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Summary 

Homer proteins are a family of scaffolding proteins involved in many intracellular 

signaling pathways, in both excitable and non-excitable cells. These proteins participate 

in the assembly and regulation of functional signaling complexes, facilitating the cross-

talk between surface membrane receptors and channels in the membranes of intracellular 

compartments (Worley PF. et al., 2007). Homer proteins are constitutively expressed in 

the brain, where their scaffolding function is important for a variety of neuronal 

processes, such as intracellular Ca2+ homeostasis, synaptic plasticity associated with 

learning and memory in the mature brain, and neuronal development of the embryonic 

brain (Xiao B. et al., 1998; Worley PF. et al., 2007; Foa L. et al., 2009). Among the 

Homer splice variants, Homer 1a isoform acts as a natural dominant-negative by 

disassembling signalling complexes mediated by other Homer isoforms. The Homer 1a 

gene is transcribed as an immediate early gene (IEG), in neuronal cells its expression is 

low under normal conditions and increases rapidly after neuronal activation (Brakeman 

PR. et al., 1997). Homers proteins are also expressed in cardiac muscle, but their 

regulation and function remain still poorly understood. Despite their important role as 

regulators of multimeric signalling complex in nervous system, few reports have focused 

on the role of Homers in the heart. It has been reported that mRNA coding for Homer 1a 

rapidly and transiently increases in neonatal cardiomyocytes upon stimulation with either 

endothelin-1 (ET1) or other hypertrophic agonists (Kawamoto T. et al., 2006). The 

Homer 1a protein levels are also up-regulated following AngII-induced hypertrophy in 

neonatal cardiomyocytes (Guo WG. et al., 2010). Recently, it has been demonstrated that 

the variant Homer 1b/c positively regulates α1-adrenergic dependent hypertrophy, 

whereas Homer 1a is able to antagonize such effect (Grubb DR. et al., 2011).  

This study investigated the role of Homer 1a in the cardiac hypertrophic program. 

Our working hypothesis is that Homer 1a may be one of the molecular modulators of 

cardiac hypertrophy. For this purpose, we studied the presence, sub-cellular distribution 

and function of Homer1a in cardiac muscle. Under resting conditions we found that 

Homer 1a is constitutively expressed in cardiac muscle of both mouse and rat and in HL-

1 cells (a specific cardiac cell line). In addition, using immunofluorescence confocal 

microscopy of adult rat heart sections, we showed that Homer 1a displays a peculiar 

localization: it is sarcomeric and peri-nuclear.  
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 We also analyzed Homer 1a expression under hypertrophic conditions. For this 

purpose, we used rat neonatal cardiomyocytes stimulated with the adrenergic agonist 

norepinephrine (NE). A significant increase in both Homer1a mRNA and protein was 

found after NE stimulation, whereas Homer 1b/c (a different Homer 1 isoform) 

expression remained unchanged. In this hypertrophic cellular model, we studied the 

adrenergic pathways involved in NE-inducted Homer 1a up-regulation by using specific 

α1- and β- adrenergic receptor blockers (prazosin and propranolol, respectively). The 

results showed that prazosin - but not propranolol - drastically reduced NE-induced up-

regulation of Homer 1a mRNA, demonstrating that the α1-adrenergic pathway is 

involved. The effect of hypertrophic stimulation on Homer 1a expression was also 

confirmed in NE-stimulated HL-1 cardiomyocytes. In this cell line we found that 1 hour 

after NE stimulation Homer 1a content increased by a factor of 2.5. Overall, these results 

confirm our working hypothesis and demonstrate the involvement of Homer 1a in the α1-

adrenergic pathway leading to cardiac hypertrophy.  

In the second part of the study we analyzed the effects of Homer 1a over-

expression monitoring different hypertrophic markers, such as MAPK/ERK1/2 

phosphorylation, NFAT nuclear translocation, ANF-promoter activity and increase in cell 

size. The results showed that during NE stimulation Homer 1a modulated many of them 

(except for NFAT nuclear translocation that did not appear to be affected by Homer 1a 

over-expression), whereas under resting conditions Homer 1a over-expression per sè was 

ineffective. In particular, we found that, in NE-stimulated HL-1 cells, over-expressed 

Homer 1a significantly reduced phosphorylation levels of ERK1/2 by about 40%, 

negatively modulating MAPK pathway. As regards the ANF promoter activity, this 

activity was significantly reduced by about 20% in NE-stimulated Homer 1a over-

expressing cells. In order to verify the specificity of the Homer 1a effect on ANF, we 

performed the same experiment over-expressing Homer 1c and we found that, unlike 

Homer 1a, Homer 1c did not modulate the activity of ANF promoter in NE-stimulated 

HL-1 cells. Subsequently, we assessed the effect of Homer 1a over-expression on 

increase in cell size. The results obtained showed that Homer 1a counteracted the increase 

in NE-stimulated cell size.  

Finally, a preliminary analysis, in vivo, of Homer 1a expression was performed in 

three hypertrophic models, i.e. mice with chronic transverse aortic constriction, transgenic 

mice over-expressing Gαq and rats treated with monocrotaline. At variance with results 

observed in cellular models in vitro, in these models Homer 1a expression did not result 
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affected by hypertrophic conditions, at least in the time span under investigation. 

However, for this approach in vivo, a broad time-course is needed and, therefore, further 

analyses are required. 

In summary, our data on Homer 1a presence and sub-cellular localization in 

cardiac tissue demonstrate that Homer 1a is constitutively expressed and displays a 

sarcomeric and peri-nuclear distribution. In our cellular models in vitro, Homer 1a up-

regulation is an early event of the NE-induced hypertrophy and, as inferred from gain-of 

function studies, Homer 1a isoform antagonizes initiation and development of NE-

induced events leading to α1-adrenergic-dependent hypertrophy. 

In conclusion, our results in vitro indicate that Homer 1a is inserted into a negative 

feedback mechanism in which acts as negative molecular modulator, counteracting early 

steps of hypertrophy. However, further studies are needed to elucidate the mechanisms 

underlying this process. 
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Sommario 
 

Le proteine Homer sono una famiglia di proteine coinvolte in molte vie di 

trasduzione del segnale intracellulare, in cellule eccitabili e non eccitabili. Queste 

proteine partecipano nell’assemblaggio e nella regolazione di complessi funzionali di 

‘signalling’, facilitando il ‘cross-talk’ tra recettori della membrana plasmatica e canali 

posti sulle membrane dei compartimenti intracellulari (Worley PF. et al., 2007). Le 

proteine Homer sono costitutivamente espresse nel cervello, dove svolgono la funzione di 

‘scaffold’ in molti processi neuronali, quali ad esempio l’omeostasi del calcio 

intracellulare, la plasticità sinaptica associata all’apprendimento ed alla memoria nel 

cervello maturo, lo sviluppo embrionale del cervello (Xiao B. et al., 1998; Worley PF. et 

al., 2007; Foa L. et al., 2009). Tra le diverse varianti di splicing alternativo, l’isoforma 

Homer 1a agisce da dominante negativo disassemblando i complessi di ‘signalling’ 

formati dalle altre isoforme Homer. Il gene Homer 1a è trascritto come gene immediato 

precoce, la sua espressione nelle cellule neuronali è bassa in condizioni basali ed aumenta 

rapidamente in seguito ad attivazione neuronale (Brakeman PR. et al., 1997). Le proteine 

Homer sono espresse anche nel muscolo cardiaco, ma la loro regolazione e la loro 

funzione è ancora poco conosciuta. Nonostante l’importanza degli Homer come proteine 

regolatrici di complessi coinvolti nelle vie di trasduzione del segnale, pochi studi si sono 

focalizzati sul loro ruolo nel cuore. A tal riguardo, è stato riportato che l’mRNA 

codificante per Homer 1a aumenta rapidamente e transientemente in colture di 

cardiomiociti neonatali in seguito a stimolazione con endotelina-1 ed con altri agonisti 

ipertrofici (Kawamoto T. et al., 2006). Un successivo lavoro ha evidenziato che, in 

condizioni di ipertrofia indotta da angiotensina II, anche i livelli di espressione della 

proteina Homer 1a risultano up-regolati in colture di cardiomiociti neonatali (Guo WG. et 

al., 2010). Un recente studio ha, invece, dimostrato che l’isoforma Homer 1b/c regola 

positivamente l’ipertrofia dovuta a stimolazione α-adrenergica, mentre l’isoforma Homer 

1a antagonizza tale effetto (Grubb DR. et al., 2011).  

In questo studio abbiamo esaminato il ruolo della proteina Homer 1a 

nell’ipertrofia cardiaca. La nostra ipotesi di lavoro è che la proteina Homer 1a sia un 

modulatore molecolare dell’ipertrofia. A tal fine, abbiamo studiato la presenza, la 

localizzazione sub-cellulare e la funzione di Homer 1a nel muscolo cardiaco.  
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Analizzando l’espressione di Homer1a in condizioni normali è emerso che la 

proteina Homer 1a è espressa costitutivamente nel muscolo cardiaco di topo e ratto e nelle 

cellule HL-1 (una specifica linea cellulare cardiaca). Mediante immunofluorescenze su 

sezioni di cuore di ratto adulto (analizzate utilizzando il microscopio confocale) abbiamo 

esaminato la localizzazione sub-cellulare di Homer 1a che risulta essere sarcomerica e 

perinucleare. Successivamente, abbiamo analizzato l’espressione di Homer 1a in 

condizioni ipertrofiche; per questa analisi sono stati utilizzati cardiomiociti neonatali di 

ratto stimolati con l’agonista adrenergico norepinefrina (NE). In questo sistema 

sperimentale, abbiamo riscontrato un aumento significativo sia dell’mRNA che della 

proteina Homer 1a in seguito alla stimolazione con NE, mentre non abbiamo rilevato 

nessuna variazione sull’espressione della proteina Homer 1b/c (una diversa isoforma 

degli Homer). In cardiomiociti in coltura stimolati con NE, sono state, inoltre, analizzate 

le vie di trasduzione del segnale adrenergico coinvolte nell’up-regolazione di Homer 1a 

indotta da NE, usando specifici inibitori dei recettori α1- and β- adrenergici (prazosin e 

propanololo, rispettivamente). I risultati ottenuti hanno evidenziato che il prazosin, ma 

non il propranololo, drasticamente riduce l’up-regolazione dell’mRNA di Homer 1a 

indotta da NE, dimostrando che la via di trasduzione del segnale α1-adrenergico è 

coinvolta. L’effetto della stimolazione ipertrofica sull’espressione di Homer 1a è stato 

confermato anche su cellule HL-1 stimolata con NE. In questa linea cellulare abbiamo 

osservato che un’ora dopo la stimolazione con NE la proteina Homer 1a aumenta di un 

fattore 2,5. Complessivamente, questi risultati confermano la nostra ipotesi di lavoro e 

dimostrano il coinvolgimento della proteina Homer 1a nella trasduzione del segnale α1-

adrenergico che induce ipertrofia cardiaca.  

Nella seconda parte di questo studio abbiamo esaminato gli effetti dell’over-

espressione di Homer 1a monitorando diversi markers ipertrofici, quali la fosforilazione 

delle proteine MAPK/ERK1/2, la traslocazione nucleare di NFAT, l’attivazione del 

promotore di ANF e l’aumento delle dimensioni cellulari. I risultati hanno dimostrato che 

durante la stimolazione con NE Homer 1a modula la maggior parte di questi (eccezion 

fatta per la traslocazione nucleare di NFAT che non risulta essere variata dall’over-

espressione di Homer 1a), al contrario in condizioni basali (senza stimolazione con NE) 

l’over-espressione di Homer 1a di per sé non ha alcun effetto. Nello specifico, i risultati 

ottenuti hanno rilevato che in cellule HL-1 stimolate con NE la proteina Homer 1a over-

espressa significativamente riduce i livelli di fosforilazione delle proteine ERK1/2 di 

circa il 40%, modulando negativamente la via di trasduzione del segnale MAPK/ERK1/2. 
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Per quanto concerne l’attività promotoriale di ANF, questa attività è significativamente 

ridotta di circa il 20% nelle cellule HL-1 over-esprimenti Homer 1a e stimolate con NE. 

Al fine di verificare la specificità di questo effetto sul promotore ANF, abbiamo condotto 

lo stesso esperimento over-esprimendo l’isoforma Homer 1c ed abbiamo riscontrato che, 

diversamente da Homer 1a, la proteina Homer 1c non ha alcun effetto sull’attività del 

promotore ANF in cellule HL-1 stimolate con NE. Successivamente, abbiamo analizzato 

l’effetto dell’over-espressione di Homer 1a sull’aumento delle dimensioni cellulari 

durante stimolazione con NE. I risultati ottenuti hanno dimostrato che la proteina Homer 

1a è in grado di bloccare significativamente l’aumento delle dimensioni delle cellule HL-

1 stimolate con NE.  

Nell’ultima parte di questo lavoro, abbiamo condotto un’analisi preliminare, in 

vivo, dell’espressione della proteina Homer 1a in tre modelli di ipertrofia, quali topi con 

costrizione trasversale dell’aorta, topi transgenici over-esprimenti Gαq e ratti trattati con 

monocrotalina. Diversamente da quanto ottenuto nel modello cellulare in vitro, in questi 

modelli l’espressione della proteina Homer 1a non risulta alterata dalle condizioni 

ipertrofiche, almeno nell’intervallo di tempo considerato. Tuttavia, per quanto riguarda 

questo approccio in vivo, sarà necessario analizzare l’espressione della proteina Homer 1a 

in un intervallo di tempo più ampio e, di conseguenza, ulteriori analisi sono richieste.  

In sintesi, dai nostri risultati relativi alla presenza ed alla localizzazione sub-

cellulare di Homer 1a nel tessuto cardiaco è emerso che la proteina Homer 1a è 

costitutivamente espressa e mostra una localizzazione sarcomerica e peri-nucleare. Nei 

nostri modelli cellulari in vitro, l’up-regolazione di Homer 1a è un evento precoce 

dell’ipertrofia indotta da NE e, come dimostrato dagli studi di gain-of fuction, la proteina 

Homer 1a è in grado di antagonizzare l’avvio e lo sviluppo degli eventi che portano 

all’ipertrofia α1- adrenergica dipendente.  

Concludendo, i nostri dati in vitro indicano che Homer 1a è inserito in un 

meccanismo di feedback negativo in cui agisce come modulatore negativo, bloccando gli 

steps precoci dell’ipertrofia cardiaca. Tuttavia, ulteriori studi sono necessari per definire il 

meccanismo alla base di questo processo. 
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1. Introduction 

1.1 The Homer proteins family  

Homer proteins, also known as Vesl (VASP/Ena-related gene up-regulated during 

seizure and long term potentiation), are a family of scaffolding proteins which are 

involved in many intracellular signaling pathways, in both excitable and non-excitable 

cells (Worley PF. et al., 2007). These proteins participate in the assembly and regulation 

of functional signaling complexes allowing cross-talk between surface membrane 

receptors and channels in the membranes of intracellular compartments (Fagni L. et al., 

2002).  

In the late 1990s, the first Homer cDNA (Homer 1a) was isolated in hippocampal 

and cortical neurons by Brakeman et al. Homer 1a variant was initially identified after the 

induction of excitatory synaptic activity, as well as during both neuronal long-lasting 

plasticity and development (Brakeman PR. et al., 1997, Kato A. et al., 1997). The Homer 

1a isoform, also called ‘short’, is a 186 amino acids long protein which presents a short 

carboxy-terminal (C-terminal) extension. The Homer 1a gene is transcribed as an 

immediate early gene (IEG): its expression in neuronal cells is low under normal 

conditions and increases rapidly after their stimulation (Brakeman PR. et al., 1997). 

