruce forests to

wood-related beetles, especially bark beetles, forest managers
should promote silvicultural strategies aiming to reduce these
negative effects. The most reliable and ecologically sound
measure is probably to avoid new spruce plantations at low
elevation and outside the natural climatic range of Norway
spruce (Marini et al., 2012). Further studies should be
conducted to determine whether the same trend is shared by
other aggressive species, belonging to different feeding guilds
and feeding on different host plants.

Acknowledgements

The authors thank the Forest Service of Friuli Venezia Giulia
and Veneto Region for collaboration during the research.
We also thank Goran Nordlander for suggestions about the
use of pitfall traps; Fabio Stergulc for invaluable help with
the choice of the gradients and with field work; and three
anonymous reviewers for their useful comments. Francesca De
Meio participated in the screening of the trapping material and
is warmly acknowledged. The present study was supported
by the EU Seventh Research Framework Program (FP7)
projects BACCARA (Biodiversity and Climate Change – A
Risk Analysis. Grant No. 226299).

References

Adams, J.M. & Zhang, Y. (2009) Is there more insect folivory in
warmer temperate climates? A latitudinal comparison of insect
folivory in eastern North America. Journal of Ecology , 97, 933–940.

Alfaro, R.J, Hantula J., Carroll, A., Battisti, A., Fleming, R., Woods,
A., Hennon, P.E., Lanfranco, D., Ramos, M., Müller, M., Lilja,
A. & Francis, D. (2010) Forest health in a changing environment.
Forests and Society – Responding to Global Drivers of Change (ed.
by G. Mery, P. Katila, G. Galloway, R. I. Alfaro, M. Kanninen, M.
Lobovikov and J. Varjo), pp. 113–134. International Union of Forest
Research Organizations (IUFRO), Austria.

Andrew, N.R. & Hughes, L. (2005) Herbivore damage along a
latitudinal gradient: relative impacts of different feeding guilds.
Oikos , 108, 176–182.

Annila E., Bakke A., Bejer-Petersen, B. & Lekander, B. (1972)
Flight period and brood emergence in Trypodendron lineatum (Oliv.)
(Col., Scolytidae) in the Nordic countries. Communicationes Instituti
Forestalis Fenniae, 76, 1–28.

Baier, P., Pennerstorfer, J. & Schopf, A. (2007) PHENIPS – a
comprehensive phenology model of Ips typographus (L.) (Col.,
Scolytinae) as a tool for hazard rating of bark beetle infestation.
Forest Ecology and Management , 249, 171–186.

Bale, J.S., Masters, G.J., Hodkinson, I.D., Awmack, C.T., Bezemer,
M., Brown, V.K., Butterfield, J., Buse, A., Coulson, J.C., Farrar, J.,
Good, J.E.G., Harrington, R., Hartley, S., Jones, T.H., Lindroth, R.L.,
Press, M.C., Symrnioudis, I., Watt, A.D. & Whittaker, J.B. (2002)
Herbivory in global climate change research: direct effects of rising
temperature on insect herbivores. Global Change Biology , 8, 1–16.

Battisti, A., Stastny, M., Netherer, S., Robinet, C., Schopf, A., Roques,
A. & Larsson, S. (2005) Expansion of geographic range in the
pine processionary moth caused by increased winter temperatures.
Ecological Applications , 15, 2084–2096.
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Økland, B., Ravn, H.P. & Schroeder, L.M. (2011) Modelling the
potential impact of global warming on Ips typographus voltinism
and reproductive diapauses. Climatic Change, 109, 695–718.

Klapwijk, M.J., Ayres, M.P., Battisti, A. & Larsson S. (2012) Assessing
the impact of climate change on outbreak potential. Insect Outbreaks
Revisited (ed. by P. Barbosa, D.K. Letourneau and A.A. Agrawal),
pp. 429–450. Academic Press, New York, New York.

Kurz, W.A., Dymond, C.C., Stinson, G., Rampley, G.J., Neilson, E.T.,
Carroll, A.L., Ebata, T. & Safranyik, L. (2008) Mountain pine beetle
and forest carbon feedback to climate change. Nature, 452, 987–990.

