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ABSTRACT 

The cellular prion protein (PrPC) is a highly conserved cell-surface glycoprotein expressed in 

almost all mammalian tissues, in particular in the central nervous systems. The bad reputation 

acquired by PrPC originates from its capacity to convert into an aberrant conformer (PrPSc), which 

is the major component of the prion, the unconventional infectious particle causing fatal 

neurodegenerative disorders, known as prion diseases. Both the mechanism of prion related 

neurodegeneration and the physiologic role of PrPC are still unknown. However, use of animal 

and cell models has underscored a number of putative functions for PrPC, suggesting that it 

could serve in cell adhesion, migration, proliferation and differentiation, possibly by interacting 

with extracellular partners, and/or by taking part in multi-component signaling complexes at the 

cell surface. An intriguing hypothesis, based on increasing amounts of data that may explain the 

multifaceted behavior of PrPC, entails that the protein is involved in the regulation of Ca2+ 

homeostasis  

One major part of the present thesis deals with a close investigation of the alleged regulation of 

Ca2 homeostasis by PrPC. This study was carried out by monitoring local Ca2+ movements in 

primary cultures of cerebellar granule neurons (CGN) – obtained from PrP-knockout mice and 

transgenic PrPC-expressing mice – subjected to various stimuli. Measurements of Ca2+ fluxes in 

different cell domains were accomplished using the Ca2+- sensitive photo-protein aequorin 

genetically targeted to different cell domains (plasma membrane, cytosol, lumen of the 

endoplasmic reticulum and mitochondrial matrix). We found that, with respect to PrPC-

expressing neurons, the absence of PrPC caused alterations of local Ca2+ movements, indicating 

that PrPC may be part of the cellular system(s) deputed to avoid toxic neuronal Ca2+ 

accumulation. As for the molecular mechanisms by which PrPC controls Ca2+ homeostasis, we 

found that this could be accomplished through the modulation of p59Fyn- and p42/p44-ERK-

dependent signaling pathways. 

Another topic studied in this thesis stemmed from recent reports indicating that PrPC could acts 

as a high-affinity receptor for amyloid-β (Aβ) peptides implicated in Alzheimer’s disease. The 

possibility that PrPC-Aβ interactions may impair synaptic plasticity is, however, still highly 

debated. Thus, given that Ca2+ is intimately related to synaptic plasticity, we investigated 

whether Aβ peptides affected Ca2+ metabolism in a PrPC-dependent manner using the above-

mentioned strategies and cell paradigms. The obtained results showed that interactions 
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between PrPC and Aβ oligomers may cause Ca2+ accumulation following activation of store-

operated Ca2+ entry, and that this may occur via a PrPC-dependent activation of p59Fyn kinase. 
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SINOSSI 

La proteina prionica cellulare (PrPC) è una glicoproteina di membrana altamente conservata nei 

mammiferi ed espressa abbondantemente nel sistema nervoso centrale. La cattiva reputazione 

attribuita a questa proteina nasce dalla sua capacità di convertirsi in un’isoforma 

conformazionale patologica (PrPSc), che è la componente principale del prione. Il prione è 

l’agente eziologico di malattie neurodegenerative fatali per l’uomo e per gli altri animali 

conosciute come malattie prioniche (Prusiner, 1998). Tuttavia rimangono ancora da capire sia il 

meccanismo attraverso cui PrPSc causa neurodegenerazione, sia la funzione fisiologica di PrPC.  

L'uso di svariati modelli animali e cellulari ha attribuito numerose funzioni a PrPC, suggerendo 

che essa sia coinvolta in numerosi processi cellulari, quali adesione, migrazione, proliferazione e 

differenziamento, mediante interazioni con partner extracellulari e di membrana, e/o 

partecipando a vie di segnalazione cellulare. Un'ipotesi plausibile che potrebbe spiegare questo 

comportamento poliedrico, è che PrPC sia coinvolta nella regolazione dell'omeostasi del Ca2+, il 

secondo messaggero che è anch’esso in grado di controllare un gran numero di processi fisio-

patologici che vanno dalla sopravvivenza alla morte della cellula. 

Uno dei principali argomenti affrontati in questa tesi riguarda per l’appunto la possibile 

regolazione dell’omeostasi di Ca2+ da parte di PrPC. Lo studio è stato condotto confrontando i 

flussi locali di Ca2+ in colture primarie di neuroni granulari cerebellari (NGC) ottenuti da topi privi 

di PrPC o esprimenti la proteina, a seguito dell’applicazioni di stimoli opportuni. Per il 

monitoraggio del Ca2+ si è impiegata la sonda Ca2+-sensibile equorina indirizzata a specifici 

comparti cellulari (membrana plasmatica, citosol, lume del reticolo endoplasmico e matrice 

mitocondriale). Si è trovato che, rispetto ai neuroni esprimenti la PrPC, l’assenza della proteina 

comporta alterazioni dei flussi locali di Ca2+, così suggerendo che PrPC possa far  parte dei sistemi 

che proteggono il neurone dall’accumulo tossico di Ca2+. Per quanto riguarda i meccanismi 

molecolari attraverso cui PrPC controlla l'omeostasi del Ca2+, si è scoperto che questo potrebbe 

essere realizzato mediante la modulazione delle vie di segnalazione dipendenti dalle chinasi 

p59Fyn e p42/p44-ERK. 

Un altro tema di studio oggetto di questa tesi si collega a dati recenti che hanno evidenziato 

come la PrPC possa legare con alta affinità i peptidi Aβ implicati della malattia di Alzheimer. La 

possibilità che queste interazioni alterino la plasticità sinaptica è, tuttavia, molto dibattuta. 

Pertanto, dal momento che il Ca2+ è finemente coinvolto in questo processo, si è voluto 

esplorare se la presenza dei peptidi Aβ influisca sui flussi di Ca2+ in maniera dipendente da PrPC. 
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A tal scopo si sono usate sia le strategie sia i modelli cellulari sopra descritti. I risultati ottenuti 

hanno dimostrato che l’incubazione dei neuroni con oligomeri Aβ causa l’influsso di Ca2+ nella 

cellula dopo attivazione della via nota come “store-operated Ca2+ entry”, e che questo processo 

potrebbe avvenire mediante l’attivazione di p59Fyn dipendente da PrPC. 
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ABBREVIATIONS 

ACH, amyloid cascade hypothesis 

AD, Alzheimer’s disease  

ADDLs, Aβ-derived diffusible ligands 

AEQ, aequorin  

AHP, after hyperpolarization   

ALS, amyotrophic lateral sclerosis 

AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid  

AMPAR, AMPA receptor 

APP, amyloid precursor protein  

APPSwe, human APP with the Swedish familial mutations 

AraC, cytosine arabinoside  

Aβ, amyloid-β  

BSA, bovine serum albumin  

BSE, bovine spongiform encephalopathy  

cAMP, cyclic adenosine monophosphate 

CGN, cerebellar granule neuron 

  CJD, Creutzfeldt-Jakob disease  

CNS, central nervous system  

COX8, subunit VIII of human cytochrome c oxidase  

CWD, chronic wasting disease 

ER, endoplasmic reticulum  

ERK, extracellular signal-regulated kinase  

FFI, fatal familial insomnia  

GFAP, glial fibrillary acidic protein 

GPI, glycosylphosphatidylinositol   

GSS, Gerstmann-Sträussler-Scheinker syndrome  

HA, hemagglutinin   

HFIP, 1,1,1,3,3,3-hexafluoro-2-propanol  

IB, isolation buffer 

IP3, inositol 1,4,5-triphosphate 

KO, knock-out  

Ln- γ1, laminin γ1 chain  

LTD, long-term depression  

LTP, long-term potentiation  

mAb, monoclonal antibody  

mGluR, metabotropic glutamate receptor 

NFT, neurofibrillary tangle 

NMDA, N-methyl-D-aspartic acid  

NMDAR, NMDA receptor 

ORF, open reading frame 

pAb, polyclonal antibody  
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PBS, phosphate-buffered saline  

PKA, protein kinase A  

PKC, protein kinase C  

PM, plasma membrane  

PMCA, plasma membrane Ca2+- ATPases  

PMCA, protein misfolding cyclic amplification  

PMD, protein misfolding disorder  

PrP, prion protein 

PVDF, polyvinylidene fluoride  

RT, room temperature   

SDS, sodium dodecyl-sulphate  

SERCA, sarco-ER- Ca2+- ATPases 

SFK, Src family of tyrosine kinases  

SNAP-25, synaptic-associated protein 25  

SOCC, Store-Operated Ca2+ Channel 

SOCE, store-operated Ca2+ entry  

STI1, stress-inducible protein 1 

STIM, Stromal Interaction Molecule 

TBS, Tris-buffered saline  

Tg, transgenic 

TSE, Transmissible spongiform encephalopathie 

WT, wild-type 

α7nAChR, α7-nicotinic-acetylcholine receptor 
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1. INTRODUCTION 

1.1 TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES 

Transmissible spongiform encephalopathies (TSEs), also known as prion diseases, are a group of 

rare and fatal infectious neurodegenerative disorders affecting humans and other mammalian 

species, which have an infectious, genetic, or sporadic nature (Prusiner, 1998). Affected 

individuals generally exhibit clinical symptoms of both cognitive (dementia) and motor (ataxia) 

dysfunctions (Aguzzi and Calella, 2009). Brain histopathology typically shows vacuolation (from 

which the term ‘‘spongiform’’), extensive astrogliosis, and deposition of protease-resistant 

protein aggregates (Colby and Prusiner, 2011). TSEs include Creutzfeldt-Jakob disease (CJD), 

Gerstmann-Sträussler-Scheinker syndrome (GSS), fatal familial insomnia (FFI) and kuru in 

humans;  scrapie in sheep and goats; bovine spongiform encephalopathy (BSE, also known as 

“mad cow disease”) in cattle and chronic wasting disease (CWD) in cervids (Prusiner, 1998).   

Despite CJD was first described at the beginning of last century by A. M. Jakob (Jakob, 1920), and 

the demonstration of scrapie transmissibility among sheep dates back to 1939 (Cullie and Chelle, 

1939), TSE etiology remained elusive until the mid-60s when D. C. Gajdusek, after the seminal 

observation that kuru was probably infectious within New Guinea tribes practicing cannibalism, 

formally demonstrated transmissibility of kuru to monkeys (Gajdusek et al., 1966), and of CJD to 

chimpanzees (Gibbs et al., 1968). These and the previous studies on scrapie thus prompted 

investigators to unravel the nature of TSE infectious agent, which already at the time was 

considered of “unconventional” nature. 

1.2 PRION  

The protein-only hypothesis, conceiving that TSE infectious agent could be a protein capable of 

self-replication, was first formulated by Griffith (Griffith, 1967) following that the observations 

that the infectious material of scrapie was extremely resistant to procedures that normally 

destroy nucleic acids, e.g. high doses of ionizing radiation and UV (Alper et al., 1967), and that 

the minimal molecular weight of the agent maintaining infectivity (around 2 × 105 Da) was too 

small to account for a virus or other types of micro-organisms (Alper et al., 1966).  

Little research was performed to test this hypothesis until in the early 80’s Prusiner and 

coworkers provided an impressive set of data after isolating the protease-resistant material 

(Bolton et al., 1982), and demonstrating that the concentration of the protein in this material 

was proportional to the infectivity titer (Gabizon et al., 1988). Prusiner thus named the agent 
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prion - for PRoteinaceus Infective ONly particle - and PrP
Sc (Sc for scrapie) its constitutive protein 

(Prusiner, 1982). 

Nonetheless, for a long time the prion concept was considered heretical by the scientific 

community, rather skeptical to acknowledge that a protein could replicate itself and act as an 

infectious agent. A key step to bypass this “heresy” was provided by the identification of the 

gene encoding PrPSc (Oesch et al., 1985) and the demonstration that the gene encoded a 

constitutive cellular protein expressed in mammals (named cellular prion protein, PrP
C) (Basler 

et al., 1986). Today, we know that PrPC and PrPSc have the same amino acid sequence (Stahl et 

al., 1993) and posttranslational modifications and that they differ merely in terms of 

conformation: PrPC structure contains 40% for α-helices and 3% of β-sheets, whereas a 

predominant content of β-sheets (45% over the 30% of α-helices) characterizes PrPSc (Pan et al., 

1993). Such conformational changes confer to PrPSc its typical physico-chemical and biological 

features, i.e., resistance to protease digestion (Prusiner et al., 1984), insolubility in detergents 

(Meyer et al., 1986), propensity to aggregate and to form fibrils and amyloids (Meyer et al., 

1986), and capacity to self-replicate (Bolton et al., 1982). The crucial support to the prion as a 

self-propagating protein was finally provided by the demonstration that Prnp0/0 mice (or PrP 

knockout (PrP-KO) mice without the PrP gene (PRPN)) were resistant to prion infection (Büeler et 

al., 1992), and therefore that the presence of PrPC is a prerequisite for the replication and 

propagation of PrPSc.  