Subsequent molecular cloning and sequence studies have revealed that there are 

three Homer genes - Homer 1, Homer 2 and Homer 3 - in mammals, each of which 

encodes for several transcripts (Soloviev MM. et al., 2000a, Kato A. et al., 1998, Xiao B. 

et al., 1998). Table 1 summarizes all isoforms known and their relative molecular 

weights. Apart from the short Homer 1a, all other Homer proteins (called ‘long’ isoforms) 

present a well-characterized C-terminal domain (Xiao B. et al., 1998). The long variants 

are constitutively expressed in the brain where their scaffolding function plays an 

important role in a variety of neuronal processes, such as intracellular Ca2+ homeostasis, 

synaptic plasticity associated with learning and memory in the mature brain, and neuronal 

development of the embryonic brain (Xiao B. et al., 1998; Worley PF. et al., 2007; Foa L. 

et al., 2009).  

Even though the functional importance of Homers as scaffolding in the nervous 

system has been well described, the precise function of Homer proteins in other tissues is 

still poorly understood. Besides the brain, Homer proteins are predominantly expressed in 

muscle tissues, heart and skeletal muscle (Xiao B. et al., 1998; Sandonà D. et al., 2000). 

Considering its important function in neuronal cells, it is plausible to hypothesize that 
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Homer 1 isoforms can also have a fundamental role in many of the signaling pathways in 

these muscle tissues. However, as regards the heart, few reports have discussed the 

function of Homers and its specific role in molecular events, both in cardiac physiology 

and pathophysiology, is still unclear. 

 

Homer 
gene 

Homer 
isoforms 

Amino 
acids 

Molecular 
Weight (kDa) 

References 

Homer 1 1a 186 28 Brakemann PR et al., 1997 
 1b 354 47 Xiao B et al., 1998 
 1c 366 47 Xiao B et al., 1998 
 1d 370 48 Saito H et al., 2002 
 1e 224 26 Bottai D. et al., 2002  
 1f 180 21 Klugmann M et al., 2005 
 1g 192 22  Klugmann M et al., 2005 
 1h 238 20 Klugmann M et al., 2005 

Homer 2 2a 343 47 Xiao B et al., 1998 
 2b 354 47 Xiao B et al., 1998 
 2c 171 29 Soloviev MM et al., 2000 
 2d 182 29 Soloviev MM et al., 2000 

Homer 3 3a00 352 48 Soloviev MM et al., 2000 
 3a01 355 48 Soloviev MM et al., 2000 
 3a10 355 48 Soloviev MM et al., 2000 
 3a11 358 48 Soloviev MM et al., 2000 
 3b00 316 45 Soloviev MM et al., 2000 
 3b01 319 45 Soloviev MM et al., 2000 
 3b10 319 45 Soloviev MM et al., 2000 
 3b11 322 45 Soloviev MM et al., 2000 
 3c 145 16 Soloviev MM et al., 2000 
 3d 121 14 Soloviev MM et al., 2000 

 

Table 1: Homer Isoforms and Molecular Weight. 

 

1.2 The structure of Homer proteins 

Homer family proteins present two main structural features: the conserved amino-

terminal domain (N-terminal) and the Homer-specific carboxy-terminal domain (C-

terminal) (Tu JC. et al., 1998; Kato A. et al., 1998) (fig. 1).  

All Homer isoforms possess a highly conserved N-terminal domain, with a 

similarity of 60-70% between amino acid sequences of the different isoforms (Soloviev 

MM. et al., 2000a).  
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Figure 1. Homer structure. The N-terminal EVH1 domain is present in both the long and short 

Homer variants, whereas the C-terminal coiled coil domain is present only in long Homer isoforms. 
Modified from Hayashi MK et al 2006.  

 

The N-terminal domain is homologous (26-30% identical amino acids) to the 

EVH1/WH1 domain (Ena/VASP homology 1/Wiskott-Aldrich syndrome protein 

homology 1), which is present in the Ena/vasodilator-stimulated phosphoprotein family 

(Kato A. et al., 1997). Homer/EVH1 domain is a protein-protein binding module that 

specifically recognizes proline-rich motifs. The Homer ligand consensus motif is PPxxF, 

where x is any amino acid (Tu JC. et al., 1998). The PPxxF ligand consensus sequence is 

present in many signaling molecules, including metabotropic glutamate receptor (mGluR) 

(Kato A. et al., 1998), inositol tri-phosphate receptor (IP3R) (Yuan JP. et al., 2003), 

ryanodine receptors (RyRs) (Feng W. et al., 2002), Shank proteins (Tu JC. et al., 1999), 

transient receptor potential canonical channels (TRPC) (Yuan JP. et al., 2003), L-Type 

Ca-channels (Huang G. et al., 2007) and various transcription factors (Cooper ST. et al., 

2005; Huang GN. et al., 2008). Through the EVH1 domain, Homer proteins bind directly 

to proline-rich motifs of other scaffolding proteins or of signaling transduction molecules, 

thereby cross-linking and modulating their activity (fig. 2). For example, the long Homers 

are able to form a link between mGluR1/5, located in the plasma membrane, and the 

downstream effector IP3R located in the endoplasmic reticulum (Tu et al., 1998). 

Crystallographic analysis of the Homer/EVH1 domain, both alone and complexed with a 

bound peptide, has been demonstrated that this domain binds ligands in a unique manner 

that distinguishes it from other EVH1 domains; in this way, the Homer-ligand binding 

minimizes potential cross-reactions with non-permissive proline-rich sequences (Beneken 

J. et al., 2000).  

The C-terminal domain of Homer proteins has only about 20% sequence identity 

among the different isoforms, and contains a coiled-coil (CC) domain followed by two 

leucine zipper motifs (Zip A consists of 34 amino acids and Zip B of 28 amino acids) 

(Soloviev MM. et al., 2000a; Xiao B. et al., 1998; Takodoro S. et al., 1999). This domain 

mediates homophilic or heterophilic interactions within the Homer family (Beneken J. et 
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al., 2000). Crystallographic analysis of Homer 1 isoforms has revealed that Homer 

proteins form dimers via leucine zipper motifs at the C-terminal coiled-coil domain. Two 

dimers can then intercalate in a tail-to-tail fashion to form a tetramer. The tetramer is only 

formed by the ‘long’ Homer isoforms that possess the CC-domain. This tetramerization 

plays an important role in allowing four EVH1 domains to be exposed in an optimized 

configuration for ligand binding (Hayashi MK. et al., 2006). The short Homers (Homer 

1a and Ania-3), in contrast, are monomers - lacking the CC-domain, they contain the 

EVH1 domain alone, and do not self-associate (Foa L. et al., 2009) (fig. 2). As a 

consequence of their distinct structural features, the long and short Homer isoforms 

participate in the formation and regulation of signaling transduction complexes in 

different ways.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Distinct structural features between long and short Homers. Short Homer variant can 

bind to the same target protein 1 via EVH1-domain as the long isoform, but does not self-multimerize. 
Long Homer isoforms are able to multimerize via coiled-coil domain and bind to two different target 
proteins. From Pouliquin P. et al. 2009a.  

 

For example, the long Homer 1 isoforms are able to multimerize via its C-terminal 

domain and bind to two different target proteins through their EVH1 domain. Conversely, 

short Homer 1 isoform (Homer 1a) can bind to the same target proteins via its conserved 

N-terminal domain as the long isoform, but does not multimerize and, thus, avoids the 

linkage of two target proteins (Fig. 2). Homer 1a therefore acts as a dominant-negative 

protein, interfering with Homer-multimerization and disassembling Homer-mediated 

complexes (Tu JC. et al., 1998; Kammermeier PJ. et al., 2007).  
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1.3 The tissue distribution and sub-cellular localization of Homer proteins  

The Homer proteins family is highly conserved among different species -human, 

mouse, rat, Xenopus, Drosophila, zebrafish (Xiao B. et al., 1998; Foa L. et al., 2001; 

Shiraishi-Yamaguchi Y. et al., 2007). In mammals, all Homer isoforms are predominantly 

expressed in the nervous system and are widely localized at postsynaptic density, where 

they act as adaptor proteins for many postsynaptic density proteins (Hayashi MK. et al., 

2009; Foa L. et al., 2009).  

The long isoforms are constitutively expressed in most of the brain regions (Xiao 

B. et al., 1998), whereas the expression of short Homer 1a isoform is transiently induced 

during development or in response to external stimuli (e.g. light, traumatic injury, 

epileptic stimulus or drugs administration) (Kato A. et al., 1997; Park HT. et al., 1997; 

Huang WD. et al., 2005; Li Y. et al., 2012, Zhang GC. et al., 2007). 

Homer mRNA and proteins have also been detected both in cardiac and skeletal 

muscle (Sandonà D. et al., 2000). The relative quantitative expression levels of Homer 1, 

-2 and -3 mRNAs in muscle tissues are the same as in the brain (Soloviev MM. et al., 

2000b). In skeletal muscle, the short inducible isoform presents a particular pattern of 

expression depending on conditions: i) under resting conditions it appears to be 

constitutively expressed, ii) during muscle regeneration it appears to be up-regulated 

(Bortoloso E. et al., 2006). In relation to Homer sub-cellular localization in skeletal 

muscle, the long and short isoforms have different and distinct patterns. In C2C12 

myotubes, Homer 1c (long isoform) displays a reticular-like pattern in the cytosol with 

punctuate labeling around the nuclei, whereas Homer 1a (short isoform) is localized 

homogenously in the cytoplasm (Volpe P. et al., 2004). Moreover, in skeletal muscle, 

where the long and short Homers interact with both RyR1 (Feng W. et al., 2002) and 

IP3R (Yuan PJ. et al., 2003) (both key elements for Ca2+ signaling in muscle cells), 

immunofluorescence analysis in adult skeletal muscle has demonstrated that Homer 

proteins only co-localize with IP3R, and not co-localize with the RyR1 isoform (Salanova 

M. et al., 2002; Volpe P. et al., 2004).  

As regards the expression of Homer isoforms in cardiac muscle, different studies 

in vitro using neonatal rat cardiomyocytes have demonstrated that the expression of the 

long and short Homer 1 isoforms (Homer 1c and Homer 1a, respectively) appears to be 

modulated following stimulation with different hypertrophic agents such as endothelin-1 

(ET-1) (Kawamoto T. et al., 2006), angiotensin II (Ang-II) (Guo WG. et al., 2010) and 
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phenylephrine (PE) (Grubb DR. et al., 2011). Little is known about sub-cellular 

distribution of Homer isoforms in cardiac tissue and, also in this case, the most significant 

studies regard the Homer 1 isoforms. Indeed, immunofluorescence study on adult 

cardiomyocytes demonstrated that Homer 1 have a striated pattern which corresponds to 

the Z-band, where it partially co-localizes with RyR (Kawaguchi S. et al., 2007).  

It should be noted that Homer isoforms are also expressed in peripheral tissues - 

transcripts and proteins from the three Homer genes were identified in many tissues, 

including the lung, liver, kidney, thymus, spleen, testes, and intestines (Shiraishi Y. et al., 

2004; Soloviev MM. et al., 2000b). 

 

1.4 The functional interactions of Homer proteins  

The Homer/EVH1 domain is responsible for functional interactions between 

Homers and different target proteins, which contain the proline-rich consensus sequence 

(Duncan RS. et al., 2005). 

Functional studies have demonstrated that, in mammalian brain, all Homer 

proteins bind to the C-terminal intracellular tails of mGluR (mGluR1α and mGluR5) via 

the Homer/EVH1 domain (Xiao B. et al., 1998; Tu JC. et al., 1998). The mGluRs are a 

family of seven membrane-spanning G protein-coupled receptors (GPCRs) that allow the 

extracellular signals to be transducted to the inside of the cell by activating G proteins 

(Niswender CM. et al., 2010). In both neuronal and non-neuronal cells, Homer proteins 

are able to regulate mGluRs by modulating their expression and clustering, their activity 

and their coupling to signaling complexes (Thomas U. et al., 2002). In cortical neurons 

from Homer 1a-specific knockout mice it has been demonstrated a significantly increase 

of surface mGluRs, that was reduced with reintroduction of Homer 1a gene (Hu JH. et al., 

2010). In HeLa and cerebellar granule cells, it has been found that exogenous Homer 1b 

blocked the cell-surface targeting of mGluR5 promoting its retention in the endoplasmic 

reticulum, whereas exogenous Homer 1a reversed this effects enhancing surface 

clustering of mGluR5 (Roche KW. et al., 1999; Ango F. et al., 2002). Different effect has 

been found in cultured hippocampal neurons, where Homer 1b reduced retention in the 

endoplasmic reticulum of mGluR5 and increased its expression on cell surface (Serge A. 

et al., 2002). This discrepant effects of Homer proteins on mGluR are probably due to the 

different distribution of Homer variants in each cell line. However, data present in 

literature indicate that, although both the long and short Homer proteins modulate the 
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expression and cell-surface clustering of mGluR, they acts in different and opposite ways 

(Shiraishi-Yamaguchi Y. et al., 2007; Luo P. et al., 2012c).  

Functional studies have suggested that the binding of long Homers to mGluR1α 

and mGluR5 is also important to maintain the receptor in an inactive state in the absence 

of an agonist, whereas the binding of short isoform (Homer 1a) reverts this effect 

promoting constitutive activation of the receptor (Fagni L. et al., 2002; Ango F. et al., 

2001). In this case, again, short Homer 1a isoform exerts its function negatively 

modulating the interactions mediated by other long Homer isoforms, interfering with the 

assembly of the Homer-complex.  

The Homer binding to mGluRs plays also a fundamental role facilitating the cross-

talk between surface mGluR and intracellular target proteins, and enhancing signal 

transduction. Tu et al. demonstrated that, in rat cerebellum, Homer 1 proteins mediated 

the linkage between mGluR1α and IP3R (Tu JC. et al., 1998). IP3R is an important 

channel responsible for Ca2+ release from endoplasmic reticulum (Patterson RL. et al., 

2004) and contains the Homer ligand motif. This mGluR-Homer-IP3R association is 

involved in the post-synaptic mGluR-dependent signal transduction. Indeed, it has been 

reported that the expression of Homer 1a, which lacks the ability to form cross-links, 

disrupted the mGluR-Homer-IP3R complex altering mGluR-induced intracellular Ca2+ 

release (Tu JC. et al., 1998).  

Homer proteins allow also the crosstalk between several intracellular proteins, 

many of which belong to the Ca2+ signaling pathway such as the IP3R (described above) 

and the RyR. RyRs are the major intracellular Ca2+ channels localized in the plasma 

membrane of intracellular Ca2+ stores, mainly in the endoplasmic/sarcoplasmic reticulum 

(ER/SR). In both cardiac and skeletal muscle, RyRs are responsible for the release of Ca2+ 

from the SR during excitation-contraction (Van Petegem F. 2012). In skeletal muscle, 

long and short Homer isoforms bind RyR1 through the Homer EVH1 N-terminal domain. 

Long isoforms (Homer 1b, Homer 1c and Homer 2) modulate skeletal muscle RyR1 

activity, increasing ryanodine binding, Ca2+ release from SR, intracellular Ca2+ transients 

in C2C12 cells, and the frequency of Ca2+ sparks in permeabilized skeletal muscle fibres 

(Feng W. et al., 2002; Hwang SY. et al., 2003; Pouliquin P. et al., 2009a, Pouliquin P. et 

al., 2009b; Ward CW. et al., 2004), whereas short Homer 1a dose-dependently decreases 

the effects of long Homer 1c on RyR1 by competing for the RyR binding site (Hwang 

SY. et al.,  2003). However, the effect of the Homer binding to RyR1 is still unclear. 

