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The integration of gene and miRNA expression using pathway topology: a

case study on epithelial ovarian cancer.

by Enrica Calura

Pathways are formal descriptions of the biological processes involving finely regulated

structures by which a cell converts molecules or processes signals. The study of gene

expression in terms of pathways is defined as pathway analysis and aims at identifying

groups of functionally related genes that show coordinated expression changes. Recently,

pathway analysis moved from algorithms using merely gene list to ones exploiting the

topology that define gene connections. A crucial, and unfortunately limiting step for

these novel methods are the availability of the pathways as gene networks in which nodes

are genes and edges are the relations between two elements.

To this aim, we develop a pathway data interpreter, called graphite, able to uniformly

store, process and convert pathway information into gene networks. graphite has been

made publicly available as R package within the Bioconductor platform. In the field of

the topological pathway analysis, graphite fills the existing gap lying between technical

and methodological aspects. graphite i) allows performing more informative analysis on

omics data and ii) allows developing new methods based on the increased accessibil-

ity of biological knowledge. However, the pathways of the four main public resources

integrated into graphite (KEGG, Reactome, Biocarta and PID), still lack of crucial

interactors: the microRNAs.

The microRNAs are small non-coding RNAs that post-transcriptionally regulate gene

expression, their function on the messenger target is repressive but their e↵ect on the

transcription is dependent of the topology of the pathway in which the miRNA is in-

volved. In the last decade, many targets have been discovered and experimentally val-

idated, dedicated databases are available providing these information. Thus, I worked

on an extension of graphite package able to integrate microRNAs in pathway topology,

i) linking the non-coding RNAs to their validated target genes, ii) providing integrated

networks suitable for the topological pathway analyses. The feasibility of this approach
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has been validated on a specific biological context, the early stage of Epithelial Ovarian

Cancer (EOC).

EOC has long been considered as a single disease. The emerging opinion, however, sees

ovarian cancer as a general term that encloses a group of histo-pathological subtypes

sharing a common anatomic location. In collaboration with the Mario Negri institute,

257 stage I EOC tumour biopsies were collected and stratified into training and valida-

tion sets. miRNA microarray data was used to generate the most highly reproducible

signatures for each histotype through a dedicated resampling inferential strategy. qRT-

PCR was used to validate the results in both the training and validation set. The results

indicate that the clear cell histotype is characterized by high expression levels of miR-

30a and miR-30a*, while mucinous patients by high levels of miR-192 and miR-194,

interestingly as well as mucinous non-ovarian tissues. Then, the integrative approach

that combines mRNA and miRNA profiles using graphite has been applied to identify

the mucinous specific regulatory circuits. Taken together our findings demonstrate that

EOC histotypes have discriminant regulatory circuits that drive the di↵erentiation of the

tumour environment. Our approach successfully guides us towards important biological

results with interesting therapeutic implications in EOC.
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pathway: un caso studio sul tumore epiteliale ovarico.

di Enrica Calura

I pathway sono descrizioni formali ed accurate dei processi biologici, che sono serie di

eventi, finemente regolati, attraverso i quali la cellula opera trasformazioni su molecole

o altri processi. Lo studio dell’espressione genica attraverso i pathway è definita come

”analisi di pathway” e cerca di identificare gruppi di geni correlati da un punto di

vista funzionale con cambiamenti coordinati nell’espressione. Recentemente, la sua più

promettente è stato il passaggio da algoritmi che considerano i pathway semplici elenchi

di geni, ad algoritmi che sfruttano la topologia del pathway stesso, ovvero le reti delle

connessioni geniche. Uno dei limiti di questi nuovi metodi di analisi è la mancanza dei

pathway sotto forma di reti, in cui i nodi sono geni e gli archi sono le relazioni che

intercorrono tra di essi.

Durante il mio dottorato abbiamo sviluppato un interprete per i pathway, denominato

graphite, in grado di memorizzare in modo uniforme, elaborare e convertire le infor-

mazioni contenute in essi. graphite è stato reso pubblicamente disponibile come pac-

chetto R all’interno della piattaforma Bioconductor. Nel campo d’indagine delle analisi

topologiche, graphite colma il divario esistente tra gli aspetti tecnici e metodologici.

graphite i) permette di eseguire analisi più avanzate dei dati omici e ii) consente lo

sviluppo di nuovi metodi o↵rendo una maggiore e più facile accessibilità ai dati. Tut-

tavia, i pathway provenienti dalle quattro principali risorse pubbliche che sono state

integrate in graphite (KEGG, Reactome, BioCarta e PID), mancano ancora di interat-

tori cruciali: i microRNA.

I microRNA sono piccoli RNA non codificanti che regolano l’espressione genica post-

trascrizionale, la loro funzione sul target messaggero è repressiva ma il loro e↵etto gen-

erale sull’espressione va interpretato a seconda delle interazioni del contesto biologico

in cui sono descritti, cioè della topologia del pathway in cui coinvolto il miRNA. Negli
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ultimi dieci anni, molti geni target di miRNA sono stati scoperti e validati sperimental-

mente, informazioni a riguardo sono fornite in diversi database pubblici. Durante il mio

dottorato ho lavorato su un’estensione del pacchetto graphite per integrare i microRNA

all’interno dei pathway, i) collegando i miRNA ai loro geni target validati, ii) fornendo

reti bipartite adatte per le analisi di pathway topologiche. Questo approccio è stato

applicato allo studio di dati di espressione ottenuti da pazienti allo stadio iniziale di

tumore ovarico epiteliale.

Il tumore ovarico epiteliale è stato a lungo considerato come una singola malattia. Recen-

temente, tuttavia, si ritiene che ”tumore ovarico epiteliale” sia solo un termine generale

che racchiude un gruppo di sottotipi isto-patologici che condividono solo una comune

localizzazione anatomica. In collaborazione con l’Istituto ”Mario Negri” di Milano, sono

state raccolte le biopsie di 257 tumori ovarici epiteliali di stadio I e sono state stratificate

in un training set e in un validation set. I dati di espressione di microRNA del train-

ing setsono stati analizzati con una specifica strategia di ricampionamento inferenziale

con l’intento di trovare le firme molecolari specifiche di ogni istotipo. La qRT-PCR è

stata utilizzata per validare i risultati sia nel training set che nel validation set. I nos-

tri risultati mostrano come l’istotipo a cellule chiare sia caratterizzato da elevati livelli

di espressione di miR-30a e miR-30a*, mentre l’istotipo mucinoso da elevati livelli di

miR-192 e miR-194. Questi ultimi due microRNA sono marcatori riconosciuti e vali-

dati di tumore al colon, a sostegno dell’ipotesi che l’istotipo mucinoso sia una patologia

molto diversa da gli altri istotipi ovarici piuttosto che di altri tumori mucinosi. E’ stato

applicato, poi, un approccio integrativo che utilizzando i profili di espressione sia dei

miRNA sia dei geni, sugli stessi campioni, ha permesso di identificare un circuito re-

golativo che si ritiene essere specifico dei pazienti mucinosi. Nel loro insieme, i nostri

risultati dimostrano che i diversi istotipi di tumore ovarico epiteliale hanno circuiti rego-

latori distinti, inoltre ci permettono di a↵ermare che attraverso l’uso di graphite abbiamo

saputo a↵rontare in modo nuovo l’analisi integrata dei dati biologici, rivelando anche

interessanti implicazioni terapeutiche per il tumore ovarico epiteliale.
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Chapter 1

Introduction

The research project of my PhD has two main cores: the development of new bioinfor-

matic tools for the analysis and the integration of gene and miRNAs expression data,

and the application of these tools to tackle a given biological question. Specifically, I

contributed to the development of a new computational framework for the storage, inter-

pretation and analysis of pathways. Than, I applied this new framework to characterize

transcriptional and post-transcriptional alterations in early stage Epithelial Ovarian

Cancer. This introduction is divided in three main sections, Epithelial Ovarian Cancer,

microRNAs and pathways, that represent the main dealt areas.

1.1 Epithelial Ovarian Cancer: The Silent Killer

Despite the increasing molecular knowledge of tumor biology which underpins the de-

velopment of new therapeutic and clinical management strategies, Epithelial Ovarian

Cancer (EOC) is the most common cause of death in gynecological diseases, with a five-

years survival rate virtually unchanged in the past 30 years (Kurman and Shih, 2010;

Vaughan et al., 2011). The EOC etiopathogenesis is totally unknown. More than the

90% of ovarian malignancies are called surface epithelial cancer, even if the epithelial

origin of these tumor is a controversial issue (Gilks, 2010).

1.1.1 The staging

Nowadays, the only way to determine the diagnosis and the staging of the tumor is

surgery. EOC are staged accordingly to International Federation of Gynecology and

Obsterics (FIGO) staging system outlined in Table 1.1 (excerpt from Jelovac and Arm-

strong (2011)).

1
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Figo
stage

Characteristics
Stage

Distribution

10 year
survival
rate

I Disease confined to the ovaries. 20% 73%
IA One ovary, capsule intact, no ascites.
IB Both ovaries capsule intact, no ascites.

IC
Stage IA and IB plus ascites or washing
capsule ruptures, tumor on ovarian sur-
face.

II Disease spread confined to the pelvis. 5% 45%

III

Disease confined to the abdominal cav-
ity, including surface of the liver, pelvic,
including surface of the liver, pelvic, in-
guinal, momentum, bowel, para-aortic
lymph nodes.

58% 21%

IIIA
Negative lymph nodes, plus microscopic
seeding of peritoneal surface.

IIIB
Negative lymph nodes, peritoneal im-
plants <2 cm.

IIIC
Positive lymph nodes and/or abdominal
implants >2 cm.

IV
Spread to liver parenchyma, lung, pleura,
or other extra-abdominal sites.

17% >5%

Table 1.1: EOC staging criteria excerpt from Jelovac review.

It should be noted that EOC stage I is the only stage confined to the ovaries; only the

stage I is considered ”early”, while II,III and IV stages are considered ”advanced”.

Studies on stage I EOC are important especially to improve diagnosis. In fact, EOC

is rarely diagnosed at early stages given the absence of specific symptoms. On the

contrary, with the spread of the tumor into the pelvis and upper abdomen (stage III

and IV) patients feel pain, pressure, early satiety and abdominal swelling. The screening

of asymptomatic women is performed through three screening tests: bimanual pelvic

examination, measurements of CA125 cancer antigene, and transvaginal ultrasound.

None of them have su�cient e�ciency to detect the tumor at early stage, that is a

crucial step to enhance the survival chances.

The low survival of patients with EOC is proportional to the dissemination of the tumor

that is dependent of the time of diagnosis. In patients with disease limited to the

ovaries survival is close to 80%. However, in cases in which the disease involves the



Chapter 1. Introduction 3

upper abdomen or beyond, only about 20% of patients survive at 5 years and this is due

to the inability to surgically remove the total amount of tumor mass.

1.1.2 The main classes of stage I EOC

All the attempts to understand EOC were certainly complicated by the heterogeneity

of this disease. The ovarian cancer can be divided in at least 15 type of tumors, each

of them characterized by histo-patological features, molecular alterations, risk factors,

di↵erent chemotherapy responses and resistances.

The main classification is in histologic subtypes. Low-grade serous, mucinous, en-

dometrioid and clear cell histotypes represent the great majority of stage I ovarian cancer

histotypes. They are characterized by a slow progression rate, are generally confined

to the ovary, they lack in TP53 mutations and show a lineage with the corresponding

benign neoplasm through an intermediate step called borderline tumor stage (Kurman

and Shih, 2010). Although this notion is not universally accepted, there is a general

consensus on the di↵erent molecular and clinical characteristics of the EOC histotypes

(Prat, 2012a). In a retrospective study, Köbel et al. (2008) tested 21 candidate markers

in a cohort of 500 advanced stages ovarian carcinomas, demonstrating that the asso-

ciation between biomarker expressions and survival rates varies among subtypes. The

results support the hypothesis that di↵erent histological types of ovarian cancer are dis-

tinct diseases suggesting that the juxtaposition of di↵erent histotypes in a single cohort

may not only confound survival analysis, but also lead to erroneous conclusions (Köbel

et al., 2008).

1.1.2.1 Endometrioid ovarian cancer

Endometrioid ovarian cancer (End) is usually of stage I and II. It shows a relative low

morbidity and mortality and seems to have a better survival compared to other histo-

types. Few endometrioid studies are available in literature, some studies of immunopro-

filing exist and demonstrated a similarity between endometrioid EOC and endometrial

cancer (Jelovac and Armstrong, 2011).

1.1.2.2 Mucinous ovarian cancer

Mucinous ovarian carcinoma (Muc) develops almost always within the ovary. It is indis-

tinguishable by mucinous non-ovarian carcinoma or metastatic carcinoma with mucinous
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di↵erentiation (cervix, colon/rectum, appendix cancers) (Kelemen and Köbel, 2011). Al-

though confined in the ovary, Muc tends to be the largest epithelial ovarian neoplasm

with a diameter of 18-20 cm (Jelovac and Armstrong, 2011). Mucinous ovarian carci-

noma is characterized by KRAS mutations and HER2 amplifications similar to breast

cancer. Due to the low response to treatments, the development of subtype-specific

treatment trial is a priority in mucinous ovarian carcinoma (Gilks, 2010).

1.1.2.3 Clear cell ovarian cancer

Early stage clear cell ovarian carcinoma (Cc) is usually considered of high grade (grade

3). Treatments are particularly ine�cient independently of the low mitotic rate of this

histotype. Gene expression studies detect similarities with renal clear cell carcinoma

suggesting the possibility to reuse the therapy of renal cancer for the Cc. Furthermore,

co-occurrences of clear-cell and endometriosis has been observed. Due to the low re-

sponse to standard treatments, the clear cells subtype is a priority for the development

of subtype-specific treatment trial, as well as mucinous ovarian carcinoma (Gilks, 2010).

1.1.2.4 Serous ovarian cancer

Serous ovarian cancer (Ser) accounts for the 75% of EOCs and it is divided in low-grade

and high-grade (Malpica et al., 2004).

High-grade serous ovarian cancer is the most common representation of EOC. For this

reason, Ser is considered the ”true ovarian cancer” and it is supposed to derive by

tubal intraepithelial cells. High-grade of Ser is mass poorly di↵erentiated cells, with the

only variant of the presence of concentric rings of calcification called psammoma bodies

(Jelovac and Armstrong, 2011).

Low-grade of serous ovarian carcinoma seems to represent the natural progression of

non-invasive borderline tumor of type serous. Both this type are characterized by a

young age at diagnosis, prolonged clinical history and similar histology. Moreover, in

a large number of patients the two types co-exist. Ser is characterized by KRAS and

BRAF mutations, wild type TP53 and chromosome stability (Vaughan et al., 2011). It

is conceivable, instead, that low-grade and high-grade of serous carcinomas are the prod-

ucts of two di↵erent tumorigenic pathways, with few and rare intersections, as reflected

by di↵erent chemotherapeutic sensitivities and prognoses (Vaughan et al., 2011).
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1.1.2.5 Relapsing

In advanced EOCs, approximately 10%-15% of treated patients achieve and maintain

complete responses to therapy, most of the patients have persistent disease or they

eventually relapsed (Armstrong, 2002). On the contrary, fewer than 20% of patients

with stage I EOC have aggressive disease and relapsed within 5 years of primary surgery.

How to discriminate between curable patients and those who will relapse after adjuvant

chemotherapy is still an unresolved clinical issue (Marchini et al., 2008).

Prediction of relapse on the basis of current clinical knowledge and pathological features

is di�cult (Cannistra, 2004). However, predicting relapse might be possible with a

better knowledge of the molecular and genetic mechanisms that are associated with

each tumor stage. The knowledge of the molecular pathways that are altered during

neoplastic transformation might help to expedite the discovery of biomarkers for early

disease detection, prediction of clinical response and guidance of treatment.

Given that only 10% of all patients with stage I EOC shows relapse, this makes extremely

di�cult the recruitment of sizable cohorts of patients.

1.1.2.6 Grading

The grade is a measure of the gravity of the cell transformation in a debulked tumor.

Three levels are possible: grade 1, grade 2 and grade 3. Grade 1 is used when the cells

are similar to normal cells, the cancer cells grow and multiply quite slowly and are not

so aggressive; Grade 3 when the cells are abnormal and unrecognizable and the cancer

is aggressive. Grade 2 is in the middle between the two situation presented above.

1.2 microRNAs

MicroRNAs (miRNAs) are fundamental regulatory elements of gene expression in ani-

mals and plants. They are 17-24 nucleotide long and regulate eukaryotic gene expression

post-transcriptionally.

Primary miRNA (pri-miRNA) transcripts with stem-loop regions are usually produced

by RNA polymerase II, but occasionally by RNA polymerase III. The stem-loop pre-

cursor, pre-miRNA, is released by a cleavage event, which is catalysed by the nuclear

Microprocessor complex that contains the RNase III Drosha and Pasha. Pre-miRNAs

are actively exported from the nucleus into the cytoplasm by the Exportin 5. A distinct

RNase III, Dicer, subsequently produces a ˜22 base-pair duplex RNA, that is the mature
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miRNA. In miRNA duplexes, usually the strand with the weakest 5’-end base pairing

is selected and loaded onto RISC (RNA-induced silencing complex) which contains the

Argonaute (Ago) protein. miRNAs use base-pairing to guide RISC to specific messenger

RNAs (mRNAs) with fully or partially complementary sequences located especially in

3’ untranslated regions (UTRs). WatsonCrick base-pairing of 2-7 miRNA nucleotides

called ”seed” is crucial for the targeting. The couple miRNA-mRNA enables transla-

tional inhibition or exonucleolytic mRNA decay. Unfortunately the factors that govern

the prevalence of one specific mechanism remain unknown.

Each miRNA regulates numerous target genes and a lot of computational algorithms

were developed to predict the resulting expression down-regulation. The development

of algorithms goes hand in hand with the understanding of miRNA mode of action and

function (Bartel, 2004, 2009).

The miRBase is the reference database of published miRNA sequences and annotations

(http://www.mirbase.org/). At the time of writing, the current release of miRBase

(version 19) contains more than 15000 microRNA gene loci in more than 140 species

and at least 17000 distinct mature microRNAs, 1600 of which discovered in human

(Gri�ths-Jones et al., 2008; Gri�ths-Jones, 2010). These numbers are increasing day

by day far exceeding the forecasts (Bentwich et al., 2005; Berezikov et al., 2005) and

also the the number of targeted genes, considered to be the 30% of human genes, has

probably been underestimated (Bartel, 2004).

1.2.1 Identification of miRNA target genes

1.2.2 Experimental study of miRNA mechanism and identification of

target genes

We can divide experimental identification of miRNA targets in direct and indirect meth-

ods (Ørom and Lund, 2010): (i) direct methods allow the validation of miRNA-mRNA

couples and are often based on the quantification of a reporter construct; (ii) indirect

methods do not test the binding between miRNA and mRNA but screen all the interac-

tions suggesting a set of candidates. These last methods use high-throughput techniques.

High-throughput approaches can be subdivided, as proposed by Ørom and Lund (2010),

in transcriptome analyses, proteome analyses and biochemical approaches.

Among the biochemical approaches we can find the immuno-precipitation of Ago com-

plex and the HITS-CLIP approach. The first is based on the isolation of functional

Ago-miRNA-mRNA complexes using antibody anti-Ago followed by either microarray
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or sequencing analysis of the two set of RNAs. The second one uses the UV light to

cross-link Ago protein with the associated miRNA and mRNA that will be subsequently

identified by sequencing. Both techniques give similar results, they identify a pool of

miRNAs and a pool of mRNAs reducing the possible miRNA-mRNA couples but they

are not able to identify the direct interaction.

Among proteome analyses we can find SILAC techniques that use stable light and heavy

isotope labeled amino-acids in cell culture to distinguish protein level variations after

miRNA over-expression or inhibition. Proteins are identified using mass spectrometry

and the protein quantity is considered proportional to the protein peak intensity. This

technique is the first example of high-throughput proteomic data, however it is not able

to screen all the proteome and to discriminate between direct and indirect interaction

e↵ects.

The transcriptome analyses can be divided in three categories depending on the ex-

perimental design: forced up-regulation or down-regulation of a single miRNA with

subsequent measure of genome-wide expression, or measurement of both miRNA and

gene expression on the same biological samples.

The miRNA up-regulation is performed transfecting high quantity of a specific miRNA

in a cell line and looking for down-regulated genes. The miRNA down-regulation is per-

formed inhibiting the miRNA of interest with complementary oligonucleotides and look-

ing for up-regulated genes. These two approaches are widely used and several datasets

based on this strategies are deposited in databases as Gene Expression Omnibus (GEO,

Barrett et al. (2011)) and Array Express (AE, Parkinson et al. (2011)). However, miRNA

up-regulation and down-regulation strategies have several drawbacks: (i) they fail to dis-

tinguish direct and indirect relations between miRNA and target genes; (ii) the expres-

sion of the miRNA and its target is not necessary anti-correlated, but it depends on the

topology of the regulatory circuits in which they are involved; (iii) cell cultures do not

have necessarily the same behavior of the cells in tissue (Ruepp et al., 2010); (iv) they

are unable to measure miRNA activity performed exclusively inhibiting the translation;

(v) overexpression of miRNA levels could cause multiple artifacts, such as saturation of

RISC complexes, preventing the access of endogenous miRNAs (Khan et al., 2009); (vi)

some inhibitors of a miRNA can have low level of e�cacy and in some cases it is not

possible to design an inhibitor blocking all members of a miRNA families (Peter, 2009).

The third category of transcriptome analysis is based on the use of miRNA-mRNA

matched datasets. This technique depicts a more natural situation without experimental

artifacts and it is suitable for studies in which an high number of patients samples is

required. Despite the pros, this type of experiments are less frequently used than the

previous one and more di�cult to find in public repositories.
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1.2.2.1 Bioinformatic identification of miRNA target genes

Despite the increase of experimentally validated miRNA targets the majority of them

are unknown. The in silico predictions remain the only solution to pre-investigate the

data in a rapid way.