In 2001, de novo prions have been generated through the so-called protein misfolding cyclic 

amplification (PMCA) technology (Saborio et al., 2001), by which - in analogy to PCR reactions - a 

small amount of template PrPSc could be amplified after sonicating PrPSc-containing material 

with non-infectious brain homogenate (Deleault et al., 2007). Thus, PMCA provided a further 

demonstration that PrPSc acts as template for catalyzing the conversion of PrPC in its misfolded, 

infectious conformer (Castilla et al., 2005). Use of this technology has allowed accelerating 

research on the mechanism of formation and propagation of PrPSc, thereby revealing that PrPC-

PrPSc conversion could require one or more co-factor(s), provisionally designated protein X, and 

that, after the conversion process, PrPSc is incorporated in a growing polymer that, through an as 

yet unknown process, break into smaller template pieces that further amplify fibrils formation 

(Soto, 2011).  

Prions are not nucleic acids, although it is now accepted that like nucleic acids they are subjected 

to mutations although of a different nature (Li et al., 2010). That prion strains could exist was 

first formulated after observing that prions affecting distinct brain areas and giving rise to 
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characteristic clinical symptoms displayed typical biochemical signatures that reflected distinct 

conformations (Telling et al., 1996; Prusiner, 1998). Recently, the capacity of prions to “adapt” 

to the environment in a Darwinian fashion has also been provided, a process that explains the 

long incubation time needed for prion of an animal species to adapt to another animal species 

before triggering morbidity (Li et al., 2010).  

Although the above-mentioned reports clearly demonstrate that PrPSc is an essential component 

of the prion and that it originates from PrPC, other aspects of prion diseases remain to be 

clarified, in particular the mechanism by which prions trigger neurodegeneration. Indeed, while 

PrPSc accumulates relatively rapidly, neurodegeneration takes a much longer period of time to 

occur and is directly dependent on PrPC expression in the brain (Sandberg et al., 2011). In other 

words, it is still unclear whether TSE pathogenesis arises from a gain of PrPSc toxicity, or from a 

loss of PrPC function, or from a combination of the two events.  

Interestingly, recent research has shown that a “prion-like” propagation mechanism might also 

apply to misfolded proteins associated with the more common neurodegenerative diseases, 

such as Alzheimer’s and Parkinson’s disease, and amyotrophic lateral sclerosis (ALS) (Soto, 

2003). These diseases, clustered as protein misfolding disorders (PMDs), although not yet 

showing infectious characters, could however have molecular mechanisms responsible for 

protein misfolding and aggregation similar to those assumed for TSEs, including the spread of 

neurotoxic protein assemblies throughout the nervous system (Soto, 2011). It is therefore 

feasible to hypothesize that future and complete understanding of the pathogenesis of prion 

diseases will also provide crucial insights into that of all PMDs. 

1.3 CELLULAR PRION PROTEIN 

1.3.1 GENE  

PRNP, the chromosomal gene encoding PrPC, is highly conserved in all mammals, being almost 

90% of homology between the murine and human genes (Chesebro et al., 1985) - and other 

species, such as birds (Gabriel et al., 1992), reptiles (Simonic et al., 2000), amphibians (Strumbo 

et al., 2001), and fish (Oidtmann et al., 2003).  

The human PrP gene is present as a single copy and is located on the short arm of chromosome 

20 (Sparkes et al., 1986). It contains two exons (exon 1 and 2), separated by one intron. Exon 1, 

containing untranslated sequences, includes the promoter and termination sites, while exon 2 

contains the whole open reading frame (ORF) that codes for PrPC (Basler et al., 1986; Lee et al., 

1998). The PrP promoter, lacking the TATA box, contains the CCAAT element and multiple copies 
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of the GC-rich repeat, a canonical binding site for the transcription factor Sp1 (McKnight and 

Tjian, 1986). Several evidences indicate that PRNP expression may also depend on the chromatin 

structure (Cabral et al., 2002) and other transcription factors, e.g., AP2, MZF-1, MEF2 and MyT1 

(Linden et al., 2008). 

PrPC mRNA is constitutively present in the adult brain, and it is expressed by a tightly regulated 

process during brain development and neuronal differentiation (Chesebro et al., 1985; Oesch et 

al., 1985).  

Several point mutations within PRNP are linked to TSE familial forms, which are supposed to de-

stabilize the native PrPC conformation and favor PrPSc formation (Aguzzi et al., 2008). Familial 

CJD is caused by autosomal dominant insertions of octarepeats (see below) present in the N-

terminus, or point mutations in the C-terminus between the second and the third helices (Owen 

et al., 1989); familial GSS by mutations in the sequence of the central domain (Tateishi et al., 

1996), while FFI by the D178N aminoacid substitution, associated with the presence of 

methionine homozygosity (MM) at codon 129 (Goldfarb et al., 1992). The importance of codon 

129 polymorphism (methionine/valine) is strengthened by the observation that the same D178N 

mutation associated with 129MV results in a different disease phenotype, i.e. CJD (Zarranz et al., 

2005).   

1.3.2 STRUCTURE AND METABOLISM 

PrPC is a glycoprotein expressed in almost all tissues of vertebrates, predominantly in the central 

nervous system (CNS) (Horiuchi et al., 1995). 

The protein structure consists of a flexible N-terminal tail and a globular C-terminus. In the latter 

there is a glycosylphosphatidylinositol (GPI) anchor that tethers PrPC to the external surface of 

the plasma membrane (PM) in cholesterol- and sphingolipid-rich domains, called lipid rafts 

(Taylor and Hooper, 2006). The protein, however, may localize to non-raft domains especially 

during the clathrin-mediated endocytic process (Magalhaes et al., 2002). As revealed by NMR 

studies, the C-terminus is highly structured, harboring two anti-parallel β-sheets and three α-

helices (1-2-3) (Riek et al., 1996; Zahn et al., 2000). In contrast, the N-terminus lacks identifiable 

secondary structure at least under the used experimental conditions (Donne et al., 1997). 

PrPC is synthesized in the rough endoplasmic reticulum (ER) and transits through the Golgi 

apparatus along the secretory way to the cell surface, during which is subjected to several 

posttranslational modifications (Béranger et al., 2002; Stahl et al., 1987). For example, the 

primary human sequence of 253 amino acids is reduced to the mature form of 208 amino acids, 
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after the removal of the first 22 amino acids and of the 231-253 amino acid stretch at the C-end. 

At the C-terminus, the GPI anchor is then attached, a disulfide bond connecting cysteines 179 

and 214 is formed (Zahn et al., 2000), while the dispensable glycosylation at Asn181 and Asn197 

generates three – mono-, di- and un-glycosylated - PrPC isoforms (Haraguchi et al., 1989). 

Notably, the N-terminal region contains a stretch of octapeptide repeats (PHGGGWGQ), capable 

to bind Cu2+ (Hornshaw et al., 1995; Miura et al., 1996). In addition to the cell Cu2+ metabolism, it 

has been proposed that binding to Cu2+ could affect the folding stability and structure of PrPC N-

terminus (Younan et al., 2011). 

1.3.3 FUNCTION 

Albeit the identification of PrPC dates back to more than 30 years ago (Basler et al., 1986), the 

physiological function of the protein is still unknown. To this end, several lines of PrP-KO mice 

have been engineered (Büeler et al., 1992; Manson et al., 1994) that, although resistant to prion 

infection as previously mentioned, displayed a normal lifespan and no developmental or 

anatomical abnormalities (Büeler et al., 1992; Manson et al., 1994), except for mild 

neurophysiologic and behavioral deficits upon aging (Bremer et al., 2010; Criado et al., 2005; 

Nazor et al., 2007). The lack of an overt phenotype has thus led to the hypothesis that 

compensatory mechanisms could mask the cellular effects of the PrPC absence, which would 

become evident only under stress conditions. This was recently proved in both hematopoietic 

cells (Zhang et al., 2006) and adult skeletal muscles (Stella et al., 2010). 

Over the years, many in vivo and in vitro strategies have been adopted to unravel the enigmatic 

function of PrPC. These studies not only have revealed that PrPC is involved in Cu2+ metabolism, 

but also suggested that it serves against oxidative injury and apoptosis and in cell adhesion, 

migration, proliferation and differentiation, following the interaction with several extracellular 

partners or by taking part in multicomponent signaling complexes at the cell surface (Aguzzi et 

al., 2008; Linden et al., 2008). A definitive answer is however still lacking. On the other hand, 

given the proposed plethora of function one may hypothesize that PrPC could act as a scaffold 

protein in different cell surface complexes, and that specific signaling pathways get activated 

depending on the type and state of the cell, the expression level of PrPC, and the local availability 

of extracellular and/or intracellular signalling molecules (Peggion et al., 2011). In this framework, 

it has been proposed that the interaction of PrPC with the stress-inducible protein 1 (STI1) leads 

to the capacity of PrPC to bind to the α7-nicotinic-acetylcholine receptor (α7nAChR). The 

subsequent activation of the receptor could increase cytosolic Ca2+ levels thus triggering a 
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neuroprotective signal through the cyclic adenosine monophosphate (cAMP)/protein kinase A 

(PKA) pathway and neurite outgrowth through the extracellular signal-regulated kinase (ERK) 

pathway (Zanata et al., 2002; Lopes et al., 2005; Beraldo et al., 2011).  

Taken together, these and other observations all point to the notion that PrPC has a beneficial 

role in the cell, thus favoring the possibility that, in prion disease, neurodegeneration is also due 

to a loss of PrPC function (Nazor et al., 2007) rather than to only the deadly gain of function by 

PrPSc (Aguzzi et al., 2008).  

1.4 PrP
C
 AND Ca

2+
 HOMEOSTASIS 

Ca2+ is the major intracellular messenger responsible for many important cell processes, 

including gene regulation, hormone and neurotransmitter release, muscle contraction and, last 

but not the least, cell survival (Berridge et al., 2003). At rest conditions, cytosolic Ca2+ 

concentrations are maintained at very low levels (0,1-0,5 μM) by buffer systems and by the 

action of pumps/transporters that extrude the ion from the cytosol (Fedrizzi and Carafoli, 2011). 

The increase of Ca2+ levels, deriving from the entry in the cytosol from the extracellular space or 

intracellular stores, generates Ca2+-mediated signals linked to numerous processes. Thus, Ca2+ 

concentration and movements must be kept under careful control, so as to allow cells to 

function correctly. Were this control to fail, the cell would then be in serious danger because 

uncontrolled Ca2+ levels trigger vicious processes, including the cell demise (Carafoli, 2005). 

In neurons, Ca2+-mediated signals regulate also synaptic plasticity, neurite outgrowth and 

synaptogenesis (Mattson, 2007). Several reports have demonstrated that dysregulation of Ca2+ 

homeostasis is one of early events leading to neurodegeneration in disorders such as 

Alzheimer’s, Huntington’s and Parkinson’s disease (Bezprozvanny, 2009). With respect to PrPC 

pathophysiology, electrophysiologic studies, or use of chemical Ca2+ indicators, have highlighted 

that alterations of Ca2+ homeostasis occur in animal and cell models of prion infection, leading to 

impairment of Ca2+-dependent neuronal excitability, long-term potentiation (LTP) and synaptic 

plasticity (reviewed in Peggion et al., 2011). Importantly, similar disturbances have been 

reported in PrP-KO models. For example, electrophysiologic studies on CA1 hippocampal slices 

reported that PrP-KO neurons exhibited a significantly weakened LTP and reduced slow after 

hyperpolarization (AHP) than in WT neurons (Mallucci et al., 2002; Powell et al., 2008). It is good 

to remind that AHP and LTP are processes closely related to Ca2+ homeostasis. Indeed, AHP is 

mediated by Ca2+-activated K+ channels whose activation causes membrane depolarization (Sah 

and Davies, 2000), while LTP, which involves Ca2+-mediated glutamate receptors such as N-
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methyl-D-aspartic acid (NMDAR)-, and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

(AMPAR)-, receptors (Lynch, 2004), works together with long-term depression (LTD) in regulating 

synaptic plasticity (essential for learning and memory). 

More recently, Zamponi and coworkers have demonstrated a physical and functional interaction 

between PrPC and the NMDAR (Khosravani et al., 2008), whereby PrPC would exert a 

neuroprotective role by selectively inhibiting a specific NMDAR subunit (NR2D). Accordingly, PrP-

KO hippocampal neurons display increased excitability and enhanced glutamate excitotoxicity 

that can be reversed by blocking NMDAR activity. Other groups have demonstrated that PrPC can 

associate also with, and modulate, other glutamate receptors, as kainite-sensitive receptors 

(GluR6/7), and group I metabotropic glutamate receptors (mGluR1 and mGluR5) following the 

binding of PrPC to laminin γ1 chain (Ln- γ1) (Beraldo et al., 2011; Carulla et al., 2011). Specifically, 

in the case of GluR6/7, it has been proposed that PrPC inhibits the interaction of GluR6/7 with 

the postsynaptic density 95 protein (PSD-95), thus protecting neurons from excitotoxicity and 

cell death (Carulla et al., 2011). Instead, Beraldo et al. (2011) demonstrated that PrPC bound to 

Ln- γ1 activates mGluR1 and mGluR5, and that the consequent Ca2+ release from the ER 

promotes the protein kinase C (PKC)-dependent activation of ERK1/2 that mediates 

neuritogenesis. 