Other studies have reported different results demonstrating that both long and short 
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Homer 1 variants regulate RyR1 in a similar and additive way, activating Ca2+ release via 

RyR in skeletal muscle, and modulating ryanodine binding to membranes enriched with 

RyR (Ward CW. et al., 2004; Feng W. et al., 2008).  

In the heart, Homer 1 isoforms bind RyR2 and, although the functional effects of 

this interaction can have important consequences in the cardiac Ca2+-dependent signaling, 

data reported require further clarification. On the one hand, it has been demonstrated that 

long Homer isoforms reduce RyR2 activity following agonist-dependent activation. Short 

Homer 1a alone has no effect on RyR2 activity, but when co-expressed with long Homers 

inhibits the effect of long Homers by competing for the binding sites on RyR2 (Westhoff  

JH. et al., 2003). On the other hand, a different study demonstrated that both long Homer 

1b and short Homer 1a are able to modulate RyR2 activity in a similar way by the simple 

binding through its EVH1 domain to RyR binding sites (Pouliquin P. et al.,2009b). 

Homer proteins interact also with another family of Ca2+ channels called TRPC 

(canonical-type Transient Receptor Potential Cations). TRPC channels are non selective 

Ca2+ permeable cation channels that are involved in receptor-stimulated Ca2+ influxes 

(Vennekens R. et al., 2002). All TRPC channels bind Homer proteins through the proline-

rich consensus sequence at their C-terminus. Homer proteins, in particular Homer 1, are 

able to form complex between TRPC channels andIP3R. Disruption of this TRPC1-

Homer-IP3Rs complex by expression of the dominant-negative Homer 1a causes the 

activation of TRPC channels (Yuan JP. et al., 2003). Through this interaction, long 

Homer 1 proteins maintain the TRPC channels in a closed state. At the basal state, TRPC 

channels are inactive in a complex with IP3Rs that is formed by Homer 1b/c; whereas, 

upon cell stimulation and Homer 1a up-regulation, the complex is dissociated promoting 

the activation of TRPC channels (Kim JY. et al., 2006). 

Homer proteins interact with other scaffolding proteins, including Shank proteins 

(Tu JC. et al., 1999). In neuronal cells, Shank/Homer complexes play a central role in the 

morphogenesis of dendritic spines (Sala C. et al., 2001). In cardiomyocytes, instead, 

scaffolding protein Shank3 forms a complex with a splice variant of phospho-lipase Cβ1 

(PLCβ1, important for initiating hypertrophic signaling responses) and Homer 1 proteins 

(in particular Homer 1c and Homer 1a). These interactions cause different functional 

effects on the PLCβ1b-initated pathways, which are differentially modulated by Homer 

1c and Homer 1a (Grubb DR. et al., 2011).  
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1.5 Cardiac muscle tissue: an overview 

The heart is a contractile organ composed by a complex network of cells including 

muscle cells (cardiomyocytes), and non-muscle cells (fibroblast, endothelial cells, mast 

cells, vascular smooth muscle cells). In cardiac tissue, cardiomyocytes form a branching 

network and are attached end-to-end with specialized regions called intercalated discs 

(McNutt NS. et al., 1974). These intercalated discs serve to maintain a close electrical 

communication between two contiguous cardiomyocytes allowing propagation of the 

action potential from one to other cell (Fawcett DW. 1996). Cardiomyocytes are 

composed by bundles of myofibrils that contain myofilaments. The myofibrils are 

structured in repeating units called sarcomeres. The sarcomere represents the basic 

structural and functional unit of contraction in cardiac muscle and is formed by 

interlacing myosin (thick) and actin (thin) filaments bordered by Z-discs. The Z-disc (see 

fig. 3) is present in the middle of I band (lights bands for isotropic in polarized light) that 

contains only thin (actin) filaments, whereas in the A band (dark band anisotropic in 

polarized light) thick (myosin) and thin filaments are found. The A band comprises the H 

zone, where thick (myosin) filaments are present, and the M line, where myosin filaments 

are anchored (Leyton RA. et al., 1971; Cooper GM. 2000). 

  

Figure 3. Sarcomeric structure. From Lee EH. et al., 2007.  

 

The main function of the heart is to pump blood throughout the body by a 

coordinated contraction of all cardiac four chambers. During contraction, myosin heads 

bind actin filaments in a physical connection (called cross-bridge) that allows the actin 

filament to slide past the myosin filament, causing the sarcomere shortening and, thus, the 

contraction. The muscle relaxation, in turn, occurs with the dissociation of the cross-

bridges between myosin and actin. Propagation of electrical depolarization through the 

sarcolemma (the cardiac cell membrane) and the t-tubule (specialized invagination of the 

sarcolemma that cross the cell at the Z-line) is the initial step of the excitation–contraction 

coupling, a process in which the electrical excitation of cardiomyocytes is converted into 
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a mechanical response and induces muscle contraction (Greenstein JL. et al., 2011). In 

this process, the second messenger Ca2+ is fundamental to trigger contraction of the 

cardiomyocytes. Indeed, the initial membrane depolarization causes Ca2+ influx through 

the voltage-dependent L-type Ca2+ channels. This Ca2+ influx induces further Ca2+ release 

from the intracellular calcium. In this way, the intracellular Ca2+ concentration increases 

and Ca2+ binds to the troponin C (a small regulatory protein of muscle contraction), which 

then allows the interaction between myosin and actin. During relaxation, the intracellular 

Ca2+ concentration decreases through several pathways involving SR Ca2+-ATPase, 

sarcolemmal Na+/Ca2+ exchange, sarcolemmal Ca2+-ATPase or mitochondrial Ca2+ 

uniport. The decrease of intracellular Ca2+ induces the dissociation of Ca2+ from troponin, 

which in a complex with tropomyosin (another regulatory protein of muscle contraction) 

blocks the myosin binding sites on actin and determine a relaxation of the contractile 

muscle fibers (Bers DM. 2002).  

 

1.6 Cardiac hypertrophy  

Cardiac hypertrophy is an increase in heart muscle mass that occurs 

predominantly through cellular enlargement without any proliferation (Frey N. et al., 

2003; Roderick HL. et al., 2007). The hypertrophic process arises as an adaptive response 

to environmental demands and to a variety of other different stimuli (Hill JA. et al., 

2008). Normally, this process occurs after birth when cardiac myocytes lose the ability to 

proliferate and the subsequent growth of the heart occurs only by increasing the myocyte 

size (Olson EN. et al., 2003). This growth process is called ‘physiological hypertrophy’ 

(Fig. 4). In adulthood, physiological conditions - such as chronic exercise training or 

pregnancy - also promote morphological and physiological growth of the heart. In 

contrast, pathological conditions - such as hypertension, neurohumoral activation, aortic 

stenosis and sarcomeric gene mutations - can cause pathological hypertrophic growth 

that, unlike physiological growth, results in a predisposition towards heart failure (fig. 4) 

(Bernardo BC. et al., 2010).  
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Figure 4. Differences between physiological and pathological hypertrophy. From Bernardo 
BC. et al. , 2010.  

 

Cardiac hypertrophic growth can be classified as concentric or eccentric based on 

changes in heart shape. In concentric hypertrophy, the thickness of the ventricular wall 

increases with no changes in heart volume. The concentric remodelling is characterized 

by an increase in cardiac myocyte greater in width rather than in length, in which the 

sarcomeres are added in a parallel way. In contrast, eccentric hypertrophy is characterized 

by dilation and thinning of the heart wall that cause an enlargement of heart volume. In 

the eccentric sarcomeres are added in series (Fig. 5) (Heineke J. et al., 2006). 

In response to various stimuli (in particular to pathological stimuli), initial 

hypertrophy occurs as a compensatory mechanism required to normalize wall stress and 

to sustain normal cardiac function. In the long term, however, a prolonged cardiac 

hypertrophy may decompensate and progress to heart failure independently from the 

hypertrophic causes. Heart failure is one of the major causes of death in the Western 

society, and the risk of heart failure increases with age (Levy D. et al., 2002). At present, 

there is no definitive therapy for heart failure, but there is a great interest to characterize 

the intracellular signaling pathways implicated in pathological cardiac growth in order to 

identify therapeutic strategies for prevention of heart failure.  
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Figure 5. Differences between concentric and eccentric hypertrophy. In concentric 
hypertrophy sarcomeres are added in a parallel way, whereas in eccentric hypertrophy sarcomeres are added 
in series. From Gjesdal O. et al., 2011.  

 

1.7 Distinct features in physiological and pathological cardiac hypertrophy 

Physiological and pathological cardiac hypertrophy are both defined as an 

enlargement of the heart characterized by an increase in cell size; it is important to remark 

that the physiological hypertrophy occurs without significant clinical consequences. At 

structural level, during physiological hypertrophy muscle thickness increases in a 

proportional way in respect to the chamber size of the heart (Chen QM. et al., 2001) and 

the fibrillar collagen network that surrounds the cardiomyocytes provides structural 

support preserving the normal cardiac function (Bernardo BC. et al., 2010).  

On the contrary, the pathological hypertrophy can be divided into two stages: an 

early and a late stage. During early stage, the changes in cardiac structure compensate the 

increased stress on the heart, meanwhile in late stage the heart becomes decompensated 

and is unable to pump sufficient blood to maintain a cardiac output adequate to body’s 

oxygen demand (Czubryt MP. et al., 2004). At the morphological level, the pathological 

hypertrophy develops in an uncoordinated manner with loss of cardiomyocytes that are 

replaced by fibrous tissue; this causes stiffness of the ventricles, which in turn impairs 

cardiac function (Feng QZ. et al., 2008; McMullen JR. et al., 2007). At the gene 

expression level, pathological hypertrophy is characterized by the re-expression of fetal 

genes -  genes that are normally expressed only in the heart development and are 
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repressed in the adult heart (Schaub MC. et al., 1997).  The re-activation of fetal genes, 

such as β-myosin heavy chain, α-skeletal actin and atrial natriuretic factor (ANF), does 

not occur in physiological hypertrophy (Barry SP. et al., 2008; Bishopric NH. et al., 

1991). 

 

1.8 Signaling pathways in cardiac hypertrophy 

Cardiac hypertrophy occurs in response to an initial stimulus that acts on cell 

membrane and induces activation of intracellular signaling pathways. The process of 

cardiomyocyte hypertrophy can be divided into three well-defined stages (Glennon PE. et 

al., 1995): 

I. the initial binding of extracellular hypertrophic agonists on membrane 

receptors;  

II.  the subsequent activation of intracellular signaling pathways;  

III.  the final activation of nuclear events leading to hypertrophic phenotype. 

As shown in fig. 6, a wide array of extracellular factors can stimulate several 

receptors on the plasma membrane and trigger different intracellular signaling pathways 

that ultimately affect nuclear factors.  

In this way, activation of the hypertrophic cellular program culminates at the 

nucleus level in an alteration of gene expression (e.g. re-expression of fetal gene) and, at 

the cytoplasmic level, in an increase in protein translation and a decrease in protein 

degradation (Heineke J. et al., 2006). Many studies conducted both in vitro and in vivo 

have identified important signaling pathways activated during cardiac hypertrophy, that 

involve increases in cytoplasmic Ca2+ (Wilkins BJ. et al., 2004; Molkentin JD 2006), and 

include activation of G-proteins (D'Angelo DD. et al., 1997), of MAPK (mitogen-

activated protein kinase) pathway (Clerk A. et al., 1999), and of PI3K (phoshoinositide 3-

kinase) pathway (Luo J. et al., 2005).  
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Figure 6. Intracellular signaling pathways that regulate cardiac hypertrophic response. From 

Bernardo BC. et al. , 2010.  
 

In cardiomyocytes, the most important cell-surface receptors involved in the 

hypertrophic signaling cascades are classified as:  

I. G-protein coupled receptors for catecholamines that induce the mobilization 

of Ca2+ from intracellular stores and the activation of both MAPK pathways 

and calcineurin-NFAT pathways (Molkentin JD. et al., 2001); 

II.  Tyrosine kinase receptors for insulin growth factor, fibroblast growth factor 

and transforming growth factor, that activate downstream PI3K/Akt pathways 

(McMullen JR. et al., 2007); 

III.  Cytokine receptors for cardiotrophin-1 that mediate the activation of 

JAK/STAT pathways (Barry SP. et al., 2008). 

The G protein coupled receptors (GPCR) are a group of seven-transmembrane-

spanning receptors coupled to heterotrimeric G proteins that play a major role in response 

to hypertrophic stimuli. There are three principal classes of heterotrimeric G protein - Gs, 

Gq/G11, and Gi - which transduce the extracellular signal towards intracellular effectors 

(Rockman HA. et al., 2002). All heterotrimeric G-proteins presents two subunits: Gα and 

Gβγ;  when the receptor is activated these subunits dissociate and induce the activation of 

signaling pathways interacting with downstream effector molecules (Rohini A. et al., 

2010). Studies in genetically modified mouse models have demonstrated that over-

expression of wild-type Gαq subunit induces cardiac hypertrophy associated with a 

depressed cardiac function, whereas deletion of both Gαq and Gα11 subunits in 
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transgenic mice with pressure-overload induced by aortic constriction does not cause 

ventricular hypertrophy (D’Angelo DD. et al., 1997; Wettschureck N. et al., 2001). Thus, 

these data indicate that the Gαq/G11-mediated pathway is essential for the cardiac 

hypertrophic process.  

Of all the members of the GPCR superfamily, adrenergic receptors (ARs) are the 

most important in the heart and they are classified into three major subfamilies: α1-AR, 

α2-AR and β-AR. ARs are activated by catecholamines (such as noradrenaline and 

adrenaline) and play an important role in the control of cardiac function, myocyte growth 

and cell death. Depending on adrenergic subtypes, ARs are coupled to Gαq, Gαs or Gαi 

(Rockmann HA. et al., 2002). The binding of adrenergic agonists to ARs induces 

activation of effector molecules, such as adenylyl cyclases, phospholipases and ion 

channels (in particular, Ca2+ channels) and these downstream effectors, in turn, activate 

important hypertrophic signaling, such as MAPKs, calcineurin-dependent, and PI3K-

dependent pathways (Xiao L. et al., 2001; Zou Y. et al., 1999; Molkentin. JD. et al., 

2001; Zhang W. et al., 2011).  

Cathecolamines, ET-1 and Ang-II are well-characterized neurohumoral and 

endocrine factors that are released in response to a pathological stimulus, such as pressure 

overload, and are able to induce cardiomyocytes hypertrophy through both β- and α- ARs 

coupled to either Gαs or the Gαq/Gα11 subclass (Yamazaki T. et al., 1997).  

Activation of β-Adrenergic receptors coupled to Gαs induces adenylyl cyclase 

activity that causes production of cAMP and, then, activation of protein kinase A (PKA) 

(see Figure 7). PKA in turn promotes the cardiomyocytes contractility by activating 

proteins involved in cardiac contraction (L-type calcium channels, phospholamban and 

troponin) and also activates signaling pathways involved in cell growth (MAPK pathway) 

(Marian AJ. 2006; Yamazaki T. et al., 1997).  

α-Adrenergic receptors coupled to Gq are able to activate pospholipase C (PLC), 

inducing the generation of inositol 1,4,5-triphosphate (IP3) and DAG. In this cascade of 

process, DAG in turn activates protein kinase C (PKC), whereas IP3 binds to the IP3R 

causing the release of Ca2+ (see Figure 7). Both these downstream events (activation of 

PKC and increases in cytosolic Ca2+) are potential triggers for the activation of pro-

hypertrophic transcription factors to nucleus (Heineke J. et al., 2006; Berridge MJ. 2006; 

Palaniyandi SS. et al., 2009). 
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Figure 7. Schematic illustration of intracellular signaling pathways activated upon NE-
stimulation of α1- and β- adrenergic receptors. Modified from Wang QD et al 2004.  

