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Summary

In this decade, establishing structure-function relationships in human brain has

become one of the most influential concepts in modern cognitive neuroscience

since interactions among cerebral components are fundamental to explain corti-

cal activities ([1]; [2]; [3]).

In literature such relationships have been defined in terms of structural, func-

tional and effective connectivity. This distinction, mainly focused on the theoretic

concept, is also related to the different measurement instruments and analytical

tools used for acquiring and processing the data. The structural connectivity

refers to a pattern of anatomical links among brain regions. Its analysis aims to

characterize the architecture of complex networks underlying the cerebral func-

tional organization. Magnetic Resonance Imaging and especially Diffusion Tensor

Imaging can be used to convey information concerning the physical connection be-

tween neuronal populations. Functional/effective connectivity aims at identifying

the presence and the strength of connections in terms of statistically significant

dependency. The former is defined as the temporal correlation between neuro-

physiological events occurring in distributed neuronal groups and areas. The

latter describes the causal influence that one neural system exerts over another

either directly or indirectly in terms of temporal precedence and physical control

([4];[5]). Functional and effective connectivity can be estimated exploiting both

Functional Magnetic Resonance Imaging (fMRI) and electrophysiological signals,

such as Electroencephalography (EEG) and Magnetoencephalography (MEG),

with different advantages and drawbacks, respectively. fMRI provides high spa-
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Summary

tial resolution (mm) but poor temporal precision (s) while EEG/MEG has more

limited spatial resolution (cm) and higher temporal precision (ms). Because func-

tional and effective connectivity are largely estimated over time, EEG and MEG

are more suitable for calculating such connectivity.

In literature several methods have been developed to characterize brain connec-

tivity in terms of network topology, connections strength and causality, following

two main approaches: the data-driven, where topology, causality and strength

are all inferred from data, and the neural model-based, where the model topol-

ogy is postulated from a priori knowledge and only the connections strength is

estimated from the data.

Data driven approach. The data driven approach includes linear, non-linear

and information-based techniques.

• The linear ones provide a battery of indices derived by multivariate au-

toregressive models (MVAR) based on Granger causality principles ([6]) or

MVAR frequency response ([7]). Such are Ordinary Coherence, Partial Co-

herence, Directed Transfer Function (DTF) and Partial Directed Coherence

(PDC). These indexes measure the strength of the linear coupling between

two signals; in addition DTF and PDC provide information about causal

influence ([8]).

• Among the non-linear techniques, phase synchronization has been shown

to be very efficient in detecting interactions between oscillators. The phase

locking values approach assumes that two dynamic systems may have their

phases synchronized even if their amplitude are zero correlates ([9]).

• The most representative information-based technique is the cross mutual

information that measures the mutual dependence between two signals by

quantifying the amount of information gained about one signal from mea-

suring the other, as a function of delay between these two signals ([10]).
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Neural model based approach. Representative methods are the Structural

Equations Modelling (SEM) and the Dynamic Causal Modelling (DCM) ([11];

[12]). They are multivariate technique used to test hypothesis regarding the in-

fluences among interacting variables, but different concepts underlies these two

methods. SEM approach assumes that neuronal dynamics are very fast in rela-

tion to signals fluctuations and, hence, is based on a static neuronal model. This

case, the neuronal activity has reached steady-state and changes in connectivity

are led directly by changes in the covariance structure of the observed time series

([13]). On the other hand, in DCM the observed time series are modelled as a

deterministic dynamical system in which external inputs causes changes in neural

activity and therefore in connectivity values ([14]).

Most approaches, like those based on Granger causality principles, have been

examined in literature to quantify their ability in revealing cerebral connections

([15];[16]; [11]) but their simulation studies do not provide a comprehensive anal-

ysis because they use in silico data generated by self-referential linear methods

which do not reproduce the complexity of brain.

To overcome this issue, an innovative simulation approach has been developed in

this work, based on a nonlinear neural mass model ([17]) totally independent of

SEM and MVAR linear equation and able to address the complexity of neural

networks. This no-self referential approach was exploited to generate in silico

network data to be used as a benchmark, to quantitatively compare obtained

results with true connections.

The main objective of this work was to understand limits and advantages of

MVAR indexes and SEM by exploiting the simulation study. Thus, it mainly

serves as a proof-of-concept for connectivity measures under ideal conditions. Our

purpose was to derive from simulation results some practical procedures in order
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Summary

to classify different brain states to support both cognitive research and clinical

activity. First, research activity was focused to address connectivity on simulated

data obtained on three regions networks characterized by different strength con-

nections and based on different levels of non linearity. Second, a dataset, made

available by Department of Medicine, University of Padova was used to explore

application of these methods to real data by applying the simulation study sug-

gestions.

This thesis consists of three main section.

The first one includes Chapter 1-2-3 describing in detailed the considered connec-

tivity measures, such are those based on Multivariate Autoregressive models and

the Structural Equation Modelling, and the simulation study. The second part

depicts in silico results and the application to EEG data. Finally, comments are

reported in Discussion and Conclusions.