Logan, J.A. & Powell, J.A. (2001) Ghost forests, global warming
and the mountain pine beetle (Coleoptera: Scolytidae). American
Entomologist , 47, 160–173.

Marini, L., Ayres, M.P., Battisti, A. & Faccoli, M. (2012) Climate
affects severity and altitudinal distribution of outbreaks in an eruptive
bark beetle. Climatic Change, 115, 327–341.

Moeck, H.A. (1981) Ethanol induces attack on trees of spruce
beetles, Dendroctonus rufipennis (Coleoptera: Scolitydae). Canadian
Entomologist , 113, 939–942.

Nordlander, G. (1987) A method for trapping Hylobius abietis (L.) with
a standardized bait and its potential for forecasting seedling damage.
Scandinavian Journal of Forest Research , 2, 199–312.

Parmesan, C. (2005) Biotic response: range and abundance changes.
Climate Change and Biodiversity (ed. by T. E. Lovejoy and
L. Hannah), pp. 41–60. Yale University Press, New Haven,
Connecticut.

R Development Core Team (2012) R: A Language and Environ-
ment for Statistical Computing . R Foundation for Statistical Com-
puting [WWW document]. URL http://www.R-project.org, Austria.
[accessed on 5 March 2012]
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Abstract 

Recent climate change are known to affect many insect populations, including bark beetles.

  

In this paper we explore how warmer temperature may affect the performance of southern 

European populations of the pine bark beetle Ips acuminatus. During a seven-year long 

study (2007-2013) we analysed: (a) insect voltinism and phenology, (b) annual trend of the 

mean population density, and (c) their correlations with temperature. The mean number of 

adults per trap captured during the flying season (May-August) showed a bivoltine 

phenological pattern with two flight periods, in May after hibernation and in July, when a 

second generation begin. The breeding performance of the first generation was positively 

correlated with temperature In the warmer years, the amount of summer captures resulted 

higher than the spring ones, suggesting a positive breeding performance of the first 

generation and the beginning of a large second generation. The population density was 

instead negatively correlated with temperature, and insect populations decreased following 

warmer years with a negative effect on the population trend. Results from this study 

suggest that warm spring-summer temperature can produce a within-year increase of 

breeding performance and voltinism of I. acuminatus, with a higher reproductive success of 

the first generation and the beginning of a large second one. In these cases there is, 

however, a between-years reduction of the population density probably due to a high winter 

mortality of the overwintering immature instars coming from an incomplete second 

generation. 

 

Keywords: Ips acuminatus, Pinus sylvestris, global warming, population dynamic, bark 

beetle.  
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4.1 Introduction 

Recent climate change are known to affect many insect populations, including bark beetles 

(Coleoptera: Curculionidae, Scolytinae) (DOBBERTIN et al., 2005, 2007; BERG et al., 2006; 

BIGLER et al., 2006; LANGE et al., 2006; JÖNSSON et al., 2007; RAFFA et al., 2008; 

FACCOLI, 2009). In the last decades, high summer temperature associated with long periods 

of drought has promoted a progressive forest decline especially in southern Europe and 

circum-Mediterranean countries. Besides the direct effect on trees, warmer climatic 

conditions may reduce insect developmental time (WERMELINGER and SEIFERT, 1998), 

increase voltinism (COLOMBARI et al., 2012), and affect the diapause mechanisms 

(GEHRKEN, 1985; BAIER et al., 2007), resulting in an increase of the infestation pressure on 

the host trees. 

For many decades Ips acuminatus (Gyllenhal), a polygamous bark beetle attacking the 

upper part of stem and branches of Scots pine (Pinus sylvestris L.) (CHARARAS, 1962; 

BAKKE, 1968), has been considered of minor importance (BAKKE,1968), causing only 

sporadic damage following infestations of other pine pests primary agents of tree mortality 

(CHARARAS, 1962). Nevertheless, in recent years many outbreaks have been reported in a 

number of Scots pine forests of central Europe (MRACEK, 1995; SVESTKA, and WIESNER, 

1997) and south-western Alps (FORSTER and ZUBER, 2001; Wermelinger et al., 2008). 