 

As mentioned before, the adrenergic receptor stimulation induces activation of 

many intracellular signaling pathways, that include MAPK and calcineurin-NFAT 

pathway. 

MAPKs pathway represents one of the principal cascades involved in 

cardiomyocyte hypertrophic responses. The MAPK superfamily consists of three main 

members: the extracellular signal-regulated kinases (ERKs), the c-Jun N-terminal kinases 

(JNK), and the p38 kinases (Kehat I. et al., 2010). ERK1/2 have been reported to play an 

important role in hypertrophy, both in vitro and in vivo, as important mediator of cardiac 

responses (Glennon PE. et al., 1996, Xiao L. et al., 2001; Izumi Y. et al., 1998). ERK1/2 

are protein kinases that induce reprogramming of gene expression by phosphorylating 

various cytosolic and nuclear substrates. When ERK1/2 are activated, they translocate to 

the nucleus and directly phosphorylate transcription factors such as Elk-1, c-Fos, and 

GATA4, which are involved in growth and proliferation. Constitutive ERK1/2 activation 

in the heart is sufficient to evoke a cardiac hypertrophic phenotype (Bueno OF. et al., 

2000; Kehat I. et al., 2010; Lorenz L. et al., 2009).  

Calcineurin-NFAT pathway represents an important Ca2+-dependent signaling 

pathway involved in cardiac hypertrophy (Colella M. et al., 2008). Calcineurin (CaN) is a 

serine-threonine phosphatase that is activated by increases in cytosolic Ca2+ level. Once 

activated, CaN directly dephosphorylates members of the NFAT family, promoting their 

translocation into the nucleus and the activation of pro-hypertrophic gene expression 

(Molkentin JD. 2006). Studies using both in vitro and in vivo models have extensively 

demonstrated that CaN–NFAT signaling plays a role in mediating pathological 
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hypertrophy. In particular, it has been demonstrated that constitutive activated form of 

CaN in heart promotes hypertrophy, ultimately leading to cardiac failure (Molkentin JD. 

et al., 1998).  

 

1.9 Homer 1a and cardiac hypertrophy 

Although Homer proteins can be regarded as important regulators of multimeric 

complexes involved in signal transduction, little is known about the role that Homer 

proteins play in signalling pathways of cardiac muscle and, in particular, in cardiac 

hypertrophic pathways.  

With respect to the short Homer 1a isoform, the presence of its mRNA transcripts 

was identified in cardiac muscle under resting conditions in a previous study by our group 

(Sandonà D. et al., 2000), but their function in the heart remains poorly understood. Data 

present in literature support the hypothesis of an involvement of the short isoform Homer 

1a in activation of cardiomyocyte hypertrophy. Kawamoto et al. were the first who 

investigate Homer 1a expression in stimulated cultured neonatal cardiomyocytes. In this 

study, it has been demonstrated that mRNA coding for Homer 1a was rapidly and 

transiently increased in neonatal cardiomyocytes upon stimulation with several 

hypertrophic agonists, including PE, isoprotenerol (ISO), Ang-II and ET-1 (the latter 

most markedly induced Homer 1a expression) (Kawamoto T et al., 2006). These findings 

provide the first evidence of the association between Homer 1a up-regulation and cardiac 

hypertrophic activation. In the same way, Guo et al. reported that Homer 1a protein levels 

were also up-regulated following Ang-II induced hypertrophy in H9C2 cells and neonatal 

rat cardiomyocytes (Guo WG. et al., 2010). Contrary to previously reported, a later study 

conducted by Grubb et al. indicated that long isoform Homer 1c increased during 

stimulation with an hypertrophic agent (such as PE) and, in absence of other effectors, 

induced cardiomyocyte hypertrophy. In this model, Homer 1a did not cause 

cardiomyocyte hypertrophy by itself, but was able to inhibit hypertrophy induced by PE, 

although its expression was unchanged during hypertrophic stimulation (Grubb DR. et al., 

2011).  

Although all these studies demonstrate that hypertrophic stimulation modulates 

expression of  Homer 1 isoforms, data appear controversial in particular about the 

modulation of Homer 1a expression (it is not up-regulated in the later study). Further 

investigations are required to identify which isoforms (Homer 1a or Homer 1c) are really 
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involved during hypertrophic stimulation and to clarify their specific role in cardiac 

hypertrophy. 
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2. Aims of the study 

 

The aim of this study was to investigate the role of the scaffolding protein Homer 

1a in cardiac function and hypertrophy. Our working hypothesis was that Homer 1a may 

be one of the molecular modulators of cardiac hypertrophy. To test this, we investigated 

the presence, sub-cellular localization and function of Homer 1a in cardiac tissue.  

We developed our study as follows: 

1) First, we studied Homer 1a expression and its sub-cellular localization in 

cardiac tissue under resting conditions. Although many studies have reported 

that in the nervous system Homer proteins are constitutively expressed and are 

found at the postsynaptic density, few reports have focussed on Homer 1a in 

the heart, in particular, on its expression and sub-cellular localization.  

2) Next, in order to establish whether Homer 1a takes place in the hypertrophic 

program of cardiomyocytes, we monitored Homer 1a expression (both at 

mRNA and protein level) in in vitro models under conditions mimicking 

hypertrophic stimulation. 

3) Finally, to determine the effect of Homer 1a, we used gain-of-function 

approaches for Homer 1a in a model of cardiac hypertrophy in vitro. The goal 

of this analysis was to identify the intracellular hypertrophic pathways 

modulated by Homer 1a and, consequently, the role of Homer 1a in cardiac 

hypertrophy. 

In the last part of this study, we performed preliminary analyses to evaluate Homer 1a 

expression in three different models of cardiac hypertrophy in vivo. 
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3. Materials and Methods 
3.1 Tissue sources 

To perform Western blot and immunofluorescence analysis on cardiac tissue, 

adult Wistar rats (~250 g of body weight) and CD1 mice (~45 g of body weight) were 

used. Following animal sacrifice, the heart was removed and frozen in liquid nitrogen. 

Experimental protocols have been approved by the University of Padua Review Board.  

 

3.2 Treatment of monocrotaline in adult rats 

Male Wistar rats (n=18, 125-150 g) were housed in a standard environment with a 

12-h light/12-h dark cycle and free access to food and water. The rats were treated with a 

single intraperitoneal injection of monocrotaline (MCT, 30 mg/kg dissolved in 0.9% 

NaCl) or vehicle. Monocrotaline is a toxic pyrrolizidine alkaloid of plant origin; 

administration of MCT produces hypertension followed by right ventricular (RV) failure 

(Dalla Libera L. et al., 2004). At 1, 2 and 4 weeks after the MCT injection, the rats were 

killed and their hearts quickly removed and weighed; heart weights and body weights 

were recorded. Hearts were divided into the left ventricular wall and the right ventricular 

wall and tissue lysates were then prepared by homogenization in RIPA buffer as 

described below. The experiments were approved by the University of Padua Biological 

Ethical Committee. 

 

3.3 Mice with transverse aortic constriction  

Heart lysates from mice that had undergone transverse aortic constriction (TAC) 

were kindly provided by Dr. N. Kaludercic (CNR, Padua, Italy). TAC was induced by 

controlled constriction of the transverse aortic arch; sham-operated mice, which had 

undergone a similar surgical procedure without aortic constriction, were used as control. 

The mice hearts were harvested at 1 (n=4), 3 (n=3), 6 (n=3) and 9 (n=3) weeks after TAC, 

and homogenized for Western blotting analysis. Homer 1a protein content was 

determined as described below. 

 

3.4 Gαq over-expressing mice 

Heart lysates from Gαq over-expressing mice were kindly provided by Dr. N. 

Kaludercic (CNR, Padua, Italy). Hearts from 18-week old mice (n=4) were harvested and 
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homogenized for Western blotting analysis. Homer 1a protein content was determined as 

described below.  

3.5 Homogenates from rat and mouse hearts 

Hearts homogenates were obtained as follows: frozen tissues were triturated in a 

mortar, then homogenated with Polytron for 10 sec at 18,000 g in 10 volumes of 3% SDS, 

1 mM EGTA, 0.2 mM phenylmethanesulphonyl fluoride (PMSF) and 0.8 mM 

benzamidine. They were then boiled for 5 min and centrifuged at 18,000 g for 30 min in 

order to remove the debris. The protein content of homogenates was determined by using 

a bicinchoninic acid protein assay system (Pierce). 

 

3.6 Cell cultures: 

3.6.1 Preparation of neonatal rat cardiomyocytes 

Primary cultures of cardiomyocytes were prepared from 1- 2 day-old Wistar rats. 

The hearts were dissected and the ventricles were removed aseptically and washed with 

ADS buffer (106 mM NaCl, 5.3 mM KCl, 0.8 mM NaH2PO4, 0.4 mM MgSO4, 20 mM 

HEPES, 5 mM glucose, pH 7.4). Using micro-dissecting scissors, the hearts were minced 

until the pieces were approximately 1 mm3 and treated with 10 ml of collagenase A (0.45 

mg/ml; Roche) and pancreatin (1.25 mg/ml; Sigma) for 15 min at 37°C. The supernatant 

was then removed and the tissue was treated with fresh collagenase/pancreatin solution 

for an additional 15 min. Cells in the supernatant were transferred to a tube containing 

100% fetal calf serum (FCS). The tubes were centrifuged at 250 g for 5 min at room 

temperature and the cell pellet was resuspended in the appropriate volume of cell culture 

medium. The above procedures was repeated 5–6 times until little tissue was left. Cell 

suspensions were collected and incubated in a 100 mm dish for 1-2 h to reduce fibroblast 

contamination. The resulting purified cardiomyocytes were collected, counted using 

Trypan Blue solution (Sigma) and plated at 8× 105 cells per well on 0,1% gelatin (Sigma) 

coated 6-well plates containing 65% DMEM, 17% M199 medium supplemented with 

10% horse serum, 5% FCS, 2 mM L-glutamine, 100 µM penicillin and streptomycin. To 

prevent growth of non-myocytes and to inhibit fibroblast proliferation, the medium was 

also supplemented with 20 µM cytosine-D-arabinofuranoside (AraC) 24 h after plating. 

Cardiomyocytes were grown at 37°C in 5% CO2 and 95% air. 
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3.6.2 HL-1 cardiomyocytes 

HL-1 cells are currently the only cardiomyocyte cell line available that 

continuously divides and spontaneously contracts while maintaining a differentiated 

cardiac phenotype (Claycomb WC. et al., 1998). HL-1 cells also express many of the 

cardiac-specific genes, possess intercalated discs, maintain contractile activity, retain 

basic electro-physiological characteristics and display the pharmacological properties of 

primary cardiac myocytes (White SM. et al., 2004). HL-1 cells express functional α and 

β-adrenergic receptors and respond to inotropic and chronotropic agonists, allowing the 

study of intracellular pathways (McWhinney CD. et al., 2000).  

HL-1 cells were cultured as reported, except for the lack of NE in the medium 

prior to experiments (Claycomb WC. et al., 1998). Cells were maintained in Claycomb 

Medium (Sigma) supplemented with 4 mM L-glutamin, 100 µM penicillin and 

streptomycin, 50 µM NE and 10% FCS. The medium was changed approximately every 

48 h. When the cells reached 80% confluence, they were washed with Hanks’ Balance 

salt solution (HBSS) and treated with 0.05% p/v trypsin-EDTA in order to detach them 

from the flasks. Then, cells were centrifuged at 250 g for 5 min and counted. 5 x 105 

cells/well were plated in 6-well plates pre-coated with 0.02% gelatin and 25 µg/ml 

fibronectin (Sigma). Cells were grown at 37°C in 5% CO2 and 95% air. HL-1 cells were 

switched to a medium without NE for 5 days prior to experimentation.  

To store the HL-1 cells in liquid nitrogen, the cell pellet was resuspended in 5% 

sterile DMSO with 95% FBS, and put into criovials; the cells were frozen slowly and then 

placed in a -80°C freezer for one day before permanent storage in liquid nitrogen. 

 

3.7 Cell stimulation assay in HL-1 cells and neonatal rat cardiomyocytes 

After 5 days of incubation in a medium lacking NE, HL-1 cells were washed with 

HBSS and incubated in the presence or absence of 75 µM NE. After treatment, cells were 

washed with phosphate buffered saline (PBS, 137 mM NaCl, 2.7 mM KCl, 8 mM 

Na2HPO4, 1.5 mM KH2PO4, pH 7.4) and lysed with RIPA buffer (50 mM Tris-HCl, pH 

7.4, 150 mM NaCl, 0.25% DOC, 1% NP-40 and 2 mM EDTA). 

In neonatal rat cardiomyocyte culture, the medium was changed 24 h after plating. 

Cardiomyocytes were washed with HBSS and serum-starved 1 day before the 

experiments. The experiments were carried out in DMEM/M199 medium supplemented 

with 2 mM L-glutamine, 100 µM penicillin and streptomycin. The cardiomyocytes were 
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then preincubated with 10 µM prazosin or 10 µM propranolol to block α and β-adrenergic 

receptors respectively, for 30 min before stimulation with 10 µM NE. For western 

blotting, cardiomyocytes were lysed as described above. For real-time PCR analysis, cells 

were processed as described in the mRNA section. 

 

3.8 mRNA extraction  

Total RNA of neonatal rat cardiomyocytes was extracted using TRIzol® 

(Invitrogen),  in accordance with the manufacturer’s instructions. Cells were washed with 

PBS and  500 µl of TRIzol® reagent were added in each well of a 6-well plate. Cells were 

disrupted and homogenated by passing them through a pipette several times. The samples 

were left for 5 min at room temperature and 100 µl chloroform were added, samples were 

vortexed for 15 sec and again left at room temperature for 5 min. Then, samples were 

centrifuged at 12,000 g for 15 min at 4°C to separate the phases. After centrifugation, the 

upper aqueous phase with RNA was collected and the RNA was precipitated with 250 µl 

isopropranol and incubated for 10 min at room temperature. Total RNA was centrifuged 

at 12,000 g for 10 min at 4°C and the pellet was washed with 75% ethanol and 

centrifuged again at 7500 g for 5 min at 4°C. The dried RNA was suspended in RNase-

free water stored at -80°C until use. Finally, the RNA concentration and purity were 

measured by Nanodrop (Thermo Scientific).  

 

3.9 cDNA synthesis 

Synthesis of cDNA was carried out by reverse transcription (RT-PCR). 400 ng of 

RNA were transcripted in cDNA using random hexanucleotides primers and SuperScript® 

VILO™ reverse transcriptase (Invitrogen), according to the manufacturer’s instructions. 

RT-PCR was performed in a thermal cycler (Applied Biosystems, Foster City, CA): 25°C 

for 10 min, 42°C for 90 min, 85°C for 5 min, and 4°C for 5 min. All RNA samples were 

converted to cDNA at the same time, in order to minimize technical variability.  

3.10 Primer design 

Specific primers used were either designed (*) using Primer3 software 

(http://frodo.wi.mit.edu/, Whitehead Institute for Biomedical Research) or were already 

published (see ref). Their thermodynamic specificity was determined using BLAST 
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sequence alignment (NCBI) and vector NTI® software (Invitrogen) software. All primers 

were purchased from Sigma-Aldrich.  