Use of aequorin isoforms, Ca2+-sensitive photoprobes genetically targeted to specific cellular 

domains, has allowed our laboratory to provide more explicit insights into the involvement of 

PrPC in the control of local (PM, cytosol, ER, mitochondria) Ca2+ homeostasis in model cells or 

primary cultured cerebellar granule neurons (CGNs) expressing, or not, PrPC (Brini et al., 2005; 

Lazzari et al., 2011). By this approach, it was found that PrP-KO CGNs display a dramatic increase 

of store-operated Ca2+ entry (SOCE) and reduced steady-state ER Ca2+ levels with respect to WT 

neurons (Lazzari et al., 2011), and that these effects could be due – at least in part – to the 

significantly decreased expression of the plasma membrane (PMCA)-, and sarco-ER (SERCA)- 

Ca2+- ATPases in neurons lacking PrPC. 

1.5 PrP
C
 AND ALZHEIMER’S DISEASE 

Alzheimer’s disease (AD), described for the first time by Alois Alzheimer in 1907 (Alzheimer, 

1907), is the most common cause of dementia in adults. AD is a multifactorial disease that has a 

genetic or sporadic nature. Although many therapeutics are now available to slow the 

neurodegenerative progression, as yet there is no efficient way to halt or prevent AD (Citron, 

2010).  
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AD is characterized by the deposition inside neurons of neurofibrillary tangles (NFTs) composed 

of hyperphosporylated tau protein (a microtubule-associated protein), and of plaques, or 

amyloids, in the extracellular space (Katzman, 1986). The major constituents of plaques are the 

amyloid-β (Aβ) peptides (Glenner and Wong, 1984), which derive from the proteolytic cleavage 

of the transmembrane amyloid precursor protein (APP) by the activity of β- and γ-secretases. 

Initially, according to the amyloid cascade hypothesis (ACH) (Hardy and Higgins, 1992), tangles 

and plaques have been considered the primary cause of the pathogenesis of AD, whereby 

monomers of Aβ peptides would aggregate in dimers, trimers and higher order oligomers, 

ultimately forming the insoluble fibrils and plaques. Soon after, however, their correlation with 

disease onset and severity (Rushworth and Hooper, 2010) made it clear that soluble Aβ 

oligomers were the major neurotoxic species in AD. Aβ peptides can be composed by 36 to 43 

amino acids; yet it is the Aβ1-42 peptide the prime suspect in AD pathogenesis, given its 

elevated levels in AD brains and the remarkable ability to aggregate in oligomers (Karran et al., 

2011). 

To explain the relationship between Aβ toxicity and neurodegeneration, the Ca
2+

 hypothesis of 

AD has been proposed (Khachaturian, 1994), in light of data showing that Aβ oligomers disrupt 

neuronal Ca2+ homeostasis causing, in particular, a cytosolic Ca2+ overload by enhancing its 

entry from the extracellular space, and release from internal stores. This could well explain some 

AD-related processes such as excitotoxicity, impairment of LTP and LTD and neuronal apoptosis 

(Demuro et al., 2010; Walsh et al., 2002).  

Ca2+ (dys)homeostasis is thus a trait common between AD and prion disease, but other aspects 

link the two disorders. For example, the Aβ deposits observed in some CJD cases (Muramoto et 

al., 1992), the presence of PrPC in plaques of a subset of AD brains (Voigtländer et al., 2001), or 

the Met/Val 129 polymorphism of PRPN that is considered a possible risk factor for early onset-

AD (Dermaut et al., 2003). But the most recent and intriguing connection between PrPC and AD 

is the proposition that PrPC acts as a high-affinity receptor for Aβ oligomers and mediates their 

neurotoxic effects (Laurén et al., 2009). After the first report, others have confirmed that 

Aβ1−42 oligomers indeed bind with high affinity the PrPC central region (Balducci et al., 2010; 

Calella et al., 2010), but the notion that PrPC is required for the Aβ oligomer-mediated cognitive 

impairment and cell death has been questioned. Indeed, a dispute on this issue is still ongoing, 

with reports favoring (Alier et al., 2011; Barry et al., 2011; Bate and Williams, 2011; Chen et al., 

2010; Chung et al., 2010; Freir et al., 2011; Gimbel et al., 2010; Kudo et al., 2012; Resenberger et 

al., 2011; Um et al., 2012; You et al., 2012; Zou et al., 2011) or denying (Cissé et al., 2011; Kessels 
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et al., 2010) that PrPC mediates Aβ-induced synaptic damage and neuronal demise. As for the 

mechanisms through which this may occur, however, it has been proposed that Aβ-PrPC docking 

could cause LTP impairment through the activation on Fyn, a kinase member of the Src family of 

tyrosine kinases (SFK), which in turn would phosphorylate the NMDAR subunit NR2B, thus 

modifying NMDAR activity and promoting perturbations of Ca2+ homeostasis (Um et al., 2012). A 

possible explanation for the discrepant results on the functional effects of Aβ -PrPC interaction 

could reside in the use of different Aβ preparations, animals, tissues, AD models and type of 

behavioral tests. 

Another dispute in the context of PrPC-AD cross-talk was born on the possibility that PrPC 

modulates Aβ production. On the one hand, Hooper and colleagues reported that the levels of 

Aβ peptides were higher in PrP-KO mice compared to control animals, and provided evidence 

that PrPC down-regulates the production of Aβ in the brain through inhibition of β-secretase 

(Parkin et al., 2007). On the other hand, other groups reported that the deletion of PrPC failed to 

alter Aβ levels in transgenic mice expressing human APP with the Swedish familial mutations 

(APPSwe) (Calella et al., 2010; Gimbel et al., 2010). This conundrum was eventually resolved when 

it was found that PrPC interacts with, and retains, the immature form of β-secretase in the 

secretory pathway, thus reducing the amount of the protease at the cell surface and in 

endosomes. Of consequence, PrPC has an inhibitory effect on the amyloidogenic processing of 

APPWT, which is cleaved by β-secretase in endosomes, while exerting the opposite effect on 

APPSwe, which is processed in the secretory pathway (Griffiths et al., 2011). Thus, PrPC 

differentially affects the metabolism of APPWT and APPSwe, suggesting that it may play a key 

protective role against sporadic AD. 

In conclusion, the hypothesis that PrPC is intimately linked to AD is plausible, in particular with 

respect to the production of, and binding to, Aβ peptides. However, the capacity to influence Aβ 

neurotoxic effects is more difficult to decode, not only for the ability of Aβ peptides to bind to 

other proteins and cell membranes, but also for the pleiotropic nature of PrPC. 
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2. MATERIALS AND METHODS 

2.1 ANIMALS 

The animals used in this study were kindly provided by the MRC Prion Unit (London, UK), and 

belonged to the following congenic mouse lines (Mallucci et al., 2002) bearing an almost pure 

FVB genotype: 

- PrP-KO mice (line F10) 

- transgenic mice (line Tg46) in which PrPC expression was rescued at physiologic levels 

over the F10 PrP-KO genetic background. 

In particular, the F10 PrP-KO line was generated by crossing for 10 generations Prnp0/0 mice of 

the Zurich-I line (having a mixed Sv129/C57B genetic background, Büeler et al., 1992) with WT 

FVB mice, after which PrP+/- mice were crossed with each other to obtain a PrP-KO progeny with 

an almost pure (>99%) FVB genotype. To rule out the possibility that any observed difference in 

our experiments could be due to the (<1%) background genetic difference between PrP-KO and 

WT FVB mice, we used as controls the Tg46 mouse line, given that this line has the same genetic 

background of F10 mice, except for the transgene containing the murine PrP coding region. 

It is important to note that some of the PrP-KO phenotypes here described, which were evident 

at the beginning of the project, progressively disappeared over time. We reasoned that this 

could have been caused by a progressive genetic drift, due to the continuous inbreeding to 

which homozygous F10 mice were subjected. Thus, we decided to establish a new PrP-KO mouse 

colony starting from other F10 mice provided by the London MRC Prion Unit. Months were 

needed to re-establish a sufficiently expanded colony to perform experiments regularly. This 

substantially delayed the progression of the project. Of course, data obtained from mice 

suspected to underwent the hypothesized genetic drift were excluded by every kind of analysis 

presented here. 

All aspects of animal care and experimentation have been performed in compliance with 

European and Italian (D.L. 116/92) laws concerning the care and use of laboratory animals. The 

Institution in which the work was carried out has been acknowledged by the Italian Ministry of 

Health, and by the Ethical Committee of the University of Padova, for the use of mice for 

experimental purposes. 
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2.2 PRIMARY CULTURES OF CEREBELLAR GRANULE NEURONS  

Cerebellar granule neurons were obtained from 7 day-old mice and each CGN primary culture 

was prepared by combining cerebella derived from four to six littermates, as described in Levi et 

al. (1984). Animals were killed by decapitation, and the cerebellum was quickly removed and 

placed in ice-cold isolation buffer (IB) [124 mM NaCl, 5.4 mM KCl, 1 mM NaH2PO4, 0.5 mM 

MgSO4, 3.6 mM dextrose, 0.3% (w/v) bovine serum albumin (BSA), 25 mM HEPES/KOH (pH 7.4)]. 

After carefully removing meningeal layers and blood vessels, the cerebellar tissue was gently 

minced and dissociated in 5 ml of IB added with trypsin (0.8 mg/ml) (12 min, 37°C). Trypsin 

activity was stopped by adding an equal volume of IB supplemented with deoxy-ribonuclease I 

(0.012 mg/ml) (Roche Corporation), a trypsin inhibitor (0.08 mg/ml) (Sigma), and 0.25 mM 

MgSO4. After centrifugation (180 g, 5 min), the pellet was gently resuspended in IB (5 ml) 

supplemented with deoxyribonuclease I (0.08 mg/ml), the trypsin inhibitor (0.52 mg/ml), and 

1.25 mM MgSO4. After sedimenting the cell debris, the dissociated CGN-containing supernatant 

was added with an equal volume of IB containing 1.2 mM MgSO4 and 1.4 mM CaCl2, and 

centrifuged (180 g, 5 min). Finally, the pellet was gently resuspended in culture medium 

(Minimum Essential Medium Eagle (Sigma)), supplemented with 10% heat-inactivated foetal calf 

serum (Euroclone), 2 mM L-glutamine (Gibco), 0.1 mg/ml gentamycin (Gibco), and KCl (25.4 mM 

final K+ concentration).  

CGN were seeded at a density of 9 · 105 cells (onto poly-L-lysine-coated 13- mm coverslips) for 

immunocytochemistry and luminometer assays, or at a density of 3 · 106 cells (onto 35-mm poly-

L-lysine-coated plates) for biochemical assays, and cultured in a humidified incubator (37°C, 5% 

CO2 atmosphere). 48 h after plating, cytosine arabinoside (AraC, final concentration 0.04 mM, 

Sigma) was added to the culture to inhibit the proliferation of non-neuronal cells. CGN were 

always used after a total of 96 h in culture. 

2.3 IMMUNOCYTOCHEMICAL ANALYSIS 

Before experiments, the presence of astrocytes (the major non-neuronal contaminant of CGN 

cultures) was routinely checked following the immunocytochemical staining of an astrocytic 

marker (i.e., the glial fibrillary acidic protein, GFAP). To this purpose, 96 h-cultured CGN were 

rinsed twice with phosphate-buffered saline (PBS), fixed (30 min, 4°C) with paraformaldehyde 

[2% (w/v) in PBS], rinsed again, permeabilised (5 min, 4°C) with Triton-X100 [0.1% (w/v) in PBS], 

and treated with 50 mM NH4Cl to quench cell auto-fluorescence. Cells were then incubated (1 h, 

25°C) with anti-GFAP rabbit polyclonal antibody (pAb) (Dako), diluted (1 : 500) in PBS with BSA 
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0.5% (w/v). After extensive washings with PBS, cells were treated (1 h, 25°C) with FITC 

conjugated anti-rabbit IgG secondary antibody (Santa Cruz Biotechnology) [1 : 500 in PBS with 

BSA 0.5% (w/v)]. Finally, CGN were counter-stained with Hoechst 33258 (Molecular Probes, 

Invitrogen) (1 μg/ml in PBS) to visualize nuclei, and mounted with glycerol [30% (v/v) in PBS] 

onto glass slides for observation with an inverted fluorescence microscope (Axiovert 100, Zeiss), 

equipped with a computer assisted CCD camera (AxioCam, Zeiss). These assays indicated that 

contamination of 96 h-old CGN cultures by GFAP-positive cells was always below 3%. 

2.4 CONSTRUCTION OF LENTIVIRAL VECTORS FOR AEQUORINS, AND CELL 

INFECTION 

We have monitored fluctuations of Ca2+ concentrations [Ca2+] in the cytosolic domains proximal 

to the PM ([Ca2+]pm), in the cytoplasm ([Ca2+]cyt), in the lumen of the endoplasmic reticulum (ER) 

([Ca2+]er), or in the mitochondrial matrix ([Ca2+]mit). To this end, we have used a lentiviral 

expression system that transduces into CGN the chimeric constructs encoding aequorin (AEQ) 

linked to the influenza virus hemagglutinin (HA) epitope tag, and to defined targeting signals that 

determined the specific localization of the Ca2+ probe inside the cell. In particular, AEQ was N-

terminally linked to the synaptic-associated protein 25 (SNAP-25), to the constant region (CH1 

domain) of the Igγ2b heavy chain, or to the subunit VIII of human cytochrome c oxidase (COX8), 

which target the probe to PM subdomains (pmAEQ, Marsault et al., 1997), the ER lumen (erAEQ, 

Montero et al., 1995) and the mitochondrial matrix (mtAEQ, Rizzuto et al., 1992), respectively. 