Chapter 1 explains how the connecting parameters of MVAR and SEM mod-

els are identified on EEG data and describes procedures commonly exploited to

analyse connectivity. Chapter 2 reports an overview about the principal models

used to generate in silico data, namely the neural mass models, and described

the neural mass model exploited in this work. Finally, it characterizes network

models adopted to simulate data and lists the procedure followed to generate in

silico datasets. Chapter 3 summarizes the computations implemented to have

more insights on our data by analysing the output of each methods. It describes

the procedure used to evaluate the statistical significance of each index results,

such are the F-test for Granger causality index and the null distribution threshold

using surrogate data for MVAR frequency indexes. Chapter 4 illustrates the

results obtained with the simulation study. First, we reported the complete anal-

ysis for a representative subset of experiments, then for all datasets we showed

topology and strength estimates. Chapter 6 delineates the procedure followed

to study the connectivity in case of hepatic encephalopathy. Chapter 7 covers
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the Discussion and Conclusions. The Appendix is a parallel work aimed to un-

derstand the meaning of connectivity indexes computed via Structural Equation

Modelling. By exploiting the neural mass model used to simulate cortical data,

the objective is to quantify which measure its estimates represent.

We demonstrated that Granger causality is a good estimator with high values

both of sensitivity and specificity, while frequency indexes, DTF and PDC, are

too much affected by the threshold choice and their interpretation in terms of

absolute strength connection is not clear.

As regard SEM, we proved the difficulty of its approach to describe just simple

situations. Even if SEM is based on linear regression as well as MVAR models,

it differently assumes there is no connection with past information, as if brain

connectivity could describe time series relationships by the instant we observe it.

Hence, it is not sufficiently robust to characterize neuronal dynamic activity.
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Sommario

Negli ultimi decenni le varie tecniche e metodiche sviluppate per lo studio dell’

attività cerebrale hanno dimostrato che le diverse regioni neuronali del cervello

non operano in isolamento ma interagiscono tra loro formando una complessa

rete di connessioni. Lo studio di queste relazioni/connessioni esistenti tra le di-

verse regioni corticali, tramite l’elaborazione sia di segnali elettrofisiologici, come

l’EEG, sia di immagini, come l’fMRI, è generalmente denominato come studio

della connettività. La definizione di connettività può essere classificata in tre prin-

cipali categorie: anatomica, funzionale ed effettiva. La connettività anatomica è

strettamente associata alla presenza di connessioni assoniche tra i vari neuroni;

la connettività funzionale è definita come la correlazione temporale tra eventi

neurofisiologici appartenenti a diverse regioni neuronali; la connettività effettiva

è definita come l’influenza che una regione neuronale esercita attraverso una re-

lazione causa-effetto su un’altra regione.

In letteratura sono presenti due principali approcci per lo studio della connet-

tività: l’uno di tipo esplorativo, basato esclusivamente sui dati da cui estrarre

informazioni sia sulla topologia sia sulla forza; l’altro che prevede la conoscenza

a priori di un modello di rete per ottenere informazioni circa l’intensità degli ac-

coppiamenti.

L’obiettivo di questa tesi si è focalizzato sulla validazione e implementazione di

alcuni dei metodi più utilizzati: quelli basati sui modelli autoregressivi multi-

variati (MVAR), come la Directed Transfer Function (DTF), la Partial Directed

Coherence (PDC), e sui principi della causalità di Granger e il metodo detto
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Structural Equation Modeling (SEM). Questi metodi sono ampiamente esaminati

in letteratura per quantificare la loro capacità di rilevare le connessioni cerebrali,

ma gli studi di simulazione proposti sono basati su modelli di generazione dei

dati in silico che semplificano molto la reale complessità del cervello [15] e che

si basano sui modelli autoregressivi stessi. Per superare questo problema è stata

sviluppata una simulazione con un approccio innovativo basato sull’utilizzo di un

Neural Mass Model[17]. L’ obiettivo consiste nel generare dati simulati completa-

mente indipendenti dalle equazioni lineari dei metodi che poi si vanno a testare e,

al contempo, in grado di simulare la complessità delle reti neurali. Brevemente,

la simulazione consiste delle seguenti fasi:

• diversi set di dati in silico sono simulati utilizzando il modello neurale di

massa con diversi modelli di topologia, livelli di non linearità e intensità di

connessioni;

• per ogni set dei suddetti parametri, 100 realizzazioni di segnali di 2 secondi

vengono generati;

• le reti stimate a partire dai parametri di connettività calcolati con i metodi

considerati vengono confrontate con le reti vere.

Per analizzare le prestazioni dell’indice di causalità di Granger e degli indici in

frequenza Directed Transfer Function (DTF) e Partial Directed Coherence (PDC)

sono state effettuate simulazioni Monte Carlo in modo da ottenere una statistica

delle performance. Si è osservato che l’indice di Granger è il più affidabile con

elevata percentuali di sensibilità e bassa frequenza di falsi positivi e negativi. Per

analizzare la stima delle forze, sono stati confrontati i valori dei pesi imposti con

i risultati degli indici dei metodi MVAR e le stime ottenute dal SEM mediante

regressione lineare. Si è osservato che il SEM è il metodo meno affidabile, mentre

i risultati ottenuti con gli indici MVAR presentano una buona correlazione lineare

con i pesi veri. Anche in questo caso l’indice di Granger dà i migliori risultati
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correlando sempre con R ∼ 0.99.

I risultati hanno rivelato che l’indice di causalità di Granger è un accurato sti-

matore della topologia di rete in quanto si è dimostrato in accordo con le reti

vere nella maggior parte degli esperimenti simulati, mentre DTF e PDC, oltre

a presentare alcune imprecisioni, risultano più difficili da interpretare in termini

di forze assolute. Questi risultati suggeriscono di utilizzare l’indice di causalità

di Granger come strumento esplorativo per definire sia la topologia della rete

sia l’intensità delle forze. Poi, le informazioni in frequenza provenienti dai di-

versi metodi (DTF, PDC) devono essere integrate per migliorare l’affidabilità dei

risultati sulle intensità delle connessioni. L’obiettivo principale di questo studio

di simulazione è quello di fornire una procedura robusta da usare per l’analisi

della connettività del cervello umano, in grado di classificare i diversi stati del

cervello in supporto sia della ricerca in ambito cognitivo e sia dell’attività clinica.