The sequences of primers used for real-time PCR were as follows: 

Homer1a (Grubb DR. et al., 2012)  Fw: CCAGAAAGTATCAATGGGACAGATG                

     Rv: TGCTGAATTGAATGTGTACCTATGTG 

 

Homer1bc (*)     Fw: GTGAAGCAGTGGAAGCAACA                 

     Rv: CAGCTCCTGCACTGTCTGAC 

 

TBP1 (Rossi AC. et al., 2012) Fw: TCAAACCCAGAATTGTTCTCC               

     Rv: AACTATGTGGTCTTCCTGAATCC 

 

Hypoxanthine guanine phosphoribosyl transferase (HPRT1,*) 

   Fw: CTCATGGACTGATTATGGACAGGAC              

   Rv: GCAGGTCAGCAAAGAACTTATAGCC 

 

3.11 Quantitative real time-PCR (qPCR) 

qPCR was performed in duplicate in a 96-wells IQ5 Thermal Cycler (Bio-Rad) 

using SYBR Green chemistry. The reaction mix consisted of 10 µl of 2x iQ SYBR® 

Green Supermix (Bio-Rad), 0.3 pmol/ µl primers, 10 ng of cDNA and DNase/RNase free 

water up to 20 µl. The PCR parameters were initial denaturation at 95°C for 30 sec 

followed by 40 cycles of 10 sec at 95°C and 30 sec at the corresponding annealing 

temperature (53-57 °C) in order to acquire the fluorescence signal. In addition, a melting 

curve was generated by the iQ5 software following the end of the final cycle for each 

sample, by continuous monitoring of the SYBR Green fluorescence throughout the 

temperature ramp from 65°C to 99°C in 0.5 sec increments, in order to confirm the 

specificity of the amplified product. TBP1 and HPRT genes were tested as candidate 

reference genes being the latter the most stable to normalize Ct values. All samples were 

run together with negative controls (no RNA or no reverse transcriptase enzyme). 

Normalization was performed with the deltaCT method using HPRT as the reference 

gene. 
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3.12 Transfection of HL-1 cells 

For transient transfection and co-transfection experiments, HL-1 cells were seeded 

at a suitable cell density for obtaining 50–60% confluence at the moment of transfection. 

After 18 h, cells were transfected using FuGENE®HD (Promega) transfection reagent in 

accordance with the manufacturer’s instructions. A ratio of 3:1 between FuGENE® HD 

Transfection Reagent and DNA was used for all transfections. For each well of the 6- 

well plate, 6 µg DNA were diluted to 300 µl of serum-free and antibiotic-free Claycomb 

medium and vortexed gently. 18 µl of Fugene HD were added to medium with the DNA; 

FuGENE/DNA mixture was mixed gently and incubated for 15 min at room temperature. 

The transfection mixture was added to each well of cell culture. Cells were typically 

assayed 24-48 h after transfection, depending on the type of experiment. 

 

3.13 Plasmids 

Plasmids encoding either Homer 1a-HA1, Homer 1c-HA1 or pcDNA3 (empty 

vector) were cloned as previously described (Sandonà D. et al., 2000). Plasmids encoding 

prom-ANF luciferase (pANFluc) and Renilla luciferase (pRL-TK) were kindly provided 

by Dr. CC. Glembotski (San Diego State University, San Diego, CA, USA) and Dr. F. 

Zorzato (University of Ferrara, Ferrara, Italy), respectively. Plasmid encoding NFATc1-

GFP were provided by Prof. S. Schiaffino (University of Padua, Padua, Italy). 

 

3.14 Plasmid DNA amplification and purification 

The plasmid DNA was amplified in bacterial cultures grown in presence of a 

selective antibiotic. In order to transform bacterial cells to assume the plasmid/foreign 

DNA, E. Coli XL1-blue competent for electroporation were used. 50 -100 ng of DNA 

were used for the electroporation; the electric shock was used at 1800 V. The bacteria 

were rapidly resuspended with SOC medium (20 mM glucose, 10 mM MgCl2, 10 mM 

MgSO4) in LB medium (1% bacto-tryptone, 0.5% yeast extract, 1% NaCl) and incubated 

for 1 h at 37°C under rotation. Then, bacteria were plated on LB-agar plates (LB with 

1.5% agar) with the selective antibiotic (Ampicillin 100 µg/ml or Kanamycin 30 µg/ml, 

both in sterile H2O) and were grown overnight at 37°C. A well-formed and isolated 

colony on the agar plate was selected, placed in LB medium with appropriate antibiotics 

and incubated at 37°C for 8 h with shaking. After this time, culture was transferred into 
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750 ml LB medium with the antibiotic and incubated for 12-16 h at 37° C with sharing. 

After 12-16 h, bacterial cells were harvested by centrifugation at 6000 g for 15 min at 

4°C. The plasmid DNA from bacteria was extracted and purified using QIAprep 

Maxiprep Kit (QIAGEN). The QIAGEN Kit protocol are based on modified a alkaline 

lysis procedure, followed by binding of plasmid DNA to anion-exchange resin under 

appropriate low-salt and pH conditions. RNA, protein and impurities were removed by a 

medium-salt wash. Finally, plasmid DNA was dissolved in sterile H2O and quantified 

using the spectrophotometer NanoDrop (Thermo Scientific). The purity of the DNA was 

evaluated considering the ratios 260/280 (ideal between 1.8-2) and 260/230 (ideal 

between 2 and 2.2). For each bacterial preparation, a stock of transformed bacteria was 

performed by adding 20% (v/v) sterile glycerol in bacterial cultures, and freezing them 

directly at -80°C. 

 
3.15 Protein extraction and quantification 

After treatment, either HL-1 cells or cardiomyocytes were washed three times 

with PBS and lysed with RIPA buffer containing 0.2 mM PMSF, 0.8 mM benzamidine 

and 10 mM sodium fluoride. Cells were scraped, incubated at 4°C for 30 min with gentle 

agitation and centrifuged at 14,000 g for 10 min at 4°C. The supernatants were harvested 

and used for protein quantification. To determine the concentration of protein in cell 

lysate, the bicinchoninic acid assay (BCA assay, Pierce-Thermo Scientific) was used in 

accordance with the manufacturer’s instructions. The BCA assay is a highly sensitive 

colorimetric method, based on the principle that protein can reduce Cu2+ to Cu1+ in an 

alkaline solution (the biuret reaction). The amount of reduction is proportional to protein 

content. BCA forms a blue complex with Cu1+ that absorbs light at a wavelength of 562 

nm, thus allowing to monitor the reduction of Cu2+ by proteins using a spectrometer and 

comparing protein solutions with known concentrations.  

3.16 SDS-Polyacrylamide Gel Electrophoresis  

Sodium Dodecyl Sulfate -Polyacrylamide Gel Electrophoresis (SDS-PAGE) was 

used to separate proteins according to their size. To avoid that different proteins with 

similar molecular weights may migrate differently due to their differences in secondary, 

tertiary or quaternary structure, SDS is used in SDS-PAGE to reduce proteins to their 

primary structure and coat them with negative charges. After protein quantification, 
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samples were mixed with Laemmli Sample Buffer (10% (w/v) glycerol, 5% (w/v) β-

mercaptoethanol, 2% SDS, 62.5 mM Tris-HCl, 0.03% (w/v) bromophenol blue, pH 6.8) 

and loaded into a polyacrylamide gel. Polyacrilammide gels, composed of a 4% stacking 

gel and a 10% running gel, were cast between a pair of glass plates with 1.5 mm spacers. 

The solutions used to prepared the stacking gel were: 40% solution of 

acrylamide:bisacrylamide 29:1 (Amresco), 0.5 M Tris-HCl pH 6.8 and 0.4% w/v SDS in 

H2O. The solutions used to prepared the running gel were: 40% solution of 

acrylamide:bisacrylamide 29:1, 1.5 M Tris-HCl pH 8.8 and 0.4% w/v SDS in H2O. The 

polymerization of gel is induced by both ammonium persulfate (APS) and TEMED, 

added to promote polymerization. In each SDS-PAGE a pre-stained protein marker 

(prestained standard-Low range, Bio-Rad) was loaded in order to estimate the protein 

molecular weight. Samples were loaded onto the wells and gel was run in running buffer 

(25 mM Tris, 192 mM glycine, 0.1% (w/v) SDS) with a voltage of 70 V in the stacking 

gel and 150 V in the running gel. After SDS-PAGE separation, samples were transferred 

from the gel onto a 0.45 µm nitrocellulose filter (Bio-Rad) for detection. In order to 

remove the excess of SDS, the gel was washed in transfer buffer (25 mM Tris, 192 mM 

glycine, 20% (v/v) methanol) and the transfer “sandwich” was assembled in the following 

order: a fiber pad, a 3 MM Whatmann paper impregnated with transfer buffer, 

nitrocellulose, the gel, and another impregnated paper and fiber pad. Air bubbles were 

gently removed, then transfer cassette was firmly closed and put with the membrane 

facing the positive pole of the transfer tank (Hoefer Scientific, Newcastle, Staffs., U.K.) 

with transfer buffer. A constant current of 100 mA was applied overnight. After 

transferring the proteins from SDS-PAGE onto the membrane, it was immersed in 

sufficient Ponceau S Staining Solution (0.2% (w/v) Ponceau S, 3% (w/v) Trichloroacetic 

acid) for 2 min. Ponceau Solution is used for the detection of proteins on nitrocellulose 

membranes; this staining technique is reversible, and can be removed with water.  

3.17 Immunoblotting 

The nitrocellulose membranes were incubated for 1 h with 10% (v/v) milk in TBS 

(50mM Tris-HCl, pH 7.5; 150 mM NaCl) with 0.1% Tween 20 (TBSt) in order to block 

residual protein binding sites. Blocked membranes were incubated overnight at 4°C under 

gently shaking with the appropriate primary antibody diluted in TBSt. Then, primary 

antibody was removed and blots were washed 3 times, for 10 min each time, with 2% 

milk in TBSt. In order to detect primary antibody, the blots were incubated with the 
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appropriate secondary antibody for 1 h. Secondary antibodies (anti-goat, anti-mouse and 

anti-rabbit) were labeled with either Alkaline Phosphatase (AP) or Horse Radish 

Peroxidase (HRP), and diluted 1:10000 in TBSt with 2% milk. After incubation, 

secondary antibody was removed and the blots were washed 3 times for 10 min with 2% 

milk in TBSt. Immunodetection was carried out using two different systems depending 

the secondary antibody used. To detect the signal from AP, blots were washed with AP 

Buffer (100 mM Tris-HCl pH 9.5, 100 mM NaCl, 5 mM MgCl2) twice for 5 min so as to 

raise the pH. Immunoreactive bands were detected using a ready-to-use, precipitating 

substrate system for alkaline phosphatase (BCIP/NBT; Sigma). To detect the signal from 

HRP, blots were washed twice with TBSt and incubated for 1 min with a mixture of the 

Chemilumiscence substrates of the LiteAblot Plus kit (Euroclone) and exposed to 

photographic films. For phospho-ERK, the same membrane was stripped at room 

temperature for 2 h in stripping solution (62.5 mM Tris-HCl pH 7.5, 2% SDS, 0.1 M 2-

mercaptoethanol) and re-probed with anti-total ERK1/2 antibody for internal control. 

Densitometric analysis of the immunoblot signal was performed with Scion Image for 

Windows, version Beta 4.0.2 (Scion Corp., www.scioncorp.com).  

 

3.18 Antibodies for Western blotting 

The following primary antibodies were used:  

- anti-Homer 1a (goat, Santa Cruz), dilution 1:300; 

- anti-Homer 1b/c (mouse, Santa Cruz), dilution 1:200; 

- anti-βtubulin (mouse, Developmental Studies Hybridoma Bank), dilution 1:2000; 

- anti-βactin (mouse, Sigma), dilution 1:1000; 

- anti-phospho ERK1/2 (rabbit, Sigma), dilution 1:1000; 

- anti-ERK1/2 (rabbit, Santa Cruz), dilution 1:1000; 

- anti-HA (rabbit, Santa Cruz), dilution 1:1000; 

- anti-GAPDH (mouse, Chemicon), dilution 1:200; 

- anti-ANF (rabbit, Peninsula), dilution 1:1000. 

The following secondary antibodies were used for Western blot:  

- anti-mouse IgG (Sigma) conjugated to alkaline phosphatase, dilution 1:10000; 

- anti-goat IgG (Sigma) conjugated to alkaline phosphatase, dilution 1:10000; 

- anti-rabbit IgG (Sigma) conjugated to alkaline phosphatase, dilution 1:10000; 

- anti-mouse IgG (Sigma) conjugated to peroxidase, dilution 1:10000; 
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- anti-goat IgG (DAKO) conjugated to peroxidase, dilution 1:10000; 

- anti-goat IgG (Sigma) conjugated to peroxidase, dilution 1:10000; 

- anti-rabbit IgG (Sigma) conjugated to peroxidase, dilution 1:10000; 

 

3.19 Immunofluorescence 

To perform immunofluorescence staining of cardiac tissue sections, hearts were 

frozen in liquid nitrogen. Four µm cryostat sections were fixed in 4% paraformaldehyde 

(PFA) and washed three times with PBS; this procedure was performed in order to 

preserve cellular morphology. Sections were permeabilized with blocking solution (1% 

swine serum, 0.1% Tween-20 in PBS) for 30 min at room temperature and incubated with 

specific antibodies in PBS, 1% swine serum and 0.1% Tween-20 for either 60 min at 

room temperature or overnight at 4°C, depending on the primary antibody used. Sections 

were rinsed 3 times in PBS to remove the excess of the primary antibody and incubated 

for 45 min at room temperature with appropriate secondary antibodies in PBS with 1% 

swine serum. After this incubation, the sections were rinsed again in PBS and mounted 

with Mounting Medium (Sigma). When indicated, sections were treated with Hoechst 

(Sigma) before mounting. Immunofluorescence staining of cardiac tissue sections was 

performed by Dr. E. Bortoloso (University of Padua, Padua, Italy). To perform 

immunofluorescence staining of HL-1 cells, cells were grown on gelatin and fibronectin 

pre-coated cover-slips and immunostained as described above. Images were obtained with 

either a Leica DMRB microscope or a DMIRE Leica confocal microscope.  

 

3.20 Antibodies for immunofluorescence staining 

The following primary antibodies were used: 

- anti- Homer 1a (goat, Santa Cruz), dilution 1:100; 

- anti- β-tubulin (mouse, Developmental Studies Hybridoma Bank),  

dilution 1:300; 

- anti-myosin heavy chain (MHC mouse, Developmental Studies Hybridoma Bank); 

- anti- α-actinin (mouse, Sigma); 

- anti-HA (rabbit, Sigma) dilution 1:100. 

The following secondary antibodies were used:  

- anti-goat IgG (Jackson ImmunoResearch) conjugated to Cy3, dilution 1:500; 

- anti-rabbit IgG (Jackson ImmunoResearch) conjugated to Cy2, dilution 1:300; 
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- anti-mouse IgG (Jackson ImmunoResearch) conjugated to Cy2, dilution 1:300. 

Cy2 conjugates have maximum adsorption/excitation around 492 nm and emission at 510 

nm; Cy3 conjugates is excited at 550 nm, with peak emission at 570 nm.  

 

3.21 Analysis of NFAT nuclear translocation 

To assess the nuclear translocation of NFAT upon NE-stimulation, HL-1 cells 

were analyzed by immunofluorescence microscopy. HL-1 cells were co-transfected with 

either pHomer1a-HA1 and N-terminally GFP-tagged NFATc1 plasmid (pNFATc1-GFP), 

or with pcDNA3 (empty vector) and pNFATc1-GFP, and cultured in serum antibiotic-

free conditions. 24 h after transfection, cells were stimulated with 75 µM NE for 12 h. 