Large infestations recently affected also the eastern part of the Italian Alps (Dolomites, NE 

Italy) causing considerable economic (FACCOLI et al., 2011) and ecological damage 

(COLOMBARI et al., 2012, 2013). Besides the reduction in timber quality of the infested 

trees, there are other important non-timber concerns, such as soil protection, biodiversity 

conservation and the general landscape quality of the Dolomite valleys (COLOMBARI et al., 

2008, 2012).  

Although I. acuminatus has recently been listed among the most damaging of European 

scolytids (GRÉGOIRE and EVANS, 2004), precise information concerning biology, 

population dynamics and their variations according with climate and climatic change are 

still largely unknown (COLOMBARI et al., 2012). Along the southern Alps, where this pest 

has recently caused extensive damage (WERMELINGER et al., 2008; COLOMBARI et al., 

2012, 2013), both I. acuminatus and Scots pine occur at the southern edge of their natural 

distribution range and in climatic conditions very different from those occurring in central 
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and northern Europe. As temperature is the primary driver of insect development, and in 

strongly affected by climate change, these populations may modify flight behaviour, 

developmental rate and voltinism. Increases in temperature could permit more rapid rates of 

development, with a possible increasing of the number of generations per year or a better 

breeding performance. In this respect the recent outbreaks of I. acuminatus recorded in 

southern Europe are apparently indirectly correlated to pine decline caused by high summer 

temperatures and drought, which have strongly contributed to Scots pine mortality observed 

in the Alps in the last decades (WERMELINGER et al., 2008). Unfortunately, no studies have 

investigated how weather conditions and their variations may directly affect the 

reproductive performance of I. acuminatus and the dynamics of its populations.  

In this paper we explore the possible relationships between climate change and breeding 

performance of I. acuminatus populations infesting Scots pine forests in an outbreak area of 

the north-eastern Italian Alps. We hypothesize that warmer climatic conditions may 

positively affect the reproduction of the southern European populations of I. acuminatus, 

increasing the breeding performance of the first generation and allowing the development 

of a second generation. With the aim of contributing to a better understanding of the 

mechanisms driving the population dynamic of a forest pest exposed to climate change, 

during a seven-year long study (2007-2013) we analysed: (a) insect voltinism and 

phenology, (b) annual trend of the mean population density, and (c) their correlations with 

temperature and its variations in order to find a close relationships between climate and 

insect breeding performance. 

 

4.2 Materials and methods 

 

4.2.1 Study site 

The Scots pine forest we used for our study extends over three municipalities of the Cadore 

Valley (Borca, San Vito and Cortina) (46°40’N; 12°20’E), Province of Belluno, North–

Eastern Italian Alps. The forest (about 22.3 km
2 

in area) grows on S-SW facing slopes, 

1,000-1,600 m a.s.l. The stands are older than 100 years, with a mean density of about 300 

trees per hectare, and show poor growth because of limitation of nutrients and water 

(COLOMBARI et al., 2012; 2013; FACCOLI et al., 2012). The forest has natural regeneration 
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and no silvicultural management for timber production, although small phytosanitary 

clearcuts have been occasionally carried out to preserve the general health of the forest, 

which is very important for soil protection against erosion and avalanches (COLOMBARI et 

al., 2012; 2013; FACCOLI et al., 2012). Because of the increasing bark beetle infestations 

recorded in the last decade, since 2007 the Regional Forest Service has applied a specific 

sanitation felling programme in autumn of each year by cutting and removing all I. 

acuminatus infested trees from the valley (FACCOLI et al., 2011). 

 

4.2.2 Phenology and voltinism of the model species 

As reported by COLOMBARI et al. (2012), in the study area I. acuminatus usually has two 

distinct attack periods (i.e., generations). The first attack is conducted in spring by adults of 

the parent generation (hereafter referred to as “spring adults”) that in middle-end May 

emerge from the overwintering sites. They colonize suitable trees and in summer, 

approximately 8 weeks later, the beetles of the offspring generation (hereafter referred to as 

“summer adults”) emerge from the infested trees looking for new suitable hosts where a 

second generation will develop in the latest part of the summer. The two groups of insects 

(“spring” and “summer” adults) are usually well separated along the seasons, indicating the 

end of one generation and the beginning of the following (Figure 1 and 2). In case of short 

and cold spring or summers, at the end of the first generation the “summer adults” stay in 

the bark and do not reproduce before hibernation (i.e., following spring). 