For cytosolic AEQ (cytAEQ, Brini et al., 1995), no further modification was introduced in HA1-

tagged AEQ construct. 

The third generation packaging system used for this study includes 2 packaging plasmids 

(pMDLg/pRRE and pRSV-Rev), an envelope plasmid (pMD2.VSVG), and a transfer plasmid (pLV) in 

which the cDNA encoding one of the different AEQ chimeric constructs has been cloned. 

Lentiviral particles obtained with this system can infect both replicating and non-replicating cells 

(for example neuronal cells), and integrate their genetic material into the host cell allowing for 

stable, long-term expression of the transgene. They were produced as described in Follenzi and 

Naldini (2002). Briefly, HEK293T packaging cells (15*106 cells in 150 mm culture plates), cultured 

in Dulbecco’s modified Eagle’s medium (Sigma) supplemented with 10% foetal calf serum, 2 mM 

L-glutamine, 40 µg/ml penicillin/streptomycin (Euroclone), were co-transfected (24 h after 

plating) with pMDLg/pRRE, pMD2.VSVG, pRSV-Rev plasmids and the desired pLV-AEQ construct, 

by means of the calcium-phosphate transfection method. After 16 h, the transfection medium 

was replaced with fresh culture medium, and cells were grown for 72 h, after which the culture 
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medium was collected. Viral particles were harvested by ultracentrifugation (50 000 g, 2 h), 

resuspended in 0.2 ml of phosphate buffered saline (PBS), and stored at -80°C until use.  

CGN were treated with lentiviral particles (diluted in culture medium) 24 h after plating, and, 

after additional 24 h, added with an equal volume of culture medium supplemented with 0.08 

mM AraC (see above). Vector production and gene delivery were performed in a biosafety level-2 

environment. 

2.5 AEQ-BASED Ca
2+

 MEASUREMENTS  

AEQ, originally isolated from the luminescent jellyfish Aequorea Victoria, is a 189 amino acid 

protein containing three high-affinity Ca2+-binding sites (EF-hand type). The holo-protein is  

covalently linked to a hydrophobic prosthetic group, coelenterazine. Upon Ca2+ binding AEQ 

undergoes a conformational change that triggers the oxidation of the coelenterazione to 

coelenteramide, resulting in the emission of light (λmax = 469 nm). 

In our experiments, the chimeric apo-AEQ expressed by infected CGN was reconstituted into the 

active photo-protein form by adding coelenterazine to an appropriate incubation medium just 

before Ca2+ measurements. Light emission by holo-AEQ molecules then allowed the with-time 

monitoring of the Ca2+ concentration in the cell compartment/organelle to which the photo-

protein was targeted. 

AEQ-based Ca2+ measurements were performed by means of a computer-assisted luminometer 

equipped with a perfusion system, always using 96 h-cultured CGN. Depending on the type of 

the measurement, neurons were stimulated as described below. 

All experiments ended by lysing cells with digitonin (100 µM, Sigma) in a hypotonic Ca2+-rich 

solution (10 mM CaCl2 in H2O), to discharge the remaining aequorin pool. The light signal was 

digitalized and stored for subsequent analyses. Luminescence data were calibrated off-line into 

[Ca2+] values, using a computer algorithm based on the Ca2+ response curve of AEQ (Brini et al. 

1995).  

AEQ is well suited for measuring [Ca2+] between 0.5 and 10 µM. This optimal range, however, is 

frequently lower than the [Ca2+] variations occurring in some cell compartments. For this reason, 

it was necessary to reduce the Ca2+ affinity of the photoprotein (by ∼50-fold) by the Asp119Ala 

mutation in the Ca2+ binding sites (Kendall et al., 1992) (i.e. for the pmAEQ, mtAEQ and erAEQ), 

and to use a modified coelenterazine, coelenterazine n (in the case of erAEQ). These 

modifications allow measuring [Ca2+] higher than 100 µM.  
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For measuring Ca2+ movements elicited by SOCE (store operated Ca2+ entry, a mechanism of Ca2+ 

influx stimulated by depletion of intracellular Ca2+ stores, see chapter 3.3.1), in the cytosolic 

domains beneath the PM, the cytosol, and the mitochondria, CGN were incubated (1 h, 37°C, 5% 

CO2 atmosphere) in modified Krebs-Ringer buffer [KRB, 125 mM NaCl, 5 mM KCl, 1 mM Na3PO4, 1 

mM MgSO4, 5.5 mM glucose, 20 mM HEPES (pH 7.4)] supplemented with EGTA (100 µM) (to 

deplete intracellular Ca2+ stores), and the prosthetic group coelenterazine (5 µM, Fluka) (to 

reconstitute functional pmAEQ, cytAEQ or mtAEQ). After transferring the cell-containing 

coverslip to the thermostatted chamber of the luminometer, experiments started by perfusing 

cells with KRB, first containing EGTA (100 µM), then CaCl2 (1 mM), which resulted in transients 

[Ca2+] rises in all monitored cell domains. Then, after about 700 s, during which [Ca2+] returned to 

the basal level in the different cell domains, cells were perfused for 30 seconds with Mg2+-free 

KRB containing CaCl2 (1 mM), and then with the same buffer added with glutamate (100 µM) 

(Sigma) and glycine (10 μM) (Sigma). This protocol elicited a second Ca2+ transient due to Ca2+ 

entry from the extra-cellular space through ionotropic glutamate receptors, and release of the 

ion from the ER through inositol 1,4,5-triphosphate (IP3)-sensitive channels activated via 

metabotropic glutamate receptors at the PM. In other experiments, glutamate was replaced by 

NMDA (50 µM), to stimulate ionotropic NMDA receptors exclusively. 

A different protocol was used when measuring [Ca2+]er by means of erAEQ. In this case, CGN were 

washed three times with KRB supplemented with 1 mM EGTA, left 10 min at 37°C (5% CO2 

atmosphere), and then incubated (1 h, 4°C) in KRB supplemented with 5 µM ionomycin (Sigma), 

500 µM EGTA and 5 µM coelenterazine n (Tebu-bio Italy). After transferring the coverslip to the 

luminometer chamber, experiments started by perfusing cells with KRB containing (in sequence): 

500 µM EGTA (2 min); 2% BSA and 1 mM EGTA (3 min); 500 µM EGTA (2 min); 1 mM CaCl2. This 

protocol provided a means of replenishing intracellular stores, and was followed by perfusion 

with KRB containing EGTA (100 µM) and glutamate (100 µM) to provoke Ca2+ release from the ER 

through IP3-sensitive channels stimulated by metabotropic glutamatergic receptors.  

2.6 Aββββ1-42 PEPTIDE PREPARATION AND TREATMENT 

Aβ1-42 oligomers were prepared according to the following procedure. Chemically synthetized 

and lyophilized Aβ1-42 peptides (kindly provided by Dr. A.F. Hill - Univ. of Melbourne) were 

dissolved in 1 mg/ml of 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) and incubated (1 h, room 

temperature (RT)) to remove pre-existing aggregates. The suspension was then divided into 

aliquots (each consisting of about 50 µg of peptide), HFIP was removed by evaporation, and 
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aliquots were stored at -80°C. Just before use, each peptide aliquot was dissolved in 20 mM 

NaOH (50 µl), sonicated (15 min on ice) in a bath sonicator, and diluited in PBS to a final volume 

of 250 µl. The suspension was then centrifuged (14,000 g, 5 min) to pellet aggregates, and Aβ1-

42 concentration was measured by absorbance spectrophotometry (λ = 214 nm). Finally, Aβ1-42 

peptides were incubated (1 h, 37°C) to obtain oligomers, and then administered to CGN at a final 

concentration of 5 µM of monomer equivalent. Incubation of CGN with Aβ1-42 oligomers was 

carried out during the AEQ reconstitution step (see above) in KRB supplemented with EGTA and 

coelenterazine (1 h, 37°C, 5% CO2 atmosphere). 

2.7 CHARACTERIZATION OF Aββββ1-42 PEPTIDE 

For each used aliquot of the Aβ1-42 peptide, we performed qualitative analyses by Western 

blotting to characterize the oligomerization state of each preparation. To this purpose, small 

peptide samples (∼300 ng) were collected both before and after the oligomerization process. 

Samples were immediately diluted in a sample buffer containing 12% sodium dodecyl-sulphate 

(SDS) (w/v), 6% mercaptoethanol (v/v), 30% glycerol (w/v), 0.05% Coomassie blue, 150 mM 

Tris/HCl (pH 7.0), and were separated  using  a urea (6M)-containing tricine gel (16% (w/v) 

acrylamide) that offers a high resolution capacity in the small proteins and peptides range 

(Schägger, 2006).  

Proteins were then electro-blotted onto polyvinylidene fluoride (PVDF) membranes of 0.22 µm 

pore size (Millipore). Membranes were incubated (1 h, RT) with a blocking solution containing 

non-fat dry milk (5% (w/v), Bio-Rad) diluted in Tris-buffered saline added with 0.02% (w/v) 

Tween-20 (TBS-T 0.02%). Then, membranes were incubated over-night (4 °C) with anti-Aβ mouse 

monoclonal antibody (mAb) 6E10 (Covance) diluited (1:1000) in the blocking solution. After 

three 10 min-washes with TBS-T 0.02%, membranes were incubated (1 h, RT) with a horseradish 

peroxidase-conjugated anti-mouse IgG secondary antibody (Santa Cruz Biotechnology) (1 : 3000 

in the blocking solution). Immunoreactive bands were visualized and digitalized by means of a 

digital Kodak Image Station, using an enhanced chemiluminescence reagent kit (Millipore). For 

densitometric analysis, band intensities were evaluated by the Kodak 1D image analysis 

software. 

2.8 WESTERN BLOT ANALYSES PrP
C
 AND SYNAPTOPHYSIN EXPRESSION, 

AND FOR p59
Fyn

 AND Erk1/2 ACTIVATION 

For Western blot assays, CGN were homogenized in either Laemmli sample buffer (10% glycerol 

(w/v), 2% (w/v) SDS, 62.5 mM Tris/HCl (pH 6.8), protease inhibitor cocktail (Roche)) for PrPC and 
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synaptophysin expression,  or a buffer containing 10% glycerol (w/v), 2% (w/v) SDS, 62.5 mM 

Tris/HCl (pH 6.8), 1.8 M Urea, 5 mM NaVO4, protease inhibitor and phosphatase inhibitor 

cocktails (Roche), for analyzing of p59Fyn and ERK 1/2 activation, and boiled (5 min). The total 

protein content was determined by the Lowry method (Total Protein Kit, Micro Lowry, 

Peterson’s Modification, Sigma), using BSA as standard. Dithiothreitol (50 mM) and 

bromophenol-blue (0.004% (w/v)) were added to samples just before gel loading. SDS-PAGE was 

carried out using 10% acrylamide, and 20 µg of proteins loaded in each lane. Proteins were then 

electro-blotted onto nitrocellulose membranes (Bio-Rad Laboratories, Hercules, CA, USA), which 

were stained with Ponceau red (Ponceau S, Sigma) to verify equal loading and transfer. 

Membranes were incubated (1 h, RT) with a blocking solution that, depending on the used 

antibody, contained TBS added with 0.1% (w/v) Tween-20 (TBS-T) and 5% (w/v) non-fat dry milk, 

for synaptophysin; TBS-T added with 3% (w/v) BSA, for phospho-Src (pSrc), p59Fyn, phospho-

Erk1/2 (pErk1/2) and total Erk1/2; or PBS added with 0.1% (w/v) Tween-20 (PBS-T) and 3% (w/v) 

BSA, for PrPC and β-actin. Membranes were then incubated with the desired primary antibody (1 

h, RT) diluted (see below) in the corresponding blocking solution. After three 10 min-washes 

with TBS-T (or PBS-T), membranes were incubated (1 h, RT) with a horseradish peroxidase-

conjugated anti-mouse or anti-rabbit IgG secondary antibody (Santa Cruz Biotechnology) (1:3000 

in the blocking solution), depending on the used primary antibody (see below). Immunoreactive 

bands were visualized and digitalized by means of a digital Kodak Image Station, using an 

enhanced chemiluminescence reagent kit (Millipore). For densitometric analysis, band 

intensities were evaluated by the Kodak 1D image analysis software, and normalized to the 

optical density of the corresponding lane stained with Ponceau red. For assessing the 

phosphorylation (activation) state of p59Fyn and Erk1/2, samples were always run in duplicate, 

and then probed in parallel with antibodies recognizing either the phosphorylated (p) and non-

phosphorylated (total) forms of the target protein. The immunosignal intensity of pSrc and 

pErk1/2 was the normalized to those of total p59Fyn and total Erk1/2, respectively. 