The effective co-transfection was assessed by staining the cells with anti-HA antibodies; 

cells were therefore fixed with 4% PFA for 10 min, and immunostained using the 

affinity-purified anti-HA monoclonal antibody (1:100 dilution). In over-expressing 

Homer 1a-HA cells, GFP subcellular localization was analyzed in HA-positive cells in 

either the presence or absence of NE. The quantification of NFAT nuclear translocation 

was determined as follows: (i) GFP-positive HL-1 cells were selected; (ii) in the case of 

Homer 1a-HA over-expressing cells, the GFP subcellular localization was only analyzed 

in cells which were HA-positive; (iii) the GFP fluorescence was considered nuclear if its 

intensity in the nuclear area was greater than in the cytoplasm. At least 30 HL-1 cells for 

each assay condition were analyzed in three independent experiments. The ratio 

NFATc1nuclear/NFATc1cytoplasmic was used to analyze data. Following the same 

criteria, NFAT nuclear translocation was also quantified in non-transfected HL-1 cells, in 

either the absence or presence of NE treatment, in order to characterize the hypertrophic 

cellular model. 

 

3.22 Measurement of cell size 

HL-1 cells were analyzed by immunofluorescence microscopy in order to monitor 

the increase in cell area upon NE-stimulation. For this reason, cells were transfected with 

either pHomer1a-HA1, pHomer1c-HA1 or pcDNA3, and cultured in serum-free 

conditions. 24 h after transfection, cells were stimulated with 75 µM NE for 48 h, then 

fixed with 4% paraformaldehyde for 10 min. Double staining was performed using the 

anti-HA monoclonal antibody (1:100 dilution) and the anti-β tubulin polyclonal antibody 

(1:200 dilution). The surface area in HA staining-positive HL-1 cells was compared with 
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that in HA-negative cells. Acquired confocal fluorescence images were analyzed and 

compared using Scion Image software. The surface area of at least 30 HL-1 cells for each 

assay condition was measured in three independent experiments. This method was also 

used to analyze non-transfected HL-1 cells in either the absence or presence of NE 

treatment, in order to characterize the hypertrophic cellular model. 

 

3.23 Dual luciferase assay 

The gene expression of the ANF at promotorial level was measured with the Dual 

Luciferase reporter assay system (DLR assay, Promega), a efficient method used to study 

gene expression. In the DLR™ Assay, the activities of firefly (Photinus pyralis) and 

Renilla (Renilla reniformis, also known as sea pansy) luciferases were analyzed 

sequentially from a single sample.  

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Format of the DLR™ Assay using a manual luminometer. From Promega 

Corporation. 

 

First, firefly luciferase was measured by adding specific substrates; after 

quantification, the reaction was quenched, and the Renilla luciferase reaction was 

initiated by simultaneously adding specific reagent to the same tube (fig. 8). Relative 

luciferase units were calculated by determining the ratio of the intensity of the light 

produced by firefly luciferase reporter plasmid to that produced by Renilla luciferase 

pRL-TK plasmid (used as internal control).  

During the experiment, the HL-1 cells were co-transfected with 3 µg of prom-

ANF-firefly luciferase reporter plasmid, 0.06 µg of pRL-TK vector, and 3 µg of either 
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Homer 1a-HA1 or Homer 1c-HA1 plasmid. 24 h after transfection, cells were cultured in 

either the presence or absence of 75 µM NE. At the end of NE-stimulation, cells were 

rinsed with PBS and lysed with the Passive Lysis Buffer (PLB, Promega). The luciferase 

activities were determined with an analytical luminometer, used in accordance with the 

manufacturer’s instructions.  

 

3.24 Statistical analysis  

All values are means ± SE. Individual means were compared using either a paired 

2-tailed t-test or one-way ANOVA using Origin®8 software. The statistical differences 

were considered significant at the 0.05 level of confidence. 
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4. Results  

4.1 Presence and sub-cellular localization of Homer 1a in the heart 

4.1.1 Analysis of Homer 1a expression in cardiac tissue under resting conditions 

Our research focused on the role of Homer 1a in the heart. Since little is known 

about the presence and sub-cellular localization of Homer 1 isoforms in the heart, we 

began our research by analyzing the expression pattern and sub-cellular distribution of 

Homer 1a in cardiac tissue under resting conditions.  

For this purpose, the expression of both long and short Homer 1 isoforms (Homer 

1b/c and Homer 1a, respectively) was analyzed in cardiac muscle (H) from both adult rat 

and mouse, and cardiac HL-1 cells. Western blot analysis of total homogenates (Fig. 9) 

was carried out with specific antibodies for either Homer 1b/c or Homer 1a (upper and 

lower lanes, respectively). Homer 1b/c was detected in all lanes as a specific band of 45 

kDa and was found to be virtually identical in all samples. Anti-Homer 1a antibodies 

clearly recognized  a band of ~27 kDa in all samples.  

 

 

 

 

 

 
Figure 9. Homer 1 isoforms in cardiac (H) muscle of rat and mouse and in HL-1 cells. 

Homogenates (200µg/lane) were analyzed by Western blot using specific antibodies for either Homer 1a or 
Homer 1b/c as described in the Materials and Methods section. Immunoblots are representative of three 
experiments. 

 

These results show that not only the long isoform Homer 1b/c but also the short 

Homer 1a is constitutively expressed, independently from the species. The constitutive 

expression of Homer 1a protein in cardiac muscle, as shown here, seems to agree with 

previous findings concerning the presence of mRNA coding for Homer 1a in skeletal and 

cardiac muscles (Sandonà D. et al., 2000). Since Homer 1a is not only an IEG product, 

but is also constitutively expressed, the characterization of Homer 1a gene in neuronal 

tissue as an IEG (Xiao B. et al., 1998) becomes less rigorous, supporting the hypothesis 
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that there are two pools of Homer 1a: inducible and constitutive (Bortoloso E. et al., 

2006).  

 
4.1.2 Sub-cellular localization of Homer 1a in rat heart  

After analysing Homer 1a protein expression in the heart under resting conditions, 

we carried out further analysis on the sub-cellular distribution of Homer 1a by confocal 

microscopy. Homer 1a sub-cellular distribution was analyzed in adult rat heart using 

specific antibodies.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 10. Subcellular distribution of Homer 1a in adult rat heart. Immunofluorescence 

microscopy of heart sections labelled with specific antibody for Homer 1a (A-C). (A) Low-magnification 
field showing sarcomeric (arrows) and nuclear (arrowheads) localization of Homer 1a. (C) Higher 
magnification field showing Hoechst-positive (blue labelled) nuclei. The Homer 1a signal is clearly 
associated with the nuclear domain (arrowheads in both pictures). Immunofluorescence of the heart section 
labelled with the secondary antibody alone was used as negative control for each experiment (data not 
shown). Bar: 40 µm in A, 25 µm in B, C. 

 

Fig. 10 A-C shows that Homer 1a had a peculiar localization: it was sarcomeric 

(arrows) and perinuclear (arrowheads), as judged by immunostaining around Hoechst-

positive nuclei (C).  
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Figure 11. Subcellular distribution of Homer 1a, α-actinin and MHC in adult rat heart. 

Immunofluorescence microscopy of heart sections labelled with specific antibodies for either Homer 1a and 
α-actinin (A-C) or Homer 1a and MHC (D-F). A-C: Homer 1a (red labelling in A) and α-actinin (green 
labelling in B). Merge image indicates partial co-localization between Homer 1a and α-actinin (C). D-F: 
Homer 1a (red labelling in D) and MHC (green labelling in E). Merge image indicates no co-localization 
between Homer 1a and MHC (F). Immunofluorescence of heart section labelled with secondary antibodies 
alone was completely negative. Bar: 10 µm in A-F. 

 

Homer 1a sarcomeric localization was investigated in relation to two distinct 

sarcomeric proteins: α-actinin, that is localized to the sarcomeric Z-discs, and myosin 

heavy chain (MHC), which is present at the A-band. Double immunofluorescence 

labelling (anti-Homer 1a/anti α-actinin and anti-Homer 1a/anti-MHC) was performed in 

sections of adult rat heart. As shown in fig. 11,  sarcomeric localization at the Z-line level 

of Homer 1a was clearly revealed by double labelling with antibodies for α-actinin (Fig. 

11 panels A-C), whereas at the A-band level the lack of co-localization of Homer 1a with 

MHC is evident (panels D-F).  

These results show that, despite being a soluble protein, Homer 1a displayed a 

sarcomeric localization in the heart at the Z-disc level, and was present in close proximity 

of the nuclear envelope. This peculiar localization might provide the structural basis for 

understanding the role of Homer 1a in cardiac tissue. 
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4.2 Homer 1a expression under cardiac hypertrophic conditions 

4.2.1 Analysis of Homer 1a expression in two hypertrophic models in vitro 

Few studies have focused on Homer 1a in the heart under hypertrophic conditions. 

Furthermore, in vitro reports present conflicting data: on the one hand, both mRNA and 

protein of the short Homer 1 isoform (Homer 1a) were upregulated following hypertrophy 

induced by several hypertrophic agents (Kawamoto T. et al., 1998; Guo WG. et al., 

2010); on the other hand, a recent study has demonstrated that only the long isoform 

Homer 1c increased after PE stimulation, whereas Homer 1a remained unchanged (Grubb 

DR. et al., 2011).  

In order to better understand the modulation of Homer 1 isoforms expression in 

the hypertrophic pathways, we started our study by analyzing the expression of Homer 1c 

and Homer 1a in two in vitro cell cultures (i.e., primary neonatal rat cardiomyocytes and 

HL-1 cell line), both stimulated with the hypertrophic adrenergic agonist NE.  

 

4.2.2 Homer 1a expression in neonatal rat cardiomyocytes following NE stimulation 

 Initially, both Homer 1 mRNA and protein were monitored in culture  of neonatal 

cardiomyocytes following stimulation with 10 µM NE. Primary neonatal rat 

cardiomyocytes were prepared as reported in Materials and Methods.  

The abundance in cardiomyocytes (despite fibroblast) was evaluated in each 

experiment by immunostaining the cells with α-actinin (used as a specific marker of 

cardiomyocytes). As reported in Fig. 12 A-B, α-actinin staining showed an enrichment in 

cardiomyocytes of about 80%.  

 

Figure 12. Enrichment of neonatal rat cardiomyocytes in primary culture. Panel A shows a 
representative immunofluorescence image of cultured cells labelled with specific antibody for α-actinin (red 
labelling in A) and with Hoescht for the nuclei (blue labelled in A). For each experiment, we determined the 
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number of positive and negative (fibroblasts) α-actinin cells. As shown in panel B, the percentage of α-
actinin positive cells was about 80%.  

 

Homer 1a mRNA was assessed by qPCR at the indicated time points. Fig. 13 

(panel A) shows that Homer 1a transcript was found to be significantly increased after 1 h 

and remained constant at 2 h. As shown in fig. 13 (panel B), the Homer 1a-Homer 1b/c 

ratio also increased in the same time span, indicating that only transcription of Homer 1a 

is up-regulated during stimulation with NE.  

 

Figure 13. Homer 1a and Homer 1b/c upon NE-induction in rat cardiomyocytes: qPCR 
analysis. (A) Time course of Homer 1a mRNA upon induction of cardiomyocytes with 10 µM NE. (B) The 
Homer 1a-Homer 1b/c ratio was significantly higher after 60 min and 120 min of NE stimulation compared 
with that of non-stimulated cells (0 min). In A and B, data are shown as fold induction of non-stimulated 
cells. Values are means ± SE; n = 3. *P < 0.05, 120 min and 60 min versus 0 min in panels A and B. 

 

Many studies have indicated that NE is able to induce cardiac hypertrophy by 

activating PKA and PKC through α1- and β- adrenoceptors (ARs), respectively 

(Yamazaki T. et al., 1997). In the cellular model used in our experiments, the adrenergic 

pathways involved in NE-induced Homer 1a up-regulation were assessed using specific 

α1 and β inhibitors: prazosin and propranolol, respectively. As shown in Fig. 14, the α1-

blocker prazosin, but not the β-blocker propranolol, significantly reduced the up-

regulation of Homer 1a mRNA during NE-induction, as compared to control. These 

results indicate that NE induces Homer 1a transcription through the α1-ARs. 
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Figure 14. The effect of specific adrenergic inhibitors on the up-regulation of Homer 1a. After 

30 min pre-treatment with either 10 µM prazosin (PRA) or 10 µM propranolol (PRO), cardiomyocytes were 
stimulated with 10 µM NE for 60 min. Data are given as fold change of relative non-stimulated cells, and 
are means ± SE of two independent experiments performed in triplicate. *P < 0.05, 60 min control (Ctr, 
+NE) versus 60 min Pra (+NE). 

 

Next, the expression of Homer 1a protein was monitored in neonatal 

cardiomyocytes following incubation with 10 µM NE by Western blot. As shown in Fig. 

15, the content of Homer 1a protein was doubled 2 h after stimulation (panels A, B).  

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 15. Homer 1a upon NE-induction in neonatal rat cardiomyocytes: Western blot 

analysis. (A) Representative Western blot of Homer 1a content in neonatal rat cardiomyocytes treated with 
10 µM NE at the indicated time points. (B) Densitometric analysis. Values were normalized to β-tubulin 
and are means ± SE; n = 3. *P < 0.05 120 min versus 0 min (non-stimulated cells). 
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We also investigated the effect of NE on the expression of the long isoform 

Homer 1b/c. Fig. 16 shows that Homer 1b/c, unlike Homer 1a, was unchanged during 

adrenergic stimulation (panels A, B).  

 

 

 

 

 

 

 

 

 

 
 
 
Figure 16. Homer 1b/c upon NE-induction in rat cardiomyocytes: Western blot analysis.  (A 

and B) Representative Western blot and densitometric analysis of Western blot obtained with specific 
antibodies for Homer 1b/c. Values were normalized to β-tubulin and are means ± SE; n = 3.  

 

Collectively, these results demonstrate that in vitro hypertrophic stimulation 

affects the short isoform Homer 1a, but not the long Homer 1b/c, and support the 

hypothesis of an involvement of Homer 1a in the α1-adrenergic pathway leading to 

cardiac hypertrophy.  

 

4.2.3 Homer 1a expression in HL-1 cells following NE stimulation 

As the next step, we tried to verify these findings using a different in vitro cellular 

model. For this purpose, we used the HL-1 cell line. HL-1 cardiomyocytes are a stabilized 

cell line of cardiac myocytes derived from murine tumor atrial cells, and exhibit an adult 

cardiomyocyte-like gene expression profile (Claycomb WC. et al., 1998). HL-1 cells are 

an experimental model which are useful in studying the intracellular signalling pathways 

activated during cardiac hypertrophy (Chandrasekar B. et al., 2005; Brunt KR. et al., 

2009; Wang W. et al., 2008; Piñeiro R. et al., 2005; López-Andrés N. et al., 2008). As 

described in Materials and Methods, the experiments were carried out by stimulating HL-

1 cells with 75 µM NE. Fig. 17 shows that treatment of HL-1 cardiomyocytes with NE 
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significantly increased Homer 1a within 1 h. Homer 1a content (panel A) was up-

regulated by a factor of 2.5, as determined by densitometry (panel B).  

 

 

 
 
Figure 17. NE-induced change in the expression of Homer 1a in HL-1 cells. (A) Cell lysates 

were probed with antibodies specific for Homer 1a; (B) Densitometric data of Western blot. Values are 
means ± SE; n = 5. *P < 0.05 60 min versus 0 min (non stimulated cells). 

 

Under the same experimental conditions, we analyzed Homer 1b/c over the same 

time span, and we found the level of Homer 1b/c protein expression to be unchanged 

(Fig. 18). 

 

 

 
 
 
 
 
 
 
Figure 18. Homer 1c expression in NE-induced HL-1 cells. (A) Cell lysates were probed with 

antibodies specific for Homer 1b/c; (B) Densitometric data of Western blot. Values are means ± SE; n = 5.  