L’analisi effettuata sui segnali EEG riportata è un esempio di applicazione a dati

reali, in cui si esamina l’effetto dell’iperammonemia indotta da un carico ammi-

noacidico su pazienti cirrotici e soggetti sani sulla riorganizzazione funzionale del

segnale EEG (Dott. Amodio, Dipartimento di Medicina, Università degli Studi

di Padova).

Questa tesi si sviluppa in sei capitoli di seguito brevemente riassunti. Nel Capi-

tolo 1 si definiscono sia i modelli multivariati autoregressivi e gli indici derivati

per stimare la connettività in termini di causalità di Granger e nel dominio della

frequenza, sia il metodo SEM. Nel Capitolo 2 si presenta il modello utilizzato per

la generazione dei dati simulati analizzati in questa tesi e si descrivono le caratter-

istiche principali delle reti di simulazione considerate. Nel Capitolo 3 vengono

descritti sia i metodi impiegati per la valutazione della significatività statistica

dei vari stimatori sia la procedura per valutare l’accuratezza delle stime con il

confronto sulle reti vere. Nel Capitolo 4 si presentano i principali risultati dello

studio della connettività corticale ottenuti mostrando dapprima l’intera analisi
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su un sottoinsieme di simulazioni, poi sintetizzando i risultati su tutti i dataset.

Nel Capitolo 5 viene presentata una possibile applicazione dei metodi prima

esposti su un problema di tipo clinico, riguardante l’analisi di EEG su pazienti

affetti da Encefalopatia epatica. Infine, nel Capitolo 6 si discutono i risultati

presentati nel capitolo 5 evidenziando limiti e vantaggi dei vari metodi e il loro

range di applicabilità in modo da visualizzare globalmente le loro prestazioni.

L’Appendice riporta un lavoro parallelo eseguito per studiare il significato dei

coefficienti di connettività stimati con il metodo SEM utilizzando le equazione

del neural mass model descritto in precedenza.

xii



1. Multivariate methods for

connectivity analysis

Joyful, joyful, Lord, we adore Thee, God of Glory, Lord of love! Hearts

unfold like flowers before Thee, hail Thee as the sun above!

In brain connectivity analysis two main approaches can be distinguished: the neu-

ral model based, where the model topology is postulated from a priori knowledge

and connection strength only is estimated from the data, and the data driven,

where topology, causality and strength are all inferred from the data. The most

prevalent data driven methods are those based on Granger causality principles,

and those based on neural model are the Dinamic Causal Modeling (DCM) and

the Structural Equation Modeling (SEM). Thanks to their simplicity, Granger

causality and SEM have been largely applied but, on the other hand, some criti-

cisms have been arisen in literature concerning their assumptions ([13]).

Both methods are based on multivariate linear regression models while they differ

for the discount of temporal information. Granger causality is computed by us-

ing Multivariate Autoregressive Models, where correlations among measurements

at different time lags are used to quantify coupling. SEM models instantaneous

interactions among variables and ignores the influence previous states have on

current responses.

This chapter explains how the connecting parameters of MVAR and SEM mod-

els are identified on EEG data and describes procedures commonly exploited to
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Multivariate methods for connectivity analysis

analyse connectivity. Representative examples will be used to quantify the im-

plications of various assumptions.

1.1. MVAR

1.1.1. MVAR model identification

The MVAR model with N variables is expressed as:

y(n) = −
p∑
i=1

A(i)y(n− i) + e(n) (1.1)

where y(n) is the data vector of dimension N related to n-sample, e(n), called

prediction error, is the multivariate uncorrelated white noise process with diago-

nal covariance matrix Σe, A(i) are the N x N matrices of model coefficients and

p is the model order.

The model coefficients and the covariance matrix are identified on time series data

by applying the correlation approach known as the multichannel Yule-Walker

method which minimizes the mean square prediction error to find the optimum

MVAR parameters set.

Under the orthogonality requirement, stated as

E{e(n)y(n− k)T } = 0, (1.2)

where ()T denotes matrix or vector transpose, considering the autocorrelation

definition

Ry(k) = E{y(n)y(n− k)T }, (1.3)

we can obtain the following set of equations

Ry(k) = −
p∑
i=i

A(i)Ry(k − i) +
∑

e δ(k), (1.4)

2



1.1 MVAR

where δ(k) is Kronecker delta function (δ(k) = 1 when k = 0, otherwise δ(k) = 0).

Therefore, let s be a set of N time series:

s(n) = [s1(n), s2(n), ..., sN(n)], n = 1, ..., L. (1.5)

using the sample correlations R̂s(k) and the set of equations 1.4 with (p+1) matrix

equations and (p+1) unknown matrix parameters, the MVAR coefficient matrices

(A(i),
∑

e) can be solved by using the Levinson-Durbin recursion extended to the

multivariate Yule-Walker. Finally, model order is chosen so as the residuals are

uncorrelated white noise. In practice, several MVAR models are calculated while

varying p, and the best order is the one minimizing a parsimony criterion. We

considered the Akaike Information Criterion (AIC) given by

AIC(p) = L log(det
∑

e) + 2pN2 (1.6)

where L is the number of data points applied in the estimation and N is the

number of time series. For reliable parameter identification, the number of pa-

rameters must be significantly smaller than the number of data points available,

i.e. pN2 << NL.