 

4.2.3 Population monitoring by pheromone-baited traps  

Between 2007 and 2013 the population of I. acuminatus occurring in the investigated forest 

was monitored by pheromone-baited traps (FACCOLI et al., 2012). In early spring, dry black 

7-funnel traps (Witasek
®

) were set up in recent clearcuts (less than 1 year old) located no 

closer than 30 m each another. The total number of traps set up annually slightly varied 

among years (Table 1). 

Traps were baited with species-specific pheromone lures composed of Ipsenol, Ipdienol and 

(S)-(+)-cis-verbenol, and supplied by the Spanish chemical company SEDQ
®
-Sociedad 

Española de Desarrollos Quìmìcos (Table 1). Every year, traps were checked twice per 
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month from May to end of August. All pheromone dispensers were replaced once, in June, 

two months from the beginning of the trial. All caught insects were identified at species 

level and counted. Population monitoring was performed by a team of foresters working for 

the Regional Forest Service, in collaboration with entomologists of the University of 

Padova. 

 

4.2.4 Weather monitoring 

Climatic data consisting of air temperature and precipitations were collected daily from 

1996 to 2013 from a weather station installed within a field laboratory of the Padova 

University in an experimental sites within to the study area (San Vito di Cadore (BL), 

46°27'11'' N, 12°12'47" E, 1,107 m a.s.l.). Air temperature was recorded every 15 minutes. 

Elevation and slope facing of the weather station were similar to those of the pheromone 

traps. 

 

4.2.5 Data analysis 

The mean of the maximum daily temperatures recorded from May to August, the months of 

I. acuminatus breeding, was calculated for each of the last 18 years (1996-2013). The 

deviance of the mean temperature of each year (ΔTx) was then calculated on the mean 

temperature of the whole investigated period. 

According to FACCOLI and STERGULC (2006), the breeding performance of the first 

generation of I. acuminatus and the beginning of the second was assessed as percentage 

variation (ΔGx) of summer (GSux) and spring (GSpx) adult captures, and calculated year by 

year as follows: 

 

 ΔGx = [(GSux - GSpx) / GSpx] * 100 

 

Similarly, the annual variation (ΔY) of I. acuminatus population passing from one year 

(Yx) to the following one (Y(x+1)) was calculated as follow: 

 

 ΔYx = [(Y(x+1) - Yx) / Yx] * 100 

 



64 

 

To describe the possible relationship between air temperature and population trend, the ΔYx 

recorded year by year over a 7-yr period (2007-2013) was correlated to ΔTx using a 

multiple regression. An R
2
 value, adjusted for the number of parameters (ZAR, 1999), was 

used to assess the goodness-of-fit of all possible models. As some of the analysed time-

series showed autocorrelation among the available data, the correlation was corrected by 

the autocorrelation function (ACF) of Statistica per Windows (LEE et al., 2002). 

Significance of effects was based on  = 0.05, and statistic analysis was performed in 

Statistica 3.1 for Windows (Statistica, Tulsa, OK). 

 

4.3 Results 

 

4.3.1 Species voltinism and population trend 

The mean number of adults per trap captured during the flying season (May-August) 

showed a bivoltine phenological pattern with two flight periods, the first (GSp) composed 

by parent adults emerging in May after hibernation, and the second (GSu) composed by 

offspring of the first generation emerging in July and beginning the second generation. This 

pattern was observed in all the monitored years excepted for 2010, when only the parent 

beetles were trapped. On one hand, in the bivoltine years 2007-2009 and 2011 the amount 

of spring captures (GSp) resulted higher than the summer ones (GSu), with a negative 

breeding performance of the first generation (ΔGx) respectively of -71.8%, -78.9%, -86.4% 

and -55.0% (Figure 3a). In 2012 and 2013 such ratio (ΔG2012 and ΔG2013) was instead 

reversed, with GSu much higher than GSp, and a positive performance of the first 

generation (89.3% and 72.7% respectively), i.e. offspring adults more than parent adults 