Antibodies 

For immunoblotting, the following antibodies were used (dilutions in parenthesis): anti-PrP 

mouse monoclonal (m) antibody (Ab) 8H4 (1 : 6000, a kind gift of Dr. M. S. Sy, Case Western 

University, Cleveland, OH); anti-β-actin mouse mAb (1 : 4000, Sigma, cat. N. A5441); anti-

synaptophysin rabbit polyclonal (p) Ab (1 : 2000, ProteinTech Group, cat. N. 17785-1-P); anti-

p59Fyn rabbit pAb (1:1000, Cell Signalling Technology, cat. N. 4023); anti-pSrc rabbit pAb 

(recognizing the activatory phospho-site in all SFKs, which corresponds to pY416 in p59Fyn) 

(1:1000, Cell Signalling Technology, cat. N. 2101); anti- pErk1/2 mouse mAb (1:1500, Cell 
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Signalling Technology, cat. N. 9106S); anti-total Erk1/2 rabbit pAb (1:1500, Cell Signalling 

Technology, cat. N. 9102). 
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AIM OF THE WORK 

Multiple and often contrasting experimental evidence, obtained by using cellular and animal 

models, has paradoxically thwarted the understanding of the physiological significance of PrPC. 

Indeed, PrPC has been implicated in a plethora of cellular processes, from copper metabolism to 

the defense mechanisms against oxidative and apoptotic challenges, to the promotion of cell 

adhesion and maturation (Linden et al., 2008). In light of these multiple functions, a reasonable 

hypothesis is that the PrPC acts as a scaffold protein in different cell surface complexes, and that 

specific downstream signaling pathways get activated depending on the type and state of the 

cell, the expression level of PrPC, and the local availability of extracellular and/or intracellular 

signaling PrP partners (Peggion et al., 2011). It is also possible to hypothesize that the common 

denominator of the various PrPC roles is Ca2+, the major and multifaceted intra-cellular 

messenger, able to control - just as it has been proposed for PrPC - a large number of 

(patho)physiological processes ranging from cell survival to death.  

The aim of this thesis was focused exactly on whether aspects of Ca2+ metabolism are governed 

by PrPC. This aim was pursued using primary cultures of cerebellar granule neurons (CGN) 

derived from mice expressing (Tg46) or not (PrP-KO) PrPC, and subjected to different Ca2+-

mobilizing stimuli. Use of Ca2+-sensitive photo-proteins (aequorins) genetically targeted to 

different cell domains allowed us to monitor local fluxes, i.e., at the plasma membrane, the 

cytosol, the lumen of the endoplasmic reticulum and the mitochondrial matrix, and to relate 

these movements to the presence of PrPC. In an attempt to rationalize our findings by a 

molecular point of view, we also analyzed important signaling pathways through which PrPC 

could regulate Ca2+ homeostasis. 

Adding further interest and complexity to the puzzling picture of PrPC pathophysiology, recent 

findings have provided evidence that PrPC acts as a high-affinity receptor for Aβ1-42 peptide 

oligomers (Laurén et al., 2009; Balducci et al., 2010; Calella et al., 2010; Chen et al., 2010; Freir 

et al., 2011; Zou et al., 2011), which are considered the prime responsible for AD pathogenesis. 

However, while some reports proposed that PrPC-Aβ interactions are crucial to AD-related 

impairment of synaptic plasticity and memory formation (Laurén et al., 2009; Gimbel et al., 

2010; Alier et al., 2011; Barry et al., 2011; Freir et al., 2011; Um et al., 2012; You et al., 2012), 

others have argued against this possibility (Balducci et al., 2010; Calella et al., 2010; Kessels et 

al., 2010; Cissé et al., 2011). Based on the notion that neuronal Ca2+ homeostasis is intimately 

related to learning and memory, and given availability of the above suited protocols and cell 
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paradigms, the present thesis has also investigated if and how oligomeric Aβ peptides induced 

PrPC-dependent alterations of Ca2+ movements. 
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3. RESULTS AND DISCUSSION 

The study of the physiology of PrPC – the major topic of the present Ph.D. thesis – was carried 

out in the cell model system represented by primary neuronal cultures, specifically cerebellar 

granule neurons (CGNs), obtained from mice expressing (Tg46), or not (PrP-KO), PrPC. It is 

important to note that we have taken as true control the CGN those obtained from the 

transgenic Tg46 mice rather than from WT (FVB) mice, given that Tg46 animals express normal 

levels of PrPC (Lazzari et al., 2011) over the same genotype of the F10 PrP-KO mouse line 

(Mallucci et al., 2002). In other words, the only aspect that discriminates Tg46 from PrP-KO 

neurons is the presence of the PrP gene. 

The first part of the work was focused on the role of PrPC in neuronal Ca2+ homeostasis. We 

pursued this goal by subjecting CGN (harboring or not PrPC) to stimuli that trigger cell Ca2+ 

movements, and by monitoring the movements using the Ca2+-sensitive AEQ probes. The second 

part of the thesis was instead devoted to understanding whether PrPC is directly involved in 

Aβ(1-42) oligomers-mediated impairment of Ca2+ homeostasis, which could sustain the current 

hypothesis that PrPC acts as the receptor for Aβ-oligomers. 

3.1 PURITY OF PRIMARY CGN CULTURES 

By necessity, one of the first parameter of cultured CGN that we analyzed was the possible 

contamination by other cell types, specifically by astrocytes given their high replicative capacity. 

To this end, 96h-cultured CGN were routinely subjected to immunocytochemical assays using an 

antibody against the astrocytic marker, GFAP (Glial Fibrillary Acidic Protein). As shown in Fig.1, 

we found that the ratio between the number of astrocytes and the total number of cells labeled 

with the nuclear marker Hoechst, was on average less than 3%. This result allowed us to 

conclude that the (97%) degree of purity of the used CGN cultures was in accord with what 

reported in the literature (Carafoli et al., 1999). 
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Figure 1. Immunocytochemical assay shows that CGN cultures were > 97% pure. 

After 96 h in culture, CGN were fixed, permeabilised, and immunostained with an anti-GFAP pAb (red 

signal), and then counterstained with the nuclear marker Hoechst 33258 (blue signal). On average, the 

degree of contamination by astrocytes was less than 3%. Scale bar, 40 µm. 

3.2 In vitro CGN MATURATION, AND DEVELOPMENTAL PrP
C
 EXPRESSION IN 

Tg46 CGN  

The second control consisted in analyzing the expression levels of PrPC during the in vitro 

neuronal differentiation process. As shown in Figure 3, Western blot analyses demonstrated that 

PrPC expression progressively increased  from 24 to 96 h in Tg46 CGN, and that, as expected, 

PrPC was absent in PrP-KO neurons. This data indicates that suitable levels of PrPC are present in 

Tg46 neurons when subjected to experimentation. 

Another necessary control consisted in verifying if, at the culture time point at which Ca2+ 

measurements were performed, the PrP-KO CGN presented the same in vitro differentiation 

degree as their control counterpart. Growth of primary CGN in a medium supplemented with 

high concentrations of KCl (25.4 mM) is known to improve the long-term survival and 

purportedly mimics endogenous activity in developing cerebellum (Gallo et al., 1987). To 

ascertain whether this in vitro condition determined a similar maturation of PrP-KO and Tg46 

CGN, we followed by Western blot the with-time expression of synaptophysin, a synaptic vesicle 

membrane protein (Elferink and Scheller, 1993), at different time points after CGN plating.  As 

shown in Figure 2, the progressive rise of synaptophysin expression from 24 to 96 h indicates the 

progressive synaptic maturation of both Tg46 and PrP-KO CGN. Importantly, given that at each 

time point no statistically significant difference was observed in the expression of synaptophysin 

in CGNs with different PrP genotype, we could conclude that the absence of PrPC did not 

influence the in vitro maturation degree of neurons, in particular at 96 h of culture when 

neurons were used for AEQ-based experimentation and other tests. 
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Figure 2. PrP
C
 expression progressively increases during the maturation of CGN obtained from Tg46 

mice.    

Tg46 and PrP-KO CGNs from 24 h to 96 h in culture were lysed and proteins (20 µg per lane) resolved by 
10% SDS-PAGE under reducing conditions, electroblotted, and probed with an anti-PrP mAb 8H4. In the 
upper panel, a Western blot representative of 4 independent experiments is shown. To demonstrate 
equal protein loading and transfer, nitrocellulose membrane staining Ponceau red is also shown. 
Molecular mass standards are reported on the left. While in PrP-KO neurons no PrP-immunosignal is 
detectable, the expression level of all glycoforms of PrP

C
, i.e., unglycosylated (U), mono-glycosylated (M) 

and di-glycosylated (D) (right arrows), progressively increases during the differentiation of Tg46 CGN. This 
latter finding is also clearly shown by the bar diagram of the lower panel, reporting the densitometric 
analysis of PrP immuno-reactive bands from Tg46 samples. Values are mean ± SEM, n =4.  
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Figure 3. In vitro cultured CGNs progressively mature in PrP-independent manner. 

Tg46 and PrP-KO CGNs at different times in vitro were assayed for SyP expression by Western blot with 
anti-synaptophysin (SyP) pAb, detecting a 38 kDa band. In the upper panel, a Western blot representative 
of 4 independent experiments for each genotype, is shown. To verify equal protein loading and transfer, 

the same blot was immunolabelled with an anti-β-actin mAb. In the lower panel, the densitometric 
analysis of synaptophysin expression in Tg46 (blue bars) and PrP-KO (red bars) CGNs is reported. It is 
evident that the expression of the synaptic marker progressively increases from 24 to 96 h in both CGN 
genotypes, and that no statistically significant difference exists between Tg46 and PrP-KO neurons for all 
time points. Values are mean ± SEM, n=4. 
Other experimental details are as in the legend to Figure 2.   

3.3 INVOLVEMENT OF PrP
C
  IN LOCAL Ca

2+
 MOVEMENTS INDUCED IN CGN 

BY DIFFERENT STIMULI 

3.3.1 INVOLVEMENT OF PrP
C
 IN LOCAL Ca

2+
 MOVEMENTS INDUCED BY SOCE 

Depletion of intracellular Ca2+ stores, primarily the ER, triggers the opening of Store-Operated 

Ca2+ Channels (SOCCs), and the consequent influx of Ca2+ from the extra-cellular space. This 

process, named Store-Operated Ca2+ Entry (SOCE) (or Capacitative Calcium Entry), serves to refill 

intracellular stores and to elaborating long-term Ca2+ signals (Parekh and Putney, 2005).  

Little is known about the mechanisms of SOCCs activation, and the impact of this process in 

neuronal Ca2+ homeostasis. Two protein families, however, have been identified as essential 
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components in SOCE: STIM (for Stromal Interaction Molecule) proteins, which are ER trans-

membrane proteins with EF hand domains that project into the ER lumen and permit the protein 

to act as a sensor for luminal [Ca2+]; Orai proteins, located to the PM and identified as the pore-

forming subunits of SOCCs. It has been proposed that, upon depletion of ER Ca2+ stores, Ca2+ 

dissociates from the STIM EF-hand module, leading to oligomerization and redistribution of STIM 

molecules into discrete ER membrane clusters opposed to the PM. This would promote the 

physical interaction of STIM with Orai, the consequent recruitment of Orai into PM clusters, and 

the ultimate activation of SOCE (Cahalan, 2009; Varnai et al., 2009). 

Physiologically, SOCE is evoked by increased [IP3], which binds to, and opens, IP3 receptors at the 

ER membrane (Takemura et al., 1989), or by other Ca2+-releasing signals followed by Ca2+ release 

from the stores (Parekh and Putney, 2005). Experimentally, however, the most suited way to 

promote recordable SOCE relies on emptying ER Ca2+ stores by prolonged incubation of cells in 

the absence of Ca2+. Thus, the first set of experiments here described started with 1h-incubation 

of CGN in KRB supplemented with the prosthetic group coelenterazine and EGTA (see Materials 

and Methods), serving to trigger both the reconstitution of functional holo-AEQ, and a 

substantial release of ER Ca2+ leading to SOCCs activation. 

The resulting local Ca2+ transients in different cell domains were compared in Tg46 and PrP-KO 

CGN expressing the different AEQ chimerae (Fig. 4). In particular, Fig. 4A shows that the transient 

rise of [Ca2+]pm had a significantly higher (∼40%) peak value (30.40 ± 1.48 µM, PrP-KO CGN; 21.41 

± 0.56 µM, Tg46 CGN), and was more persistent, in PrP-KO CGN compared to Tg46 neurons. 

These results closely resemble when comparing PrP-KO with WT (FVB) CGN (Lazzari et al., 2011), 

thus supporting the contention that Tg46 neurons are indeed suitable control model cells. 