1.1.2. Coupling with Granger causality

The Wiener-Granger causality principle can be implemented using linear MVAR

models. The origin of this concept in time series analysis arose in statistical

field, when Wiener (1956) ([18]) recognized the role of temporal ordering in the

inference of cause-effect relationship between two simultaneously measured time

series. Coupling is defined in terms of ability of one time series to better predict

a second time series by incorporating knowledge of the first one. Later, Granger
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(1969) ([6]) formalized this notion for linear regression models of stochastic pro-

cesses specifying that a decreasing in prediction error variance of the second time

series implies a driver-response relationship between them. Different implemen-

tations of this concept were applied to study the feedback relation between input

and output variables and to multivariate autoregressive processes introducing the

concept of conditional causality ([19],[20]). In the 1990s neurobiological applica-

tions rapidly spread, growing interest in studying the effect that one part of the

nervous system has on another, either in the absence of identifiable behavioural

events or in the context of task performances ([21]).

Theoretical considerations

The original bivariate Granger definition is generalized to interactions among

sets of interdependent variables taking into account the data variance. Hence,

yi causes yj , with i 6= j, if the prediction error of yj estimated with a MVAR

model including all the N time series of y is lower than the one estimated with a

MVAR model including all the N time series of y but yi. Defining as ỹ the N− 1

time series set where yi has been excluded, the Granger causality from yi to yj

respect to all the other inputs is measured as:

GCyi→yj |y = ln
var(yj |ỹ)

var(yj |y)
(1.7)

Statistical significance can be determined via F-statistic:

Fyi→yj |y =

RSSr −RSSc
p

RSSc
(L− 2p− 1)

(1.8)

where RSSr and RSSc are the Residuals Sum of Squared of restricted and com-

plete models, respectively, and p and (L− 2p− 1) are the degrees of freedom of

numerator and denominator. A significant F-statistic is interpreted as evidence

4



1.1 MVAR

that the complete model provides a better prediction compared to what does the

restricted one ([21]).

As an example, let us consider three jointly distributed, stationary multivariate

stochastic processes y1, y2 and y3. To measure the causality from y2 to y1 given

y3, the complete MVAR model is the following:

y1(n) = −
p∑
k=1

a1,1(k) y1(n− k) −
p∑
k=1

a1,2(k) y2(n− k) −
p∑
k=1

a1,3(k) y3(n− k) + e1(n)

y2(n) = −
p∑
k=1

a2,1(k) y1(n− k) −
p∑
k=1

a2,2(k) y2(n− k) −
p∑
k=1

a2,3(k) y3(n− k) + e2(n)

y3(n) = −
p∑
k=1

a3,1(k) y1(n− k) −
p∑
k=1

a3,2(k) y2(n− k) −
p∑
k=1

a3,3(k) y3(n− k) + e3(n)

(1.9)

with covariance matrix Σ =


σ21 σ212 σ213

σ221 σ22 σ223

σ231 σ232 σ23


while the restricted MVAR model is described by the following equations

y1(n) = −
p∑
k=1

ã1,1(k) y1(n− k) −
p∑
k=1

ã1,3(k) y3(n− k) + ẽ1(n)

y3(n) = −
p∑
k=1

ã3,1(k) y1(n− k)−
p∑
k=1

ã3,3(k) y3(n− k) + ẽ2(n)
(1.10)

with covariance matrix Σ̃ =

 ρ21 ρ213

ρ231 ρ23

 .
The Granger causality y2 → y1, defined in eq. 1.7, is the expressed from the

elements of Σ and Σ̃:

GCy2→y1|y3 = ln
ρ21
σ21

This index is positive when the prediction error of y1 estimated in the complete

model is lower than the one estimated in the restricted model, whilst is close to

zero when y2 does not improve the regression.
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1.1.3. Coupling with frequency indexes

The spectral representation of a MVAR model gives useful tools for the analysis

of stochastic processes, based on MVAR model (eq. 1.1) transformation into Z

domain:

Y(z) = H(z)E(z) (1.11)

where H(z) is the system transfer matrix:

H(z) = (I +

p∑
i=1

A(i) z−i)−1 (1.12)

and E(z) is the prediction error Z-transform.

The N x N frequency response matrix can be expressed as:

H(f) = H(z)|z= ei2πfT (1.13)

where T is the sampling period, and the cross-spectral matrix can be derived as

follows:

S(f) = H(f) Σe H(f)H , (1.14)

where (∗)H stands for the Hermitian transpose and Σe = diag(σ2i ), prediction

error covariance matrix.

The most traditional function proposed to detect cooperative neuronal activity

in a couple of electro-physiological signals, yi and yj , is coherence:

Cohij(f) =
Sij(f)√

Sii(f)Sjj(f)
(1.15)

where Sij(f) and Sii(f), Sjj(f) are the cross and the auto - spectra, respectively,

varying in the range 0−1. High values of coherence between two EEG signals are

interpreted as evidence for ongoing cooperation and long-range synchronization.
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1.1 MVAR

This is a consolidate index to describe the linear coupling, but it furnishes a sym-

metrical information and hence cannot distinguish dependencies’ direction. To

overcome this problem, several measures have been suggested [22], and the most

applied are Directed Transfer Function ([23]) and Partial Directed Coherence

([24]).