In the last years several algorithms have been developed using strategies like the se-

quence alignment between 3’ region of the genes and the seed sequence of the miRNA,

the sequence conservation through species, the target site accessibility and the binding

stability.

Some of the most famous target prediction algorithms are DIANA-microT (Maragkakis

et al., 2009), ElMMO (Gaidatzis et al., 2007), miRSVR (Betel et al., 2010), Pictar (Lall

et al., 2006), PITA(Kertesz et al., 2007), RNA22 (Miranda et al., 2006) and TargetScan

(Friedman et al., 2009). All these algorithms di↵ers for the features considered and

for the strategy adopted to perform predictions. Evaluating and comparing these tools

present several di�culties given the absence of a true solution.

Alexiou et al. (2009), in one of the latest reviews, compare the results of each algorithm

with data retrieved from miRNA overexpression experiments, and with a collection of

experimentally validated targets. The authors concluded that, despite some features are

more useful and some programs like DIANA-MicroT and TargetScan are more accurate

than others, in general all the programs fail to identify most of the targeted genes. The

biggest issue is that we dont know the proportion of miRNAs that follow the rules used

by the predictors. Then, when we make comparisons with experimental data we can

eliminate false positive predictions but the total amount of the false negatives remain

unknown (Ørom and Lund, 2010).

1.2.2.2 miRNA dedicated databases

An increasing amount of databases, which collect information about miRNAs and their

targets, exists. These databases contain information coming from literature, concerning

both in silico and experimental approaches in physiological and disease conditions. miR-

base (Gri�ths-Jones, 2010) is the most important web resource, especially for nomen-

clature and sequences. HMDD (Human MicroRNA-associated Disease Database) (Lu

et al., 2008), miR2Disease (Jiang et al., 2009) and PhenomiR (Ruepp et al., 2010) are

dedicated to miRNAs in diseases. miRGator (Nam et al., 2008), miRGen (Megraw

et al., 2007), Argonaute (Shahi et al., 2006) contain in silico target gene predictions.

miRecords (Xiao et al., 2009) and Tarbase (Vergoulis et al., 2012) contains validated

miRNA targets and information about the experimental validation methodologies.



Chapter 1. Introduction 9

1.2.3 miRNA and disease

miRNAs are involved in a large number of processes and the deregulation of their ex-

pression could lead to dysfunctions and diseases. Cancer is responsible for about the

25% of all deaths in the U.S. and is one of the major public health problems in the

world. For these reasons, cancer is one of the first and more studied pathology of mod-

ern biology, and miRNAs behavior were extensively studied in this disease. PhenomiR

collection, which contains information about miRNAs associated with diseases, reveals

that cancers are the most investigated (81%) followed by muscular (4,3%) and cardio-

vascular (4,1%) disorders. Among cancers the most investigated are leukaemia (16.7%),

colorectal cancer (10.6%) and breast cancer (9.5%) (Ruepp et al., 2010).

Despite the high variety of tumor types the hallmarks of cancer are (i) self-su�ciency of

tumor cells, (ii) insensitivity to anti-growth signals, (iii) absence of apoptosis, (iv) unlim-

ited replicative potential, (v) induction and maintenance of angiogenesis, (vi) invasion

and metastasis (Hanahan and Weinberg, 2011). Multiple aspects of cancer are regulated

by miRNAs and they are aberrantly expressed in an high number of di↵erent cancers.

It has been demonstrated that miRNAs are considered ideal candidates as diagnostic

and prognostic markers to distinguish between type of cancer, stage and other clinical

variables, even better than mRNAs. Moreover, they are attractive therapeutic targets

for the relative facility of their overexpression or inhibition (Lee and Dutta, 2009).

Despite the general low expression of miRNAs in cancer samples compared to normal

tissues miRNAs can act both as oncomir, miRNAs that cause tumor, or oncosuppressor,

miRNas that protect against tumor.

miRNA aberrant expression can occur through several mechanisms, such as (i) chromo-

somal abnormalities like deletion, duplication and translocation, (ii) Single Nucleotide

Polimorphisms (SNPs) either in miRNA locus or in binding site for miRNA or (iii) al-

ternative splicing. In addition, also virus are involved in tumorigenesis (iv) encoding

viral miRNAs or (v) through viral insertion near miRNA loci (Lee and Dutta, 2009).

The miRNA-associated disease network, obtained connecting diseases that share at least

one miRNA associated to the pathology, shows that all cancer are highly connected

together and clearly separated from any other diseases. Therefore, di↵erent cancers may

have the same miRNAs acting as oncomir or oncosoppressor although not necessarily

involved in the same onco-mechanism (Lu et al., 2008).
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1.2.4 miRNAs in Epithelial Ovarian Cancer

The role of microRNAs in high-grade ovarian cancer has been extensively studied in

the last decade, highlighting a strong involvement of both the non-coding RNAs and

the enzymes of the miRNA processing machinery (Iorio et al., 2007; Ventura and Jacks,

2009). Studies of stage III and IV EOC suggest that miRNAs are down-regulated in

tumour samples compared with normal tissue, and that their altered expression a↵ects

response to chemotherapy. Genes involved in the biogenesis of miRNAs were also altered

in EOC. Furthermore, Dicer and Drosha mRNAs and protein low concentrations have

been associated with poor outcome in a cohort of 108 stage III and stage IV ovarian

tumors (Pampalakis et al., 2010).

Numerous miRNAs associated with several aspects of EOC have been detected for their

ability to target multiple oncogenes (P53, PTEN, RAS, BRCA1 and BRCA2, VEGF,

TUBB3) at the same time.

Specifically, our group, in collaboration with the ”Mario Negri” Institute, revealed that

miR-200c is an independent prognostic factor of EOC. Examining a large cohort of

patients of stage I EOC, we found that the loss of miR-200c and the increasing of the

expression of its targets TUBB3 and VEGFA, produces a decreasing of overall and

progression free survival (Marchini et al., 2011).

Recently, this finding has been used to develop a therapy for EOC by Cittelly et al.

(2012). They show how the restoration of miR-200c expression into ovarian cancer

cells elicits an increased anoikis sensitivity (a particular type of apoptosis induced

by anchorage-dependent cells detaching from the surrounding extracellular matrix, the

name derived by Greek that means ”...the state of being without a home”) and a reduc-

tion of in vitro adherence to biologic substrates. Since anoikis-resistance is a critical steps

in EOC, restoration of miR-200c expression in intraperitoneal xenograft model, an in

vivo preclinical model of ovarian cancer, decreased tumor formation and tumor burden.

The study demonstrates also that a restoration of miR-200c expression in combination

with paclitaxel, a mitotic-inhibitor chemotherapeutic agent, enhances the decrease of

the tumor (Cittelly et al., 2012).

1.2.5 Multiple miRNAs cooperations

An indication of synergism in miRNA mode of action is highlighted by the analysis of

chromosomal distribution of miRNAs in relation to the studied pathology. Clustered

miRNAs (multiple miRNAs that share the same promoter because originated by a long

primary transcript) are not only co-expressed but also act in concerted way. The fraction
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of disease-associated miRNAs within a cluster are on average 1.4 times higher than the

background frequency and polycistronic loci are on average 3.5 times more disease-

associated than expected by chance (Ruepp et al., 2010). Malumbres (2012) assertes

that the deregulation of miRNA clusters occurs systematically in human diseases, and

that not only one miRNA acts as the causative, but multiple miRNAs act synergistically

on cellular processes.

The cells express multiple miRNAs at the same time and it is a matter of fact that

a single gene can be targeted by multiple miRNAs. This new layer of complexity is

supposed to be considered to understand the miRNA function (Krek et al., 2005; Lewis

et al., 2005; Peter, 2010).

In general targets down-regulation, yielded by a single miRNA, is quantitatively mod-

erated at the protein level, (Baek et al., 2008) suggesting that multiple miRNA contri-

butions determine whether a gene is expressed. The single contribution can be weak

but the sum of several weak contribution can have a significant impact on the system,

leading to combinatorial diversity and synergy in biological e↵ects (Peter, 2010).

Moreover, while miRNAs control the gene expression, the expression of the genes is

also influenced by other genes, in an highly connected regulatory network composed

of miRNA-gene and gene-gene edges. The complexity of the topology of this network

highlights the needs of studying the cell signals with holistic approaches, that are able

to solve and decipher the biological complexity. It is increasingly clear that we can not

continue studying miRNAs and genes separately outside the context of their network

interactions.

Finally, Poliseno et al. (2010), Tay et al. (2011), Salmena et al. (2011) demonstrated that

miRNA co-operate in a combinatorial manner both on coding and non-coding mRNA

transcripts, and that,viceversa, mRNAs competitively act as a decoy for microRNAs.

In a seminal paper Poliseno et al. (2010), studied PTEN and its pseudogene, that share

the same 3’UTR and the seeds for a set of miRNAs. They demonstrated that an up-

regulation of the pseudogene induces a recruitment of miRNAs that, as a consequence,

increases the presence of the PTEN mRNAs. This is because the pseudogene acts as a

sponge for their inhibitors. Generalizing this theory, we can assert that all the coding

and non-coding, long and short transcripts forms a large-scale regulatory network across

the transcriptome.

In this perspective, one of the new and biggest challenge in biology is the combination

of di↵erent kind of data, such as gene and miRNA expression, and the development of

new methods for the integration and interpretation of biologic complex systems.
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1.2.6 miRNAs in signaling pathways

Especially for their rapid action and multi-genes regulatory capacity, miRNAs are the

best candidates to play pivotal role in the modulation of the signal transductions in time

and space.

A signal transduction is a mechanism that convert a signal (stimulus) in a change of

behavior of the cell, i.e. alteration of metabolism, proliferation or apoptosis, regulation

of transcription of genes, cell commitment etc.

The signaling pathways are characterized by two signal transduction mechanisms: (i)

context-dependent transcriptional activation and (ii) inhibition of a default repression.

Both ensure that the change is operated only in the presence of the signal, maintaining

passively or actively turned o↵ the signal in absence of the stimulus.

Although miRNAs have the role to down-regulate gene expression, their function is not

only repressive but is dependent on pathway topology. In fact, there are examples of

miRNAs involvement in both kind of transduction (Inui et al., 2010).

miRNAs can influence the interpretation of the signal, in fact not always a stimulus

elicits an unambiguous on or o↵ situation, often the cell has to distinguish between

real signal and too week or too transient inputs. miRNAs in these situations play their

role amplifying or repressing the response, so that the signal can or can not pass the

threshold of sensitivity of the system.

Another fundamental consideration is that the miRNA presence is strictly dependent

on the cell-type in which the reaction occurs, determining in this way modulation of

the signal, which depends on the context. The unique miRNA milieu of each cell type

gives great plasticity to the system, suggesting why di↵erent cell types, with so di↵erent

functions, can share the same cascades of signal. Moreover, it can explain how the cell is

able to perceive quantitatively the signal generating a response tailored to the intensity

and the duration of the stimulus (Inui et al., 2010).

Analyzing combined gene and miRNA expressions we see, as expected, that miRNAs and

their target genes are anti-correlated, this means that when miRNA is highly expressed

the level of expression of the target gene is low and vice versa. However, unexpectedly,

we also find that many miRNA-mRNA couple have positive correlated expression, either

high or low expressed at the same time. Both these situations can be explained using

the theory of networks, and in literature we can find several examples of both situations

involving miRNAs (Inui et al., 2010).
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A feed-forward loop in biology is a well-known network motif. The module is composed

of at least three elements (A, B and C), in which A interacts with B and C, and B

interacts with C. This system can be coherent or incoherent, in the first case all the

interactions are in agreement each others, in the second case two signals with opposite

e↵ects on the same element are present. As shown by Inui et al. (2010), an example of

coherent loop using miRNAs in signaling pathways is obtained when a signal activates

a gene and represses a miRNA that is also the repressor of the gene itself, in this case

expression of miRNA and its target gene will be anti-correlated.

On the other hand, an example of incoherent loop is obtained when a signal activates

both the miRNA and its target gene. In this situation, when the signal is turned

on we will see incoherent expressions of the two elements. In biology this apparently

illogic situation has fundamental advantage: it prevents undesired pathway activation

by random signal fluctuations, placing the threshold of the system sensitivity at a higher

level. In fact, to turn on the signal, the stimulus has to overcome the repression operated

by the miRNA. At the same time, the system can easily maintain the steady-state

(Herranz and Cohen, 2010). Moreover, the temporal di↵erence to produce miRNAs

and proteins (miRNA is faster processed) allows miRNA to a↵ect gene expression more

rapidly than what is done by transcription factors.

In this way miRNAs are fundamental elements of signaling pathway conferring temporal,

as well as quantitative precision.

1.3 Pathways

In a famous commentary regarding systems biology, Lazebnik (2002) using the anal-

ogy between biological pathways and electronic circuits, proposed the use of standard

procedures through which even a biologist - without any specific knowledge - could fix

a radio. One of the most challenging goals of modern biology is to decipher and de-

scribe the complexity of cell systems, and what Lazebnik pointed out is that without

the integration of knowledge coming from di↵erent fields of science, the e↵orts of reverse

engineering the cell are destined to fail (Beltrame et al., 2011).

Recently, research on system biology has been characterized by an increasing number

of e↵orts to define common languages for sharing information in multidisciplinary areas

(Abbott, 1999) with the aim to develop tools, to describe accurate models, run e↵ective

simulations, visualize, analyze and integrate high-throughput data. Networks describing

the interactions occurring within cell macromolecules are key elements for this research.
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According to the nature of nodes and interactions, existing biological networks can

be classified into three categories: metabolic pathways, gene regulatory networks and

signaling pathways (Li and Davidson, 2009; Wang et al., 2007). Metabolic pathways

are chain of chemical reactions catalyzed by enzymes, while regulatory networks are

composed by relations of expression regulations, that occurs between the transcription

factors and the regulated genes. Finally, signaling pathways are formal descriptions of

the signaling processes by which a cell converts certain signals into others, involving

interconnected, finely regulated structures that may present a high level of redundancy.

There are many public resources which store and share representations of these net-

works, however currently there is no gold standard on how biological pathways should

be represented. This shortcoming a↵ects particularly signaling pathways: without solid,

consistent and unambiguous representations, hypotheses and analyses are not e↵ective.

Furthermore, a proper representation of a pathway is important to enable e�cient knowl-

edge management and integration of data coming from multiple sources. Recent e↵orts

on the pathways representation have followed two main trends: a proper graphical rep-

resentation and a machine-readable format. According to the presence of graphical and

machine-readable formats, pathway representations can be classified into three cate-

gories (Pan et al., 2003): static, providing a non-modifiable graphical representation;

semi-dynamic, representing information not only as a graphical map, but also has a

machine-readable format, which is not, however, strongly interconnected with the graph;

dynamic, where the graphical representation format depends directly on the underlying

data model, and thus any modification in the latter can be immediately translated to the

former. At the time of writing, all pathway representations stored in public databases

are either static or semi-dynamic (Beltrame et al., 2011).

The most recent example of a pure graphical representation is the System Biology Graph-

ical Notation (SBGN; Le Novère et al. (2009)). SBGN splits the representation of a

biological network into three di↵erent levels (the process definition, the entity relation-

ship and the activity flow language). The three representations are constructed in order

to capture di↵erent aspects of the biological systems, defining a set of glyphs and con-

straints to reduce ambiguity and improve interpretation. The resulting representations

are highly informative, and SBGN quickly achieved a broad consensus in the scien-

tific community. However, despite ongoing e↵orts (Czauderna et al., 2010), an SBGN-

dedicated pathway repository does not exist yet, and the conversion from the existing

pathway representations to SBGN format is still di�cult (Beltrame et al., 2011).

Machine-readable formats, on the other hand, aim at creating a representation of the

pathway that can be read and interpreted by computer programs and used to per-

form analyses or simulations. Many formats have been proposed: the Systems Biology
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Markup Language (SBML) (Hucka et al., 2003) especially dedicated to quantitative

simulations; the Biological Pathways eXchange (BioPAX; Luciano (2005)) and KGML

(Kanehisa and Goto, 2000) extensively treated in the next paragraphs; BCML (Beltrame

et al., 2011) a pathway format focused on the tissue specificities, created to be simpler

than the existing formats but at the same time richer in details. I personally contributed

to the construction of BCML as a subproject of my Ph.D..

1.3.0.1 Pathway Repositories

A variety of databases containing information on cell signaling pathways have been

developed in conjunction with methodologies to access and analyze the data (Bauer-

Mehren et al., 2009). Pathway databases serve as repositories of current knowledge

on cell signaling. They present pathways both in a graphical format, comparable to

the representation present in text books, both in machine-readable formats. This last

form allows the exchange between di↵erent software platforms and further processing

by network analyses, visualization and modeling tools. At the present day, there exist a

vast variety of databases containing biochemical reactions, such as signaling pathways

or protein-protein interactions. The Pathguide resource serves as a good overview of

current pathway databases (Bader et al., 2006). It lists more than 200 pathway reposi-

tories; over 60 of those are specialized on reactions of the human species. However, only

half of them provide pathways and reactions in computer-readable formats needed for

automatic retrieval and processing. Although these initiatives are successful results of

the joint e↵orts of a wider community, they are still incomplete, di↵erent databases are

characterized by di↵erent annotations and only a part of the interactions are confirmed

by all the repositories. On the other hand, Cerami et al. (2011) have recently developed

a web repository aiming at collecting and integrating all public pathway data available

in standard formats. It currently contains data from nine databases with over 1400

pathways and 687,000 interactions.

1.3.0.2 Machine-redable pathway formats

Aware of the complicate scenario described above, we decide to focus our attention to

BioPAX and KGML because, togethers, they recover the vast majority of public available

pathways. Pathway data of Reactome, NCI and BioCarta are available in BioPAX, while

KEGG pathways in KGML. BioPax and KGML languages use ontologies to describe

pathways.

An ontology is a formal description of a concept for the sharing and reuse of knowledge

among software entities. It is composed of objects, with properties and relations with
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other objects, and restrictions, and it often uses a controlled vocabulary. Furthermore an

ontology is often arranged into a hierarchy, with parent classes representing more general

concepts and child the more specific ones. The scope of the ontology is to specify an

abstract data modeling representation that can be queried, exported, translated, and

unified across independently developed systems and services (Demir et al., 2010; Gruber,

1995).

BioPAX is a community process started in 2002, it is defined as the pathway standard

ontology. The last release of BioPax (level 3) includes all the mayor concepts familiar to

biologists. With BioPax, we can represent both metabolic both signaling pathways. The

BioPAX language is based on OWL (Ontology Web Language), that is an RDF/XML-

based language but with a larger vocabulary and stronger syntax. More details and

documentation are available at http://www.biopax.org/ and Demir et al. (2010).

KGML, the KEGG-dedicated markup language, is an XML language with a schema

dedicated to KEGG data model. KGML is simpler than BioPAX, however less detailed

and more ambiguous. In KGML, the pathway element specifies one graph object with

”entries” that are elements (nodes such as genes, proteins, complexes, compounds) and

with ”relation” and ”reaction” elements (edges). More details at http://www.genome.jp.

1.3.0.3 Topological pathways analysis

A great deal of e↵ort has been directed towards the study of gene sets (hereafter GSA) in

the context of microarray data analysis. The aim of these analyses is to identify groups of

functionally related genes with possibly moderated, but coordinated, expression changes.

Several GSA tests, both univariate and multivariate, have been recently developed. See

Ackermann and Strimmer (2009) for a comprehensive review, Goeman and Mansmann

(2008), Nam and Kim (2008) and Dinu et al. (2009) for a detailed description and a

critical investigation of the tested hypotheses.

These approaches, although e↵ective, miss the information of the topological properties

of the pathways. To this end, the seminal paper by Draghici et al. (2007) proposed a

radically di↵erent approach (called impact analysis, SPIA) attempting to capture several

aspects of the data: the fold change of di↵erentially expressed genes (DEGs), the path-

way enrichment and the topology of signaling pathways. In particular, SPIA enhances

the impact of a pathway if the DEGs tend to lie near its entry points. Massa et al.

(2010) introduced TopologyGSA an alternative approach that is based on a correlation

structure test. Specifically, the graphical model theory is used to decompose the overall

pathway into smaller cliques, with the aim of exploring in detail small portions of the

entire model. Recently, Isci et al. (2011) proposed a Bayesian Pathway Analysis that
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models each biological pathway as a Bayesian network (BN) and considers the degree to

which observed experimental data fits the model. L. Jacob and Dudoit (2010) developed

a graph-structured two-sample test of means for problems in which the distribution shift

is assumed to be smooth on a given graph. Finally, an evolution of TopologyGSA has

been published in 2012, called CliPPER, introducing for the first time a great innovation

in the field of pathway analysis. CliPPER is able to recognize not only the significantly

deregulated pathways, but also the portion of the pathways with the greatest association

with a specific phenotype (Martini et al., 2013).

During my phD project, I used, tested and evaluated several of these approaches. How-

ever in this thesis for reason of brevity, I would like to focus the reader attention on

two of them: SPIA and CliPPER. These two algorithm has been extensively treated in

Chapter 6, along with the EOC expression data analyses.

1.3.1 Pathway conversion

The methods cited above need a graph structure. In this perspective, the retrieval

of pathway information and the subsequent conversion into a gene/protein network is

crucial.

The extraction of the topological information from a biological pathway and their in-

terpretation to obtain a network is not a trivial task and are still extremely dependent

on the level of detailed information provided by the data format (Alves et al., 2006;

Draghici et al., 2007; Massa et al., 2010; Beltrame et al., 2011).