That plasma membrane domains of PrP-KO CGN accumulate more Ca2+ than control neurons was 

also reflected by the higher SOCE-evoked Ca2+ transients observed both in the cytosol (Fig. 4B, 

1.26 ± 0.06 µM, PrP-KO CGN; 1.08 ± 0.05 µM, Tg46 CGN) and the mitochondrial matrix (Fig. 4C, 

26.11 ± 0.93 µM, PrP-KO CGN; 21.84 ± 1.01 µM, Tg46 CGN). In light of all results shown in Fig. 4, 

one may thus conclude that it makes sense that the most remarkable difference between PrP-KO 

and Tg46 neurons regards [Ca2+] variations occurring in sub-PM domains, i.e. in those domains in 

which the AEQ probe are likely to sense at best Ca2+ influx through activated SOCCs. Importantly, 

however, these findings convincingly demonstrate – for the first time – that PrPC is somehow 

able to govern the entire neuronal SOCE-dependent neuronal Ca2+ homeostasis. 
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We also monitored ER Ca2+ refilling induced by SOCE. Given that ER accumulates large Ca2 

amounts that would rapidly consume erAEQ impeding, therefore, reliable Ca2+ measurements, a 

specific protocol had to be applied (see Material and Methods). As shown in Fig. 5, SOCCs 

stimulation by this protocol allowed us to observe that both Tg46 and PrP-KO CGN recovered the 

luminal Ca2+ levels with similar kinetics that, however, led to a final steady-state [Ca2+]er that was 

significantly lower (∼20%) in PrP-KO CGN (211.44 ± 9.79 µM) than in PrPC-expressing neurons 

(254.49 ± 17.44 µM). 
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Figure 4. The transient increase of [Ca
2+

]pm , [Ca
2+

]cyt , and [Ca
2+

]mit  induced by SOCE is higher in PrP-KO 

CGN with respect to Tg46 neurons. 

96 h after plating, Tg46 (TG46, blue) and PrP-KO (PrP-KO, red) CGN expressing pmAEQ (A), cytAEQ (B), or 

mtAEQ (C) were stimulated by SOCCs activation, following the depletion of intracellular Ca
2+

 store by 

incubation in EGTA (100 µM), and subsequent perfusion of cells with a CaCl2 (1 mM)-containing buffer. 

Both the mean of the recorded traces (left panels), and the peak values reported in the bar diagrams (right 

panels) show that in all the AEQ-monitored cell compartments PrP-KO CGNs accumulate a higher [Ca
2+

] 

compared to PrP-expressing neurons. In addition, a slower rate of recovery to steady-state values of 

[Ca
2+

]pm and [Ca
2+

]cyt also pertains to PrP-KO CGNs with respect to Tg46 neurons. Values are mean ± SEM; 

n = 174 (Tg46) and 169 (PrP-KO) in (A), n = 41 (Tg46) and 57 (PrP-KO) in (B), n = 56 (Tg46) and 70 (PrP-KO) 

in (C), where n indicates the total number of traces used for the analysis (technical replicates). These 

traces derived from 20 (for both Tg46 and PrP-KO) independent CGN cultures (biological replicates) in (A), 

10 (Tg46) or 12 (PrP-KO) biological replicates in (B), 10 (Tg46) or 13 (PrP-KO) biological replicates in (C). 

*****p < 10
-7

; **p < 0.01; *p < 0.05 Student’s t-test. 

 
 

 

 

 

 

 

 

 

Figure 5. Steady-state Ca
2+

 levels in the lumen of the ER are significantly reduced in PrP-KO CGN. 

erAEQ-expressing Tg46 (TG46, blue) and PrP-KO (PrP-KO, red) neurons were first depleted of stored Ca
2+

 

by incubation in a Ca
2+

-free buffer containing EGTA (500 µM) and the Ca
2+

 ionophore, ionomycin (5 µM), 
after which ER refilling was stimulated by perfusing cells with a CaCl2 (1 mM)-supplemented buffer. Both 
the mean of the recorded traces (left panels) and the peak values reported in the bar diagrams (right 
panels) show that the steady-state level of [Ca

2+
]er is significantly lower in PrP-KO CGN than in Tg46 

neurons. Reported traces are mean ± SEM; n = 23 for both Tg46 and PrP-KO; biological replicates were 9 
for each mouse strain. **p<0.01, Student’s t-test.  

3.3.2 INVOLVEMENT OF PrP
C
 IN LOCAL Ca

2+
 MOVEMENTS INDUCED BY STIMULATION 

OF ALL CELL GLUTAMATE RECEPTORS 

After SOCCs-induced Ca2+ measurements were completed, CGN were carefully washed and then 

perfused with Mg2+-free KRB containing CaCl2 (1 mM), glutamate (100 µM) and glycine (10 μM). 

This protocol was intended to monitor Ca2+ transients due to activation of glutamate sensitive-

receptors, i.e., both ionotropic (NMDAR, AMPAR and the kainate receptor) and metabotropic 

receptors (mGluR).  
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Glutamate is the major excitatory neurotransmitter in the brain and is involved in several 

neuronal functions, including cognition, memory and learning. Physiologically, the 

neurotransmitter binds to, and opens, AMPAR with the consequent entry of mono- and di-valent 

cations (Ca2+, Na+ and K+). This causes a partial depolarization of the cell potential that, by 

removing Mg2+ present in NMDARs, allows activation of NMDARs when the co-agonist glycine is 

also present (Traynelis et al., 2010). Activity of all ionotropic receptors (including the kainate-

sensitive receptors) thus allows a substantial entry into the cell of extracellular Ca2+, which 

explains why, if present in abnormally high amounts, glutamate can be highly toxic to neurons 

(Nedergaard et al., 2002). Instead, mGluRs are members of the G-protein-coupled receptor 

(GPCR) superfamily and are classified into three groups, group I (mGluRs 1 and 5), group II 

(mGluRs 2 and 3) and group III (mGluRs, 4, 6, 7, and 8). In particular, while Gq-coupled group I 

mGluRs activate phospholipase C, resulting in the generation of IP3 and diacylglycerol that 

mobilize Ca2+ from ER and activate PKC, respectively, group II and III mGluRs are coupled 

predominantly to Gi proteins that ultimately inhibit adenylyl cyclase and the formation of cAMP 

(Niswender and Conn, 2010).  

To best stimulate all receptors, including NMDAR, CGN were incubated with 100 µM glutamate 

and glycine in the absence of Mg2+. Fig. 6 shows Ca2+ transients monitored by pmAEQ (6A), 

cytAEQ (6B) and mtAEQ  (6C) in PrP-KO and Tg46 CGN. Clearly, in all domains Ca2+ fluxes were 

higher in PrP-KO neurons than in the control CGN – in plasma membrane domains the difference 

reached as much as 60% - although absolute [Ca2+] variations were always smaller than those 

elicited by SOCE (peak values: in PM domains, 5.62 ± 0.18 µM, PrP-KO CGN and 3.56 ± 0.13 µM, 

Tg46 CGN; in cytosol, 2.37 ± 0.14 µM, PrP-KO CGN and 2.00 ± 0.07 µM, Tg46 CGN). A possible 

reason for this difference is that in the latter case the protocol probably maximizes ER-Ca2+ 

depletion and SOCCs stimulation.  

Interestingly, also the peak value of [Ca2+]mit observed in PrP-KO neurons (142.19 ± 9.72 µM) was 

much higher (50%) than in Tg46 neurons (91.36 ± 3.74 µM) (Fig. 6C). This result prompt us to 

verify whether PrPc had a direct impact on mGluRs and/or the activated pathway, such as, for 

example, IP3 receptors that facilitate Ca2+ entry into mitochondria via the close apposition of ER 

and mitochondrial membranes (Rizzuto et al., 1993). To this end, we set out to follow Ca2+ 

release from ER stores using erAEQ and glutamate to stimulate preferentially mGluR, which was 

accomplished by adding EGTA in the perfusing medium but omitting glycine addition. 

Parenthetically, the presence of EGTA was also intended to maximally accelerate ER Ca2+ release. 

As shown in Fig. 7, we found that under these conditions the Ca2+ released by the ER of PrP-KO 
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CGN and Tg46 neurons was almost identical both in terms of kinetics and quantity. Thus, if these 

results clearly indicate that the activity of IP3 receptors is not influenced by PrPc, we still cannot 

definitively exclude that PrPc influences the number of ER-mitochondrial junctions and/or the 

activity of the mitochondrial uniporter, the ultimate actor of mitochondrial Ca2+ accumulation. 
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Figure 6. Activation of (ionotropic and metabotropic) glutamate receptors elicits [Ca
2+

]pm , [Ca
2+

]cyt , and 

[Ca
2+

]mit transients that are significantly larger in PrP-KO CGNs than in Tg46 neurons. 

Tg46 (blue) and PrP-KO (red) CGNs expressing pmAEQ (A), cytAEQ (B), or mtAEQ (C) were stimulated with 

glutamate (100 µM) and glycine (10 µM) in a Mg
2+

-free, CaCl2 (1 mM)-supplemented buffer. This protocol 
provokes the activation of both ionotropic and metabotropic glutamate receptors, and [Ca

2+
] transients in 

the different cell domains that were recorded by means of the targeted AEQ probes. Both the mean of the 
recorded traces (left panels), and the peak values reported in the bar diagrams (right panels) show that in 
all the AEQ-monitored cell compartments PrP-KO CGNs respond to the stimulus with significantly larger 
[Ca

2+
] transients than PrP-expressing neurons. This is particularly evident in the sub-PM domains and the 

mitochondrial matrix, where the peak value of [Ca
2+

] is almost 60% higher in the absence of PrP
C
. Values 

are mean ± SEM; n = 69 (Tg46) and 60 (PrP-KO) in (A), n = 28 (Tg46) and 27 (PrP-KO) in (B), n = 22 (Tg46) 
and 20 (PrP-KO) in (C); biological replicates were 20 (Tg46) and 18 (PrP-KO) in (A), 10 (for both Tg46 and 
PrP-KO) in (B), 9 (Tg46) and 8 (PrP-KO) in (C). *******p<10

-19
; ****p<10

-5
; **p<0.01 Student’s t-test. 

Other experimental details are as in the legend to Figure 4. 

 

 

 

 

 

 

 

 

Figure 7. Following the activation of mGLURs, IP3-mediated Ca
2+

 release from the ER is similar in PrP-KO 

and Tg46 CGNs.  

After the refilling of ER stores (see Figure 5), erAEQ-expressing Tg46 (blue) and PrP-KO (red) CGNs were 

stimulated with Ca
2+

-free KRB containing glutamate (100 µM) and EGTA (100 µM). Under these conditions, 
no contribution is given to ER Ca

2+
 movements by the entry of Ca

2+
 into the cell through PM ionotropic 

GluRs, and the net Ca
2+

 release from the ER through IP3-sensitive channels can be monitored. No 
significant difference in the rate of Ca

2+
 release from ER stores is observed between PrP-KO and PrP-

expressing neurons. Reported traces are mean ± SEM; n = 9 for both Tg46 and PrP-KO; biological replicates 
were 3 for both mouse strains. Other experimental details are as in the legend to Figure 5. 

3.3.3 INVOLVEMENT OF PrP
C
 IN LOCAL Ca

2+
 MOVEMENTS INDUCED BY STIMULATION 

OF NMDA-SENSITIVE RECEPTORS 

After monitoring local Ca2+ fluxes elicited by stimulation of all glutamate-sensitive receptors and 

preferentially mGLUR-induced ER Ca2+ release, we examined the contribution of ionotropic 

GluRs to Ca2+ homeostasis of PrP-KO and Tg46 CGN. Specifically, we focused on NMDARs in light 

of the recent evidence that, by binding the NR2D subunit, PrPC diminishes Ca2+ entry through 

NMDA-sensitive GluRs (Khosravani et al., 2008). The NMDAR is obligatory composed by two NR1 

subunits that co-assemble with other two (NR2) subunits to form the mature, active tetrameric 
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channel complex permeable to both Na+ and Ca2+. The NR2 subunit exists in various isoforms (A-

B-C-D) that determine the activity of NMDARs, with the NR2D subunit showing much slower 

kinetic properties compared with the other subunits (e.g., NR2B) (Cull-Candy and Leszkiewicz, 

2004). 

To stimulate NMDAR, we used CGN after SOCCs-induced Ca2+ measurements were completed as 

previously described. CGN were perfused with KRB containing Ca2+ (1 mM), NMDA (50 µM) and 

its co-agonist glycine (10 µM), and Ca2+ transients were monitored using pmAEQ, cytAEQ or 

mtAEQ. As shown (Fig. 8), activation of NMDARs induced Ca2+ transients that in both plasma 

membrane (Fig. 8A) and cytosolic (Fig. 8B) domains of PrP-KO CGN were higher than in Tg46 

neurons by 100% and 25%, respectively (peak values: in PM domains, 2.14 ± 0.11 µM, PrP-KO 

CGN and 1.04 ± 0.06 µM, Tg46 CGN; in cytosol, 1.33 ± 0.14 µM, PrP-KO and 1.07 ± 0.04 µM, 

Tg46). This result is in line with the above-mentioned electrophysiological data obtained by 

Khosravani et al. (2008) in hippocampal neurons. In contrast, when mitochondrial Ca2+ transients 

were followed, we found that PrP-KO CGN (40.67 ± 2.92 µM) accumulated 30% less Ca2+ than 

control cells (57.28 ± 6.00 µM) (Fig. 8C). This result means that NMDAR-mediated Ca2+ influx 

cannot explain the higher mitochondrial Ca2+ peak value displayed by PrP-KO CGN after 

activation of all glutamate receptors (Fig. 6C). Given that this value can neither be attributed to a 

higher IP3-mediated Ca2+ released by PrP-KO CGNs (Fig. 7), we are left with the possibility that a 

specific contribution by AMPARs and/or kainate receptors takes place in PrP-KO neurons. This 

hypothesis, however, still awaits confirmation.  