(Figure 3a). For 2010, having a single generation, we considered ΔG2010 equal to -100% 

(Figure 3a). On the other hand, the variation in performance between consecutive years 

(ΔYx) show an opposite pattern, with positive values in 2008-2010 and 2011 (87.6%, 

12.5%, 63.6% and 23.3%, respectively), and negative only in 2012 and 2013 (-41.9% and -

82.9 respectively) (Figure 3b). 
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4.3.2 Temperature variation 

On average, the last 10 years have been the warmest of the last 18, with a general trend 

indicating a progressive increase of the mean temperatures (Figure 4). The years 2003, 

2005, 2012 and 2013 have been the warmest of the study period. All the years in which the 

I. acuminatus population was monitored (2007-2013) showed a mean of the May-August 

daily maximum temperature higher than the mean of the last 18 years (1996-2013) with the 

exception for the cool 2008 (-0.95°C) and for 2010 on the mean (-0.002°C); 2012 and 2013 

have been the warmest year with a positive deviation of +1.03 and +1.04°C respectively 

(Figure 4). 

 

4.3.3 Correlation performance vs. temperature  

The breeding performance of the first generation (ΔGx) was positively correlated with 

temperature deviation (ΔTx) from the mean (R
2
 = 0.967; F = 43.3795; p = 0.0061) (Figure 

5). Performance of the first generation greatly increase in warmer summers (Figure 5). 

The population trend between two consecutive years (ΔYx) was instead negatively 

correlated with temperature deviation (ΔTx) from the mean (R
2
 = 0.84; F = 21.76; p = 

0.00956), and insect populations decreased after warmer years (Figure 6). 

 

4.4 Discussion  

 

Weather conditions can affect population growth, distribution and voltinism of many forest 

insect species. In particular warm temperatures affect the distribution range and 

performance of pine processionary moth Thaumetopoea pityocampa (Lepidoptera: 

Thaumetopoeidae) in southern Europe (BATTISTI et al., 2005), winter moth Operophtera 

brumata (Lepidoptera: Geometridae) in northern Europe (HAGEN et al., 2007) and many 

species of bark beetles, as the mountain pine beetle Dendroctonus ponderosae in British 

Columbia (LOGAN et al., 2003; CARROL et al., 2004; KURZ et al., 2008). Warm 

temperatures can furthermore affect fauna composition, favouring more aggressive against 

less aggressive species (CHINELLATO et al., 2013). The main results from our study support 

these hypotheses also for I. acuminatus. In the investigated area, spring-summer 

temperature of the last years was generally warmer than in the past. This phenomenon 
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affected positively the generation performance of I. acuminatus within the same year, 

allowing the high reproduction of the first generation and the beginning of the second, but 

negatively the population trend between consecutive years, with a general decreasing of the 

population density following particularly warm years.  

Breeding performance of the first generation of I. acuminatus was as much higher as the 

maximum temperature of the season was 0.5-1°C warmer than the mean of the last 18 

years. Warmer temperatures provide optimal environmental conditions for larval 

development and allow a fast development of larvae feeding under tree barks resulting is a 

very high number of new adults quickly emerging in early summer with the possibility, i.e. 

time, to begin a second generation in the same year. Ips acuminatus has a large distribution 

area, from southern Alps to Northern Europe (PFEFFER, 1995). Because of the short and 

cool summers of central and northern Europe, in most European countries I. acuminatus is 

an univoltine species, producing only one generation per year and overwintering as adults 

in the bark of the infested Scots pines (BAKKE, 1968). Spring and summer temperature is 

thus a crucial factor in order to fully complete the first generation. Adults generally emerge 

in spring with a mean air temperature of about 18°C (BAKKE, 1968), although Alpine 

populations seem to be able to fly with lower temperature (COLOMBARI et al., 2012). In this 

respect, an early spring emergence associated to warmer temperature makes the breeding 

season longer, giving more time to begin also a second generation. In addition, warmer 

spring and summer reduce the mean developing time, passing from 8-9 to 6-7 weeks per 

generation (COLOMBARI et al., 2012), increasing voltinism and reducing larval exposition 

to natural enemies, with a general improvement of the breeding performance. Lastly, high 

temperatures and associated droughts deeply stress host trees increasing the attacking rate 

of I. acuminatus (WERMELINGER et al., 2008) and the number of adults reproducing before 

winter (COLOMBARI et al., 2012). Effect of high temperatures on bark beetle voltinism was 

studied in the same area also for the most aggressive species in Europe, Ips typographus 