Directed Transfer Function (DTF)

Let us consider the coherence between two signals yi and yj , eq.1.15, rewritten

as follows:

Cohij(f) =
N∑
n=1

σnHin(f)√
Sii(f)

σnH
∗
jn(f)√

Sjj(f)
(1.16)

The first factor contains the generalized version of DTF index, which is defined

as:

γj→i(f) =
σj Hij(f)

N∑
n=1

√
σ2n |Hin|2(f)

=
σj Hij(f)√

σ2nHi:(f)HH
i: (f)

(1.17)

with Hi:(f) being the i− th row of H(f).

Unlike coherence, DTF is able to identify dependency direction, since it exclu-

sively depends on the frequency response, which is a non symmetrical matrix,

Hij 6= Hji. It expresses the influence of yj on yi as the ratio between the inflow

from j to i to all the inflows to i. Since DTF is normalized, it varies in the interval

[0, 1], where 0 means no significant connections and positive values describe the

presence of connection.

Partial Directed Coherence (PDC)

Unlike DTF, PDC relies on the inverse of the frequency response matrix, written

as:

H(f)−1 = A(f) (1.18)

7
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where

Aij(f) =

p∑
k=1

aij(k) e−j2πfk

directly based on the MVAR model coefficients, and is defined as follows:

πj→i(f) =
Aij(f)

N∑
n=1

√
σ2n |Anj |2(f)

=
Aij(f)√

AH:j (f)A:j(f)

(1.19)

with A:j(f) being the j − th column of A(f).

It describes the influence of yj on yi as the ratio between the outflow from yj

to yi to all the outflows from the source yj . As for DTF, PDC is a normalized

index, ranging from 0 to 1.

Comparison between DTF and PDC

Even if both DTF and PDC operate in frequency domain, they assume different

meanings. DTF can be interpreted in terms of spectral density as the power

spectrum of yi coming from yj normalized to all the contributions to yi at fre-

quency f . Unlike DTF, PDC has not a direct correspondence with the power

spectrum. It depends on the inverse of the frequency response matrix (eq. 1.13)

which does not reflect spectral information. Moreover, they differ in the ability

of distinguishing direct and indirect dependencies: DTF shows not only direct,

but also cascade flows, whereas PDC shows only direct flows. As before, let us

consider three stochastic processes y1,y2 and y3 described by the MVAR model

of eq.1.9 with frequency response rewritten as follows:

H(f) =
1

det(A(f))


A22A33 −A23A32 − (A12A33 −A13A32) A12A23 −A13A22

−(A12A33 −A13A32) A11A33 −A13A31 − (A11A23 −A13A21)

A21A32 −A22A31 − (A11A32 −A12A31) A11A22 −A12A21


(1.20)
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1.1 MVAR

Coupling between variables i and j described with DTF, eq. 1.17, results in

a linear combination of the elements of the A(f) matrix 1.18, whilst PDC, eq.

1.19, considers the single Aij(f) element. In case of absence of direct connection

between i and j, then aij(k) = 0 for each k and, hence, PDC equals zero. Differ-

ently DTF reveals some connections in any case due to alternative indirect paths

linking those two variables.

Therefore, DTF can be treated as a global index which describes interaction be-

tween i and j throughout both direct and indirect connections, while PDC only

reveals direct ones.

Statistical test for significance

To examine the statistical significance of DTF and PDC a null hypothesis test

is performed for each pair of signals. Specifically, the null distribution of these

measures is determined using phase randomization: each data series, transformed

in frequency domain via FFT, is randomly shuffled in order to change phase in-

formation and then reported in time domain via iFFT. This procedure is iterated

M = 100 times, and for each dataset DTF and PDC are computed. Maximum

values of the one-hundred frequency functions are considered to estimate null

distribution and threshold is fixed at 95 − th percentile. Indexes values beyond

it indicate the existence of strong dependency between each pair of signals.

DTF and PDC indexes

DTF and PDC frequency function magnitude is usually evaluated at the peak fre-

quency and the more these functions rise the more connection strength increases.

In order to quantitatively sum up their frequency information, we derived some

indexes by AUC integrals calculation:

9
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AUCDTF =

∫ fmax

0
γj→i(f) df , AUCPDC =

∫ fmax

0
πj→i(f) df (1.21)

for each pairs of signals. In addition, to evaluate connection strength in classical

EEG bands, AUC integrals are computed considering δ, θ, α, β and γ frequency

intervals.

1.2. SEM

SEM grew out of geneticist, social-science and economics fields from 1920s on-

wards and has been used in functional imaging since the early 1990s. It was firstly

applied to animal autoradiographic data and then extended to human PET data

to identify task-dependent differential activation of the dorsal and ventral visual

pathways ([12];[25]). Since then, other researchers have used SEM to analyse

fMRI and EEG data ([26];[15]).

SEM is a static multivariate regression model used to estimate connections within

a defined network. It is based on the hypothesis that the topology of the network

in terms of interconnections among interacting variables is a priori known and

that inter variables coupling is linear time invariant.

Figure 1.1.: An example of structural model with three regions and three connections. Each
region is associated to a variable, vi, i = 1,2 and 3. Arrows indicate causal relation-
ships that are assumed a-priori and strength connections are defined by the scalar
kij .