Finally, a comment is due to the fact the protocol used by us to maximally stimulate NMDARs 

could not faithfully reproduce the physiological situation. Indeed, in addition to glutamate, the in 

vivo activity of NMDARs is likely to be strongly influenced by the activity of mGluRs, some 

subtypes of which are known to trigger signaling pathways, e.g., Pyk2/CAKβ and Src-family 

kinases, which may ultimately upregulate NMDAR activity (Manzerra et al., 2002).  
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Figure 8. Activation of NMDA (ionotropic) glutamate receptors elicits [Ca
2+

]pm , [Ca
2+

]cyt , and [Ca
2+

]mit 

transients that are significantly different in PrP-KO CGNs with respect to Tg46 neurons 

Tg46 (blue) and PrP-KO (red) CGNs expressing pmAEQ (A), cytAEQ (B), or mtAEQ (C) were stimulated with 

NMDA (50 µM) and glycine (10 µM) in a Mg
2+

-free, CaCl2 (1 mM)-supplemented buffer. This protocol 

provokes the activation of NMDARs at the PM, and transient [Ca
2+

] rises in the different cell domains that 

were recorded by means of the targeted AEQ probes. Both the mean of the recorded traces (left panels), 

and the peak values reported in the bar diagrams (right panels) show that in sub-PM domains and bulk 

cytosol PrP-KO neurons have increased Ca
2+

 responses with respect to the PrP-expressing counterpart. 

Noteworthy, the response of PrP-KO CGNs is also characterized by a prolonged pseudo-steady-state that 
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sustains the presence of abnormally high Ca
2+

 levels at the sub-PM domains for hundreds of seconds after 

the beginning of the stimulus. On the contrary, the NMDA-induced mitochondrial Ca
2
+ uptake is 

significantly lower in PrP-KO than in Tg46 CGNs. Values are mean ± SEM; n = 71 (Tg46,) and 68 (PrP-KO) in 

(A), n = 24 (Tg46) and 22 (PrP-KO) in (B), n = 17 (Tg46) and 28 (PrP-KO) in (C); biological replicates were 17 

for both Tg46 and PrP-KO in (A), 10 (Tg46) and 9 (PrP-KO) in (B), 7 (Tg46) and 11 (PrP-KO) in (C). 

******p<10
-14

; **p<0.01; *p<0.05  Student’s t-test. Other experimental details are as in the legend to 

Figure 6. 

3.3.4 ANALYSIS OF p59
Fyn

 AND p42/44-ERK ACTIVATION IN Tg46 AND PrP-

KO CGN 

An obvious question raised by the previous results concerns the mechanism(s) through which 

PrPC can modulate cell Ca2+ homeostasis, in particular Ca2+ entry through SOCCs and NMDARs. As 

for NMDAR modulation by PrPC, a direct physical and functional interaction between the two 

proteins has been already demonstrated, whereby PrPC would bind to, and inhibit, NMDAR 

subunit NR2D, thus reducing NMDA-mediated Ca2+ entry (Khosravani et al., 2008). In addition, a 

previous study in the laboratory in which this work has been carried out has demonstrated that 

the higher Ca2+ transients observed in PrP-KO CGNs can be (at least in part) explained by the 

reduced expression in these neurons of two important systems deputed to the extrusion of Ca2+ 

from the cytosol (i.e., PMCA and SERCA) compared to the PrP-expressing counterpart (Lazzari et 

al., 2011). Notably, the reduction of SERCA amounts in PrP-KO neurons also nicely fits with the 

lower steady-state level of [Ca2+]er reported here (Figure 5). In this work, we have decided to 

verify whether PrPC could impinge on Ca2+-transporting mechanisms through the regulation of 

specific cell signaling pathways, namely those involving SFKs (Src family of tyrosin kinases) (in 

particular, p59Fyn that is the Srk kinase prevalently expressed in CGNs), and p42/p44-ERK 

(ERK1/2), belonging to the family of mitogen-activated protein (MAP) kinases. This choice stems 

from two principles. On one hand, it is known that p59Fyn and ERK1/2 are involved in the 

regulation of both SOCC and NMDAR activity (Babnigge et al., 1997; El-Yassim et al., 2008; 

Nakazawa et al., 2001; Suzuki and Okumura-Noji, 1995; Kohno et al., 2008; Pozo-Guisado et al., 

2010). On the other hand, PrPC has been repeatedly suggested to participate in signal 

transduction mechanisms at the cell surface impinging on both p59Fyn and ERK1/2 pathways (for 

reviews, see Linden et al., 2008; Sorgato et al., 2009). Moreover, it is good to remind that these 

two signaling pathways are closely related, given that ERK1/2 activation can be also mediated by 

p59Fyn through the Ras/Raf pathway (Ramos, 2008). 

We scrutinized the phosphorylation levels of p59Fyn and ERK1/2 under steady-state conditions 

after prolonged incubation in either a Ca2+-free medium containing EGTA (100 µM), or a Ca2+-



44 

 

containing (1 mM) medium, thus mimicking the state in which neurons were just before SOCE or 

glutamate/NMDA stimulation, respectively. As shown in Figure 9, p59Fyn activation was higher 

(∼30%) in PrP-KO CGN compared to Tg46 neurons, before both SOCE and glutamate/NMDA 

stimulation, whereas ERK1/2 phosphorylation was significantly increased in the PrP-KO genotype 

(∼60% more than Tg46 CGNs) only when neurons were kept in the Ca2+-containing medium 

(Figure 10). These findings thus support the possibility that p59Fyn- and ERK1/2-regulated 

signaling pathways act as intermediate players between PrPC, and SOCC- and/or 

glutamate/NMDA-mediated Ca2+ movements.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. p59
Fyn

 phosphorylation is higher in PrP-KO than in Tg46 CGNs after incubation in both the Ca
2+

-

free and Ca
2+

-containing medium. 

Tg46 (blue) and PrP-KO (red) CGNs, subjected to treatments mimicking those occurring before either SOCE 

(EGTA 100 µM, see Figure 4), or glutamate/NMDA stimulation (Ca
2+

 1 mM , see Figures 6 and 8), were 

harvested and homogenized, and then subjected to Western blot analysis for quantifying the 

phosphorylation state of p59
Fyn

, as described under Materials and Methods. The upper panel reports a 

Western blot  representative of 10 independent experiments for each PrP genotype, while the lower panel 

reports the densitometric analysis of anti-p-Src immunosignals (with an Ab directed to the activatory 

phosphorylated site Y416 of p59
Fyn

), normalized to the density of total p59
Fyn

 immunoreactive bands, 

under the indicated experimental conditions. Shown data indicates that p59
Fyn

 is significantly more active 

(∼30%) in PrP-KO CGNs compared to the PrP-expressing counterpart, under both Ca
2+

-free and Ca
2+

-rich 
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conditions. Values are mean ± SEM; n = 10 for both the Tg46 and PrP-KO genotypes and the cell treatment 

protocols. *p<0.05  Student’s t-test.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. ERK1/2 MAP kinases are more phosphorylated (active) in PrP-KO than in Tg46 CGNs after 

incubation in the Ca
2+

-containing, but not in the Ca
2+

-free, medium.  

Tg46 and PrP-KO CGNs were subjected to Western blot analysis for quantifying the phosphorylation state 

of ERK1/2. The upper panel reports a Western blot representative of 10 independent experiments for 

each PrP genotype, while the lower panel reports the densitometric analysis of anti-p-ERK1/2 over total 

ERK1/2 immunoreactive bands, under the indicated experimental conditions. Shown data indicates that 

ERK1/2 is significantly more active (∼60%) in PrP-KO CGNs compared to the PrP-expressing counterpart 

under conditions mimicking those occurring before glutamate/NMDA stimulation (Ca
2+

 1 mM), but not 

before SOCE (EGTA 100 µM). Values are mean ± SEM; n = 10 for both the Tg46 and PrP-KO genotypes and 

the cell treatment protocols. *p<0.05  Student’s t-test. Other experimental details are in the legend to 

Figure 9.  
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Taken together, shown results demonstrate that PrPC play a role in neuronal Ca2+ homeostasis, 

modulating Ca2+ transients elicited by different stimuli in different cell domains/compartments. 

With the exception of the steady-state level of the ER lumen, in which [Ca2+] is significantly lower 

when PrPC is absent, PrPC seems to have the general role to limit Ca2+ rises inside neurons, in 

particular in the cytosol and the mitochondrial matrix, when neurons are exposed to SOCE or 

glutamate/NMDA. This underscores a possible important role for PrPC in maintaining a correct 

neuronal Ca2+ homeostasis and, consequently, normal cell excitability and synaptic functions. 

Such a synaptic role for PrPC has also been demonstrated by other studies, showing that its 

absence provoked deficits in spatial learning (Criado et al., 2005), altered long-term potentiation 

(Collinge et al., 1994; Maglio et al., 2004; Manson et al., 1995), and increased neuronal 

excitability (Colling et al., 1996; Mallucci et al., 2002). Our findings are also in line with the 

alleged neuroprotective role ascribed to the protein, given that intracellular Ca2+ overloads are 

commonly associated to neuronal damage and death. The fact that alterations of Ca2+-

dependent neuronal functions were observed in prion disease models (Peggion et al., 2011), in 

which functional PrPC is continuously converted into PrPSc, also allows us to propose a suggestive 

perspective, in which the control of Ca2+ homeostasis is a therapeutic target for prion diseases. 

By a molecular point of view, we have demonstrated that PrPC could exert its control over 

neuronal Ca2+ homeostasis by modulating important intracellular signaling pathways, i.e., those 

involving p59Fyn and ERK1/2. Further studies are required, however, to elucidate better this 

issue, such as investigations implicating the pharmacologic inhibition of these pathways, and/or 

focused on the phosphorylation pattern of components of the SOCE machinery and of 

glutamate/NMDA receptors. 
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3.4 TREATMENT OF CGN WITH Aββββ OLIGOMERS 

The amyloid Aβ peptide (in particular the 1-42 amino acid-long species) is produced by the 

proteolysis of APP. It shows a remarkable ability to aggregate, leading to the formation of large 

and insoluble deposits (plaques) in the brain of patients affected by AD (Glenner and Wong, 

1984). The “amyloid cascade hypothesis” postulates that a time-dependent deposition of 

Aβ aggregates in the brain is responsible for AD neurodegeneration (Hardy and Higgins, 1992). 

Several recent evidences, however, suggest that instead of large amyloids the toxic species 

responsible for AD cognitive and functional derangement are soluble Aβ oligomers, known as 

Aβ-derived diffusible ligands (ADDLs) (Lambert et al., 1998; Lacor et al., 2004; Cleary et al., 

2005). 

To ascertain whether a PrPC-dependent distortion of Ca2+ homestasis could be involved in the Aβ 

oligomer-induced neurodegeneration occurring in AD, primary cultures of CGNs with different 

PrP genotypes were treated with Aβ oligomers and then assayed for local Ca2+ movements (by 

the AEQ-based strategy). Given that the high Aβ propensity to aggregate, and its low in vivo 

concentration (nM) preclude isolation of large quantities of soluble Aβ peptides from natural 

sources (Hepler et al., 2006), we have used chemically synthesized Aβ1-42 fragments that were 

subsequently subjected to an oligomerization process. 

3.4.1 CHARACTERIZATION OF Aβ PEPTIDES  

To qualitatively characterize the used preparations, Aβ1-42 samples were analyzed by Western 

blot (using anti-Aβ 6E10 mAb) before and after the oligomerization process. As shown in Fig. 9, 

the Aβ1-42 peptide (of approximately 4.5 KDa molecular mass in its monomeric form) migrates 

in different oligomerized forms, from monomers, to dimers, to trimers, and higher order-

oligomers. This pattern is observed both before (line 1), and after (line 2) the so-called process 

of ”aging” (37°C, 1 h), although the “aging” treatment clearly increases the amount of high mass 

species over the lower mass ones predominating in the freshly diluted Aβ preparations. This 

result indicates that the process of oligomerization is effective, although more sophisticated 

investigations, e.g. by size-exclusion chromatography, are necessary to provide a definitive 

profile of the oligomeric/aggregated states.  
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Figure 11. The procedure of Aβ1-42 oligomerization increases the abundance of n-mers of higher 

molecular weight with respect to freshly dissolved peptide preparations. Chemically-synthesized Aβ1-42 

peptide samples were subjected, or not, to the process of oligomerization described in Materials and 

Methods. The qualitative analysis of the peptide preparations by Western blot (using anti-Aβ mAb 6E10) 

demonstrates that, while freshly resuspended Aβ peptides were mainly present as monomers (∼5 kDa) 

and dimers (lane 1), after the oligomerization step the immuno-reactive signal was enriched in 3-mers, 

and higher order-oligomers (lane 2). Molecular mass standards (kDa) are reported on the right. 