Pathway annotations comprise a myriad of interactions, reactions, and regulations which

are often too rich for the conversion into a network. In particular, challenges are posed

by the presence of chemical compounds mediating interactions and by di↵erent types

of gene groups (e.g. protein complexes or gene families) that are usually represented

as single nodes. R packages for pathway conversion are available, such as KEGGgraph

(Zhang and Wiemann, 2009) and NCIgraph, but share some drawbacks: i) they are

focused on a single pathway database; ii) they do not consider gene connections through

chemical compounds; iii) they do not handle the various kinds of biological gene groups.

During my Ph.D. thesis I worked on the development of graphite (GRAPH Interaction

from pathway Topological Environment) a bioinformatic tool that fill all these gaps.
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1.4 Aims and organization of the thesis

The aim of my thesis is the development of methodologies and tools to integrate gene

and microRNA expressions to dissect the circuits in Epithelial Ovarian Cancer (EOC)

exploiting and improving topological pathway analysis methods.

In particular, I contributed to the development of a computational tool, later called

graphite, that i) facilitates the access and the integration of pathway data and microRNA

information and ii) allows the application of topological analysis on these pathways, then,

I applied this tool to analyze and identify cell circuits di↵erentiating Epithelial Ovarian

Cancer histotypes.

This thesis is divided in two main parts, the first part (chapters 2- 4) is dedicated to the

development of computational and bioinformatic tools and the second part (chapters 5

and 6) is dedicated to the application of this methodologies to early stage of EOCs.

Specifically, chapter 2 describes the technical details and rules defined for the conversion

of pathway topologies to gene network; chapter 3 describes the functionalities of graphite

Bioconductor package that provides pathway data as networks; chapter 4 is dedicated

to the test and application of graphite to simulated and benchmark datasets.

Chapter 5 is dedicated to the analysis of miRNA expression profile on a large set of

early stage EOC patients. A resampling strategy is presented aiming at identifying a

robust miRNA signature di↵erentiating EOC subtypes. Validations with qRT-PCR of

the proposed signature will be presented, as well.

Chapter 6 represents the fusion of the two cores of the thesis: the application of graphite

to the identification of EOC subtype-specific biological circuits composed of genes and

miRNAs. An expanded version of graphite, including miRNAs in pathway topology,

is presented and applied. In this chapter we show how to move from single and iso-

lated markers to the characterization of more informative and therapeutically attractive

histotype-specific circuits.

The work presented in this thesis is the results of an ongoing collaboration, started in

2010, with the ”Mario Negri” Institute, in particular with the groups of Dr. Maurizio

D’Incalci, head of Oncology Department and Cancer Pharmacology unit and Dr. Sergio

Marchini, head of the Translational Genomic Unit.
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From pathway to network: the

conversion procedure.

The procedure we developed into convert pathway topology in to networks is called

Graphite (GRAPH Interaction from pathway Topological Environment).

Graphite is divided in two main steps:

• The conversion procedure that creates the networks from pathway topology

• The Bioconductor R package that allows the usage and the analysis of these net-

works.

This chapter is dedicated to the explanation of the the first part of Graphite.

We would like to warn the reader that this chapter is dedicated to the technical de-

scription of the rules used for pathway conversion and that it is not necessary for the

comprehension of the thesis as a whole. For the description of the resulting Bioconductor

package see Chapter 3

2.1 The conversion procedure

A network is a simplified structure in which nodes represents genes. That are connected

by edges representing their biological relations.

The pathway data formats that Graphite is able to manage and interpret are:

• KGML

19
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• BioPax

The conversion procedure is based on two steps:

• Acquisition – The reading, parsing and storing of the pathway data into a uni-

fyied data model (hereafter called Full Model), able to standardize the heteroge-

neous information derived from di↵erent pathway formats. Each pathway format

(KGML and BioPax) has a dedicated acquisition procedure.

• Simplification – The simplification of the complex information stored in the Full

Model into a network model.

At the end of the conversion Graphite provides for each pathway:

• Network data – A network is represented as list of nodes and edges. It provides

for each edge the source, the destination, the direction and the type.

• Warnings – A series of warnings occurred during the pathway conversion phase.

Warnings are produced whenever the program is not able to convert an element.

Pathway conversion is not always possible. The pathway data must satisfy three main

requirements:

1. the pathway elements must have IDs;

2. a pathway must not contain duplicated IDs;

3. the pathway elements IDs do not contain a number sign (#).

If the data does not comply with these rules a global error is generated and the pathway

is not converted.

2.2 The ”Full model”

2.2.1 Pathway definition

The KEGG database provides separate KGML files, one for each pathway. A pathway

is thus defined by all the reactions defined within each file. For all the other databases

based on BioPax format we identify a pathway upon encountering a ”pathway” element.
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2.2.2 The full model components

For each pathway the following components are defined:

• ENTITIES

• INSTANCES

• RELATIONS

2.2.2.1 The Entity

The Entity is the abstract and not-redundant representation of a pathway element. The

entity defines a set of general attributes qualifying all the physical representations of that

element in the pathway. The entity corresponds to the entity Gene or PhysiscalEntity

defined in BioPax. A full model entity can be a gene, a compound, a group or a generic

type called ”other”.

Each entity is defined by:

• ID

• XREFS – A list of external references and articles linked to the entity.

• SOURCES – A list of sources that are all the native element ids of the pathway

data used to generate the described entity. In other words, the series of original

IDs that are transformed to generate the full model entity.

For the Entity of type Group, the following additional attributes are defined:

• GROUP TYPE – Two type are allowed: AND and OR. The OR groups contain

a set of possible alternative members. These groups are generally gene families,

sets of genes with similar sequences and biochemical functions. The AND groups

correspond to protein complexes (proteins linked by protein-protein interactions).

• GROUP COMPONENTS – The list of entity IDs contained in the group.

2.2.2.2 The Instance

The Instance is the physical representation of an entity in the pathway. Each instance

points to only one entity and multiple instances can refer to the same entity. The
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Instance corresponds to the Physical Entity defined in BioPax. Nested instances are not

allowed in the full model and if encountered are simplified, flattening all the members,

maintaining AND and OR relations starting from the innermost element.

An Instance is described by:

• ID

• ENTITY POINTER – The entity referred by the instance.

• LOCATION – Information about the biological location of that particular instance

in the pathway.

• ENTITY SOURCES – A list of sources that are all the native element ids of the

pathway data used to generate the described entity. In other words, the series of

original IDs that are transformed to generate the full model entity.

2.2.2.3 The Relation

The Relation describes the connection between two instances or an instance and another

relation of the pathway. The Relation can be:

• a process that connects two instances;

• a catalysis that connects the catalysts and the process catalyzed;

• a modulation that connects the modulator and the modulated catalysis.

A Relation is described by:

• ID

• XREFS – A list of external references and articles linked to the relation.

• SOURCES – A list of sources that are all the native element IDs of the pathway

data used to generate the described relation.

• EVIDENCES – A list of experimental evidences validating the relation. The

evidences are provided by the pathway data.

• TYPE – The relation type, is free text describing the type of relation (e.g. acti-

vation, inhibition phosphorylation etc.).

Processes have the following additional attributes:
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• DIRECTION – Can be direct or undirected (without direction).

• LEFT – The instance IDs or the list of instance IDs from which the relation starts.

• RIGHT – The instance IDs or the list of instance IDs into which the relation ends.

• IS EQUIVALENCE – A flag to mark self-loops.

Catalyses and modulations have the following additional attributes:

• CONTROLLERS – One or more instance IDs or a list of instance IDs from which

the relation starts.

• CONTROLLED – It is the controlled relation ID that can be anything but a

modulation. In case of catalysis is a process ID, in case of modulation is a catalysis.

2.3 The conversion of pathway data to the full model

2.3.1 BioPax conversion

The BioPax pathway data is read and parsed, the pathway elements (pathways, pathway

components, entities, unificationXRefs, bioSources, cellular locations, evidences) are

stored in di↵erent categories and errors are reported. The pathway conversion proceeds

only if no global errors have been generated.

Pathways have a hierarchical structure. A pathway contains one or more pathway com-

ponents and a pathway component contains one or more interactions. The conversion

procedure traverses the pathway tree recursively looking for the interactions. Empty

pathways are ignored, nested pathways are solved, self-contained pathways are reported

as warnings. For a graphical example see Figure 2.1 where the P1 Pathway has a tree-

like structure and contains P2, P3 and P4. P2 contains two interactions I1 and I2, P4

is an empty pathway and P3 contains erroneously P1. The results of this process of

conversion are: P1=P2{I1,I2} and two warnings on P3 and P4.

2.3.1.1 Interaction rearrangement procedure

After the pathway interaction collection procedure, the interactions are processed ac-

cording to the three main BioPax type of interactions: Template Reaction, Control and

Conversion.
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P1 

P4 P3 P2 

I1 

I2 

Figure 2.1: Example of pathway structure.

• TEMPLATE REACTION – It generates a FULL MODEL PROCESS. At least one

right element is required, otherwise the conversion fails and a warning is generated.

• CONTROL – It generates a FULL MODEL CATALYSIS or MODULATION.

Following the BioPax definitions, catalyses are those reactions whose right element

is a process, while those those have a catalysis as right element are considered

modulations. If this pattern is not observed a warning is generated.

• CONVERSION – It generates a FULL MODEL PROCESS. This particular kind

of interaction is flagged as EQUIVALENCE.

2.3.1.2 Physical entity simplification and instance generation procedures

After the interaction rearrangement, the conversion of physical entities is executed. The

BioPax Physical Entities converted into the FULL MODEL INSTANCES as follows. A

Physical entity has to be composed by at least one element and has to contain at least

one unificationXRef. Otherwise, a warning is generated.

If the physical entity has only one component, it is translated into a full model instance

that refers a full model entity of type gene, compound or other in case of respectively

protein, small molecules and RNA/DNA references.

If the physical entity contains more than one element, it is translated into a full model

istance that refers to a full model group entity. In the BioPax format only one group type

is described: protein ”complexes” (group AND) with the element ”complex”. However,

it often happens that a protein tag contains multiple references pointing to alternative

elements of the process. These entities are stored in the full model as an OR group. The

nested physical entities are solved recursively. The sources of the generated instance keep

track of the elements used to create the instance itself. Cellular location consistencies

are checked across nested physical entities.

If the physical entity is a BioPax generic reference a warning is generated because there

is not su�cient information to drive the conversion.
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2.3.1.3 The procedure of correction of multiple IDs referring to the same

biological entity

The unificationXref is an attribute of the BioPax entity. Each entity has multiple uni-

ficationXRef and an unificationXRef can be referred by multiple entities. Entities with

equal unificationXRefs are considered the same biological entity and, for this reason,

collapsed into an unique entity (the first in the lexicographical order) called the master

entity. All the other entities, that are synonyms of the master entity, are replaced by

the master entity.

2.3.2 KGML conversion

The KGML conversion into the full model works di↵erently. First of all, a KGML

pathways do not follow a hierarchical structure. During the KGML conversion, the

pathway data is read and parsed, and the pathway elements of interest are stored in

di↵erent categories (map, relation, reaction, compound, gene, group) and errors are

reported.

2.3.2.1 Interaction rearrangement procedure

The KGML interactions are:

• RELATION – It generates two FULL MODEL PROCESSES. The relation occurs

from a source to a destination element trough a mediating element and is trans-

lated in two processes, (i) from the source to the mediator element and (ii) from

the mediator to the destination element. At least one source element and one

destination element are required, otherwise the conversion fails and a warning is

generated. In the case there are no mediating elements only one process is gener-

ated from the source to the destination element. The type of relation is reported

according to the full model relation.

• REACTION – It generates a FULL MODEL PROCESS from the substrate to

the product element. At least one source element and one destination element are

required, otherwise the conversion fails and a warning is generated. The type of

reaction is reported according to the full model relation.
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2.3.2.2 Instance generation procedure

KGML entities (gene, compound, group) are converted to instances. KGML entities

have to be composed by at least one element and have to contain at least one name that

allows the biological identification of the element.

If the KGML entity has only one component, it is translated in a full model instance

that refers a full model entity of type gene or compound, depending on the KGML

annotation.

If the KGML entity of type gene contains more than one element it is translated in a

full model instance that refers to a full model group entity of type OR.

If the KGML entity of type group is translated in a full model instance that refers to a

full model group entity of type AND.

The sources of the generated instances keep track of the elements used to create the

instance itself. The nested KGML entities is not allowed and the cellular locations are

not reported.

2.3.2.3 The procedure of correction of multiple IDs referring to the same

biological entity

Multiple KGML entities pointing to the same biological entity can be created. Entities

with equal names are considered the same biological entity and for this reason collapsed

into a unique entity (the first in the lexicographical order) called the master entity. All

the other entities, synonyms of the master entity, are replaced by the master entity.

2.4 The full model simplification procedure

Once the Full model is generated for all pathways, will start the second step of simpli-

fication.

2.4.1 Conversion of gene instance into nodes

Each instance of type gene is converted into a node that has as ID the biological identifier

of the gene provided by the pathway data format, called hereafter native identifier. For

a graphical example see Figure 2.2.
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Figure 2.2: Example of a node creation starting from a gene instance

2.4.2 Process group instances

Nodes within a group are solved at the beginning of the conversion process through a

three-step procedure: (i) the simplification of the mixed group, (ii) the removal of the

redundant elements and (iii) the replacement of group nodes with the contained single

nodes and their relations.

In the full model we have three kind of groups: groups with only genes, groups with

only compounds and mixed groups composed of both genes and compounds.

The first step is the simplification of mixed groups that consists in the elimination

of compounds. This step is a preparatory phase for the signal propagation procedure

through compounds, see Section 2.4.5. It has been seen that the presence of compounds

in mixed groups is only a generator of meaningless redundant edges. For a graphical

example see Figure 2.3.

Mixed groups 
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Figure 2.3: Example of simplification of mixed groups that consists in the removing
of the compounds

The second step is dedicated to the removal of redundant elements (both genes or com-

pounds). After this step only a single element is maintained inside the group.

The third step, is the replacement of the group with the single nodes it contains. After

this step the group disappears. This phase takes into account the di↵erent biological
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nature of groups: they can be AND groups, representing protein complexes in which all

elements are physically linked together; or they can be OR groups, pools of genes that

are alternative member of a process (gene families or group of di↵erent protein isoforms).

The AND groups are solved connecting all group elements together. This structure is

called, in graph theory, a clique. On the contrary, OR groups are transformed in as

many nodes as the elements belonging to the group without introducing edges among

each other. For a graphical example see Figure 2.4.
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Figure 2.4: Complexes simplification procedure: the AND groups are solved connect-
ing all the group elements togethers, the OR group are transformed in many nodes

many elements we have in the group without edges.

2.4.3 Creating edges

In the full model we can find three kinds of relations: processes (divided in equivalences

and non-equivalences), catalyses and modulations. The simplification of the relations

into edges has a dedicated procedure for each relation type. Each process is substi-

tuted by an edge from the source to the destination. Although direction and type are

maintained as close as possible to the original relation described in the pathway data,

some new types have been introduced. A similar procedure is applied when the source

element and/or the destination element are groups sharing components. For a graphical

example see Figure 2.5.

Catalyses, that are relations pointing to other processes, are replaced with two rela-

tions of type control, one that enters in the catalyst and the other that exits from the

catalyst. After the conversion, the type of the new catalysis maintains all the infor-

mation about their origins (if it is the IN or OUT arrow and the type of the catalysis,

inhibition, activation, etc.). The directions of the two control relations follow the direc-

tion of the catalyzed process. For an example, see figure 2.6 two edges are generated:

control(In(INHIBITION)) from A to C, control(Out(INHIBITION)) from C to B.
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Figure 2.5: Example of process simplification

Sequential catalyses are treated as single and independent catalyses, see Figure 2.7.
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A B 

C 

A B 

C 

I

II 

Figure 2.6: Catalysis of a process is simplified replacing the catalysis arrow with other
two control processes, one that go in and the other out from the catalyst, two edges are
generated: control(In(INHIBITION)) from A to C, control(Out(INHIBITION)) from

C to B.
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Sequential catalyses 
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Figure 2.7: Simplification on sequential catalyses

The relation of type modulation, that starts from the modulator and points to the

catalysis process, is replaced with a relation of type control, from the modulator to the

catalyst. After the conversion, the type of the new control relation maintains the type

of the catalysis (inhibition, activation, etc.). For a graphical example, see Figure 2.8.
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Modulation of a catalyzed process 
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Figure 2.8: Modulation of a catalysis is simplified replacing the modulation relation
with a control relation from the modulator to the catalyst.

2.4.4 Collapsing relation of equivalence

All the relations that have source elements equal to the destination elements are called

equivalences. This situation usually represents transport, complex association or dissoci-

ation, see Figure 2.9. If translated, these relations would generate meaningless self-edges;

for this reason they are ignored and no edges are produced.

Equivalences 

NUCLEUS 

A A 

CYTOPLASM 

A 

B 

varX 

INFO 

B 

A 

A 

B 

INFO 

B 

A 

varX 

NO 
EDGES 

I

II 

Figure 2.9: Examples of processes considered equivalences, that have source elements
equal to the destination elements.

2.4.5 Elimination of compounds propagating the signal

The procedure of elimination of compounds maintaining the signaling chain is one of

the most innovative part of the conversion system.
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Compound-mediated interactions are interactions for which a compound acts as a bridge

between two elements. As chemical compounds are not usually measured with high-

throughput technologies, they should be removed from the network. However, the trivial

elimination of the compounds will strongly bias the topology interrupting the signals

passing through them. If element A is linked to compound c and compound c is linked

to element B, then A should be linked to B. Moreover, to best fit the biological model

we take into account cell compartment membership: the connection among genes A and

B is established only if the shared compound c has the same localization in both the

reactions.

Compounds are replaced by an undirect process of type indirect from the gene upstream

to the gene downstream the removed compound or chain of compounds, see Figure 2.10.

If multiple paths connect the same two genes, only shortest paths are retuned.

A B C 

Two genes connected through one  
or more compounds 

A C 

I

II 

Figure 2.10: Two genes connected trough one or more compound

Di↵erent processes that share the same compound are merged only if they share the

same cellular location, otherwise are kept separated, see Figure 2.11.

The propagation through compounds between genes located in two di↵erent cell com-

partments is performed only if explicitly present in the original pathway, see Figures 2.12

and 2.13.

During the propagation sequential catalyses have dedicated rules. First, sequential catal-

yses are simplified as a single catalysis generating two type of relations (controls and

processes). Then, the propagation path are constructed taking into account the type of

relations. While for catalyses the propagation can follow any type of edges, from pro-

cesses the propagation can follow only other relations of process type, see Figure 2.14.

Not all compounds are involved in signal propagation. Some compounds are too fre-

quently used and totally aspecific (examples of these type of compounds are ATP, GTP,

NADH, etc.). They are simply eliminated.
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Figure 2.11: Multiple process that share the same compound

NUCLEUS CYTOPLASM 
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Processes in different cell locations 
with a compound in the middle 

A B C 
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II 

Figure 2.12: Processes in di↵erent cell locations with a compound in the middle

2.4.6 Remove duplicated and self-edges

At the end of the conversion procedure all the duplicated edges and self-loops are re-

moved.
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Multiple processes in different cell 
locations that share the same compound 
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Figure 2.13: Multiple processes in di↵erent cell location that share the same com-
pound

Sequential catalyses with a compound in the middle 
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Figure 2.14: Sequential catalyses with a compound in the middle: during propaga-
tion, processes follow only other edges of type processes, instead control edges can be

propagated following any kind of edges.





Chapter 3

graphite, the Bioconductor R

package for topological pathway

analyses

3.1 graphite

In order to gather curated information about human pathways, we have collected data

from the four public databases that have emerged as reference points for the systems

biology community: Reactome, KEGG, NCI, BioCarta. Reactome (Vastrik et al., 2007)

uses the BioPax format, is backed by the EBI and is one of the most complete repository.

Reactome is frequently updated and provides a semantically rich description of each

pathway. KEGG (Kanehisa and Goto, 2000) uses KGML format, provides maps for

both signaling and metabolic pathways. Finally BioCarta (www.biocarta.com) and NCI

(NCI/Nature Pathway Interaction Database) (Schaefer et al., 2009), both published

their data using the BioPax format. We transformed pathway data format into networks

following the principles and rules mentioned in the previous chapter. Network data are

available in a software package called graphite.

graphite was implemented using the statistical programming language R and the package

is included in the open-source Bioconductor project (Gentleman, 2005). graphite has

been constructed to act as pathway provider in R environment and functions as a bridge

between pathway data and existing methods of topological pathway analysis, such as

SPIA (Draghici et al., 2007; Tarca et al., 2009), DEGraph (L. Jacob and Dudoit, 2010),

and topologyGSA (Massa et al., 2010; Martini et al., 2013).

35
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This chapter of the thesis is dedicated to the description of the package and its func-

tionalities.

3.2 Pathway functions recovery

In graphite a pathway database is a list of pathways. We can access to the database

simply through its name. For instance, the names of the first three pathways can be

simply retrieved using the following commands:

> names(biocarta)[1:3]

[1] "acetylation and deacetylation of rela in nucleus"

[2] "actions of nitric oxide in the heart"

[3] "activation of camp-dependent protein kinase pka"

In the same way we can access the Reactome , KEGG and NCI databases (through the

reactome, kegg and nci lists, respectively).

Using graphite a pathway network can be retrieved using the name of the pathway:

> p <- biocarta[["acetylation and deacetylation of rela in nucleus"]]

> p

"acetylation and deacetylation of rela in nucleus" pathway from BioCarta

Number of nodes =6

Number of edges =9

Type of identifiers = native

Retrieved on = 2011-05-12

or its position in the list of pathways:

> p <- biocarta[[1]]

The object pathway is represented using the class Pathway appositely created. The

pathway class allows the user-friendly visualization like the one showed above, in which

are summarized the number of nodes, the number of edges, the data of its conversion

from the pathway data format and the type of identifiers that have the network. ”Native”

identifiers are those of the original pathway definition. The class pathway has 3 slots:

• title – the name of the pathway;
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• nodes – the list of nodes of the network;

• edges – the table of edges of the network.