Considering as an example the network shown in Figure 1.1, these assumptions

10



1.2 SEM

are translated in the following equations:

v2(t) = k21v1(t) + e2(t)

v3(t) = k31v1(t) + k32v2(t) + e3(t)
(1.22)

where vn(t) is the model prediction for cortical activity associated with variable

n, with n = 1, 2, 3, kij is the path coefficient from variable j to variable i and

en(t) is a residual term of covariance Σe, interpreted as driving each variable

stochastically and assumed to be uncorrelated with vn(t).

The path coefficients kij and the covariance matrix Σe are identified on time series

data by minimizing the difference between the covariance matrix estimated from

the data, and the covariance matrix implied by the structural model in Figure

1.1. Let s be a set of three time series:

s(n) = [s1(n), s2(n), s3(n)], n = 1, ..., L. (1.23)

The 3x3 covariance matrix estimated from the data is:

S =
sT s

L− 1
(1.24)

where L is the number of observations. Covariance matrix implied by the model,

respect to Eq. 1.22, is calculated as:

Σv = (1− k)−TΣe(1− k)−1 (1.25)

where k =


0 0 0

k21 0 0

k31 k32 0

 .
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The maximum likelihood (ML) objective function to be optimized is:

F = ln|Σv| − tr(SΣ−v 1)− ln|S| (1.26)

The ML objective function of Eq. 1.26 is optimized by means of a fitting criterion

which employs a Newton-type algorithm based on an analytic gradient. The

starting values can be estimated using ordinary least square. Statistical inference

takes into account two aspects: the goodness of the overall fit of the model

and the difference between alternative models, called stacked-model approach.

Briefly, the χ2 statistic difference test is used to compare two models. A so-

called null-model is constructed where the path coefficients are constrained to

zero. The alternative model allows these parameters to assume different values.

The significance of the difference between the two models is expressed by the

difference in the χ2 goodness of fit indicator ([26]).

12



2. Assessment on in silico data: the

neural mass model for data

simulation

Melt the clouds of sin and sadness, drive the dark of doubt away, Giver of

immortal gladness, fill us with the light of day!

EEG results mainly from extracellular current flow, associated with massively

summed postsynaptic potentials in synchronously activated and vertically ori-

ented neurons. Modeling these neurophysiological mechanisms can rely upon

simplifying assumptions and empirical priors. The last decades literature sees a

rising interest in this issue and several ways have been developed to model neural

signals. The most feasible approach is based on mathematical tools, called neu-

ral mass models (NMM). This approach describes the processes generating EEG

signals arranging in series and in parallel simplified blocks which simulate the

key mechanisms only. A neural mass model of EEG is a surrogate of a cortical

area. It usually comprises a small number of neural populations interacting each

other and uses only one or two state of variables to represent the mean activity

of each single neural population. Their synapses dynamics are described under

the assumptions that neurons in the same population share similar inputs and

synchronize their activity. Therefore by tuning the kinetics parameters of each

population, this procedure is able to design specific signal rhythms and reproduce

responses seen empirically. One of the first proposed model is the Wilson-Cowan
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oscillator to study synchronization among neural oscillations ([27]). After that,

a two population model has been developed to simulate the α rhythm in the tha-

lamus by using a feedback loop incorporating excitatory and inhibitory neuron

groups ([28]). These models have been subsequently improved with the Jansen’s

model which introduces three neural populations with different synaptic kinetics

([29]). These equations are still frequently used especially to investigate on brain

connectivity ([30], [31],[32], [33]). An important improvement in the use of neural

mass models has been provided by Wendling ([34]). Adding another population

to Janses’s model to account the presence of fast interneurons allows to simulate

the dynamics of real EEG signals measured with intracerebral electrodes in the

hippocampus during epileptic seizures. The majority of neural mass models of

EEG responses have been designed to model alpha rhythms; recent studies have

emphasised the necessitate to produce rhythms in different bands. Some of the

literary works cited above show that the kinetic of inhibitory populations have a

focal influence on signals generation in particular to generate a γ rhythm ([17]).

Hence, in the last decade more attention has been drawn to simulate several

rhythms coexisting in the same cortical area ([30], [35], [17]).

The model exploited to simulate our in silico data aims to render as much real-

istic as possible the complexity of a cerebral network. It has been developed by

Ursino’s equipe and consistent literature works prove its effectiveness in repro-

ducing EEG signal behaviour ([35], [36],[37],[38],[17],[39]).

2.1. The neural mass model

This model simulates a signal of one cortical region and produces an intrinsic

rhythm that can vary its frequency band by changing the synaptic kinetics pa-

rameters. One region model consists of four neural groups, representing the

pyramidal neurons, the excitatory interneurons and inhibitory interneurons with

14



2.1 The neural mass model

slow and fast synaptic kinetics. The dynamic of each group is reproduced with a

general model consisting of three key blocks in cascade, as shown with a synthetic

formalism in Fig.2.1.