3.4.2 EFFECTS OF Aβ OLIGOMERS IN CGN LOCAL [Ca
2+

] MOVEMENTS 

We then investigated whether Aβ1-42 oligomers were affecting local Ca2+ fluxes in a PrPC-

dependent manner. To this end, CGN (with or without PrPC) expressing each AEQ isoform were 

subjected to protocols identical to those reported above but for the presence of Aβ1-42 

fragments (5 µM).  

In this thesis, we show only the data obtained after about SOCCs stimulation in light of the good 

number of experiments carried out. Conversely, we unfortunately have not yet accumulated a 

similar number of experiments using glutamate or by stimulating specifically NMDARs.  

LOCAL [Ca
2+

] CHANGES AFTER Ca
2+

 ENTRY THROUGH SOCCs  

We first examined Ca2+ fluxes through SOCCs using pmAEQ (Fig. 10A). We found that, compared 

to the untreated counterpart, addition of Aβ1-42 oligomers to Tg46 CGN induced a statistically 

significant (20%) increase of Ca2+ peak transients in PM microdomains (light blue bar) (peak 

values: 21.41 ± 0.56 µM, (untreated) Tg46 CGN; 26.27 ± 2.07 µM, Tg46 CGN +Aβ(1-42)). These 

results favor the assumption that the interaction of PrPC with Aβ peptides distorts the function 

of PrPC. Indeed, were the control exerted by PrPC over SOCE lost after Aβ addition, Tg46 CGN 
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should have increased Ca2+ transients similar to (untreated) PrP-KO neurons. This is indeed the 

trend displayed by Aβ−treated Tg46 CGN. On the same basis, PrP-KO neurons should not have 

been affected by Aβ oligomers. Instead, we observed a decreased Ca2+ transient (pink bar) that, 

although not statistically significant, likely indicates an unspecific effect of Aβ peptides on 

neuronal plasma membrane permeability (peak values: 30.40 ± 1.48 µM, (untreated) PrP-KO 

CGN; 25.93 ± 1.36 µM, PrP-KO CGN +Aβ(1-42)). It is important to consider that, were this effect 

real, it means that the 20% increase observed in Aβ-treated Tg46 CGN would be much higher, 

being it masked by the unspecific effect that can be observed in the absence of PrPC. To note 

that in the original paper demonstrating that PrPC acts as Aβ-receptor, it was reported that this 

role accounts for only 50% of toxic Aβ effects in neurons (Laurén et al., 2009). 

Next, we investigated how the cytosol and the mitochondrial matrix reacted to SOCC-mediated 

Ca2+ influx in the presence of Aβ oligomers. As shown, Aβ oligomers did not provoke any 

variation of Ca2+ transients neither in the cytosol (light blue bar, Fig. 10B) nor (as expected in 

light of Fig. 10B) in the mitochondrial matrix (light blue bar, Fig. 10C) of Tg46 CGN (peak value: in 

cytosol, 1.08 ± 0.05 µM, (untreated) Tg46 CGN and 1.15 ± 0.11 µM, Tg46 CGN +Aβ(1-42); in 

mitochondria, 21.84 ± 1.01 µM, (untreated) Tg46 CGN, and 19.96 ± 1.62 µM, Tg46 CGN +Aβ(1-

42)). Once again, however, somehow supporting the above reasoning, we found that treatment 

of PrP-KO CGN significantly decreased Ca2+ transients (by approximately 20%) in both domains 

(pink bars of Fig. 10B and 10C, respectively) (peak value: in cytosol, 1.26 ± 0.06 µM, (untreated) 

PrP-KO CGN and 1.00 ± 0.03 µM, PrP-KO CGN +Aβ(1-42); in mitochondria, 26.11 ± 0.93 µM, 

(untreated) PrP-KO CGN and 19.60 ± 1.78 µM, PrP-KO CGN +Aβ(1-42)). 

Notwithstanding the difficulty of interpretation that is augmented by the notion that the 

absence of PrPC is itself perturbing Ca2+ homeostasis, a rather complex picture emerges from our 

study on PrPC as possible mediator of Aβ effects. Regarding SOCE, for which we have 

accumulated a good number of experiments, data obtained in neurons expressing or not PrPC 

strongly indicate that Aβ oligomers have both a PrPC-dependent and a PrPC-independent effect, 

respectively, and that the latter likely masks the effective impact of PrPC-Aβ interactions. This 

allows us to conclude that PrPC appears to be involved in triggering Aβ-mediated Ca2+ dys-

homeostasis, at least at the level of SOCE. Concurrently, it reinforces the notion that PrPC 

controls SOCE, as proposed (Lazzari et al., 2011). 
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Figure 1210. PrP
C
-dependent and -independent effects of oligomerized Aβ1-42 peptides on local SOCE-

mediated Ca
2+

 movements. 

Tg46 (blue) and PrP-KO (red) CGNs expressing pmAEQ (A), cytAEQ (B), or mtAEQ (C), incubated (light 

color), or not (dark color), with oligomerized Aβ1-42 peptides were subjected to SOCE stimulation. Bar 

diagrams report the peak values of the Ca
2+

 transients observed in the different cell domains. While Aβ1-

42 induces a prevailing “PrP-independent” reduction of the Ca
2+

 transients in bulk cytosol and the 

mitochondrial matrix (see the PrP-KO values in panel B and C, respectively), the “PrP-dependent” effect is 
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able to overcome the PrP-independent one in the sub-PM domains (see the TG46 values in panel A).  

Values are mean ± SEM; n = 174 (Tg46), 42 (Tg46+Aβ(1-42)), 169 (PrP-KO) and 40 (PrP-KO+Aβ(1-42)) in (A), 

n = 41 (Tg46), 13 (Tg46+Aβ(1-42)), 57 (PrP-KO) and 18 (PrP-KO+Aβ(1-42)) in (B), n = 56 (Tg46), 18 

(Tg46+Aβ(1-42)), 70 (PrP-KO) and 17 (PrP-KO+Aβ(1-42)) in (C). Biological replicates were 20 (for both Tg46 

and PrP-KO) or 6 (for both Tg46+Aβ(1-42) and PrP-KO+Aβ(1-42)) in (A); 10 (Tg46), 12 (PrP-KO) or 4 (for 

both Tg46+Aβ(1-42) and PrP-KO+Aβ(1-42)) (B); 10 (Tg46), 13 (PrP-KO) or 4 (for both Tg46+Aβ(1-42) and 

PrP-KO+Aβ(1-42)) in (C). ***p<0.001, **p<0.01, Student’s t-test. All other details are as described in 

Materials and Methods and the legend to Figure 4. The mean traces from which the reported peak values 

were calculated are illustrated in the Supplementary Information section (Figure S1). 

3.4.3 TREATMENT WITH Aββββ ABOLISHES THE EFFECT OF PrP
C
 ON THE p59

Fyn
 

PATHWAY 

In the attempt to rationalize the above findings on molecular basis, we analyzed whether 

treatment with oligomerized Aβ1-42 affected p59Fyn and Erk1/2 activation (before SOCE 

stimulation) in a PrPC-dependent manner. While in the case of Erk1/2 no significant effect was 

observed (data not shown), Aβ treatment increased the steady-state phosphorylation levels of 

p59Fyn after incubation of neurons in the Ca2+-free medium, thereby completely abrogating the 

difference observed in untreated CGNs (Figure 13). Thus, PrPC-Aβ docking seems to abolish the 

PrPC-dependent down-regulation of the p59Fyn pathway, which may in turn stimulate SOCC 

activation, and promote the larger Ca2+ transients that were observed in sub-PM domains (see 

Figure 12A, and Figure S1 in the Supplementary Information section). Interestingly, it has been 

recently reported that Aβ binding to PrPC leads to the phosphorylation of the NMDAR subunit 

NR2B by activated p59Fyn at the synapses of cortical neurons, with consequent neuronal Ca2+ 

overload and excitotoxicity (Um et al., 2012). It will thus be of major interest to understand 

whether treatment with Aβ oligomers induces PrPC-dependent (and p59Fyn-mediated) alterations 

of local Ca2+ movements in NMDA-stimulated CGNs. 
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Figure 13. Treatment with Aββββ1-42 abrogates the down-regulation of p59
Fyn

 activation by PrP
C
.  

Tg46 (blue) and PrP-KO (red) CGNs, treated, or not, with oligomerized Aβ1-42, subjected to an incubation 

protocol mimicking that occurring before SOCE (EGTA 100 µM, see Figure 4), were subjected to Western 

blot analysis for quantifying the phosphorylation state of p59
Fyn

. The upper panel reports a representative 

Western blot, while the lower panel reports the densitometric analysis, under the indicated experimental 

conditions. Treatment with Aβ1-42 increases the steady-state phosphorylation levels of p59
Fyn

 and 

completely abolishes the difference observed in untreated CGNs (cfr. Figure 13). Values are mean ± SEM; 

n = 10 for untreated CGNs, and n = 4 for Aβ-treated samples. *p<0.05  Student’s t-test.  
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In neurons, maintenance of a proper Ca2+ homeostasis is fundamental for many cellular 

functions, including synaptic activity and memory formation and consolidation, and for cell 

survival (Mattson, 2007). Of consequence, defects of Ca2+ signaling contributes to synaptic 

dysfunctions, and can lead to excitotoxic and/or apoptotic death, all of which are hallmarks of 

many neurodegenerative diseases, including AD (Bezprozvanny, 2009). Although the precise 

mechanisms of AD-related neurodegeneration are not yet known, it is now commonly 

recognized that it is caused by Aβ peptide oligomeric species. Much credit is also given to the 

possibility that Aβ-induced disruption of Ca2+ homeostasis has a central role in AD pathogenesis 

(Mattson and Chan, 2003). 

Given that PrPC is involved in Ca2+ homeostasis (Lazzari et al., 2011; for a review see Peggion et 

al., 2011), and may act as a high-affinity receptor for Aβ oligomers (Laurén et al., 2009; Balducci 

et al., 2010; Calella et al., 2010; Chen et al., 2010; Freir et al., 2011; Zou et al., 2011), possibly 

mediating their neurotoxic effects (Laurén et al., 2009; Chen et al., 2010; Chung et al., 2010; 

Gimbel et al., 2010; Alier et al., 2011; Barry et al., 2011; Bate and Williams, 2011; Freir et al., 

2011; Resenberger et al., 2011; Zou et al., 2011; Kudo et al., 2012; Um et al., 2012; You et al., 

2012), we have investigated whether PrPC-Aβ binding perturbs local Ca2+ homeostasis in 

neurons. This was indeed what we have found with respect to SOCE. Intriguingly, treatment with 

Aβ increased Ca2+ transients in sub-PM domains of PrP-expressing CGNs (Figure 12A), thereby 

completely abrogating the differences between these neurons and the PrP-KO counterpart. A 

similar effect was observed with respect to activated p59Fyn levels (Figure 13), suggesting that 

the binding of Aβ1-42 oligomers diverts the normal PrPC function, mimicking a PrP-KO 

phenotype. Abrogation of the differences displayed by PrP-KO and TG46 neurons with respect to 

SOCE-mediated Ca2+ fluxes seems to be a general action of Aβ oligomers, given that this was also 

observed for Ca2+ fluxes in the cytosol and in the mitochondrial matrix. In these cases, however, 

this was due to a reduced response of Aβ-treated PrP-KO neurons compared to the untreated 

counterpart (Figure 12B and C), to explain which one needs to invoke PrP-independent effects of 

Aβ oligomers on SOCE. This is not surprising, given that it was previously found that only about 

50% of Aβ oligomers bind to neurons in a PrPC-dependent manner (Lauren et al., 2009). 

We now know that, in AD, glutamatergic neurotransmission – fundamental to learning and 

memory – is severely disrupted. In particular, Aβ oligomers may promote excessive activation of 

glutamate receptors, and the consequent Ca2+ overload may lead to neuronal dysfunction and 

cell death (Mattson and Chan, 2003). Although glutamate can be neurotoxic through excessive 

stimulation of both ionotropic and metabotropic glutamate receptors, disruption of neuronal 
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functions in AD seems to depend primarily on NMDAR activation (Butterfield and Pocernich, 

2003). In this context, it has been reported that Aβ oligomers affect – through both direct and 

indirect mechanisms – NMDARs by keeping its ion channel tonically open. By causing excessive 

Ca2+ influx, this leads to impairment of synaptic plasticity, LTP and learning/memory, and 

eventually neuronal death (Danysz and Parsons, 2012). Hopefully, the role of PrPC in mediating 

Ca2+-dependent toxic effects of Aβ oligomers will be better understood once our experiments 

involving glutamate and NMDA stimulation of CGNs will be completed. 
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SUPPLEMENTARY INFORMATION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S111. PrP
C
-dependent and -independent effects of oligomerized Aβ1-42 peptides on local SOCE-

mediated Ca
2+

 movements.  

Tg46 (blue) and PrP-KO (red) CGNs expressing pmAEQ (A), cytAEQ (B), or mtAEQ (C), incubated (light 

color), or not (dark color), with oligomerized Aβ1-42 peptides were subjected to SOCE stimulation. The 

figure reports the mean traces of the observed Ca
2+

 transients whose peak values are reported in Figure 

12. See Figure 12 for all experimental details and statistics. 
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