We can access to each slot as follow:

> p@title

[1] "acetylation and deacetylation of rela in nucleus"

> nodes(p)

[1] "EntrezGene:4792" "EntrezGene:5970"

[3] "EntrezGene:8841" "EnzymeConsortium:2.3.1.48"

[5] "p50_0-0" "ubiquitin"

Nodes can have heterogeneous IDs in their ”native” form:

The list of network edges is a table with four columns:

• src – SOURCE NODE

• dest – DESTINATION NODE

• direction – DIRECTION (directed or undirected)

• type – TYPE OF THE EDGE (phosphorylation, activation inhibition, control,

etc..)

> edges(p)

src dest direction type

1 EntrezGene:4792 p50_0-0 undirected binding

2 EntrezGene:5970 EntrezGene:4792 undirected activation

3 EntrezGene:5970 EnzymeConsortium:2.3.1.48 undirected binding

4 EntrezGene:5970 ...

3.3 Graph

The pathway object can be also translated into a graphNEL, that is the most used R

object for a graph. Many topological pathway analyses use graphNEL objects and for

this reason we provided a function able to perform an easy conversion.

The function pathwayGraph builds a graphNEL object from a pathway object p:
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> g <- pathwayGraph(p)

> g

A graphNEL graph with directed edges

Number of Nodes = 6

Number of Edges = 14

> edgeData(g)[1]

$ EntrezGene:4792|p50_0-0

$ EntrezGene:4792|p50_0-0 $weight

[1] 1

$ EntrezGene:4792|p50_0-0 $edgeType

[1] "binding"

3.4 Identifiers

Gene annotations databases are widely used as public repositories of biological infor-

mation. Our current knowledge on biological elements is spread out over a number of

databases (such as: Entrez Gene, RefSeq, backed by the NCBI http://www.ncbi.nlm.nih.gov/,

UniProt, ENSEMBL backed by the EBI http://www.ebi.ac.uk/ to name just a few),

specialized on a subset of specific biological entities (for instance, UniProt focuses on

proteins while Entrez Gene focuses on genes). Key identifiers (IDs) uniquely represent

biological entities, thus biological entities can be identified by heterogeneous IDs accord-

ing to the selected database they refer to. Due to their di↵erent origins and specificity,

switching from an ID to another is possible but not trivial: there could be either no cor-

respondence between them or many-to-many relations. For our purposes, we have chosen

EntrezGene IDs and Gene Symbols because of their widespread use and simplicity.

The function converterIdentifiers allows the user to map such variety of IDs to a single

type. This mapping process, however, may lead to the loss of some nodes (not all

identifiers may be recognized) and has an impact on the topology of the network (one

ID may correspond to multiple IDs in another annotation or vice versa).

> pEntrez <- convertIdentifiers(p, "entrez")

> pEntrez

"acetylation and deacetylation of rela in nucleus" pathway from BioCarta

Number of nodes = 8

Number of edges = 27

Type of identifiers = Entrez Gene
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Retrieved on = 2011-05-12

> nodes(pEntrez)

[1] "4792" "5970" "8841" "1387" "2033" "2648" "8850" "9575"

> pSymbol <- convertIdentifiers(p, "symbol")

> nodes(pSymbol)

[1] "NFKBIA" "RELA" "HDAC3" "CREBBP" "EP300" "KAT2A" "KAT2B" "CLOCK"

3.5 Cytoscape Plot

Several pathways have a huge number of nodes and edges, thus there is the need of an

e�cient system of visualization. To this end graphite uses Rcytoscape package to export

the network to Cytoscape, see Figures 3.1.

Figure 3.1: Screenshot of a graphite network imported in Cytoscape using RCytoscape

Cytoscape is a Java based software specifically built to manage biological network com-

plexity and for this reason it is widely used by the biological community (Smoot et al.,

2011). The command used to import a graphite network in Cytoscape is:

> cytoscapePlot(convertIdentifiers(reactome$ Unwinding of DNA , "symbol"))
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3.6 Topological pathway analysis

graphite gives access to three types of topological pathway analyses recently proposed.

More details on the results obtained by these methods are presented in the corresponding

R package manuals.

3.6.1 SPIA

The analysis with SPIA requires the conversion of the networks in a series of adjacency

matrices. This conversion is performed by the function prepareSPIA that must be exe-

cuted before the analysis command runSPIA. The SPIA data will be saved in the current

working directory; every time you change it you should re-run prepareSPIA. Edges type

not included in SPIA have been coerced into the admitted SPIA types. Compound

mediated interactions annotated in graphite with ”indirect” type are mapped into the

SPIA edge type ”indirect e↵ect” by default set to zero. To use the signal propagated

through compounds the user has to type 1 in ”indirect e↵ect”.

For a detailed description of SPIA see Chapter 6.

> prepareSPIA(biocarta[1:2], "biocartaEx")

> runSPIA(de=DE_Colorectal, all=ALL_Colorectal, "biocartaEx")

Done pathway 1 : acetylation and deacetylation ...

Done pathway 2 : actions of nitric oxide in the ...

...

Name pSize

1 actions of nitric oxide in the heart 43

N tA pPERT pG pGFdr pGFWER Status

12 0.1456427 -0.5368375 0.680 0.3280366 0.4110914 0.6560732 Inhibited

Name pSize

2 acetylation and deacetylation of rela in nucleus 7

N tA pPERT pG pGFdr pGFWER Status

3 0.1527022 -0.3137486 0.903 0.4110914 0.4110914 0.8221828 Inhibited

For more details see the SPIA package (Draghici et al., 2007; Tarca et al., 2009).
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3.6.2 DEGraph

DEGraph implements recent hypothesis testing methods which directly assess whether

a particular gene network is di↵erentially expressed between two conditions.

> library(DEGraph)

Scalable Robust Estimators with High Breakdown Point (version 1.3-01)

> data("Loi2008_DEGraphVignette")

> p <- convertIdentifiers(

biocarta[["actions of nitric oxide in the heart"]],

"entrez")

> res <- runDEGraph(p, exprLoi2008, classLoi2008)

> res$ 1

$p.value

T2 T2 (1 Fourier components)

0.4801202 0.4510231

$graph

A graphNEL graph with directed edges

Number of Nodes = 2

Number of Edges = 3

$k [1] 1

For more details see the DEGraph package (L. Jacob and Dudoit, 2010).

3.6.3 topologyGSA

topologyGSA uses graphical models to test the pathway components and to highlight

those involved in its deregulation.

> library(topologyGSA)

> data(examples)

> p <- convertIdentifiers(kegg[["Fc epsilon RI signaling pathway"]], "symbol")

> runTopologyGSA(p, "var", exp1, exp2, 0.05)

$alpha.obs
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[1] 0.007421451

$cli.moral

$cli.moral[[1]]

[1] "GRB2"

$cli.moral[[2]]

[1] "SYK" "BTK" "PLCG2"

$cli.moral[[3]]

[1] "SYK" "LYN" "BTK"

$check

[1] TRUE

$graph

A graphNEL graph with undirected edges

Number of Nodes = 5

Number of Edges = 5

$lambda.obs

[1] 26.02199

$lambda.theo

[1] 18.30704

For more details see the topologyGSA package (Massa et al., 2010).

The graphite package is in continuous development, a new version will be released soon

with the possibility to run analysis also with CliPPER method (Martini et al., 2013).



Chapter 4

graphite in practice

In this chapter we will provide two practical examples of pathway conversions and some

statistics about graphite.

We will highlight the innovations provided by our package graphite, critically comparing

graphite with other available existing R/Bioconductor packages.

Finally, we will show a simulation study to demonstrate the e�cacy of our signal prop-

agation strategy in terms of topological analyses and an example of topological gene set

analysis using benchmark real data.

4.1 graphite in numbers

At time of writing, Graphite contains more than 1300 human pathways belonging to

the four most famous pathway repositories (KEGG, Reactome, NCI and BioCarta). Ta-

ble 4.1 and Figure 4.1 report respectively pathway summary statistics and nodes/edges

distributions for the four pathway databases after the conversion.

Database N. of pathways Mean (Median) nodes Mean (Median) edges

KEGG 232 71.86 (54) 211.12 (75.5)
Reactome 1070 33.22 (14) 780.64 (33)
BioCarta 254 15.18 (14) 36.88 (28)

NCI 177 76.79 (48) 165.18 (81)

Table 4.1: Number of pathways converted to networks with average number of edges
and nodes according to the selected database.

Compound-mediated interactions are interactions for which a compound acts as a bridge

between two elements. As chemical compounds are not usually measured with high-

throughput technologies, they should be removed from the network during the analyses.

43
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Figure 4.1: Edges and nodes distribution of networks after pathway conversion ac-
cording to the selected database.

However, the trivial elimination of the compounds will strongly bias the topology in-

terrupting the signals passing through them. Signal propagation, provided by graphite

package, solve this issue. After parsing all the BioPax and KGML data we obtain

compound chains whose length distribution are reported in Table 4.2.

Chain length KEGG Reactome Biocarta NCI

2 19790 55155 502 2790
3 0 874 9 134
4 0 736 8 11
5 0 140 0 0
6 0 39 0 0
7 0 6 0 0
8 0 17 0 0
9 0 1 0 0

Table 4.2: Frequency of compound chains that we propagate according to di↵erent
databases.

4.2 graphite practical conversion procedures and its com-

petitor

KEGGgraph a competitor of graphite providing pathway topology, shows some draw-

backs: i) it is specific of KEGG; ii) it does not consider gene connections through

chemical compounds; iii) it does not handle di↵erently the diverse groups. In the next

sections we will present two examples of pathway conversions, the first one using KGML
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code, the second one with a BioBax pathway. The first one will be compared with

KEGGgraph results.

4.2.1 KGML pathway conversion example 1 – Insulin signaling path-

way and KEGGgraph comparison

Figure 4.2 represents an example of pathway simplification in which the elimination of

compounds leads to an incorrect network topology. An incorrect network topology is

exactly what we obtain using KEGGgraph.

Insulin is an hormone controlling the balance between mobilization and storage of en-

ergy molecules. Insulin binds the Insulin Receptor (IR) and through phosphorilation

of the IRS adaptors is able to recruit and activate PI3K. PI3K is a kinase that con-

verts PIP2 in PIP3 which is a secondary messenger involved in the regulation of various

processes. The conversion between PIP3 into PI(3,4)P2 or PI(4,5)P2 operated by phos-

phatases like SHIP1/2 or PTEN induce a depletion of PIP3 levels and of consequence

a reduced activity on its downstream targets Ooms et al. (2009). PIP3 associates with

the inner lipid bilayer of the plasma membrane to promote the recruitment of proteins

with pleckstrin homology (PH) domains, like PDPK and AKT, which is a crucial me-

diator of various cell process, such as apoptosis, cell cycle, protein synthesis, regulation

of metabolism Ruggero and Sonenberg (2005). Among other functions, AKT activates

also the cyclic nucleotide phosphodiesterases (PDEs), that is a group of enzymes able

to regulate the localization, duration, and amplitude of the cyclic nucleotides. Signaling

PDEs are therefore important regulators of signal transduction mediated by these second

messenger molecules Kitamura et al. (1999). In this pathway, PDE, depleting cAMP,

indirectly inhibits the PKC mediated phosphorilation, and the activation of LIPE that

is a lipase able to mobilize lipid energy stores. PDE acts, in this way, as a anti-lipolytic

agents Ho llysz et al. (2011). This hormonal mediated signaling cascade, from the insulin

receptor to the inhibition of HSL, involves two compounds (PIP3 and cAMP) crucial

for the transduction of the signal.

In panel A of Figure 4.2 we report a part of the insulin signaling pathway of KEGG

(hsa4910) that contains three groups OR (PDE3, AKT and PKA), and two compound

mediated interactions (through PIP3 and cAMP). This is a clear examples of a signal

cascade in which the propagation of the signal through compounds is crucial to keep the

whole signaling path.

In panel B we report graphite reconstructed signal cascade while in panel C the KEGG-

graph partially reconstructed signal.
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From the XML code entry 2 (SKIP) and entry 3 (SHIP) are linked to compound 15

(PIP3) while there is no direct interaction between compound 15 (PIP3) and entry

62 (PDK1/2). This is why KEGGgraph misses the signal, while graphite captures it

by splitting the relation between entry 52 (protein complex P13K) and 62 (PDK1/2)

through compound 15 (PIP3) into both 52 to 15 and 15 to 62. This dissection allows

the reconstruction of the signal, otherwise impossible.

4.2.2 BioPax pathway conversion example 2 – catalysis and cleavage

of Notch 1 by Gamma-Secretase Complex

We selected the reaction 1784.3 from the Reactome pathway called ”A third proteolytic

cleavage releases NICD”. Gamma secretase is a multi-subunit protease complex, itself an

integral membrane protein, that cleaves single-pass transmembrane proteins at residues

within the transmembrane domain. Here represented the processing of the Notch 1

protein. The Gamma-secretase complex is composed of Presenilin homodimer (PSEN1

variant 1 or 2 or 3 or 4 or 5 and PSEN2 variant 1 or 2), Nicastrin (NCSTN variant 1 or

variant 2), APH1 (APH1A or APH1B) and PEN2. Maturation of the Notch receptor

involves a cleavage of the protein, the intracellular domain is liberated from the plasma

membrane that can enter into the nucleus to engage other DNA-binding proteins reg-

ulating gene expression. The cleavage is catalyzed and performed by Gamma-secretase

complex.

Figure 4.3 shows Reactome representation of the reactions (Panel A), the BioPax infor-

mation as it is stored in owl model and in Cytoscape plug-in for BioPax (respectively

panel B and C) and the graphite final network (panel D). In the graphite network the

nodes are annotated using the BioPax unificationXRefs informations while edges pre-

serve the type of the reaction annotated the OWL model. Distinction between OR

complexes (formed by all the possible variants of each protein) nested inside the AND

complex of the Gamma-secretase are topologically preserved in the resulting graph.

4.3 graphite for topological analyses

4.3.1 Simulation study: compound propagated signals improve topo-

logical analysis

In order to verify our signal propagation strategy we perform a simulation study. Using

the insulin signaling pathway of the KEGG database we select as di↵erentially expressed

22 genes lying on the signal paths highlighted in Figure 4.4 A. These genes are connected



Chapter 4. graphite in practice 47

Figure 4.2: Di↵erences in signal reconstruction of a selected portion of the insulin
signaling pathway of KEGG (hsa04910). Panel A. The original signal cascade. Panel
B. graphite signal reconstruction through chemical compound propagation. Numbers

represent EntrezGene IDs. Panel C. KEGGgraph signal reconstruction.
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Figure 4.3: Catalysis and cleavage of Notch 1 by Gamma Secretase Complex. Re-
actome representation of the reactions (Panel A), BioPax information as it is stored
in owl model and in Cytoscape plug-in BioPax dedicated (respectively panel B and C)

and the graphite final network (panel D).
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if propagation is employed, otherwise they are disconnected (see Figure 4.4 C and D for

propagation and non-propagation respectively). We expect that propagation will lead

to better results in terms of topological analyses.

Our simulation is based on the following steps: 1) we randomly generate µFC ⇠ U(2, 10);

2) we randomly generate log fold change values (�i for i = 1, . . . , 22) of the di↵erentially

expressed genes as �i ⇠ N(µFC , 2) (interactions of the signal paths selected are charac-

terized all by activation, thus, fold changes have the same sign); 3) we run the SPIA

algorithm on the Insulin signaling pathway with and without signal propagations and

we take the p-value of the topological analysis (PPERT ); 4) we repeat from step 1 10,000

times.

As shown in Figure 4.4 B the distribution of the topological significance p-values in

case of signal propagation is shifted towards lower values with respect to the case of

non-propagation. Propagation p-value distribution is not only centered on 0.1 (while

the one with non-propagation is centered on 0.3) but is also less variable. As expected

the same results are obtained simulating negative fold changes (data not shown). This

finding demonstrate that compound mediating signal propagation improves topological

analyses giving more reliable results.

4.3.2 Example of topological analysis with real data: B-lineage Adult

Acute Lymphocytic Leukemia

4.3.2.1 Data

The dataset published by Chiaretti et al. (2005), characterizes gene expression signatures

in acute lymphocytic leukemia (ALL) cells associated with known genotypic abnormal-

ities in adult patients. Several distinct genetic mechanisms lead to acute lymphocytic

leukemia (ALL) malignant transformations deriving from distinct lymphoid precursor

cells that have been committed to either T-lineage or B-lineage di↵erentiation. Chromo-

some translocations and molecular rearrangements are common events in B-lineage ALL

and reflect distinct mechanisms of transformation. The relative frequencies of specific

molecular rearrangements di↵er in children and adults with B-lineage ALL. The BCR

breakpoint cluster region and the c-abl oncogene 1 (BCR/ABL) gene rearrangement

occurs in about 25% of cases in adult ALL, and much less frequently in pediatric ALL.

Data is available at the Bioconductor site (www.bioconductor.org). Expression values,

appropriately normalized according to rma and quantile normalization, derived from

A↵ymetrix single channel technology, consist of 37 observations from one experimental
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Figure 4.4: Results of the simulation study on the Insulin signaling pathway com-
pound mediated signal propagation. Panel A. Signal paths selected to be di↵erentially
expressed. Panel B. p-value distribution of the topological analysis SPIA (PPERT ) with
and without propagation. Panel C. graphite network obtained from insulin pathway
with propagation. Panel D. network obtained from insulin pathway without propaga-

tion.
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condition (n1 = 37, BCR; presence of BCR/ABL gene rearrangement) and 41 observa-

tions from another experimental condition (n2 = 41, NEG; absence of rearrangement).

Probes platform have been annotate using EntrezGene custom CDF version 14 (Dai

et al., 2005). Given the involvement of BCR and ABL genes in the chimera rearrange-

ment, we expect these genes playing a central role in the gene set analysis; thus, most

of the pathways containing BCR and/or ABL genes should be found as significant.

4.3.2.2 Results

We report the results obtained by SPIA (Draghici et al., 2007) and topologyGSA (Massa

et al., 2010) on the graphite networks. These statistical tests are based on completely

di↵erent null hypotheses; while SPIA needs the list of di↵erentially expressed genes,

topologyGSA performs two statistical tests (to compare the mean and the variance of

the pathway between two groups) on the entire list of genes belonging to a pathway.

Here, di↵erentially expressed genes required for SPIA package have been identified using

RankProd test (Hong et al., 2006) (FDR < 0.01), while the test on the mean has been

chosen for topologyGSA package.

Table 4.3 and Table 4.4 reports the list of significant pathways identified by the above

approaches; pathways marked with
p

are those containing BCR and/or ABL genes. It is

interesting to observe that several pathways containing either BCR and ABL genes were

identified as deregulated especially with topologyGSA. Then, as expected, several addi-

tional pathways associated to cancer progression, apoptosis, cell cycle, cell proliferation

and inflammation have been selected as significant.

Leaving the comparison between topological analyses aside (because it is out of the

scope of the present work), the results testify the feasibility of performing analyses using

graphite and the ability to obtain reliable results independently of the chosen analysis

method. In addition, for the first time, thanks to graphite all the topological methods

gain the access to pathway repositories previously not considered.

Our results highlight that the hierarchical pathway structure and the reduced dimension

of the pathways characterizing respectively the Reactome and Biocarta databases jointly

with the specialized cancer pathways of the NCI databases allow the user to have deeper

insight into the data.

To highlight the usefulness of topological analysis in the context of transcriptomic data

interpretation, we report two graphite networks identified as significantly altered in the

previous analysis.
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Chronic myeloid leukemia pathway includes both genes, BCR and ABL1, and was iden-

tified as di↵erentially expressed between BCR/ABL positive and negative patients by

topologyGSA. Figure 4.6 shows the chronic myeloid leukemia graphite network from

KEGG database with di↵erentially expressed genes mapped with di↵erent colors ac-

cording to fold change sign. It is interesting to note the presence of several OR groups

(e.g. PI3K, AKT, IKK, CBL gene families), single members of which resulted to be dif-

ferentially expressed. Two clear deregulated paths starting from BCR and ABL1 genes

towards apoptosis and NFKB pathways highlight the power of topological analysis to

deeper investigate signal cascades within large pathways.

Name FDR Signal Database BCR ABL

1 Leishmaniasis 0.03 Activated KEGG
2 Phase 1 - Functionalization of compounds 0.02 Activated Reactome
3 Syndecan-4-mediated signaling events 0.00 Activated NCI
4 Regulation of RAC1 activity 0.00 Activated NCI
5 RAC1 signaling pathway 0.00 Activated NCI
6 RhoA signaling pathway 0.00 Activated NCI
7 Regulation of RhoA activity 0.00 Activated NCI
8 Noncanonical Wnt signaling pathway 0.00 Activated NCI
9 Wnt signaling network 0.00 Activated NCI
10 BCR signaling pathway 0.00 Inhibited NCI
11 IL6-mediated signaling events 0.00 Inhibited NCI
12 Hypoxic and oxygen homeostasis regulation of HIF-1-alpha 0.00 Inhibited NCI
13 Stabilization and expansion of the E-cadherin adherens junction 0.00 Activated NCI
14 E-cadherin signaling in the nascent adherens junction 0.00 Activated NCI
15 E-cadherin signaling events 0.00 Activated NCI
16 HIF-1-alpha transcription factor network 0.00 Inhibited NCI
17 ALK1 signaling events 0.01 Activated NCI
18 Canonical Wnt signaling pathway 0.02 Activated NCI
19 ALK1 pathway 0.02 Activated NCI
20 S1P2 pathway 0.02 Inhibited NCI
21 Regulation of nuclear SMAD2/3 signaling 0.02 Activated NCI
22 Regulation of cytoplasmic and nuclear SMAD2/3 signaling 0.02 Activated NCI
23 TGF-beta receptor signaling 0.02 Activated NCI
24 C-MYB transcription factor network 0.02 Activated NCI
25 Osteopontin-mediated events 0.02 Inhibited NCI
26 Direct p53 e↵ectors 0.02 Inhibited NCI
27 Validated transcriptional targets of AP1 family members Fra1 and Fra2 0.03 Activated NCI
28 Regulation of nuclear beta catenin signaling and target gene transcription 0.03 Activated NCI
29 S1P4 pathway 0.03 Inhibited NCI
30 amb2 Integrin signaling 0.03 Activated NCI
31 p38 MAPK signaling pathway 0.04 Activated NCI
32 Posttranslational regulation of adherens junction stability and disassembly 0.04 Activated NCI
33 N-cadherin signaling events 0.04 Activated NCI
34 Lissencephaly gene (LIS1) in neuronal migration and development 0.05 Activated NCI

p

35 C-MYC pathway 0.06 Inhibited NCI
36 p53 pathway 0.06 Activated NCI

Table 4.3: Pathway analysis performed using SPIA statistical test on graphite net-
works.