(FACCOLI and STERGULC, 2006; FACCOLI, 2009). These studies shows that the beginning of 

the second generation is directly relate to the weather conditions occurring at the beginning 

of the season. 

The population trend between consecutive years shows instead an opposite response to 

temperature, with warmer spring and summer affecting negatively the population density of 
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the following year. As previously reported, long and warm summers allow the complete 

development of the first generation and elicit the beginning of the second one. Time is 

however not enough for the full development also of the second generation, which face the 

winter usually as larvae or callow adults in the phloem (COLOMBARI et al., 2012). While I. 

acuminatus adults may survive winter temperature lower than -25°C in the bark of the 

infested trees (BAKKE, 1968), younger developing instars are unsuitable to survive the long 

and cold alpine winter, resulting in a large insect mortality and a population decrease in the 

following year. A similar mechanism was described also in other bark beetle species living 

in the same region, where bivoltine populations of Ips typographus suffer a winter 

mortality of about 50%, which becomes close to 100% considering only larval instars 

(FACCOLI, 2002). 

Although weather conditions play a key role for insect development and breeding 

performance of bark beetles, there are many other environmental variables involved, and 

spring-summer temperature alone is clearly not sufficient to propose a reliable model of 

population dynamic. Beside temperature, also humidity and precipitation, quantity and 

quality of the host-trees, amount of natural enemies may affect directly or indirectly beetle 

performance and reproduction. Spring and summer temperature can be however considered 

among the most crucial factors affecting I. acuminatus phenology and voltinism, and 

definitely population dynamic (COLOMBARI et al., 2012). Warm summer temperature can 

increase flight activity of the first generation offspring eliciting the beginning of a second 

generation, but negatively affects the population growth in the following year, especially if 

associated with a cold winter. Warmer climatic conditions, hence, have only a quick short-

time positive effect on the breeding performance of I. acuminatus, but they do not improve 

the general population trend in a middle-long temporal scale. 

In conclusion, data presented in this study suggest that warm spring-summer temperature 

can produce a within-year increase of breeding performance and voltinism of I. acuminatus, 

but a between-years reduction of the population density probably due to a high winter 

mortality of the overwintering immature instars coming from an incomplete second 

generation. Further studies focused on this topic but carried out on larger datasets, also 

concerning other species, could be very helpful to better understand the effect of 
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temperature and its increasing on bark beetle populations, and their impact on forest 

ecosystems. 
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Figure 1: seasonal variation of Ips scuminatus adults (mean adults per trap) during the 

flight period in 2008 (May – August). The line above the curve shows the separation 

between spring (GSp) and summer generation (GSu). 
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Figure 2: seasonal variation of Ips scuminatus adults (mean adults per trap) during the 

flight period in 2012 (May – August). The line above the curve shows the separation 

between spring (GSp) and summer generation (GSu). 
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Figure 3: a) Summer captures compared with spring captures of the same year (ΔG) and b) 

total captures of one year compared with those of the previous one (ΔY) (ND = no data 

available). 