Each block is characterized by an input-output relationship. The first one

receives from the other groups the so-called post-synaptic potentials yi and com-

bines them linearly by multiplying for a constant Cij . It results in a average

post-synaptic membrane potential vi which subsequently is converted into an

average density of spikes fired by the neurons, zi. The presence of non-linear

mechanisms, such as inhibition and saturation, is simulated with a sigmoidal re-

lationship. Then, the last block reproduces the synaptic kinetics with a second

order system, with different parameter values each group. These concepts are

summarized by the following equations:

vi =
∑
j

Cij yj

zi =
2e0

1 + e−rvi
− e0 i = p, e, s, f

ÿi = Gi ωi zi − 2ωi ẏi − ω2
i yi

(2.1)

where the subscript j refers to a presynaptic neural group, yj is the post-synaptic

potential change induced by a unitary synapse coming from other groups, Cij rep-

resents the connectivity constant from the jth group to the ith one; parameters

e0 and r, assumed equal for all groups, set the maximal saturation and the slope

of the sigmoidal relationship; Gi and ωi represent the strength and the reciprocal

of the time constant of the individual synapses. Different values of the connec-

tivity constants and synapses kinetic parameters can mimic the impulse response

of each neuron groups, denoted with the subscript p, e, s and f : pyramidal cells,

excitatory interneurons, slow and fast inhibitory interneurons, respectively. As

shown in the sigmoidal relationship, the model is maintained in the linear re-

gion. This choice implies that all quantities have zero mean and avoids that the

equilibrium point in same group shifts to the sub-threshold or to the saturation
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region due to an excessive connection.

A particular attention should be drawn to the scheme adopted for the fast in-

hibitory interneurons, Fig.2.2. This group synapses with itself and is powered

by an external input. The rationale of this choice stands in previous work ([40])

which implements self loop to generate γ rhythms. The addition to this neural

mass model of a feedback loop with fast inhibitory interneurons allows producing

γ rhythm per se without the contribution of the other groups.

Connecting the four groups gives the complete scheme of the neural mass model,

as shown in Fig.2.3. It consists of three general blocks cascade of Fig. 2.1 for the

pyramidal cells, the excitatory interneurons and the slow inhibitory interneurons

plus the scheme of Fig. 2.2 for the fast inhibitory interneurons. An important

aspect of the model is the external inputs, targeting the excitatory and the fast

inhibitory interneurons. In a physiological context, these comprehend all exter-

nal signals coming from the other cortical areas. In order to study connectivity

between two cortical areas, a linear relationship is assumed between the averaged

spike density of pyramidal neurons of the pre-synaptic area, zkp , and the input of

the post-synaptic area, uhj , as follows:

uhj (t) = nhj (t) +N ∗W jk
j zkp (t− ω) j = p, f (2.2)

where nj(t) represents Gaussian white noise, Wj is the weight factor and ω is the

time delay. N = 20 tunes the input signal amplitude.

For brevity, in this work the model will be described with a condensed math-

ematical formalism to highlight the two different impulse responses, hex(t) and

hin(t), for excitatory and inhibitory inputs, respectively.
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2.1 The neural mass model

Figure 2.1.: General three blocks cascade to simulate the synapses junction and the information
transmission. 1) Pre-synaptic average of potentials coming from the other groups. 2)
Conversion to average density of spikes fired by neurons. The non-linear behaviour
such as inhibition and saturation is simulated by means of a sigmoidal relationship.
3) Information transmission through synapses: each neuronal group is characterized
by specific synaptic kinetics modelled by the impulse response hi(t), where Gi is
the gain and ωi is the natural frequency. Modified Fig. 1 of [17].

Figure 2.2.: Scheme of fast inhibitory interneurons. It consists of three blocks in cascade as for
the general model in Fig. 2.1 but, in addition, the first block is powered by an
external input uf (t) and by the feedback loop. Modified Fig. 2 of [17].
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Figure 2.3.: Layout of the complete model for one region. Four neural groups, designed as shown
in Fig. 2.1, communicating via excitatory and inhibitory synapses: 1) Pyramidal
cells. 2) Excitatory interneurons. 3) Slow inhibitory interneurons. 4) Fast inhibitory
interneurons. Modified Fig. 3 of [17].
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2.2 NMM parameters analysis

2.2. NMM parameters analysis

In order to generate electro-physiological signals, ranging in EEG band 0 − 30

Hz, the NMM equations [17] have been studied by varying the kinetic parameters

within the set (0, 5, 30, 55, 56, 80, 126, 130) and fixing the others (ωe, ωs, ωf ,

Ge, Gs, Gf ) to the values in Table 1 of [17].

To identify the optimal parameter set, several simulations have been performed

to analyse both the system stability and its frequency response. To this pur-

pose, the NMM equations, after been linearised, have been described as multi

input-output (MIMO) system of linear differential equations with the state-space

representation:

ẋ = Ax + Bu

v = Cx + Du
(2.3)

where x is a n by 1 vector representing the state, u and v are the input and

the output, respectively. The matrices A (n by n), B (n by m), and C (r by n)

determine the relationships between the state and input and output variables.

In our case, there are ten first-order differential equations, two inputs, up(t) and

uf (t), and four outputs vp(t), ve(t), vs(t), vf (t). System matrices A, B and C

are the following:

A =



0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

−ω2
e k1Cpe −k1Cps −k1Cpf −2ωe 0 0 0 0 0

k1Cep −ω2
e 0 0 0 −2ωe 0 0 0 0

k2Csp 0 −ω2
s 0 0 0 −2ωs 0 0 0

k3Cfp 0 −k3Cfs −k3Cff − ω2
f 0 0 0 −2ωf k3 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 −ω2
e −2ωe



where k1 = Geωe
e0r
2 , k2 = Gsωs

e0r
2 and k3 = Gfωf

e0r
2 ,
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B =



0 0

0 0

0 0

0 0

0 0

Geωe
Cpe

0

0 0

0 0

0 0

0 Geωe



C =



0 Cpe −Cps −Cpf 0 0 0 0 0 0

Cep 0 0 0 0 0 0 0 0 0

Csp 0 0 0 0 0 0 0 0 0

Cfp 0 −Cfs −Cff 0 0 0 0 1 0



To evaluate the system stability, we have verified that all eigenvalues of A lie in

the left-hand side, while to analyse the frequency response, we have re-written

the state-space representation into Laplace domain, as follows:

sX(s) = AX(s) + BU(s)

(sI−A)X(s) = BU(s)

X(s) = (sI−A)−1BU(s)

and

V(s) = C[(sI−A)−1B + D]U(s)

= H(s)U(s)
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where H(s) is the matrix transfer function relating the output vector V(s) to the

input vector U(s):

H(s) =
Cadj(sI−A)B + det (sI−A)D

det (sI−A)
.