4.4 The first year of graphite

graphite has been published the 31 January 2012 (Sales et al., 2012). At the time of

writing, 1 year later, more than 1200 di↵erent IPs have performed the approximately

2500 downloads, see Figure 4.5.
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Name FDR Database BCR ABL
1 CDO in myogenesis 0.00 Reactome

p

2 Regulation of cytoskeletal remodeling and cell spreading by IPP complex components 0.00 Reactome
3 Role of Abl in Robo-Slit signaling 0.00 Reactome

p

4 NF-kB activation through FADD/RIP-1 pathway mediated by caspase-8 and -10 0.01 Reactome
5 TNF signaling 0.01 Reactome
6 G1 Phase 0.02 Reactome
7 mTOR signalling 0.02 Reactome
8 PI3K Cascade 0.02 Reactome
9 Cyclin D associated events in G1 0.02 Reactome
10 PI-3K cascade 0.03 Reactome
11 E2F mediated regulation of DNA replication 0.04 Reactome
12 Cyclin A/B1 associated events during G2/M transition 0.04 Reactome
13 Intrinsic Pathway for Apoptosis 0.04 Reactome
14 Extrinsic Pathway for Apoptosis 0.05 Reactome
15 Lissencephaly gene (LIS1) in neuronal migration and development 0.00 NCI

p

16 ErbB4 signaling events 0.01 NCI
17 Regulation of retinoblastoma protein 0.00 NCI

p

18 Canonical NF-kappaB pathway 0.01 NCI
19 p73 transcription factor network 0.01 NCI

p

20 Atypical NF-kappaB pathway 0.02 NCI
21 Neurotrophic factor-mediated Trk receptor signaling 0.00 NCI

p

22 Pathogenic Escherichia coli infection 0.00 KEGG
p

23 Chronic myeloid leukeamia 0.00 KEGG
p p

24 Cell cycle 0.0 KEGG
p

25 Axon guidance 0.00 KEGG
p

26 Neurotrophin signaling pathway 0.00 KEGG
p

27 mtor signaling pathway 0.01 Biocarta
28 nf-kb signaling pathway 0.01 Biocarta
29 tnf/stress related signaling 0.02 Biocarta
30 p53 signaling pathway 0.03 Biocarta
31 tnfr1 signaling pathway 0.02 Biocarta
32 integrin signaling pathway 0.02 Biocarta
33 erk and pi-3 kinase are necessary for collagen binding in corneal epithelia 0.02 Biocarta
34 rb tumor suppressor/checkpoint signaling in response to dna damage 0.03 Biocarta
35 egf signaling pathway 0.04 Biocarta
36 tgf beta signaling pathway 0.04 Biocarta
37 role of mitochondria in apoptotic signaling 0.04 Biocarta
38 inhibition of cellular proliferation by gleevec 0.04 Biocarta
39 atm signaling pathway 0.05 Biocarta

p

40 influence of ras and rho proteins on g1 to s transition 0.05 Biocarta

Table 4.4: Pathway analysis performed using topologyGSA statistical test on graphite
networks.

Figure 4.5: Statistics of Downloads provided by Bioconductor website.
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Chapter 5

miRNAs Specificities in Epithelial

Ovarian Cancer histotypes

Since the introduction of platinum compounds in the adjuvant treatment of EOC in the

1980s, there has been little improvement in treatment outcome. Only Paclitaxel and,

more recently, Bevacizumab, have slightly, but by no means dramatically, improved the

long-term survival of patients. One of the possible explanations of the failure of virtually

all clinical trials with new drugs, is that most of them did not consider histotypes as

an inclusion criterion, nor were patients stratified based on histotype. It has been long

known that di↵erent histotypes are characterized by di↵erences in risk factors (Risch

et al., 1996), grades of nuclear atypia and dissemination, frequency of mutations of genes

related to cell proliferation (Madore et al., 2010), responses to standard platinum-based

chemotherapy (Itamochi et al., 2002; Polverino et al., 2005; Alexandre et al., 2010) and

gene expression profiles (Marquez et al., 2005). Despite this heterogeneity, all stage EOC

histotypes are being treated equally using surgical debulking and carboplatin-paclitaxel

chemotherapy.

miRNAs are highly tissue-specific and have recently been identified as attractive targets

for therapeutic intervention. During my Ph.D. I investigated the expression and the role

of miRNAs in stage I EOC histotype, with the aims to better understand the pathology

and to suggest new putative targets for histotype-specific treatments.

5.1 Tissue sample collection

We analysed a collection of 257 snap frozen tumour biopsies obtained from primary

surgery on stage I EOC patients näıve to chemotherapy, gathered together from three

55
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independent tumour tissue collections (A,B and C).

Collection A was composed of 40 frozen biopsies belonging to a tissue bank containing

300 frozen samples collected between March 2003 and January 2011 at the ”A. Nociv-

elli” Institute for Molecular Medicine, Division of Gynaecologic Oncology, University of

Brescia, Italy. Samples were recovered from patients who underwent surgery for EOC

at the Obstetrics and Gynaecology Department, Spedali Civili, Brescia, Italy.

Collection B was composed of 167 tissue samples from a frozen tissue bank containing

more than 1600 samples collected between September 1992 and March 2010, located at

the Department of Oncology, ”Mario Negri” Institute, Milano, Italy. Biopsies were col-

lected from patients who underwent surgery for EOC at the Obstetrics and Gynaecology

Department, San Gerardo Hospital, Monza, Italy.

Collection C was composed of 50 biopsies belonging to a tissues collection containing

600 frozen samples that were collected between January 1992 and December 2005, and

available at the Department of Gynaecology-Oncology, University of Torino, Torino,

Italy.

Patients underwent radical surgical tumor debulking and a complete staging proce-

dure according to the International Federation of Gynaecological and Obstetrics criteria

(FIGO) (Trimbos et al., 2003). A written informed consent was obtained from all the

patients enrolled in the study and the local scientific ethical committees approved the

collection and the use of tumor samples. Tumor grade and histological type were de-

termined following World Health Organisation (WHO) standards. The tumor content

of the specimens was assessed by haematoxylin and eosin staining to check epithelial

purity by the respective pathology units. Only specimens containing more than 70% of

epithelial tumor cells were used. Tumor tissue samples, collected at the time of surgery,

were identified, sharp dissected and snap frozen in liquid nitrogen within 15 min from

resection and then stored at -80C. Clinical and anatomo-pathological patient informa-

tion was registered, and follow-up data were obtained from periodic gynecological and

oncological check-ups.

Table 5.1 shows the clinical and histo-patological distribution of patients involved in

this study. Median ages in the three collections were similar, as well as the distribution

between histotypes and grades of nuclear di↵erentiation. As expected, in the light of

the good prognosis of stage I EOC, the recurrence rate was low around 20%.

Both univariate and multivariate analyses did not reveal any di↵erence in survival rate

between di↵erent histotypes, confirming results published in literature. As expected,

the most significant prognostic feature is the grade of tumors: with increasing grade at

time of diagnosis decreases the survival of patients (see Appendix B).
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Training set Validation set

Annotations

Collection
B1
143

patients

Collection
A
40

patients

Total

Collection
B2
24

patients

Collection
C
50

patients

Total

Clear Cell 23 9 32 (17.5 %) - 6 6 (8.2 %)
Endometrioid 36 14 50 (27.3 %) 7 20 27 (36.4 %)
Mucinous 41 10 51 (27.9 %) 7 9 16 (21.6 %)
Serous 43 7 50 (27.3 %) 10 15 25 (33.8 %)

Borderline 22 16 38 (20.8 %) 12 3 15 (20.3 %)
1 28 6 34 (18.6 %) 1 21 22 (29.7 %)
2 41 7 48 (26.2 %) 5 10 15 (20.3 %)
3 52 11 63 (34.4 %) 6 16 22 (29.7 %)

A 47 26 73 (39.9 %) 8 21 29 (39.2 %)
B 8 4 12 (6.5 %) 5 5 (6.7 %)
C 88 10 98 (53.6 %) 16 21 37 (50 %)

Unknown - - 0 - 3 3 (4.1 %)

Age Median
years(range)

51 (16-87) 57 (16-81)

Table 5.1: Main characteristics of patients and tissue samples.

As a general comment, these data confirm that our cohort of patients is consistent with

data reported in literature for stage I EOC and this is conducive to downstream analysis.

The entire cohort of patients has been subdivided into a training set (n=183) and a

validation set (n=74). In order to have similar histotype and grade proportions between

training and validation sets, a subset of collection B (B2) has been dedicated to the

validation set with collection C (Table 5.1). The training set was used to: (i) generate

miRNA expression measurements and marker identification procedure (A+B1); (ii) inte-

grate miRNA profiles with gene expression data in a subset of patients, and (iii) validate

gene and miRNA signature by qRT-PCR. The validation set was used only to re-confirm

by qRT-PCR technology miRNA markers and their putative targets previously identified

by the analyses of the training set.

5.2 miRNA microarray experiments and analyses

To generate the entire miRNA landscape, our cohort of 183 patients with stage I EOC

(training set) have been profiled using Agilent array technology. Experiments have been

performed at ”Mario Negri” Institute by the Oncology Group of Maurizio D’Incalci and

all the methods to extract DNA, perform hybridization and fluorescence quantification

are deeply described in Appendix A
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Raw data, submitted to ArrayExpress (series number E-MTAB-1067), were pre-processed

to filter out those probes with more than 40% of measurements below the signal-to-noise

threshold. Pre-processed data were normalized using quantile method (Bolstad et al.,

2003). After normalization, ComBat algorithm (Walker et al., 2008) was used to adjust

for time-batch e↵ects.

Figure 5.1 shows the heat-map of the expression value of the 250 miRNAs obtained

after the filtering process. Hierarchical cluster analysis was performed using Euclidean

distances and complete linkage. On a global scale, a large part of the entire set of

miRNAs is similar across samples and it does not help to separate samples by histo-

type and grade. Then, to identify histotypes-specific miRNAs, the expression levels

have been analyzed. Empirical Bayes test, implemented in Limma Bioconductor pack-

age (Smyth, 2005; Gentleman, 2005), has been used to identify di↵erentially expressed

miRNAs among histotypes. False discovery rate (FDR; the expected number of false

positives in the list of di↵erentially expressed; Reiner et al. (2003)) was used to assess

for the multiple testing using FDR  0.01. The complete list of di↵erentially expressed

miRNAs of each histotype comparison can be found at Appendix B.

It is noteworthy that among all the di↵erent comparisons, the mucinous histotype showed

the highest number of di↵erentially expressed features when compared with the other

histotypes (Figure 5.1 B). If we consider the number of di↵erentially expressed miRNAs

a measure of the di↵erence between histotypes, our results support the hypothesis that

the mucinous histotype is markedly di↵erent from all the others.

Although all the miRNAs reported above have significant adjusted p-values (FDR 
0.01), due to patient variability, only some of them can be exploited as histotype-specific

markers. Histotype-specific markers are defined as miRNAs with the capability of almost

perfectly predicting the histotypes of independent samples.Then, with the intention

of identifying miRNA markers among those di↵erentially expressed, we performed a

resampling strategy.

5.3 Resampling strategy to identify marker miRNAs

The power of a statistical test (the probability of rejecting the null hypothesis when it

is e↵ectively false) is dependent from the sample size; higher the sample size, stronger

the statistical power. Then, in case of large sample size, although significant several

di↵erentially expressed miRNAs can be characterized by patient variability within the

same histotype. On the other hand a miRNA is defined as a histotype-specific marker

if its expression profile is su�cient to predict the histotype class in an unknown sample.
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Figure 5.1: Microarray Data Analysis. Panel A: Heat-map with two-way cluster
analysis on miRNA and samples using all the expression profiles. Panel B: Bar-plot
of the number of di↵erentially expressed genes across histotype comparisons. Panel
C: Scatterplots and box-plots of patients miRNA marker expression values divided by
histological histotypes. Panel D: Sample cluster analysis obtained using only the four
histotype-specific miRNA markers (miR-194, miR-192, miR-30, miR-30a). Grade and

histotypes are reported in di↵erent colors.
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Then with the intention to identify miRNA markers among those di↵erentially expressed

we perform a resampling strategy based on the following steps:

• Random selection (without replacement) of a subset of patients within each his-

totype. The dimension of the subset has been set to 60% of the histotype sample

size.

• Identification of di↵erentially expressed miRNAs using empirical Bayes statistical

test, with a FDR threshold of 0.05.

• Define Sij a vector of dichotomous values with i=1,. . . ,N, and j=1,. . . ,B where

N is the total number of miRNAs, and B the total number of resampling; 1 for

di↵erentially express miRNA and 0 for equally expressed.

• Repeat from step 1, B times.

• Define the resampling score RS as:

RSi
PB

j=1 Sj

with0  RSi � B

here B was set to 500

Then, five hundred subsets of the original 183 samples were randomly selected and used

to identify histotype-specific di↵erentially expressed miRNAs. The resampling score

(0  RS � B) is the number of times that a miRNA is identified as di↵erentially

expressed in the 500 analysis runs. miRNAs with the highest RS (RS=500) has been

considered as marker miRNA. The procedure is implemented using the R programming

language (R version 2.14) (Team, 2010), and the BioConductor software suite (version

2.9) (Gentleman et al., 2004). The complete list of di↵erentially expressed miRNAs on

each histotype comparison ordered by resampling score can be found at Appendix B. In

order to evaluate the significance of RS score we used a permutational-based approach.

Randomly permuting sample labels each run we performed our resampling strategy.

Then for each random permutation we have an simulation resampling score (SRS). We

set to 1000 the number of permutation. Then we take the max SRS for each gene in the

1000 SRS. As reported in Table 5.2 the SRSs are always much lower than the observed

RS, highlighting the robustness of our signature.

Only ten miRNAs were found commonly deregulated across all possible comparisons of

histotypes, and only three miRNAs reached the maximum score (RS=500): miR-192

and miR-194 were highly expressed in the mucinous histotype, and miR-30a was highly
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microRNAs Class comparison log2(FC) adj.P.Val max SRS RS
Mucinous

hsa-miR-192 Muc vs. Cc 4.58 2.36E-19 28 500
Muc vs. End 4.46 1.80E-21 29 500

Muc vs. Ser 4.29 1.93E-20 26 500

hsa-miR-194 Muc vs. Cc 4.49 1.27E-16 15 500
Muc vs. End 4.01 6.09E-17 55 500

Muc vs. Ser 4.15 2.75E-18 122 500

hsa-miR-338-3p Muc vs. Cc 1.75 8.35E-06 37 490
Muc vs. End 1.80 1.16E-06 13 491

Muc vs. Ser 1.27 0.000384 12 422

hsa-miR-1274a Muc vs. Cc -1.62 2.65E-06 76 477
Muc vs. End -0.92 0.007193 101 168
Muc vs. Ser -0.82 0.006782 95 224

Clear cell

hsa-miR-30a Cc vs. End 2.18 6.94E-13 112 500
Cc vs. Muc 2.47 1.27E-16 35 500

Cc vs. Ser 1.99 8.08E-11 11 500

hsa-miR-30a* Cc vs. End 1.62 4.67E-07 99 494
Cc vs. Muc 1.91 8.94E-10 178 500

Cc vs. Ser 1.28 8.72E-05 19 408

hsa-miR-193b Cc vs. End 1.15 7.86E-05 83 429
Cc vs. Muc 0.93 0.001861 41 288
Cc vs. Ser 0.85 0.009579 58 175

Serous

hsa-miR-34b* Ser vs. Cc 2.28 2.49E-05 18 484
Ser vs. End 1.34 0.006583 29 189

Ser vs. Muc 1.91 2.99E-05 52 482

hsa-miR-575 Ser vs. Cc -1.49 0.009579 53 159
Ser vs. End -1.44 0.003786 71 235

Ser vs. Muc -1.55 0.000521 79 400

hsa-miR-29b Ser vs. Cc 1.25 0.009579 63 184
Ser vs. End 1.52 0.000286 112 364
Ser vs. Muc 1.31 0.000521 137 404

Table 5.2: Selection of most di↵erentially expressed miRNAs across histotypes. Mu-
cinous (Muc), Clear cell (Cc), Serous (Ser), Endometrioid (End), Fold Change is in log2
scale (log2(Fold Change)), P-value adjusted for multiple testing (adj.P.Val), simulation

resampling score (SRS), resampling score (RS).

expressed in clear cell EOCs (Table 5.2). Thus, we reasoned that miR-192 and miR-194

could be considered markers for the mucinous EOCs and miR-30a a marker for the clear

cell histotype. Although characterized by a high resampling score, miR-30a* (RS=494

for Cc vs. End; RS=500 for Cc vs. Muc; RS=408 for Cc vs. Ser) does not reach the

maximum RS in all comparisons. However, due to its physical association with miR-

30a, it has been included in the list of miRNAs selected for downstream validations. In

Figure 5.1 C we report the distribution of miRNA expression levels of miR-192, miR-194,

miR-30a and miR-30a* in the four histotypes. Box-plots clearly show that the median

expression values for miR-192 and miR-194 are significantly higher in the mucinous

compared to the other histotypes, while the median expression values of miR-30a and
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miR-30a* are higher in the clear cell compared to the others. Otherwise, no miRNA can

be identified as potential marker for endometrioid or serous EOC histotypes.

We next used the expression profiles of the four markers to re-cluster the entire set of

patients, and Figure 5.1 D shows the clustering obtained. The classification of histotypes

dramatically improves, separating mucinous and clear cell histotypes from the others,

while endometrioid and serous histotypes generate a single and heterogeneous cluster.

Interestingly, the mucinous cluster in Figure 5.1 D is preferentially characterized by

the presence of low-grade patients (Grade 1 and Borderline). Given this evidence, we

investigated the presence of potential variability in expression level across grades within

histotypes. We found that, although not significant, miR-192 and miR-194 expression

levels slowly decrease with the increasing grade and that these decrease follows the

decreasing of survival of mucinous patients through the increasing grade (Figure 5.2).

Figure 5.2: Box plots depicting the median plus/minus the IQ range of expression
values for miR-192 and miR-194 mucinous histotypes stratified according to their grade

in the entire cohort of patients (n=257).

5.4 Validation of markers using qRT-PCR

To assess the robustness and the reproducibility of the array signature identified so far,

we measured by qRT-PCR the expression levels of miRNA markers in the training set

and then in an independent validation set. To avoid potential errors due to batch e↵ects,

new batches of snap frozen material for the entire cohort of samples were used.

Box-plots in Figure 5.3 depict the expression values (measured as fluorescent intensity

signals normalized) of miR-192, miR-194, miR-30a and miR-30a* in the training set,

stratified for their histological histotypes. For each class comparison we reported in

Table 5.3 the fold changes, as log2(class 1/class 2) and the p-values.

Within the training set, data shows that miR-192 and 194 are roughly 5 to 8 folds over-

expressed in mucinous compared to the other histotypes and miR-30a and miR-30a*

mirror the same trend, being 5 to 7 folds over-expressed in the clear cell compared to
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Figure 5.3: Box plots depicting the qRT-PCR expression values (measured as fluo-
rescent intensity signals normalized) of miR192, miR-194, miR-30a and miR-30a* in
training and validation sets. Mean are indicated with a white dot in the middle of box

plot.

Training set Validation set

microRNAs
Class

comparison
log2(FC) p-value log2(FC) p-value

Mucinous

hsa-miR-192 Muc vs. Cc 8.79 1.02E-22 11.46 5.36E-05
Muc vs. End 6.90 6.22E-17 7.52 2.54E-07

Muc vs. Ser 8.69 1.02E-28 6.98 8.59E-08

hsa-miR-194 Muc vs. Cc 6.05 3.63E-11 7.30 0.0003
Muc vs. End 5.31 1.32E-11 6.16 2.42E-06

Muc vs. Ser 6.62 7.18E-17 5.73 7.33E-06

Clear cell

hsa-miR-30a Cc vs. End 5.21 7.47E-20 6.43 1.80E-06
Cc vs. Muc 5.40 1.88E-20 5.12 0.0045

Cc vs. Ser 5.73 3.81E-22 5.25 5.16E-05

hsa-miR-30a* Cc vs. End 5.38 3.44E-09 7.12 1.80E-06
Cc vs. Muc 6.10 1.37E-11 6.54 2.68E-05

Cc vs. Ser 7.19 1.96E-15 6.63 2.72E-06

Table 5.3: qRT-PCR analysis of miRNAs for both training and validation set. The
logarithmic fold change of average expression value (measured as fluorescent intensity
signals normalized) of class 1 versus average expression value of class 2 (log2(FC))
of selected miRNAs. p-values were considered as significant when lower than 0.05.