75 

 

 

Figure 4: deviation of May – August daily maximum temperatures from the mean 

calculated for the same period in the last 18 years (1996 -2013). 
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Figure 5: relationship between deviation of the May-August daily maximum temperatures 

from the mean calculated for the same period in the last 18 years (1996-2013) (ΔTx) and 

variation between summer and spring captures of the same year (ΔGx). 
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Figure 6: relationship between deviation of the May-August daily maximum temperatures 

from the mean calculated for the same period in the last 18 years (1996-2012) (ΔTx) and 

variation between total captures of one year (Y(x+1)) and the previous one (Yx) (ΔYx)(F = 

21.76; p < 0.01). 
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Chapter 5 

 

Smart-traps combined with molecular on-site detection to 

monitor Monochamus spp. and associated pine wood 

nematode 
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INTRODUCTION   

The pine sawyer beetles Monochamus spp. (Coleoptera Cerambycidae) are the main 
vectors of the Pine Wood Nematode (PWN), Bursaphelenchus xylophilus, the agent of 
pine wilt disease in various parts of the world (Mamiya 1983). In Europe, M. 
galloprovincialis (Olivier) gained importance as a vector after the finding of the PWN in 
Portugal in 1999 (Sousa et al. 2001). An effective monitoring method based on early 
detection of both vector insects and associated nematode is needed in order to adopt 
appropriate phytosanitary measures (Rassati et al. 2012 and 2013).  

MATERIALS AND METHODS  

The present study shows a new technology for the remote detection of beetle catch 
combined with on-site molecular detection of both vector and nematode identity. A multi-
funnel trap, baited with either specific or generic blend, and equipped with a specifically 
modified security camera (BioCam, Mi5 Security, Auckland, New Zealand), composed 
by a wide-angle lens, 1 or 3 MegaPixel sensor, rechargeable battery pack and internal 
modem for General Packet Radio Service (GPRS) connection was used. The interval 
between images taken by the camera can be programmed and saved in a Secure Digital 
(SD) memory card. The images can be stored in the same SD card and simultaneously 
sent to a safe repository accessible through the web, from which they are downloadable. 
On the same repository it is possible to check the level of battery charge of each camera 
and the GPRS coverage as well. 
When a target beetle is detected, an on-site visit is planned, during which a fragment of 
the thorax is analyzed using a Loop Mediated Isothermal Amplification (LAMP) portable 
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device (Genie II, Optigene, UK) to identify the trapped species of Monochamus spp. and 
to detect the PWN possibly vectored by the beetles. Currently, primers were deloped for 
the endemic M. galloprovincialis and M. sutor, and for the exotic M. alternatus and M. 
carolinensis. For the beetles identified as Monochamus, presence of PWN is also tested 
with the same device using slighty modified LAMP primers from Kikuchi et al. (2009), 
specific for the nematode ITS1 region. A positive control for the nematode is included in 
the test. The technique allows amplifying target DNA in a few minutes visualizing the 
results immediately. 

RESULTS 

Images obtained by cameras are definitely adequate to visually recognize large longhorn 
beetles such as Monochamus spp.. All the main morphological traits of the species are 
detectable (Fig. 1). The system works also under sub-optimal light conditions. LAMP 
primers designed to amplify the ITS2 region of M. galloprovincialis, M. sutor, M. 
alternatus and M. carolinensis show to be specific, giving a positive result only for these 
species after 10-15 minutes after the test start (Fig. 2). On the other hand, no positive 
insects for PWN have been detected until now. 

CONCLUSIONS 

Both technologies are designed for quick and cheap on-site analyses, and can be used by 
non-expert staff with a short training. In case of positive samples, they must be taken to 
the laboratory and analyzed more accurately with standard protocols for official 
confirmation. 
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Figure 1  Picture taken by 3MP trap camera. One individual of Monochamus spp. is 

clearly recognizable on the left, together with several individuals of the 
longhorn beetle Acanthocinus griseus, one of the western seed bug 
Leptoglossus occidentalis (above) and several small bark beetles (right). 

 

 

 

Figure 2.  Amplification profile for the LAMP assay carried on Monochamus spp. and 
other cerambycid beetles. Positive curves are obtained in 10-15 minutes only 
for M. galloprovincialis, M. sutor, M. alternatus and M. carolinensis. 
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Conclusions 

The results of this three-year work can be considered an improvement in both developing 

new tools for early detection and understanding the effects of climate on wood-related 

beetle species. 

The application of devices able to get images of the content of a trap and to send the picture 

to an accessible web server in real-time can be of crucial importance in implementing early 

detection of quarantine or potentially threatening insects. The advantage of having remote, 

real-time, images of the content of a trap can be extremely helpful in many cases:  

 

 The number of traps installed for monitoring is very high. 