 

These data validate the results obtained in neonatal cardiomyocytes, strengthening 

the evidence of an involvement of Homer 1a, but not Homer 1b/c, in cardiac hypertrophy. 

A B 

 

 

 

 



55 

 

4.3 The effects of NE on HL-1 cells 

4.3.1 Characterization of hypertrophic responses in HL-1 upon NE stimulation 

For our study, HL-1 cell line was used as a cellular model to study the effect of 

Homer 1a on NE-activated hypertrophic pathways. We had previously carried out a 

preliminary characterization of the HL-1 hypertrophic phenotype following stimulation 

with NE. For this purpose, the hypertrophic phenotype was detected by monitoring: i) 

activation of intracellular signalling pathways such as MAPK/ERK and NFAT, ii) 

activation of fetal genes such as ANF, and iii) increase in cell size. All of these are well-

known events leading to cardiac hypertrophy.  

MAPK pathways, such as ERK1/2, are thought to play an important role in the 

activation of hypertrophic responses. We examined the changes in MAPK pathways, in 

particular ERK1/2 phosphorylation, at different time points following NE treatment. Both 

NE-treated and untreated HL-1 cells were collected and analyzed by Western blot. As 

shown by densitometric analysis, there was a peak in activity (Fig. 19, panel A) with a 

four-fold increase of p-ERK1/2 within 5 min (Fig. 19, panel B). 

 

 

 
 
 
 
 
 
 
 
 
Figure 19. NE-dependent activation of MAPK/ERK1/2 in HL-1 cells (A, B). Phosphorylated 

ERK was determined on cell lysates by Western blot using phospho-specific ERK1/2 antibodies. The 
membrane was then stripped and re-probed with a pan (total)-ERK antibody. The phosphorylated ERK1/2-
total-ERK1/2 ratio was obtained at specified time points following the application of 75 µM NE. Values 
were obtained by densitometric analysis (in B panel), and are expressed as means ± SE, n = 3; *P < 0.05, 5 
min versus 0 min.  

 

Over the next 60 min, levels of p-ERK activation decreased to two-fold higher 

than basal levels (Fig. 19).  

Next, we examined if NE affects NFAT pathways. NFAT is a Ca2+-sensitive 

transcription factor that is activated by calcineurin, resulting in translocation to the 

nucleus and activation of gene transcription. Four different NFAT isoforms are expressed 
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in the heart (NFATc1, NFATc2, NFATc3 and NFATc4). It is not fully understood if there 

is a common mechanism in cardiac cells that induces the activation of all isoforms, or if 

there are isoform-specific or tissue-specific differences (Rinne A. et al., 2010). However, 

in our cellular model, we previously investigated the effect of NE on two NFAT isoforms, 

NFATc1 and NFATc4. In our experimental system, only the NFATc1 isoform was found 

to be affected by NE stimulation (data not shown) so, following preliminary studies, only 

that isoform was examined. NFATc1-GFP was therefore expressed in HL-1 cells via 

transfection and the transfected cells were then stimulated with NE. NFATc1-GFP sub-

cellular distribution was monitored using confocal microscopy at two well-defined 

periods – 5 h and 12 h - after treatment with NE. As shown in the bar graph, NFATc1-

GFP nuclear translocation increased after 5 h of NE-treatment and a significant nuclear 

translocation was observed after 12 h.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 20. NFATc1-GFP nuclear translocation following NE stimulation. HL-1 expressing 

NFATc1-GFP in the absence of NE (fig. A) or the presence of 75µM NE (fig. B) are shown. NFATc1 
nuclear translocation was measured as described in Materials and Methods. Bar graph in C shows the 
percentage of HL-1 cells with nuclear predominant fluorescence observed under normal conditions or NE-
stimulation after 5 h and 12 h. NFAT nuclear translocation significantly increased after 12 h of NE-
stimulation as compared to control. Data are given as percentage relative to the ratio of the number of cells 
with nuclear fluorescence to that of cells with cytosolic fluorescence, and are expressed as means ± SE; *P 
< 0.05, +NE 12 h versus control (Ctr, -NE).  
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At gene expression level, up-regulation of fetal genes is a peculiar feature of 

cardiac hypertrophy; in particular, the re-expression of ANF is most commonly used as 

molecular marker of hypertrophy. The expression of ANF was therefore monitored at the 

promoter level in both NE-treated and untreated HL-1 cells. All samples were analyzed 

by the dual luciferase assay.  

The results infer that NE stimulation caused a two-fold increase in ANF promoter 

activity (Fig. 21), as was to be expected from the knowledge that pathological 

hypertrophy is accompanied by re-activation of the fetal gene program (Schaub MC. et 

al., 1997). 

 

 

 

 

 

 

 

 

 

 
Figure 21. NE-dependent activation of ANF-promoter activity in HL-1 cells. ANF-promoter 

activity of HL-1 cells was measured by the luciferase assay, as detailed in Materials and Methods, in both 
the presence and absence of 75 µM NE applied for 24 h. Values are expressed as means ± SE. *P < 0.05, 
NE versus control (Ctr).  

 

At morphological level, cardiac hypertrophy is mainly characterized by a marked 

increase in cell size. Therefore, we verified if the HL-1 stimulated with NE underwent 

any changes at this level. After both 24 h and 48 h of incubation with NE, the size of HL-

1 cells was measured using confocal microscopy. The bar graph in fig. 22-panel C shows 

the relative increases in cell size. The results indicate that NE stimulation positively 

affected cell size, causing a 35% increase in cellular area after 48 h, as indicated by 

morphometry (Fig. 22). In Fig. 22 panels A and B, representative HL-1 cells before and 

after NE-induction show the average increase in cell size. 
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Figure 22. NE-dependent increases in the size of HL-1 cells. A and B show individual and 

representative HL-1 cells immunostained with β-tubulin in the absence and presence of 75 µM NE for 48 h, 
respectively. (C) The size of HL-1 cells was measured by morphometry, as described in Materials and 
Methods, in both the presence and absence of 75 µM NE applied for 24h and 48 h. Cells were selected 
randomly, and at least 30 cells were examined in each group. Data are given as fold change relative to 
average surface area of untreated cells (control, Ctr), and are expressed as means ± SE; *P < 0.05, 48 h +NE 
versus control (Ctr). Bar: 200µm. 

 

Taken together, these results clearly demonstrate that the HL-1 cells exhibited an 

hypertrophic phenotype as a consequence of the NE stimulation, and prompted us to use 

this in vitro hypertrophic model to study the effect of Homer 1a using gain-of-function 

approaches.  
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4.4 The role of Homer 1a in cardiomyocyte hypertrophy 

4.4.1 The effects of Homer 1a over-expression on NE-induced hypertrophy in HL-1 cells 

The experiments described above suggest that NE stimulation markedly induces  

up-regulation of Homer 1a and that it is able to activate important events leading to 

hypertrophy. Consequently, we decided to assess the effects of over-expression of Homer 

1a in HL-1 cells stimulated with NE. To this end, HL-1 cells were transfected with 

Homer 1a plasmid (pHomer 1a) for 24 h and then stimulated with NE.  

First, in order to verify the efficiency of transfection, HL-1 cells transfected with 

pHomer 1a-HA were analyzed by Western blotting using antibodies against HA, the tag 

of exogenous Homer 1a. As reported in Fig. 23, Western blot analysis shows that anti-HA 

antibodies selectively detected a band of ∼ 27 kDa, corresponding to Homer 1a protein.  

 

 

 

 

 
 
Figure 23. HL-1 cells transfected with Homer 1a-HA plasmid. Cells were transiently 

transfected with either Homer1a-HA plasmid or pcDNA3 plasmid (empty vector used as control). 24 h after 
transfection, the cells were lysed in RIPA buffer. Cell lysates were resolved by SDS-PAGE and 

immunoblotted with anti-HA antibody. A single band was detected at the expected size (∼30 kDa) in HA-
tagged samples alone. Three replicates for each condition were reported. 

 

Next, we analyzed the same hypertrophic events which had been considered 

previously during NE stimulation - i.e. ERK phosphorylation level, NFAT nuclear 

translocation, ANF promoter activity and increase in cell size - using Homer 1a over-

expressing HL-1 cells.  

It should be noted that, in the absence of NE addition, Homer 1a over-expression 

did not affect the hypertrophic events investigated, suggesting that Homer 1a isoform per 

se did not promote cardiomyocytes hypertrophy (cfr. Time 0 in Fig. 24, -NE in Figs 25, 

26 and 28).  

With respect to MAPK/ERK activation, levels of phosphorylated ERK1/2 (p-

ERK1/2) were monitored in NE-inducted HL-1 cells transfected with either pcDNA3 

(used as control-empty vector) or pHomer1a. Both Western blot analysis (panel A) and 

densitometry (panel B) are reported in Fig. 24. Densitometric analysis infers that 

pHomer1a-HA pcDNA3 (empty vector)

Anti-HA
- 30 kDa
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exogenous Homer 1a significantly reduced peak levels of p-ERK1/2 by about 40%, and 

negatively modulated MAPK pathway along the entire experimental time span (panel B). 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 24. NE-dependent activation of MAPK/ERK1/2 in HL-1 cells: the effects of plasmid-

driven over-expression of Homer 1a. Experiments were carried out as described in Materials and Methods 
and in the notes for Fig. 19, using HL-1 cells transfected either with pcDNA3 (empty vector) or pHomer 1a. 
(A) Representative Western blot analysis; (B) densitometric data showing the relative levels of p-ERK1/2. 
Data are given as means ± SE, n = 5-10. *P < 0.05; 10, 5, 3 min, versus 0 min. †P< 0.05; 5 min Homer 1a 
versus 5 min empty vector. 

 

Next, we studied the effects of Homer 1a on NFAT translocation. In this set of 

experiments, HL-1 cells were co-transfected with both Homer1a-HA and NFATc1-GFP 

plasmids; effective co-transfection was assessed by staining with anti-HA antibodies. By 

immunofluorescence analysis, GFP sub-cellular localization was compared in HA-

positive cells in both the absence and presence of NE after 5 h and 12 h of NE-treatment. 

HL-1 cells transfected with both pcDNA3 and NFATc1-GFP were used as control. 
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Figure 25. NFATc1-GFP nuclear translocation in Homer 1a over-expressing HL-1 cells 

following NE stimulation. GFP sub-cellular localization was analyzed in HA-positive cells in either the 
presence or absence of NE. The quantification of NFAT nuclear translocation was determined as reported in 
Materials and Methods. At least 30 HL-1 cells for each condition were analyzed in three independent 
experiments. NFAT nuclear translocation in Homer 1a over-expressing cells was lower after 5 h and 12 h of 
NE-stimulation than that in the control, but there was no statistically significant difference as compared to 
control. Data are given as percentage relative to ratio of the number of cells with nuclear fluorescence to 
that of cells with cytosolic fluorescence, and are expressed as means ± SE. * P<0.05 Empty vector 12 h+NE 
versus empty vector –NE. 

  
Different observations were gathered from this analysis. Although the percentage 

of fluorescence nuclei in Homer 1a over-expressing cells was lower than that of the 

control during the total time span, we did not find a statistically significant difference 

between Homer-1a over-expressing cells and control. The results therefore indicate that, 

after NE-induction, the percentage of fluorescent nuclei in Homer 1a over-expressing 

cells was similar to that of the control, likely indicating an inability of Homer 1a to affect 

this pathway. However, since NFAT activation is controlled by CaN-dependent de-

phosphorylation, these results can be confirmed with further approaches, such as 

considering CaN enzymatic activity.  

As regards the ANF promoter activity, the previous experiments demonstrate that 

NE is able to induce re-expression of ANF in HL-1 cells. We therefore decided to verify 

if the effect of NE on ANF promoter activity is affected by Homer 1a over-expression 

conditions. 

HL-1 cells were co-transfected with either Homer1a plasmid or empty vector 

(pcDNA3), ANFprom-Luciferase plasmid and Renilla luciferase vector. After 24 h of 
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treatment, cell lysates were analyzed for firefly and Renilla luciferase activities in both 

the absence and presence of NE. As shown in fig. 26, NE-stimulated increase of ANF 

promoter activity was reduced in Homer 1a over-expressing cells. In fact, data indicate 

that exogenous Homer 1a significantly reduced ANF promoter activity by about 20%.  

 

 

 

 

 

 

 

 

 

 
 
 
Figure 26. NE-dependent activation of ANF-promoter activity in HL-1 cells: the effect of 

exogenous Homer 1a. Experiments were carried out as described in Materials and Methods and in the 
notes for Fig. 21, using HL-1 cells transfected either with pcDNA3 (empty vector, black histograms) or 
pHomer 1a (gray histograms), in either the absence (-NE) or presence (+NE) of 75 µM NE. ANF promoter 
activity is the average of four experiments for Homer 1a. Data are given as mean ±SE. * P<0.05 Homer 1a 
+NE versus empty vector +NE.  

 

In order to verify the specificity of Homer 1a effect on this hypertrophic process, 

we performed the same experiment over-expressing Homer1c-HA, one of the long Homer 

isoforms. The luciferase activity of ANF-promoter was measured under the same 

experimental conditions, as previously described for Homer 1a.  
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Figure 27. NE-dependent activation of ANF-promoter activity in HL-1 cells: the effect of 

exogenous Homer 1c. Experiments were carried out as described in Materials and Methods and in the 
notes to Fig. 21, using HL-1 cells transfected either with pcDNA3 (empty vector, black histograms) or 
pHomer 1c (white histograms), in either the absence (-NE) or presence (+NE) of 75 µM NE. ANF promoter 
activity is the average of three experiments for Homer 1c. Data are given as mean ±SE.  

 

As shown in fig. 27, exogenous Homer 1c (unlike Homer 1a) did not affect the 

activity of ANF-promoter in NE-stimulated HL-1 cells. However, it should be noted that 

the over-expression of Homer 1c per se - as for Homer 1a - did not change the ANF 

promoter activity in the absence of NE stimulation (cfr. -NE in Figs. 27). 

Previously, we found that NE induced an hypertrophic phenotype which promotes 

an increase in the size of HL-1 cells. Considering this result, we assessed the effect of 

Homer 1a over-expression in this morphological response during NE-treatment. HL-1 

cells were transfected with either Homer1a-HA plasmid or empty vector (used as 

control). The surface area of HA staining-positive HL-1 cells was compared with that of 

control cells, in both the absence and presence of NE treatment. As inferred by 

morphometric analysis (Fig. 28), the increase in NE-stimulated cell size was significantly 

counteracted by exogenous, over-expressed Homer 1a. 
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Figure 28. NE-dependent increase in cell size of HL-1 cells: the effect of exogenous Homer 1a 

and exogenous Homer 1c. (A) Experiments were carried out as described in Materials and Methods and in 
the notes to Fig. 22, using HL-1 cells transfected either with pcDNA3 (empty vector, black histograms) or 
pHomer 1a-HA1 (gray histograms), in either absence (-NE) or presence (+NE) of 75 µM NE. Data are 
given as mean ±SE, * P<0.05 empty vector +NE versus empty vector –NE; † P<0.05 Homer1a +NE versus 
empty vector +NE. B-D show individual and representative HL-1 cells stimulated with 75 µM NE, 
transfected with either pHomer 1a and labelled with antibodies for β-tubulin (B), for epitope HA (C), or 
pcDNA3 and labelled with antibodies for β-tubulin (D). E summarizes the effect of Homer 1a and Homer 
1c on cell size. Data are given as fold change relative to the average surface area of untreated cells (-NE). In 
E, * P<0.05 empty vector +NE versus empty vector –NE and Homer 1c-HA+NE versus Homer 1c-HA-NE. 