Mucinous (Muc), Clear cell (Cc), Serous (Ser), Endometrioid (End).
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the other histotypes. The statistical analysis confirmed these di↵erences with adequate

significance (p  0.001). Two-sided student’s t-test (for training set) and Wilcoxon test

(for validation set) were used to verify among groups mean di↵erences. Di↵erences with

p-value  0.05 were considered statistically significant. In conclusion, di↵erences mea-

sured by qRT-PCR coherently mirrored those previously reported by array technology.

Expression values of selected miRNAs were evaluated also in an independent validation

set. Data confirmed miR-192 and miR-194 as up regulated in the mucinous compared

to the other histotypes, as well as miR-30a and miR-30a* up regulated in the clear cell

subgroup, with p-value lower than 0.005.

5.5 The miRNA markers of EOC histotypes: the impor-

tance of results.

The results of the analysis of histotype in stage I EOC presented above indicate an

unambiguous miRNA signature for clear cell (high levels of miR-30a and miR-30a*)

and mucinous histotypes (high levels of miR-192 and miR-194). This is particularly

interesting as these two histotypes, although less frequently found at advanced stages

compared to serous EOCs, are rarely curable, showing a low response rate to standard

chemotherapy, unlike serous and endometrioid histotypes.

5.5.1 Clear cell histotype markers: miR-30a and miR-30a*

miR-30a and miR-30a* have been identified as markers of the clear cell histotype. Both

are 5-fold more highly expressed in clear cell histotype than in the others. miR-30a*

has hitherto not been well characterized. In contrast, miR-30a is known to negatively

regulate Beclin-1, a positive regulator of the autophagy pathway (Zhu et al., 2009).

Autophagy is a tightly regulated catabolic process considered a key pathways in cancer,

with a pivotal role for the balance between protein degradation and synthesis, between

non-apoptotic programmed cell death and the cell growth (Kreuzaler and Watson, 2012).

Since the role of autophagy in carcinogenesis and tumour progression has not been fully

elucidated, the potential consequences of these data are not clear. Nevertheless, these

findings hint tantalisingly at a possible role of autophagy in determining the sensitivity

and resistance to clear cell EOC therapy.
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5.5.2 Mucinous histotype markers: miR-192 and miR-194

miR-192 and miR-194 were found to be 5-fold more highly expressed in mucinous than in

the other histotypes. miR-192 and miR-194 are co-localized in a miRNA cluster located

in chromosome 11. Low levels of miR-192/194 are known to be associated with a more

tumorigenic status in a panel of solid tumors (Braun et al., 2008; Hino et al., 2008;

Ma et al., 2011; Meng et al., 2010; Song et al., 2008). Interestingly, these miRNAs are

considered markers in colon and gastric tissues (Hino et al., 2008; Meng et al., 2010)

and have a primary role in tumors of these tissues. The molecular similarity between

mucinous EOC and the colon and gastric environment tentatively supports the idea that

mucinous ovarian cancer should not be treated with the same regimes used for the other

ovarian cancer histotypes. There are some reported common pathological features of

mucinous ovarian cancer and colorectal cancer such as a high frequency of microsatellite

instability and of K-RAS mutations (Cheng et al., 2009), which reinforce the notion that

these tumors are not only morphologically similar, but also biologically.





Chapter 6

The Integration of miRNA and

Gene Expression

In the last years, genome-wide expression studies of genes and miRNAs have given a

strong impulse in the comprehension of the regulatory mechanisms involved in cancer

diseases. Moreover, it has been increasingly clear that the integration of di↵erent omic

data, although challenging, is a successful approach to have a wider perspective of the

complexity of the system. In the previous chapter, I analyzed a set of miRNA expression

profiles identifying a subtype-specific signature. Although highly interesting from a

clinical and biological point of view, a better comprehension of the regulatory circuits

in which these miRNA are involved, can be obtained integrating gene and miRNAs

expression data. In this perspective, in collaboration with the ”Mario Negri” Institute,

the gene expression of a subset of patients of the training set have been profiled using

microarray. In the following Sections the integration of miRNA and gene expression

data is introduced and the results obtained on EOC samples have been discussed.

6.1 Gene and miRNA expressions integrated analyses: an

introduction

6.1.1 Classical approach

In silico target identification is based on (i) sequence similarity search, possibly consid-

ering target site evolutionary conservation and (ii) thermodynamic stability. However,

it is known that the results of target prediction algorithms are characterized by very

low specificity (Alexiou et al., 2009). This is caused both by the limited comprehen-

sion of the molecular basis of miRNA-target pairing and by the context-dependency of

67
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post-transcriptional regulation due to the cooperative interactions of di↵erent miRNAs.

The integration of target predictions with miRNA and gene expression profiles using

correlation measures has been recently proposed to improve the detection of functional

miRNA-target relationships (Sales et al., 2010; Bisognin et al., 2012).

6.1.2 A new appraoch: gaining power including miRNAs into pathway

annotations

The use of correlation measures, although e↵ective, does not contextualize the putative

miRNA-target interactions. From this point of view the visualization of miRNAs within

biological pathways would strongly enhance the data analyses and the interpretation

of results. However, all pathways annotations in the four databases mentioned in the

previous chapters totally lack of miRNA elements.

Taking advantage of our tool graphite, we decide to expand its pathway annotations,

including experimentally validated miRNAs. This new graphite will allow us to perform

topological pathway analyses on pathways including both genes and miRNAs. As far as

I known, this is the first attempt in this field.

6.1.2.1 The new graphite with miRNAs

Many miRNA target genes has been validated with direct methods, they can be found

in literature and are collected in public databases.

I decided to select only experimentally validated miRNA-target interactions from Tar-

base (Vergoulis et al., 2012) and miRecords (Xiao et al., 2009). Then, a miRNA has

been introduced within a pathway only if its experimentally validated target are still

present in the pathway.

In this new version of graphite network nodes are both genes and miRNAs, and relations

of type inhibition have been added between miRNAs and target genes.

After the conversion of graphite genes into Entrez Gene ID, as expected, the addition of

miRNAs increases the size of the pathways, especially for cancer related pathways, for

details see Table 6.1

In Table 6.2 the top twenty KEGG pathways ordered by the ratio between number of

miRNAs and the original size of the pathway (with only genes) are reported. Cancer

related pathways triple their original size, this is due to the increasingly higher number

of miRNAs studies on cancer diseases.
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Pathways with only genes Pathways with genes and miRNAs

Database
N of

pathways
Nodes

Mean (Median)
Edges

Mean (Median)
Nodes

Mean (Median)
Edges

Mean (Median)

KEGG 232 71.86 (54) 211.10 (75.5) 92.65 (67.5) 240.87 (101)
Reactome 1070 28.10 (11) 338.48 (23) 34.46 (15) 346.11 (28)
BioCarta 254 24.98 (16.5) 74.50 (24) 39.32 (30.5) 90.94 (41.5)
NCI 177 67.85 (44) 124.36 (53) 111.84 (79) 188.49 (114)

Table 6.1: Number of pathways converted into networks with the average number of
edges and nodes before and after the miRNA addition.

Pathway Name Number of genes
Number of added

miRNAs
miRNAs/genes

Bladder cancer 42 145 3.5
Glioma 65 167 2.6
Melanoma 71 178 2.5
Thyroid cancer 29 72 2.5
Chronic myeloid leukemia 73 181 2.5
Pancreatic cancer 70 172 2.5
p53 signaling pathway 69 168 2.4
Prostate cancer 89 209 2.3
Endometrial cancer 52 121 2.3
Non-small cell lung cancer 54 125 2.3
Colorectal cancer 62 142 2.3
Dorso-ventral axis formation 25 53 2.1
Small cell lung cancer 85 177 2.1
Renal cell carcinoma 70 145 2.1
ErbB signaling pathway 87 174 2.0
Acute myeloid leukemia 58 115 2.0
mTOR signaling pathway 52 98 1.9
Adherens junction 73 136 1.9
VEGF signaling pathway 76 139 1.8

Table 6.2: Pathways ordered by the ratio of the contents of miRNAs and genes

Accordingly, the ranking of target genes by the number of their experimentally validated

miRNAs, identifies the most famous cancer genes, as shown in Table 6.3.

Gene symbol
Number of miRNAs that

regulate the gene

CDKN1A 37
VEGFA 32
BCL2 22
CDK6 17
MCL1 16
PTEN 15
CCND1 15

Table 6.3: Targeted genes ordered by the number of miRNAs.
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6.2 miRNA and gene expression integration in Epithelial

Ovarian Cancer

Seventysix patients of the training set cohort has been profiled for gene expression, and

their histotype stratification is reported in Table 6.4. Materials and methods of array

and qRT-PCR validations described in this chapter are available in the Appendix A.

Annotations
Number of Patients

n=76

Clear Cell 16 (21%)
Endometrioid 19 (25%)
Mucinous 17 (22%)
Serous 24 (32%)

Table 6.4: Histotype stratification of patients with expression measurements of both
genes and miRNAs.

Gene expression raw data, were pre-processed to filter out those probes with more than

40% of measurements below the signal-to-noise threshold. Filtered data were normalized

using quantile algorithm (Bolstad et al., 2003).

Pathway analysis using gene and miRNA expression profiles has been performed using

SPIA and CliPPER methods. Both methodologies require the definition of two classes

of patients. Our datasets contain four classes (histotypes). Then, we have tested each

histotype versus the others. However, in this thesis, for reasons of brevity, we decide to

show only the results of mucinous histotype circuits, for which experimental validation

have been performed.

6.2.1 Mucinous EOC histotype analyses using SPIA

6.2.1.1 Method

Published in 2007, SPIA has been the first topological method for pathway analysis and,

currently is one of the most used.

SPIA needs as input the list of di↵erentially expressed genes with their log fold changes

and the complete list of gene names in the platform (Appendix B).

Then, SPIA calculates 1) the classical hypergeometric enrichment p-values, PNDE , and

2) a perturbation factor as a linear function of the perturbation factors of all genes in a

given pathway, whose significance is calculated through a bootstrap approach, PPERT .

PNDE represents the probability of obtaining a number of DEGs on a given pathway
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at least as large as the observed one by chance. PPERT represents the impact of the

deregulated genes on the whole pathway. Specifically, the perturbation analysis consists

on the propagation of measured expression changes across the pathway topology, taking

into account the position of the genes in the pathway. Then, PPERT , is the probability

to observe a total accumulated perturbation value of the pathway by chance. The

perturbation of each single gene is calculated using the expression change of the gene

between the two conditions (log2(FoldChange)), corrected for a perturbation factor.

The perturbation factor of each gene is derived by the sum of perturbation factors of the

upstream genes divided by the number of downstream genes, moreover each interaction

is weighted by the edge type considered (e.g. +1 for activation, -1 for repression and

inhibition). According to the sign of the perturbation score the pathway is defined as

activated (positive perturbation score = positively perturbed) otherwise the pathway

is inhibited (or negatively perturbed). Finally, these two independent p-values, PNDE

and PPERT are combined to generate a global probability, called PG. Adjusted PG were

calculated using popular FDR algorithm (Reiner et al., 2003). It has been demonstrated

that PG, PNDE and PPERT are independent of the size of the pathway.

Then, the results of a SPIA analysis is a table in which for each pathways the following

information are reported:

• Name of the pathway;

• Size – pathway size;

• NDE – number of di↵erentially expressed genes;

• PNDE – number of di↵erentially expressed genes contained in the pathway;

• tA – the total accumulated perturbation of the pathway;

• PPERT – see above;

• PG – see above;

• PGFDR – PG corrected for multiple testing;

• The pathway status that can be activated or inhibited;

6.2.1.2 Results

To identify subtypes-specific miRNAs and genes between mucinous histotype and the

other samples, we used the empirical Bayes test, implemented in Limma Bioconductor

package (Smyth, 2005; Gentleman, 2005). False discovery rate (Reiner et al., 2003) was

used to assess for the multiple testing using False Discovery Rate (FDR) with 0.01.

In Appendix B the list of di↵erentially expressed genes of mucinous histotype compared

to the other three are reported, while Table 6.5 shows the results of SPIA on pathways

with genes and miRNAs.
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SPIA results although interesting, highlight an awkward behavior. Since miRNA ele-

ments represent entry points in each pathway, and given that SPIA enhances pathways

with deregulated features upstream of their topology, we obtain significant pathways

even in case a single miRNA is di↵erentially expressed in a pathway. This uneasy char-

acteristic of SPIA leads to a series of significant pathways that could be false positives.

For this reason, we consider SPIA not suitable for the integrative analysis of miRNA

and gene expression using pathways.

6.2.2 Mucinous EOC histotype analyses using CliPPER

6.2.2.1 Method

CliPPER implements a topological pathway analysis based on the Gaussian Graphical

Models. Assuming to have two classes of samples, CliPPER models the data in the

two classes with two graphical Gaussian models with the same undirected graph G, but

di↵erent means and concentration matrix (the inverted matrix of the covariance matrix)

which reflects dependencies among variables (genes). Each concentration matrix is a

matrix whose element in the (i, j) position is the partial correlation measure between

the i

th and j

th variables that are the vectors of gene expression of genei and genej

in a pre-determined biological condition. Partial correlation, that is a measure of the

degree of association between two random variables, is measured between those couple

of genes defined by the graph connections. After estimating means and concentration

matrices, CliPPER perform two statistical tests: i) on means and ii) concentration

matrices. These tests can be performed at pathway level, to understand which pathway

are significantly involved in the biological problem, and at clique level, to understand

which portion of the pathway (chain of cliques) is involved. In graph theory, a clique is

a set of nodes such that for every two nodes an edge exists (connected component). A

tree decomposition strategy is often used in the theory of graphs to propagate the signal.

The results of a graph decomposition is a tree of cliques called junction tree. Tests on

concentration matrices for each clique within the junction tree is performed and a score,

called relevance score, is provided for each chain of cliques (called path). The result is a

list of paths ranked by the relevance score. Higher the relevance, higher the association

of these paths with the phenotype.

For each pathway, CliPPER reports a series of paths, ranked by the relevance with

the phenotype under study. In particular, foreach path the following information are

reported:

• Start – index of the starting clique of the junction tree path;

• Finish – index of the ending clique of the junction tree path;
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• Clique max – index of the clique where the maximum score is reached;

• Length Path – length of the of the junction tree path (the number of cliques considered);

• Max Score – maximum score of the of the junction tree path;

• Ave Score – average score along the of the junction tree path;

• Path Activation – percentage of the junction tree path activation;

• Path Impact – impact of the of the junction tree path on the entire pathway;

• indexes of the involved and signicant cliques;

• indexes of the cliques that forming the junction tree path;

• genes composing the signicant cliques;

• genes composing the junction tree path.

For more details on the methods refer to Martini et al. (2013).

6.2.2.2 Results

The result of the pathway level analysis is reported in Table 6.6. All the pathways

showing the p-values of the mean and covariance test less than 0.1 are considered for

the subsequent clique-level analyses.
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Table 6.6: CliPPER pathway level results, Mucinous EOC vs. Other Histotypes.

Pathway Name
Mean
test

Covariance
test

Amyotrophic lateral sclerosis (ALS) 0 0
Apoptosis 0 0
Arrhythmogenic right ventricular cardiomyopathy (ARVC) 0 0
Bacterial invasion of epithelial cells 0 0
Basal cell carcinoma 0 0
Bladder cancer 0 0
Colorectal cancer 0 0
Dilated cardiomyopathy 0 0
Ether lipid metabolism 0 0
Folate biosynthesis 0 0
Glutathione metabolism 0 0
Glycerophospholipid metabolism 0 0
Glycolysis / Gluconeogenesis 0 0
Hedgehog signaling pathway 0 0
Hepatitis C 0 0
Intestinal immune network for IgA production 0 0
Long-term depression 0 0
Maturity onset diabetes of the young 0 0
Melanoma 0 0
Neuroactive ligand-receptor interaction 0 0
Nitrogen metabolism 0 0
Non-small cell lung cancer 0 0
Pancreatic cancer 0 0
Phagosome 0 0
Renal cell carcinoma 0 0
Rheumatoid arthritis 0 0
Small cell lung cancer 0 0
Toxoplasmosis 0 0
Type II diabetes mellitus 0 0
VEGF signaling pathway 0 0
alpha-Linolenic acid metabolism 0 0
p53 signaling pathway 0 0
Arachidonic acid metabolism 0 0.01
B cell receptor signaling pathway 0 0.01
Chronic myeloid leukemia 0 0.01
Cytokine-cytokine receptor interaction 0 0.01
Endocytosis 0 0.01
Fat digestion and absorption 0 0.01
Glioma 0 0.01
Jak-STAT signaling pathway 0 0.01
Pancreatic secretion 0 0.01
Prostate cancer 0 0.01
Adherens junction 0 0.02
Calcium signaling pathway 0 0.02
Fc epsilon RI signaling pathway 0 0.02
Osteoclast di↵erentiation 0 0.02
Wnt signaling pathway 0 0.02
Linoleic acid metabolism 0 0.03
Long-term potentiation 0 0.03
Melanogenesis 0 0.03
Neurotrophin signaling pathway 0 0.03
Oocyte meiosis 0 0.05
Steroid hormone biosynthesis 0 0.05

Table 6.6: continue on the next page.
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Pathway Name
Mean
test

Covariance
test

Vascular smooth muscle contraction 0 0.05
Protein processing in endoplasmic reticulum 0 0.06
Axon guidance 0 0.07
Regulation of actin cytoskeleton 0 0.09
Shigellosis 0 0.09
Arginine and proline metabolism 0 0.1
Taste transduction 0 0.1
RIG-I-like receptor signaling pathway 0.01 0
Vitamin B6 metabolism 0.01 0
Thyroid cancer 0.01 0.07
Tyrosine metabolism 0.01 0.09
Acute myeloid leukemia 0.02 0.08
PPAR signaling pathway 0.03 0.03
Allograft rejection 0.04 0.06
Glycosaminoglycan degradation 0.09 0.02

Table 6.6: CliPPER pathway level results, Mucinous EOC vs. Other Histotypes.

A gene can belong to more than one pathway, then, in general, pathways are character-

ized by a large overlap. A specific signal can start into a pathway and end into another

pathway. Then in this case the relevance score will be penalized. To overcome this

problem, and to identify more relevant and longer paths, we decide to combine all the

the best sub-portions of each pathway, generating a new pathway. Figure 6.1 shows the

”union of the best paths”, where the colors represent the pathway of origin.

This new pathway has been re-analyzed with CliPPER, with the intention to find the

chain of genes/miRNAs mostly involved in the separation between the mucinous and

the other histotypes.

Here, only an excerpt of the complete table of the results is reported (Table 6.7), while

in Figure 6.2, highlighted in red are the genes and the miRNAs belonging to the path

with the maximum score: hereafter called the mucinous path (Figure 6.3 for a zoom).
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Start Finish
Max
Clique

Path
Length

Max
Score

Ave
Score

Path
Activation

Path
Impact

4 98 28 32 101.40 3.62 0.68 0.16
4 134 25 41 67.59 2.70 0.35 0.21
4 95 14 18 49.60 3.54 0.59 0.09
4 137 12 16 41.44 3.45 0.56 0.08

186 190 5 5 19.73 3.94 0.85 0.02
182 185 4 4 18.42 4.60 1 0.02
4 64 6 10 16.57 2.76 0.36 0.05

164 169 3 4 9.84 3.28 0.53 0.02
4 163 4 8 9.21 2.30 0.25 0.04

173 175 2 3 4.94 2.47 0.35 0.01
192 193 1 2 2.30 2.30 0.25 0.01
1 3 1 3 0.99 0.99 0.07 0.01
4 152 1 4 0.74 0.74 0.04 0.02

Table 6.7: CliPPER reanalysis of the pathway generated by the union of the best
sub-portion of each pathway. Start (index of the starting clique of the junction tree
path), Finish (index of the ending clique of the junction tree path), Max Clique (index
of the clique where the maximum score is reached), Path Length (length of the of the
junction tree path), Max Score (maximum score of the of the junction tree path), Ave
Score (average score along the of the junction tree path), Path Activation (percentage
of the junction tree path activation), Path Impact (impact of the of the junction tree

path on the entire pathway).

6.2.3 The mucinous pathway

A third of the significant pathways, obtained by the SPIA and CliPPER analyses, are

in common, and at least one out of three are cancer pathways or pathways closely

related to cancer. Among the most interesting shared by the two algorithms we find

Colorectal cancer, Small cell lung cancer, Pancreatic cancer, p53 signaling pathway,

Basal cell carcinoma and Melanoma, while CliPPER reported Renal cell carcinoma,

VEGF signaling pathway, Wnt signaling pathway. All these pathways contain oncogenes

that are reported to be associated or involved in EOC at advanced stages, especially

worthy of note is the presence of Colorectal cancer. In fact, for several clinical, histo-

pathological and molecular aspects, Colorectal cancer is considered the most similar

tumor to Mucinous EOC, even more the ovarian ones (Vaughan et al., 2011; Köbel

et al., 2008; Kurman and Shih, 2010; Marabese et al., 2008; Marchini et al., 2011; Prat,

2012b).

The use of pathways to analyze gene and miRNA expression data has the advantage to

provide a known structure among elements of the network, but on the other hand has

the drawback that pathway annotations can be non-exhaustive. In this perspective we

decide to expand the identified mucinous pathway using classical integrative approach

(using correlation measure). In case a gene or miRNA of the mutinous pathway will be
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Figure 6.3: The Mucinous EOC Pathway. Highlighted in blu the reactions validated
in qRT-PCR.

identified significantly anti correlated with other genes, these genes will be included in

the circuit.

Using MAGIA

2 web tool (Bisognin et al., 2012), DIANAmicroT as miRNA-target pre-

dictor and Pearson correlation, we found miR-192, miR-194 and miR-30a among the

top 20 putative interactions, re-confirming the dominant role of these miRNAs in the

definition of histotypes. Many putative anti-correlated targets of hsa-miR-192/194 have

been identified BMI-1, PSME3 and CUL4A, among others.