 The position of installed traps is difficult to reach (lack of roads and infrastructures, 

long distances between traps). 

 The traps need to be checked at uncomfortable moments of day and/or night, in the 

case of target species with peculiar phenological activity. 

 The traps need to be checked very frequently, or even daily in cases of specific 

monitoring (Stanbury et al., 2013). 

 The non unusual combination of more than one of the aforementioned conditions. 

 

The development of such tools has to be coupled with easy functioning and setting features 

in order to be used by technical operators (plant health officers, forest officers and 

managers) with little training, and simple enough to be easily set and fixed in case of 

malfunctioning. 

The combined application of remote pictures and other on-field detection technologies, 

such as LAMP-PCR – as explained in chapter 6 – can lead to increased precision in field 

diagnostics of potentially threatening organisms and to money saving, due to the analysis 

focusing only on those samplings showing the probable presence of the target monitored 

species. 

The proposed monitoring methodology can be applied for research on native species as 

well: all the conditions listed above can be found in common field studies, especially those 

investigating the flight phenology of species flying for short period or with peculiar 

population curves, as in the case of the New Zealand flowers thrip Thrips obscuratus, or to 
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monitor the presence of particularly rare species, such as the early establishment period of 

quarantine pests like the Asian longhorn beetles Anoplophora spp., avoiding the frequent 

check of empty traps. 

Furthermore, the increasing web-based communication technology, coupled with 

miniaturizing of device size and prize reduction as in the case of smartphones, seems to 

provide cheaper and more efficient components able to adapt to the different monitoring 

needs. New studies and tests could lead to an use of different and more precise tools for 

remote image analysis, such as infrared, ultra-violet and motion sensors. 

The effect of climate – in particular of temperature – on wood-related species, results to be 

an important driver in biology and phenology of insect populations. The studies carried on 

in these three years in alpine populations show further experimental on both indirect and 

direct effects of warm temperatures on potential damages on mountain host trees, and this 

is of crucial importance in order to understand the potential effect of a warming scenario as 

forecasted for the next years (IPCC, 2013). 

In the case of Norway spruce Picea abies warm temperatures are likely to increase stress 

conditions for plants, especially at the southern edge of the species’ distributional range, 

and consequently increase the attack rate of those wood-species considered aggressive and 

most damaging (Grégoire & Evans, 2004). Beside the effect on plants, such condition 

affects the guild’s species diversity, causing an increased abundance of aggressive species – 

such as Ips typographus – and a consequent niche loss for less aggressive species in 

warmer areas and their shift at higher, and cooler, altitudes. 

In the case of Ips acuminatus, warm temperature seem to play an important role on 

breeding and development success, affecting the abundance of generations in this typically 

bivoltine species: warm temperatures seem to increase the abundance of summer generation 

and consequently increase the number of adults flying in summer but, on the other hand, 

this seems to lead to an non-optimal development for winter survival and a consequent 

population decrease on the following year. 

Of course, the effect of temperature is linked to other parameters fundamental for the 

development of the species, in particular the length of warm season can influence both the 

flight of the spring generation and the development of summer generation, directly 
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affecting the reproductive rate; in general, anyway, we can conclude that the effect of warm 

temperature can be different if analyzed on short or mid-long term. 

At the very end we can conclude that monitoring wood-related species is a fundamental 

task in a continuously-changing environment. Global trade patterns and modified 

environmental features need to be faced with increased efforts in early detection and 

biological monitoring, including the development of new and efficient tools able to help 

both researcher and professionals to have efficient results in short time, possibly having the 

remote control of many study areas at the same time. 

Monitoring the effect of climate conditions on native and already established population 

can be of crucial importance in order to understand the effects of environmental conditions 

in both host plants and insect biological traits and can be used to predict and model future 

patterns for species that are not yet introduced or established or to be extended to other, 

more difficult to monitor, native species. Furthermore, understanding the effects of 

temperature on ecologically important components – such as insects – can help in 

understanding the biological effect of a global worming scenario and help to choose and 

implement mitigation solutions. 
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