 

Panels B-D show the inhibitor effect of Homer 1a on the hypertrophic phenotype 

in HL-1 cells. Again, we confirmed the specificity of this effect by over-expressing the 

long Homer 1 isoform (Homer 1c-HA) and we found that, under the same experimental 

conditions, the over-expression of Homer 1c did not exert significant effects on cell size. 

As reported in table E, cell size significantly increased upon NE stimulation only in 

Homer 1c over-expressing conditions and in pcDNA3-trasnfected cells, whereas with 

Homer 1a there was no increase in cell size in the presence of NE. 

However, it should be pointed out that our results - as opposed to those of Grubb 

et al. (Grubb DR. et al., 2011) who indicated that Homer 1c causes an increase in 

cardiomyocyte size in the absence of other effectors - did not demonstrate any pro-

hypertrophic effect of Homer 1c over-expression.  

In summary, our data indicate that NE-induction leading to hypertrophy is 

associated to up-regulation of Homer 1a but not Homer 1c. In addition, the over-

*  

*  
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expression of Homer 1a for 24 h did not induce hypertrophy, but antagonized the 

initiation and development of hypertrophic responses triggered by NE; over-expression of 

Homer 1c, instead, was ineffective. The cogent interpretation of these results is therefore 

that Homer 1a is able to negatively modulate molecular mechanisms leading to 

pathological hypertrophy.  
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4.5 From in vitro to in vivo: Homer 1a expression in three different in vivo 

hypertrophic models 
 

Since data obtained in our in vitro model suggest a role of Homer 1a in cardiac 

hypertrophy, we decided that the next step was to analyze the expression of Homer 1a in 

three different in vivo models. For this section of our study, we analyzed expression levels 

of Homer 1a protein in lysates obtained from the following in vivo cardiac hypertrophic 

models: i) Gαq over-expressing mice, ii) mice with transverse aortic constriction (TAC), 

and iii) rats treated with MCT.  

 

4.5.1 Homer 1a protein expression in Gαq over-expressing mice 

As mentioned in the introduction, Gαq protein is a subtype of the G protein that 

displays a pivotal role in the activation of signaling pathways leading to hypertrophic 

responses. Reports from different laboratories indicate that over-expression of the wild-

type Gαq (or an activated form of Gαq ) in the heart is sufficient to induce pathological 

cardiac hypertrophy resulting in heart failure and death (Mende U. et al., 1998; Adams 

JW. et al., 1998). In mouse heart, cardiac hypertrophy induced by over-expression of Gαq 

is characterized by an activated program of fetal gene expression, an increased heart 

weight in relation to body weight, and an increase in cardiomyocyte size (D’Angelo D. et 

al., 1997).  

For our study, mouse heart lysates, derived from hearts of 18-week-old transgenic 

mice over-expressing wild type Gαq, were kindly provided by Dr. N. Kaludercic, and 

were analyzed for their Homer 1a content by Western blotting. As reported in fig. 29, the 

amount of Homer1a did not increase, as compared to control (at least at the time 

indicated).  
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Figure 29. Homer 1a expression in Gαq over-expressing mice: Western blot analysis. (A) 

Representative Western blot of Homer 1a content in heart lysates from 18-week-old Gαq over-expressing 
mice. (B) Densitometric analysis. Values were normalized to GAPDH and are means ± SE; n = 4 for both 
conditions (Ctr and Gαq mice).  

 

A possible explanation of this result is that we analyzed mice in a phase of cardiac 

hypertrophy too late, without considering the initial phases. This preliminary analysis 

therefore suggests that a time-course analysis of Homer 1a expression will be necessary, 

including the early phases of hypertrophy development up to progression to heart failure. 

 

4.5.2 Homer 1a protein expression in mice with TAC 

Transverse aortic constriction (TAC) in mice is a commonly-used microsurgical 

technique for pressure overload-induced cardiac hypertrophy and heart failure. This in 

vivo model is an useful tool for investigating the signalling processes involved in cardiac 

hypertrophic response and heart failure (deAlmeida AC et al., 2010). In this experimental 

model, mice with TAC initially develop a compensated hypertrophy of the heart; 

however, over time, the response to chronic pressure overload becomes maladaptive, 

causing cardiac dysfunction and heart failure (Rockman HA et al. 1991). 

In our study, we analyzed Homer 1a protein expression by Western blotting using 

mouse heart lysates collected at 1, 3, 6 and 9 weeks after TAC. The samples were kindly 

provided by Dr. N. Kaludercic. Densitometric analysis reported in fig. 30 shows that, at 

least at the indicated time points, Homer 1a protein did not increase, as compared to 

control. We observed, instead, an unexpected Homer 1a down-regulation after 1 week of 

TAC. Since there was not the analysis of Homer 1a in the first days after TAC, the 

interpretation of this expression pattern for Homer 1a remains incomplete. However, 

these results prompt us to investigate in the future Homer 1a expression (both at mRNA 

and protein level) at the very early phase after TAC, for example considering a time span 

that includes the immediate subsequent hours after TAC up to the first week. 
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Figure 30. Homer 1a expression in mice with TAC: Western blot analysis. (A) Representative 
Western blot of Homer 1a content in heart lysates from mice with TAC. (B) Densitometric analysis. Values 
were normalized to GAPDH and are means ± SE; 1-week TAC n = 4, 3-week TAC n = 3, 6-week TAC n = 
3, 9-week TAC n = 3, Ctr n=11.  

 

4.5.3 Homer 1a protein expression in rats treated with MCT 

MCT is a toxic pyrrolizidine alkaloid found in the plant species Crotalia 

spectabilis (Monnet E. et al., 2005). Administration of small doses of MCT, or its active 

metabolite monocrotaline pyrrole, to rats causes progressive lung injury characterized by 

pulmonary hypertension (Schulze AE. et al., 1998). MCT-induced pulmonary 

hypertension is associated to development of right-ventricle hypertrophy progressing to 

failure within weeks (Kıgler H. et al., 2003).  

We used this in vivo model to monitor the expression of Homer 1a during the 

development of right ventricular hypertrophy. Rats were sacrificed weekly to obtain a 

time course of hypertrophy induction. Changes in body and heart weight were registered 

at 1, 2 and 4 weeks. Heart to body weight ratio was used as an indicator of hypertrophy: 

as shown in the bar graph below (Fig. 31), it was significantly higher in the 4th week after 

MCT administration than that of both control group and of MCT-rats at the 1st and 2nd 

week after MCT administration.  
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Figure 31. Time-course of heart progression of MCT-induced hypertrophy: analysis of heart 

weight/body weight ratio. Hearts from MCT-treated rats were harvested at three points in time: 1, 2 and 4 
weeks after MCT induction. The increase in heart weight/body weight ratio in rats treated with MCT was 
significantly increased 4 weeks after MCT administration. Data are given as mean ±SE, Ctr n=6, rat-MCT 
(1 week) n=3, rat-MCT (2 week) n=3, rat-MCT (4 week) n=3, * P<0.05 Rat-MCT at 4 week versus CTR, 
Rat-MCT at 1 and 2 week.  
 

We also measured the expression of both ANF and Homer 1a proteins  by Western 

blot. As reported in the graphs (fig. 32 and fig. 33), we analyzed both proteins in tissue 

lysates from both left and right ventricles (LV and RV, respectively). Level of ANF was 

found to be significantly increased at the 4th week of MCT administration in MCT-treated 

rats.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 32. Time-course of ANF re-expression in MCT-treated rats: Western blot analysis. 

ANF re-expression was measured in both left and right ventricles at three points in time: 1, 2 and 4 weeks 
after MCT induction. The ANF content in both left and right ventricles was significantly increased four 
weeks after MCT administration. Data are given as mean ±SE, Ctr n=6, rat-MCT (1 week) n=3, rat-MCT (2 
week) n=3, rat-MCT (4 week) n=3, * P<0.05 Rat-MCT at 4th week versus CTR, Rat-MCT at 1st and 2nd 
week. ns=non specific. 
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Fig. 33 shows the time-course of Homer 1a expression in both left and the right 

ventricle of MCT-rat. As reported in the graphs (panels C and D), Homer 1a protein was 

unchanged at the indicated time points, as compared to control.  

 

 

 

 

 

 

Figure 33. Homer 1a expression in MCT-treated rats: Western blot analysis. (A) 
Representative Western blot of Homer 1a content in heart lysates from the left ventricle of rats at 1, 2 and 4 
weeks after MCT administration. (B) Representative Western blot of Homer 1a content in heart lysates 
from the right ventricle of rats at 1, 2 and 4 weeks after MCT administration. (C) and (D) Densitometric 
analysis. Values are means ± SE; Ctr n=6, rat-MCT (1 week) n=3, rat-MCT (2 week) n=3, rat-MCT (4 
week) n=3.  

 

In this latter, in vivo hypertrophic model, like in Gαq and TAC models, the 

expression of Homer 1a protein did not result affected by hypertrophic conditions. 

 That being so, there is a discrepancy between our in vitro and in vivo results for 

Homer 1a expression. However, it must be considered that up-regulation of inducible 

Homer 1a, in our in vitro model as well as in other neuronal models, is a response that 

occurs rapidly and transiently following stimulation. Therefore, since Homer 1a content, 

in the in vivo models, was not measured immediately after hypertrophic activation (for 

example, a few hours after TAC or MCT administration) or in the early stage of 

progression of hypertrophy (for Gαq), this in vivo analysis results incomplete, lacking the 

initial hypertrophic phase. This might likely be the explanation of our conflicting results. 

Further investigation is in order.   
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5. Conclusions 
 

This study provides the structural and functional basis to understand the role of the 

scaffolding protein Homer 1a in cardiomyocyte hypertrophy. Here, we investigated the 

presence, sub-cellular localization of Homer 1 isoforms and their putative role in 

modulating cardiac hypertrophy.  

Our results demonstrated that, like the long Homer isoforms, the short isoform 

Homer 1a is constitutively expressed in cardiac tissue. The Homer 1a constitutive 

expression, described also in the brain and in the skeletal muscle (Shiraishi Y. et al., 

2004; Bortoloso E. et al., 2006), demonstrates that Homer 1a behaves not only as an IEG 

product; therefore, as discussed in the Results section, the assumption that there are two 

pools of Homer 1a: one constitutively expressed and one inducible (stimulus-dependent) 

(Bortoloso E. et al., 2006), becomes more persuasive and is confirmed from our results.  

In the nervous system, being scaffolding/modulatory proteins, Homers are 

localized into specific and restricted signalling microdomains, e.g., at the neuronal 

postsynaptic density (Hayashi MK. et al., 2009; Worley PF. et al., 2007). In heart, we 

demonstrated that, despite its nature of soluble protein (Pouliquin P. et al., 2009), Homer 

1a displays a sarcomeric localization at the level of the Z-disc, consistent with the model 

in which Homer 1a may regulate upstream intracellular signaling pathways, among which 

one might be the α1-adrenergic signaling pathway. On the other hand, Homer 1a 

localization in close proximity of the nuclear envelope might also be suggestive of 

additional role on downstream signaling (either related or unrelated to hypertrophy), e.g., 

on activation of signaling pathways via IP3R, known to be localized on the nuclear 

membrane (Wu X. et al., 2006). The latter is at present a mere speculation amenable, 

however, of further direct experimentation.  

In both neuronal and non-neuronal cells, it has been demonstrated that various 

stimuli induce expression of two Homer 1 isoforms, Homer 1a and Homer 1b/c (Huang 

WD. et al., 2005; Dietrich JB. et al., 2007). Here, in in vitro cardiomyocyte models, we 

found that hypertrophic stimulation with NE increases the expression of Homer 1a 

mRNA and protein, but does not affect mRNA and protein levels of Homer 1b/c. In 

particular, we observed that NE-treatment leading to hypertrophy is associated with a 

rapid, α1-adrenergic dependent up-regulation of Homer 1a. These results confirmed those 

of Kawamoto et al. in which mRNA for Homer 1a is increased in neonatal 
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cardiomyocytes upon stimulation with ET-1 and other adrenergic agonists (Kawamoto T. 

et al., 2006) and those of Guo who indicate an increase in Homer 1a protein level 

following stimulation with Ang-II (Guo WG. et al., 2010). Conversely, our findings are 

strikingly different from those of Grubb et al. who indicate that Homer 1a mRNA is not 

increased during 24 h of PE treatment (Grubb DR. et al.,2011). This discrepancy is 

probably due to different experimental approach: Grubb et al. missed early changes of 

Homer 1 isoforms, since the analysis were performed in cardiomyocytes 24 h after 

induction. Overall, these data support our initial hypothesis of an involvement of Homer 

1a in cardiac hypertrophy and demonstrate that Homer 1a up-regulation is associated with 

the activation of hypertrophic signalling pathways.  

Next, in an effort to better understand the role of Homer 1a in cardiac 

hypertrophy, different hypertrophic features were monitored, from cell size to ANF 

promoter activity. Using a gain-of function approach, we found that Homer 1a affects 

many of them, except for NFAT nuclear translocation. In the latter case, since NFAT 

activation pathway is regulated by the Ca2+/calmodulin-dependent phosphatase 

calcineurin and Homer 1 isoforms modulate in vitro various players controlling 

intracellular calcium homeostasis, the result is inconsistent. Therefore, further studies will 

be necessary to clarify the effect of Homer 1a in this Ca2+-dependent pathway. 

Nonetheless, we found that exogenous, over-expressed Homer 1a is able to modulate 

other events of the hypertrophy program, antagonizing important hypertrophic responses 

triggered by NE. In particular, Homer 1a attenuates NE-induced ERK1/2 activation and 

ANF promoter activity, and counteracts the increase in cell size. In this case, our 

observations are consistent with those of Grubb et al. showing an inhibitory effect of 

Homer 1a against hypertrophy and are mechanistically compatible with data obtained by 

Tappe et al. on spinal cord neurons – Homer 1a attenuates glutamate-induced MAP 

kinase activation and reduces synaptic contacts on neurons integrating pain inputs (Tappe 

A. et al., 2006) - and by Luo et al. on PC12 cells - pERK is reduced by LV-Homer 1a and 

is increased by si-Homer 1a (Luo P. et al., 2012a and Luo P. et al., 2012b). Thus, not only 

in cardiomyocytes (present work) but also in spinal cord neurons and PC12 cells, it 

appears clear that Homer 1a antagonizes stimulation-dependent effects, i.e., chronic pain 

(Tappe A. et al., 2006), apoptosis (Luo P. et al., 2012a) and oxidative stress (Luo P. et al., 

2012b).  

In conclusion, our in vitro results indicate that Homer 1a up-regulation is 

associated to early stages of cardiac hypertrophy and Homer 1a appears to play a role as a 
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negative molecular modulator, counteracting early steps leading to α1-adrenergic-

dependent hypertrophy. Considering its role as dominant-negative, Homer 1a would be 

inserted into a negative feedback mechanism that modulates pathological hypertrophy 

disassembling signaling complexes (yet to be identified) mediated by other Homer 

isoforms. However, further studies are needed to elucidate the mechanism underlying this 

process. 

With respect to the in vivo approaches, our study presents some limitations. 

Although in vitro we observed the same expression pattern of Homer 1a in both neonatal 

rat cardiomyocytes and HL-1 cells under hypertrophic conditions, the results obtained in 

in vivo models are inconsistent. Preliminary studies addressing Homer 1a expression in 

mice with TAC, transgenic mice over-expressing Gαq and rats treated with MCT, 

demonstrate that Homer 1a did not change, at least in the time span under investigation. 

This discrepancy is likely due to an incomplete time-course analysis (due to unavailability 

of additional samples). Indeed, since in vitro Homer 1a is rapidly up-regulated following 

NE-stimulation and unveils its negative feedback on initiation and development of 

hypertrophic responses, a further, detailed in vivo analysis of early hypertrophic phase is 

in order.   
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