The part of the mucinous pathway highlighted in blue in Figure 6.3, involving the

mucinous-specific miRNAs and p53 regulation, has been considered as the most in-

teresting part of the pathway, and we decided to focus on it for the validations.

qRT-PCR has been performed on the entire collection of patients for BMI-1, PSME3,

CUL4A, miR-192 and miR-194, CDKN2A and MDM2, confirming their di↵erential

expression with suitable level of significance (p.value  0.05). In particular, BMI-1,

PSME3, CUL4A and MDM2 were confirmed as three to four folds down-regulated in
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the mucinous compared to the other subtypes, while mucinous samples show high ex-

pression levels of CDKN2A, miR-192 and miR-194 (Figure 6.4 A).

Specifically, we focus on the portion of the pathway reported in Figure 6.4 B. This circuit

regards the regulation of p53, it is known that in EOC p53 play an important role in

tumor progression due to its mutation and inactivation at advanced stages. The expres-

sion of miR-192/194 cluster is directly controlled by wild type TP53 that, enhancing

their transcriptions, is able to down-regulate genes of G1-G2 phase, targets of these two

miRNAs, arresting cell cycle (Stehling et al., 2012). Among the targets of miR192/194 is

MDM2, a negative regulator of TP53 (Pichiorri et al., 2010). These relationships define

a positive feed back loop involving TP53 that, through miR192/194, inhibits its own

inhibitor. This positive feed back loop TP53-miR192/194-MDM2 confers the status of

tumor suppressor to the mir-192-194 cluster. Recently, the importance of this circuit

has been further strengthened by the identification of new oncogenes among the down-

regulated targets genes of these miRNAs (Dong et al., 2011; Feng et al., 2011; Yang

et al., 2009).

In our analysis, promising miR-192/194 targets are PSME3 and CUL4A because, despite

the lacks of these annotations in the pathway, it is known that they physically associate

with Mdm2 and are part of the p53 degradation pathway. Specifically, Psme3 is a

proteasome activator that promotes the nuclear export of p53 by operating multiple

monoubiquitylation enhancing its physical interaction with Mdm2 (Liu et al., 2010), and

Cul4A is a Cullin family member that physically associates with Mdm2 and participates

as a sca↵old in the process of polyubiquitylation of p53 (Nag et al., 2004) and the

consequent degradation. In our data, PSME3 and CUL4A have negatively correlated

expression profiles with miR192/194 and an in silico predicted binding sites, suggesting

a functional binding. However, our luciferase binding assay reveals that no direct binding

occurs between miR-194 and any of these two genes (data not shown).

Another interesting element linked to this pathway is BMI-1, since the Bmi-1 protein

is a repressor of the CDKN2A protein Kim et al. (2004), that prevents the degradation

and inactivation of p53 operated by MDM2 (Zhang et al., 1998). Bmi-1 belongs to the

polycomb group (PcG) of proteins that form chromatin-modifying complexes commonly

deregulated in cancer. BMI-1 is known to be significantly over-expressed in ovarian, en-

dometrial and cervical cancer compared to normal tissue, and its expression is positively

correlated with grade and clinical phases of the disease (Honig et al., 2010; Zhang et al.,

2008). Notably, miR-194 binding on BMI-1 mRNA was experimentally validated with

the luciferase assay in a panel of endometrial cancer cell lines (Dong et al., 2011) and re-

confirmed by our assay. In our dataset, BMI-1 mRNA were negatively correlated with

expression levels of miR-194, down-regulated in mucinous and up-regulated in other
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Figure 6.4: The Mucinous circuit experimentally validated. Panel A: Real-Time
validations of the genes of the circuit in the entire cohort of patients (n=257). Panel B:
Schema of the p53 circuit. Bmi-1 is a repressor of Cdkn2A protein (Kim et al., 2004),
that prevents the degradation and inactivation of p53 operated by Mdm2 (Zhang et al.,
1998). Psme3 and Cul4A, interacting with Mdm2, promote the p53 degradation (Liu
et al., 2010; Nag et al., 2004). Moreover, p53 is the transcription factor that controls
the expression of miR-192/194 cluster (Pichiorri et al., 2010). Among the targets of
this miRNA cluster, miR-194 down regulates BMI-1 and both miR-192 and miR-194
target MDM2 (Dong et al., 2011; Pichiorri et al., 2010). Red and green in color bar
represent high expression and low expression respectively in Endometrioid (E), Clear

Cell (C), Mucinous (M), Serous (S) histotypes.
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histotypes, confirming the di↵erential activation of the signalling circuit in mucinous

compared to other EOC subtypes.

Taken together, our results suggest a contrary regulation of p53 circuit in the mucinous

subtype as compared to the other ovarian cancer histotypes.





Chapter 7

Conclusions

The aim of my PhD project was the development of tools and methodologies to perform

integrated analysis of gene and miRNAs expression data, to provide a better compre-

hension of circuits of Epithelial Ovarian Cancer histotypes.

Regarding the methodological part of this thesis, we developed graphite, an innovative

package able to gather and make easily available the contents of the four major pathway

databases. In the field of topological analysis graphite acts as a provider of biological in-

formation by reducing the pathway complexity and considering the biological meaning of

the pathway elements. The high number of accesses demonstrates its usefulness. More-

over, this thesis demonstrates that graphite can be used as a computational platform for

the integration of di↵erent sources of information missed in pathway annotations (such

as microRNAs), making possible for the first time to run topological pathway analyses

on bipartite graphs composed of genes and microRNAs.

I’m strongly convinced that graphite enhances and facilitates the development of new

tools for network analysis.

Regarding the applicative part of the thesis we obtained important results on the char-

acterization of early stage EOC subtypes. Specifically, there are clear evidences that

some ovarian cancers are more similar to certain types of renal, breast and endometrial

cancers than other ovarian histologies.

The top priorities of EOC research are i) the identification of possible alternative ther-

apies for di↵erent types of ovarian carcinoma and ii) the development of new measures

for EOC prevention and early detection (Vaughan et al., 2011).

Considering these two key priorities, we thought that a better characterization of the

early stage tumor environment was fundamental to identify biomarkers and new putative

targets for subtype specific therapies.
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Our results (chapter 5, 6) demonstrate that (i) early stage EOC microRNA pattern is

di↵erent across subtypes, and that (ii) early stage EOC subtypes seem characterized by

specific molecular circuits that di↵erentiate the tumor environment.

In particular, in this study we found that miR-30a and miR-192/194 are key markers of

clear cell and mucinous subtypes, respectively, and that in mucinous histotype occurs a

di↵erent regulation of genes and miRNAs upstream p53.

These finding are important for two reasons. First, mucinous and clear cells histotypes

are considered ideal candidates for developing new therapeutic strategies, because of

their high mortality and lowest sensitivity to standard chemotherapy (Alexandre et al.,

2010). Second, these miRNAs are known to play important roles in other cancer dis-

eases and these findings can be considered as starting point for new treatments of EOC.

mir-192 and miR-194 are also markers of colorectal tumors, this connection hints tan-

talizingly the possibility to treat in the same way mucinous EOC and colon cancer.

The strong relation between this two diseases is confirmed, in advanced stage, by many

clinical, histologicical, molecular and biochemical evidences, to the point that the Med-

ical Research Council are attempting to treat advanced stage mucinous EOC (mEOC,

Clinical Trial Identifier: NCT01081262) with a combination of chemotherapeutic agents

commonly used in colon cancer. In this context, the identified miRNAs can be considered

as novel therapeutic targets, as well as the identified circuits.

As future perspective, it would be interesting to investigate in III/IV EOC stages the

behavior of genes and miRNAs involved in the circuits identified in early stages. This

could be important to understand the di↵erences between early and advanced EOCs

and to potentially clarify histotype-specific mechanisms of disease progression.



Appendix A

Materials and Methods

In this appendix are collected all the materials and methods about the experimental

methodologies included in this thesis. The experiments are performed by researchers

of the Dr. Maurizio D’Incalci and Dr. Sergio Marchini Group at the ”Mario Negri”

Institute in Milano.

A.1 miRNA microarray experiments

Frozen samples (30 mg) were homogenised using TissueLyser LT (Qiagen, Milano Italy)

and total RNA enriched in miRNAs fraction was purified using a miRneasy isolation

kit according to the manufacturer’s instructions (Qiagen). RNA quality control, Cy5-

labelling and hybridization were performed as previously published (Marchini et al.,

2011). miRNA profiles were generated using commercially available G4470B human

miRNA Microarray kit (Agilent Technologies, Palo Alto, CA, USA), which consists

of 15K features printed in an 8-plex format (8x15 array), able to detect all known

human miRNAs (723 human and 76 human-viral miRNAs) sourced from the Sanger

miRBASE public database, release 10.1. The arrays were washed and scanned with a

laser confocal scanner (G2565B, Agilent Technologies), according to the manufacturer’s

instructions. miRNA microarrays underwent standard post hybridisation processing and

the intensities of fluorescence were calculated by Feature Extraction software version 11

(Agilent Technologies).
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A.2 Gene microarray experiments

Frozen tissues specimens (30 mg) were homogenized in an TissueLyser LT (Qiagen, Milan

Italy) and total RNA purified using RNeasy Mini Kit isolation system (Qiagen), follow-

ing manufacturers protocols. Total RNA concentration and proteins contamination were

determined by Nanodrop spectrophotometer (Nanodrop Technologies, Ambion). Only

samples with a RIN larger than 6 and a Nanodrop A260:280 ratio between 1.8 and 2.1

were further processed and aliquots stored at -80C until use. Array experiments were

performed using standard procedures as previously published by Marchini et al. (2013).

Briefly, one hundred ngs of total RNA was reverse transcribed into Cy3-labeled cRNA

using LowInput QuickAmp labelling kit (Agilent Technologies, Palo Alto, Ca, US) and

hybridized with a RNA labelling and hybridization kit according to the manufactur-

ers instructions (Agilent Technologies). We used the commercially available G4851B

human whole GE Microarray kit (SurePrint G3 Human Gene Expression 8x60K v2 Mi-

croarray Kit Agilent Technologies) which consists of 60K features printed in an 8-plex

format (8x60 array). The arrays were washed and scanned with a laser confocal scanner

(G2565B, Agilent Technologies) according to the manufacturers instructions. mRNA

microarrays underwent standard post hybridization processing and the intensities of

fluorescence were calculated by Feature Extraction software v11 (Agilent Technologies).

A.3 Quantitative reverse transcription real time PCR

Mature miRNA and gene expression levels were examined by quantitative real-time

reverse transcription PCR (qRT-PCR) using Sybr Green protocol (Qiagen). miRNA

expression analysis was performed using a dedicated set of commercial primers (Qiagen)

as previously described by Marchini et al. (2011). Data were normalised using the

geometric mean of the four independent housekeeping controls (RNU6B, SNORD61,

SNORD72, SNORD68). For gene expression validations, primer pair sequences are

listed in Table A.1; data were normalised using the four independent housekeeping genes

(ACTB, B2M, PPIA, e HPRT1) as described previously by Marchini et al. (2008).

Experiments were run in triplicate, using 384-well reaction plates in an automatic liquid

handling station (epMotion 5075LH; Eppendorf, Milano, Italy). Real-time PCR was

done on an Applied Biosystems 7900HT (Ambion-ABI). Raw data was generated with

SDS Relative Quantification software (version 2.3; Ambion-ABI).
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Name
Gene Bank
Accession
number

Primer Sequence
Ta
(�C)

Ampl
Length

BMI1 NM 005180.8 Fw CTGCTCTTTCCGGGATTTTT 60 88
Rv ACACACATCAGGTGGGGATT 60

CUL4A NM 003589.2 Fw AGAATGAGCGGTTCGTCAAC 60 96
Rv CCACATGCTTTGCGATCA 60

PMSE3 NM 005789.3 Fw ATGCCCAATGGGATGCT 60 110
Rv ACCCACATTTTGACCGTGTT 60

ACTB NM 001101.3 Fw CAGAGCCTCGCCTTTGC 60 65
Rv TCATCATCCATGGTGAGCTG 60

B2M NM 004048.2 Fw AAGCAGCATCATGGAGGTTT 60 69
Rv AGCAAGCAAGCAGAATTTGG 60

PPIA NM 021130.3 Fw GCGTCTCCTTTGAGCTGTTT 60 79
Rv CCTTTCTCTCCAGTGCTCAGA 60

HPRT1 NM 000194.2 Fw TGAATACTTCAGGGATTTGAATCAT 60 76
Rv CTCATCTTAGGCTTTGTATTTTGC 60

3’ UTR
CUL4A NM 003589.2 Fw ATGCTAGCTTCCCCTTCATGAAACA 66 1146

Rv CAACTCGAGTGCCATGATCAAAATTC 66
3’ UTR
PMSE3 NM 005789.3 Fw AAAGAGCTCATGATCCTGAAAAATATC 61 1970

Rv ATGCTAGCTAACTTTCCCATAATTCAGA 61
3’ UTR
BMI1 NM 005180.8 Fw CACCTTCATGCCATTACAGCTTTCT 64 1899

Rv CTTTCAATGGGCTTTCAAGCAA 64
CDKN2A NM 000077.4 Fw GGGTTTTCGTGGTTCACATC 60 142

Rv TCATCATGACCTGGTCTTCTAGG 60
MDM2 NM 002392.4 Fw GGAGAGCAATTAGTGAGACAGAAGA 60 213

Rv CTGAATGTTCACTTACACCAGCA 60

Table A.1: Pair sequences, Gene Bank accession number and annealing temperature
(Ta) of analyzed genes by RT-qPCR.
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B.1 Survival analyses across histotypes

Survival analyses were performed using Kaplan-Meier method and significance was as-

sessed with two-sided log-rank statistics (Figure B.1). The Cox proportional hazards

model was use to determine the risk ratios and p-value for multivariate analysis (Ta-

bles B.1, B.2, B.3, B.4, B.5).

Histotype coef exp(coef) se(coef) z p

Endometrioid -0.256 0.774 0.414 -0.619 0.540
Mucinous -0.920 0.399 0.463 -1.986 0.047
Serous -0.164 0.848 0.397 -0.414 0.680

Table B.1: Progression Free Survival Cox model using subtypes as covariate (Clear
cells as reference). Likelihood ratio test=5.72 on 3 df, p=0.126 n= 255, number of

events= 58

Grade coef exp(coef) se(coef) z p

Grade 1 2.04 7.72 1.05 1.94 0.0530
Grade 2 1.92 6.81 1.06 1.81 0.0700
Grade 3 2.77 15.90 1.02 2.70 0.0069

Table B.2: Overall Survival Cox model using grades as covariate (Borderline samples
as reference). Likelihood ratio test=17.9 on 3 df, p=0.000462 n= 255, number of

events= 39

91
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Figure B.1: Kaplan-Meier curves. Panel A: Overall Survival (n=255, p-value=0.16).
Panel B: Progression Free Survival (n=255, p-value=0.15). Pink for Clear cells, Orange

for Serous, Green for Mucinous, Blue for Endometrioid histotypes.

Grade coef exp(coef) se(coef) z p

Grade 1 0.445 1.56 0.477 0.934 0.3500
Grade 2 0.338 1.40 0.485 0.698 0.4900
Grade 3 1.177 3.25 0.424 2.774 0.0055

Table B.3: Progression free Survival Cox model using grades as covariate (Borderline
samples as reference). Likelihood ratio test=11.9 on 3 df, p=0.0078 n= 255, number of

events= 58
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miRNA coef exp(coef) se(coef) z p

miR192 0.0883 1.092 0.110 0.803 0.42
miR194 -0.1769 0.838 0.137 -1.296 0.20
miR30a -0.0600 0.942 0.163 -0.367 0.71
miR30a* 0.1464 1.158 0.128 1.140 0.25

Table B.4: Overall Survival Cox model using miRNA expression as covariate. Likeli-
hood ratio test=3.82 on 4 df, p=0.43 n= 254, number of events= 39

miRNA coef exp(coef) se(coef) z p

miR192 0.0310 1.031 0.0863 0.359 0.72
miR194 -0.1032 0.902 0.1080 -0.956 0.34
miR30a -0.0699 0.933 0.1382 -0.506 0.61
miR30a* 0.1688 1.184 0.1079 1.564 0.12

Table B.5: Progression free Cox model using miRNA expression as covariate. Likeli-
hood ratio test=6.41 on 4 df, p=0.17 n= 254, number of events= 58

B.2 Complete List of Di↵erentially expressed miRNAs

MicroRNAs di↵erentially expressed in all possible couples of comparisons:

• Clear cell vs. Endometrioid

• Clear Cell vs. Mucinous

• Clear Cell vs. Serous

• Endometrioid vs. Mucinous

• Endometrioid vs. Serous

• Mucinous vs. Serous

For each miRNA of each comparison were provided:

• log2(Fold Change);

• p-value adjusted for multiple tests (adj.P.Val) obtained using Limma using all the

183 samples;

• the max number of Simulated Resampling Score (SRS);

• the Resampling Score (RS).
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The results provided are selected for adj.P.V al  0.01 and are ordered by Resampling

Score (RS).

microRNAs log2(FC) adj.P.Val Max SRS RS

hsa-miR-30a 2.178221964 6.93932E-13 112 500
hsa-miR-30a* 1.626517454 4.67144E-07 99 494
hsa-miR-181a -1.360369063 1.0446E-05 112 486
hsa-miR-181b -1.076253543 2.40595E-05 80 475
hsa-miR-205 -3.00045046 2.92244E-05 26 464
hsa-miR-193b 1.150661602 7.866E-05 83 429
hsa-miR-30c 1.187338837 0.000203527 111 368
hsa-miR-181c -1.101136057 0.000758317 24 327
hsa-miR-92a -0.754437111 0.001341581 32 297
hsa-let-7i 1.173828572 0.001389269 71 291
hsa-miR-200b* -0.879910948 0.003103202 22 228
hsa-miR-148a -1.170526396 0.003567933 43 226
hsa-miR-185 0.660247135 0.004622196 39 212

Table B.6: Clear Cell vs. Endometrioid histotype di↵erentially expressed miRNAs
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microRNAs log2(FC) adj.P.Val Max SRS RS

hsa-miR-192 -4.576489119 2.3573E-19 28 500
hsa-miR-30a 2.476917077 1.27358E-16 35 500
hsa-miR-194 -4.488328243 1.27358E-16 15 500
hsa-miR-30a* 1.908687702 8.94055E-10 178 500
hsa-miR-30c 1.421447032 2.64924E-06 33 483
hsa-miR-1274a 1.617274552 2.64924E-06 76 477
hsa-miR-222 -1.658988055 3.25091E-06 32 482
hsa-miR-338-3p -1.746691771 8.34732E-06 37 490
hsa-miR-145 -1.392430686 0.000223802 58 402
hsa-miR-214 -1.535040388 0.000538999 60 366
hsa-miR-365 0.732745265 0.000912231 13 339
hsa-miR-30d 0.866090808 0.001509118 37 315
hsa-miR-221 -0.998459893 0.001611332 34 309
hsa-miR-193b 0.934407313 0.001861248 41 288
hsa-miR-377 -1.075660458 0.003029451 137 261
hsa-miR-200b* -0.866616497 0.003071745 54 245
hsa-miR-532-5p 0.795612694 0.00321089 16 243
hsa-miR-376c -1.052506251 0.003635647 25 258
hsa-let-7i 1.035743742 0.00439688 101 250
hsa-miR-185 0.630775276 0.004430261 84 219
hsa-miR-30e* 0.765833391 0.005344596 27 198
hsa-miR-1274b 0.999145742 0.00546896 60 207
hsa-miR-30b 1.306220711 0.006775498 72 178
hsa-miR-181a -0.862589598 0.006963722 106 181
hsa-miR-10a 1.433787263 0.009769118 21 170

Table B.7: Clear Cell vs. Mucinous histotype di↵erentially expressed miRNAs

microRNAs log2(FC) adj.P.Val Max SRS RS

hsa-miR-30a 1.98939242 8.08689e-11 11 500
hsa-miR-92a -1.0549930 3.19074e-06 14 490
hsa-miR-34b* -2.280838 2.49918e-05 18 484
hsa-miR-30a* 1.2858667 8.72349e-05 19 408
hsa-miR-222 -1.277072 0.0016498999 13 304
hsa-miR-17* -1.0391151 0.0024902687 10 269
hsa-miR-19b -0.875396 0.0030416892 17 245
hsa-miR-193a-3p -0.985749 0.0056551662 92 203
hsa-miR-30c-2* 0.9197421 0.0078809350 40 186
hsa-miR-29b -1.2552117 0.0095792861 63 184
hsa-miR-1308 1.3057282 0.0095792861 132 176
hsa-miR-193b 0.8551035 0.0095792861 58 175
hsa-miR-575 1.4909159 0.0095792861 53 165
hsa-miR-29c -0.938144 0.0095792861 53 159

Table B.8: Clear Cell vs. Serous histotype di↵erentially expressed miRNAs
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microRNAs log2(FC) adj.P.Val Max SRS RS

hsa-miR-192 -4.456901911 1.80092E-21 29 500
hsa-miR-194 -4.012306899 6.09125E-17 55 500
hsa-miR-338-3p -1.791611501 1.1649E-06 13 491
hsa-miR-96 1.61909503 4.9799E-05 24 442
hsa-miR-20b 1.249263862 0.000136048 93 404
hsa-miR-183 1.298797021 0.001194581 142 308
hsa-miR-222 -1.063356031 0.001194581 17 303
hsa-miR-141 1.158775513 0.001194581 124 296
hsa-miR-497 -1.074432848 0.003045108 102 234
hsa-miR-93 0.878133669 0.004003256 241 225
hsa-miR-181c 0.748650383 0.00503931 49 199
hsa-miR-30d 0.706895756 0.00503931 33 178
hsa-miR-376c -0.918312032 0.007016886 20 170
hsa-miR-1274a 0.919275326 0.007193528 101 168

Table B.9: Endometrioid vs. Mucinous histotype di↵erentially expressed miRNAs

microRNAs log2(FC) adj.P.Val Max SRS RS

hsa-miR-146b-5p -1.386438884 0.000198779 65 392
hsa-miR-29b -1.521002838 0.000286949 112 364
hsa-miR-29c -1.080214183 0.00070553 153 341
hsa-miR-484 0.649515566 0.00260455 42 254
hsa-miR-101 -0.745487733 0.00260455 34 251
hsa-miR-29c* -0.651810471 0.00260455 23 250
hsa-miR-1225-3p 0.979074041 0.00260455 126 248
hsa-miR-575 1.445641549 0.003786505 71 235
hsa-miR-1234 0.879150849 0.006049702 93 213
hsa-miR-150* 1.264372168 0.006349042 93 209
hsa-miR-514 -1.622195144 0.006583467 162 202
hsa-miR-1225-5p 1.168814698 0.006583467 92 198
hsa-miR-572 1.240903836 0.006583467 102 194
hsa-miR-557 1.272441414 0.006583467 203 193
hsa-miR-34b* -1.345890203 0.006583467 29 189
hsa-miR-513c -1.131672064 0.006583467 68 185
hsa-miR-877* 0.845435947 0.006583467 57 171
hsa-miR-513a-5p -1.093407519 0.006607725 73 175

Table B.10: Endometrioid vs. Serous histotype di↵erentially expressed miRNAs
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microRNAs log2(FC) adj.P.Val Max SRS RS

hsa-miR-192 4.288388557 1.93547E-20 26 500
hsa-miR-194 4.147014794 2.75664E-18 122 500
hsa-miR-1225-5p 1.793013009 8.81332E-06 89 491
hsa-miR-20a -1.39515799 1.48515E-05 53 494
hsa-miR-20b -1.344149297 1.69514E-05 77 493
hsa-miR-34b* -1.915035209 2.99683E-05 52 482
hsa-miR-193a-3p -1.110131825 5.81468E-05 25 477
hsa-miR-17 -1.272144444 8.39811E-05 36 462
hsa-miR-188-5p 1.41523542 0.0002525 101 442
hsa-miR-22 0.778625655 0.000279902 8 459
hsa-miR-145 1.198337052 0.000345076 45 428
hsa-miR-1207-5p 1.444466298 0.000345076 66 427
hsa-miR-92a -0.697720894 0.000356708 28 440
hsa-miR-141 -1.204247989 0.000356708 81 424
hsa-miR-338-3p 1.269349245 0.000384408 12 422
hsa-miR-497 1.148237194 0.000521258 39 422
hsa-miR-29b -1.312050202 0.000521258 137 404
hsa-miR-575 1.554934939 0.000521258 79 400
hsa-miR-146b-5p -1.140320799 0.000526351 137 400
hsa-miR-93 -0.94801489 0.000552286 112 393
hsa-miR-96 -1.286492834 0.000552286 37 384
hsa-miR-99b -0.843618434 0.000552286 63 380
hsa-miR-150* 1.349673535 0.000842048 79 379
hsa-miR-134 1.257441784 0.001097997 69 359
hsa-miR-1246 1.486772311 0.001146725 33 355
hsa-miR-1249 1.168186792 0.001274883 77 346
hsa-miR-200c -1.247868741 0.001449652 88 351
hsa-miR-125a-5p -0.907679032 0.001525345 46 336
hsa-miR-324-5p -0.690790352 0.001558047 38 336
hsa-miR-296-5p 1.064346369 0.001677927 79 337
hsa-miR-1275 1.231039729 0.001739698 53 333
hsa-miR-574-5p 0.854702462 0.001758872 64 332
hsa-miR-557 1.260014191 0.001759154 67 324
hsa-miR-19b -0.71764471 0.001769056 70 333
hsa-miR-30c -0.836727999 0.001769056 70 319
hsa-miR-362-3p -0.72465274 0.001769056 42 301
hsa-miR-135b -1.243556395 0.002126579 36 302
hsa-miR-1202 1.059862896 0.002459214 71 313
hsa-miR-638 1.143638189 0.002533228 73 310
hsa-miR-532-5p -0.677178833 0.002579142 30 280
hsa-miR-155 -0.821102463 0.002652694 24 304
hsa-miR-142-3p -1.385247887 0.003008615 33 310
hsa-miR-106b -0.851954056 0.003462208 65 284
hsa-miR-1268 1.077024082 0.003462208 89 280
hsa-miR-1238 0.64661252 0.003462208 66 270
hsa-miR-30e* -0.657704694 0.003555385 38 260
hsa-miR-532-3p -0.713174598 0.003873134 43 246
hsa-miR-572 1.156191361 0.00483514 87 260
hsa-miR-1234 0.794140304 0.005210659 95 239
hsa-miR-1915 1.068602197 0.005284211 88 258
hsa-miR-720 -0.933296394 0.006013686 128 227
hsa-miR-183 -0.981239607 0.006782023 29 240
hsa-miR-1228 0.84097685 0.006782023 87 236
hsa-miR-1274a -0.817022386 0.006782023 95 224
hsa-miR-17* -0.723808576 0.006782023 50 206
hsa-miR-320c 0.681622511 0.006782023 46 204
hsa-miR-630 1.039829562 0.0068716 111 219
hsa-let-7e -0.971560456 0.007690934 49 209

Table B.11: Mucinous vs. Sierous histotype di↵erentially expressed miRNAs
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B.3 Survival Analyses on Grades within Mucinous histo-

type

B.3.1 Overall survival

0 5 10 15 20 25 30 35

0.
0

0.
4

0.
8

Time since first surgery (years)

Pr
ob

ab
ilit

y 
of

 o
ve

ra
ll 

su
rv

iva
l

Grades in mucinous

0 5 10 15 20 25 30 35

0.
0

0.
4

0.
8

Time since first surgery (years)

Pr
ob

ab
ilit

y 
of

 p
ro

gr
es

si
on
−f

re
e 

su
rv

iva
l

Figure B.2: Kaplan Meyer curves for Overall Survival in the Mucinous subtypes
according to their grade (p-values=0.004)

B.3.2 Progression Free survival
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Figure B.3: Kaplan Meyer curves for Progression Free in the Mucinous Samples
divided by grades (p-values=0.008)
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B.4 Di↵erentially expressed genes and miRNAs between

Mucinous and other histotypes used for SPIA analy-

ses

B.4.1 miRNAs

miRNA logFC adj.P.Val

hsa-miR-192 4.044470612 2.07879E-11
hsa-miR-194 4.02387039 9.87869E-10
hsa-miR-200c -1.118990711 0.010642539
hsa-miR-145 1.252030074 0.010642539
hsa-miR-338-3p 1.540952688 0.01663384
hsa-miR-96 -1.179182871 0.036711442
hsa-miR-301a -1.109432673 0.041937882
hsa-miR-20b -0.984266574 0.066515973
hsa-miR-497 1.007091155 0.066515973
hsa-miR-362-5p -0.734909312 0.066515973
hsa-miR-210 -0.766896196 0.066515973
hsa-miR-141 -0.854919178 0.081436696
hsa-miR-335 -0.864608152 0.083912645
hsa-miR-214 1.03674175 0.083912645
hsa-miR-183 -0.989627457 0.083912645
hsa-miR-30d -0.792547238 0.08424842
hsa-miR-107 -0.535256818 0.08424842

Table B.12: Mucinous vs. Other histotypes di↵erentially expressed miRNAs

B.4.2 Genes

Here for editorial reasons, gene list has been cut at a lower threshold (p� value  0.01)

than those used in the analyses.

Table B.13: Mucinous vs. Other histotypes di↵erentially expressed genes

GeneSymbol logFC adj.P.Val

TFF1 4.434130557 3.63438E-06
LGALS4 4.701214179 5.21281E-06
LRRC66 2.479798915 1.57372E-05
SPINK1 4.84668279 1.57372E-05
MYZAP 1.50738676 1.57372E-05
RAB27B 2.112706856 1.63424E-05

Table B.13: continue on the next page.
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GeneSymbol logFC adj.P.Val

PLA2G10 2.326301545 2.03161E-05
MYO1A 3.19173963 7.91367E-05
CEACAM6 4.152909092 7.91367E-05
SLC39A5 3.152411174 9.26524E-05
ANG 1.922497805 0.000123874
PRSS3 2.238985055 0.000148356
IL22RA1 2.413954232 0.000148356
CCL15 1.608149241 0.000172193
NR5A2 1.566734587 0.000207831
SYT13 2.877758176 0.000321438
SLC22A18AS 1.355754715 0.000528924
PLAC8 2.61284333 0.000576194
SLC9B2 1.12697286 0.000576194
CTSE 3.621933541 0.000628096
FMO5 2.781182353 0.000628096
ERN2 2.663659039 0.00068929
CP -2.673705775 0.00068929
NPC1L1 1.641892743 0.000833552
BCAS1 2.799324436 0.00087236
SMPDL3A 1.699290232 0.000966416
FOLR1 -2.581747267 0.00096865
FBXO16 -1.272146672 0.001000462
CLDN3 -1.733869151 0.001000462
FOXS1 2.154517309 0.001097864
SIX4 -1.560785311 0.001154362
CLEC3B 1.769693701 0.001154362
FNIP2 1.05383133 0.001257983
UNC5CL 1.246777081 0.001399352
CDHR2 1.732772926 0.002438209
C1orf186 -2.17557003 0.002571349
AZGP1 1.92914555 0.002710447
SH3BGRL2 1.219752963 0.002710447
MARCH3 1.165645356 0.002772439
ITLN1 2.666644842 0.002772439
MAPRE2 1.102123098 0.003073387
RNASE4 1.289442666 0.003073387
SOX17 -1.977324862 0.003073387
CYP3A5 2.150437967 0.003234718
SH2B2 -1.445007767 0.003834804
FOXA3 1.175496573 0.004395511
SAMD5 1.695987 0.004395511
VSIG2 2.475823296 0.004395511
RGL3 -1.539464794 0.004577705
PLEK2 1.416682145 0.004866037
SDCBP2 1.580566917 0.00545028
TPM1 1.034590979 0.005506123
AIF1L -1.352583467 0.005506123
C10orf35 -1.030234118 0.005506123
LFNG 1.120519797 0.005506123
DHTKD1 -0.881526837 0.00551
PAG1 1.038164152 0.005735513
MXD1 1.092633826 0.005815497
SAMD13 1.211635167 0.006193405
CYP3A7 2.740875149 0.007019751
TRIM54 1.752507941 0.007028482
VILL 1.65729073 0.007042674

Table B.13: continue on the next page.
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GeneSymbol logFC adj.P.Val

TSPO2 1.260070156 0.007175694
OLFML2A 1.052032108 0.007294847
EML4 0.635294515 0.007399134
PDIA4 -0.723848997 0.007548295
CCDC157 -0.921496923 0.007767063
MYOZ3 1.406476336 0.007767063
TESC 2.091074629 0.007767063
HNF1A 2.276781298 0.008357846
CIDEC 0.956013123 0.008564873
KLK8 -3.114099597 0.008564873
FBP1 1.561509671 0.008628993
EPS8L3 1.840871526 0.008804382
TNF -1.550469627 0.008804382
WFDC2 -2.25641872 0.00911212
UNC13B 0.625459656 0.00911212
E2F5 -0.910277267 0.009308925
DNAL1 -0.838387221 0.009508292
C14orf176 1.312300807 0.010009152
ITPKA 1.547992181 0.010009152
SLPI -1.693099295 0.010009152
CES2 0.844237483 0.010009152
MIA2 1.777636117 0.010009152
TNNT1 -2.545081503 0.010009152
CAMK2D 0.727178811 0.010009152
PTCH1 0.694491215 0.010009152
IL17RE 0.947958013 0.010009152
RGS5 1.548379717 0.010009152
PLD1 1.079465237 0.010031078
COL17A1 2.161497443 0.011053277
NPTN 0.555750368 0.011258286
INSL3 2.284999627 0.011258286
CEACAM7 2.651567331 0.011365777
EDA -1.119250772 0.011413606
SMPD3 1.891344602 0.011636491
SPTBN1 1.056120938 0.011636491
MTMR11 1.20301869 0.011846393
ATP2A3 1.196774725 0.011849605
AHCYL2 1.014735314 0.012083973
NFE2 -1.839054994 0.012302538
EDEM3 0.726696341 0.012302538
TFF2 2.942947002 0.012302538
TRIM15 1.88665857 0.012302538
FOXP1 0.617310189 0.012302538
VTCN1 -2.343983669 0.012302538
HSD17B2 2.471808862 0.012302538
FCN3 0.778889591 0.012659651
TSPAN8 2.5119881 0.012997127
MRPS26 -0.556876087 0.013072475
C11orf82 -1.027920065 0.013496372
SPAG4 -1.19408042 0.013955254
GNG12 0.96927124 0.014251991
FHL2 0.997513108 0.014334561
SLC36A1 0.857367734 0.014334561
DQX1 2.240277453 0.014334561
SLC1A7 1.510187587 0.014334561
ZDHHC3 0.57180131 0.014336132

Table B.13: continue on the next page.
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GeneSymbol logFC adj.P.Val

HEYL 1.565926287 0.0144661
ARTN -0.752589736 0.0144661
PLS1 1.383494537 0.015091066
AGR2 2.668231685 0.015310712
VPS13A 0.673413888 0.015501889
TBC1D8B 0.632538657 0.015667325
REEP3 0.75299725 0.016075394
LYST 0.767777478 0.016075394
UBL3 0.730106855 0.016206247
STARD10 1.127436 0.016696594
C4orf19 1.477091712 0.016696594
DACT3 1.3875729 0.016788126
CIDEB 0.862242663 0.016950565
CAPN9 1.556220096 0.018695143
PAX8 -1.79456781 0.018695143
GPX2 2.359366854 0.019216276
PLCL2 0.791803439 0.019328773
FEM1B 0.672782769 0.019328773
PRKACB 0.855320566 0.019328773
C9orf85 0.57970109 0.019523946
ACTG2 2.069573223 0.019523946
LGALS2 1.828102135 0.019523946
NDNF 1.184303325 0.019523946
MARCKS 0.970589419 0.019523946
ZNF664-FAM101A 0.914831161 0.019523946
CAMK2N1 1.635252 0.019523946
ADRA2C -1.716065349 0.019523946
SPEF2 -0.863605671 0.019523946
PRSS2 1.965044418 0.019523946
ADH1C 1.581301176 0.019523946
RHOJ 1.045420813 0.019611792
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Publications during the Ph.D.

• graphite - a Bioconductor package to convert pathway topology to gene

network.

Sales G*, Calura E*, Cavalieri D, Romualdi C.

BMC Bioinformatics. 2012 Jan 31;13:20. doi: 10.1186/1471-2105-13-20. PubMed

PMID: 22292714; PubMed Central PMCID: PMC3296647.

* Equally Contribution

• A systems biology approach to characterize the regulatory networks

leading to trabectedin resistance in an in vitro model of myxoid li-

posarcoma.

Uboldi S, Calura E, Beltrame L, Fuso Nerini I, Marchini S, Cavalieri D, Erba E,

Chiorino G, Ostano P, D’Angelo D, D’Incalci M, Romualdi C.

PLoS One. 2012;7(4):e35423. doi: 10.1371/journal.pone.0035423. Epub 2012 Apr

16. PubMed PMID: 22523595; PubMed Central PMCID: PMC3327679.

• The Biological Connection Markup Language: a SBGN-compliant for-

mat for visualization, filtering and analysis of biological pathways.

Beltrame L*, Calura E*, Popovici RR, Rizzetto L, Guedez DR, Donato M, Ro-

mualdi C, Draghici S, Cavalieri D.

Bioinformatics. 2011 Aug 1;27(15):2127-33. doi:10.1093/bioinformatics/btr339.

Epub 2011 Jun 7. PubMed PMID:21653523; PubMed Central PMCID: PMC3137220.

* Equally Contribution

• Association between miR-200c and the survival of patients with stage

I epithelial ovarian cancer: a retrospective study of two independent

tumour tissue collections.

Marchini S, Cavalieri D, Fruscio R, Calura E, Garavaglia D, Nerini IF, Mangioni

C, Cattoretti G, Clivio L, Beltrame L, Katsaros D, Scarampi L, Menato G, Perego

P, Chiorino G, Buda A, Romualdi C, D’Incalci M.

Lancet Oncol. 2011 Mar;12(3):273-85. doi: 10.1016/S1470-2045(11)70012-2. Epub

2011 Feb 21. PubMed PMID: 21345725.

• DC-ATLAS: a systems biology resource to dissect receptor specific sig-

nal transduction in dendritic cells.

Cavalieri D, Rivero D, Beltrame L, Buschow SI, Calura E, Rizzetto L, Gessani

S, Gauzzi MC, Reith W, Baur A, Bonaiuti R, Brandizi M, De Filippo C, D’Oro
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U, Draghici S, Dunand-Sauthier I, Gatti E, Granucci F, Gundel M, Kramer M,

Kuka M, Lanyi A, Melief CJ, van Montfoort N, Ostuni R, Pierre P, Popovici R,

Rajnavolgyi E, Schierer S, Schuler G, Soumelis V, Splendiani A, Stefanini I, Torcia

MG, Zanoni I, Zollinger R, Figdor CG, Austyn JM.

Immunome Res. 2010 Nov 19;6:10. doi: 10.1186/1745-7580-6-10. PubMed PMID:

21092113; PubMed Central PMCID: PMC3000836.

Submitted papers

• Graphite Web: web tool for gene set analysis exploiting pathway topol-

ogy

Sales G, Calura E, Martini P, Romualdi C.

Submitted to NAR - web server issue

• miRNA landscape in Stage I Epithelial Ovarian Cancer defines the his-

totype specificities

E. Calura, R. Fruscio, L. Paracchini, E. Bignotti, A. Ravaggi, P. Martini, G. Sales,

L. Beltrame, L. Clivio, L. Ceppi, M. Di Marino, I. Fuso Nerini, L. Zanotti, D.

Cavalieri, G. Cattoretti, P. Perego, R. Milani, D. Katsaros, G. Tognon, E. Sartori,

S. Pecorelli, C. Mangioni, M. DIncalci, C. Romualdi, S. Marchini

Submitted to Clinical Cancer Research

Papers in preparation

• miRNA expression in Grades of Stage I Epithelial Ovarian Cancer

E. Calura, R. Fruscio, L. Paracchini, E. Bignotti, A. Ravaggi, P. Martini, G. Sales,

L. Beltrame, L. Clivio, L. Ceppi, M. Di Marino, I. Fuso Nerini, L. Zanotti, D.

Cavalieri, G. Cattoretti, P. Perego, R. Milani, D. Katsaros, G. Tognon, E. Sartori,

S. Pecorelli, C. Mangioni, M. DIncalci, C. Romualdi, S. Marchini
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Linda E Kelemen and Martin Köbel. Mucinous carcinomas of the ovary and colorectum:

di↵erent organ, same dilemma. The Lancet Oncology, 12(11):1071–1080, October 2011.

ISSN 14702045. doi: 10.1016/S1470-2045(11)70058-4. URL http://www.thelancet.

com/journals/lanonc/article/PIIS1470-2045(11)70058-4/abstract.

Anais Malpica, Michael T Deavers, Karen Lu, Diane C Bodurka, Edward N Atkinson,

David M Gershenson, and Elvio G Silva. Grading ovarian serous carcinoma using a

two-tier system. Am J Surg Pathol, 28(4):496–504, Apr 2004.

Deborah K Armstrong. Relapsed ovarian cancer: challenges and management strategies

for a chronic disease. Oncologist, 7 Suppl 5:20–8, 2002.

Sergio Marchini, Pietro Mariani, Giovanna Chiorino, Eleonora Marrazzo, Riccardo

Bonomi, Robert Fruscio, Luca Clivio, Annalisa Garbi, Valter Torri, Michela Cinquini,

Tiziana Dell’Anna, Giovanni Apolone, Massimo Broggini, and Maurizio D’Incalci.

Analysis of gene expression in early-stage ovarian cancer. Clinical Cancer Research:

An O�cial Journal of the American Association for Cancer Research, 14(23):7850–

7860, December 2008. ISSN 1078-0432. doi: 10.1158/1078-0432.CCR-08-0523. URL

http://www.ncbi.nlm.nih.gov/pubmed/19047114. PMID: 19047114.

Stephen A Cannistra. Cancer of the ovary. N Engl J Med, 351(24):2519–29, Dec 2004.

doi: 10.1056/NEJMra041842.

David P Bartel. Micrornas: genomics, biogenesis, mechanism, and function. Cell, 116

(2):281–97, Jan 2004.

David P Bartel. Micrornas: target recognition and regulatory functions. Cell, 136(2):

215–33, Jan 2009. doi: 10.1016/j.cell.2009.01.002.

Sam Gri�ths-Jones, Harpreet Kaur Saini, Stijn van Dongen, and Anton J Enright.

mirbase: tools for microrna genomics. Nucleic Acids Res, 36(Database issue):D154–8,

Jan 2008. doi: 10.1093/nar/gkm952.

Sam Gri�ths-Jones. mirbase: microrna sequences and annotation. Curr Protoc Bioin-

formatics, Chapter 12:Unit 12.9.1–10, Mar 2010. doi: 10.1002/0471250953.bi1209s29.

Isaac Bentwich, Amir Avniel, Yael Karov, Ranit Aharonov, Shlomit Gilad, Omer Barad,

Adi Barzilai, Paz Einat, Uri Einav, Eti Meiri, Eilon Sharon, Yael Spector, and Zvi

Bentwich. Identification of hundreds of conserved and nonconserved human micrornas.

Nat Genet, 37(7):766–70, Jul 2005. doi: 10.1038/ng1590.
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