In our case, H(s) is 4 by 2 matrix whose elements are the individual transfer

functions relating a given component of the output V(s) to a component of the

inputs U(s), as described in the following set of equations:



Vp(s)

Ve(s)

Vs(s)

Vf (s)


=



Hpp(s) Hpf (s)

Hep(s) Hef (s)

Hsp(s) Hsf (s)

Hfp(s) Hff (s)


Up(s)
Uf (s)

 .

Among the subsets of parameter values assuring the system stability, spectral

analysis of the frequency response has been performed in order to find those

generating signals with well-defined frequency peaks. We focused the attention

on the transfer functions relating the inputs with Vp(s), since vp(t) represents the

cortical pyramidal cells signal. By evaluating their response magnitude:

|Hpp(ω)|2 and |Hpf (ω)|2 (2.4)

we choose those sets giving peak frequency around 5 Hz, 15 Hz and 30 Hz.

Since these two transfer functions refer to excitatory and inhibitory cells, respec-

tively, to highlight their meaning they are called Hex(ω) and Hin(ω) and, hence

hex(t) and hin(t) in time domain.
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2.3. Simulated dataset

The NMM described in 2.1 is used to simulate a ROI cortical EEG, where the

input is white noise n(t) - with zero mean and variance σ2 = 5 for both impulse

response hex(t) and hin(t) and the output is vn(t), corresponding to the NMM

vp(t), represented in condensed formalism in Fig.2.4.

Figure 2.4.: One ROI model. Each ROI is characterized by two impulse responses, hex(t) and
hin(t), for excitatory and inhibitory inputs, n(t), which are assumed gaussian with
zero mean and variance σ2 = 5. vn(t) corresponds to the pyramidal output vp(t) in
the NMM (a). Picture in (b) shows the symbolism used for synthetic representa-
tions.

By combining three populations - called ROI 1, ROI 2 and ROI 3, connected

by weight parameters A, B, C and characterized by different synaptic kinetics,

four different network models have been analysed. The first one is a feed-forward

network, shown Fig.2.5.

Three datasets are generated with different non linearity level defined by the

slope adopted in each sigmoid relationship of the model, assuming the following

values:

• dataset 1 with r = 0.36;

• dataset 2 with r = 0.56;

• dataset 3 with r = 0.66.

For each dataset, four conditions are performed comprehending a basal one with

unit value in A, B and C and three obtained by fixing different values of weight
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2.3 Simulated dataset

Figure 2.5.: Layout of the neural network model used to simulate data.The connection intensity
between coupled ROIs is described by weight parameters A, B and C.

parameters as follows and reported in Tab.2.1:

• basal condition: A=B=C=1;

• condition i): A assumes the values 2, 3 and 4, B and C are fixed at 1;

• condition ii): B assumes the values 2, 3 and 4, A and C are fixed at 1;

• condition iii): C assumes the values 2, 3 and 4, B and C are fixed at 1.

Summing up, a total of thirty experiments are simulated, for each of them one

hundred realizations of 2 s are generated for the three ROIs.

The other networks, obtained by combining the same three ROIs, have been

tested performing a reduced number of experiments. An open-loop network with

two directed links, connecting ROI 1 to ROI 2 and ROI 2 to ROI 3, have been

firstly analysed; then, we added a feedback link from ROI 2 to ROI 1 in order to

examining the effect of a reciprocal connection; finally, we considered a cycle net-

work. For each of them, two experiments have been performed, comprehending

a basal condition with all weights fixed at 1 and the other one with B assuming

value 2, as shown in Tab.2.2.
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Networks Weight values

• A=B=C=1

• A=2 B=C=1

• A=3 B=C=1

• A=4 B=C=1

• B=2 A=C=1

• B=3 A=C=1

• B=4 A=C=1

• C=2 A=B=1

• C=3 A=B=1

• C=4 A=B=1

Table 2.1.: Feed-forward network schemes and weight values assumed for each experiment.
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2.3 Simulated dataset

Networks Weight values

• A=B=C=1

• A=1 B=2

• A=B=C=1

• A=1 B=2 C=1

• A=B=C=1

• A=1 B=2 C=1

Table 2.2.: Additional network models, open-loop (upper panel), network with feed-back link
(middle panel) and cycle network (lower panel), and weight values assumed for each
experiment.
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3. Data Analysis

All Thy works with joy surround Thee, earth and heaven reflect Thy rays,

Stars and angels sing around Thee, center of unbroken praise.

3.1. Simulation

Analysis of NMM parameters to evaluate system stability and frequency response

of transfer functions have been performed using the Matlab package reported in

Appendix. After identifying those parameter sets generating well-defined fre-

quency peak in low (5 Hz), medium (16 Hz) and high frequency (32 Hz), in silico

EEG have been simulated using an ad-hoc Matlab code provided by Ursino’s

equipe.

For each experiment described in 2.3 one hundred realizations 2 s long of three

joined time series are generated, with sampling frequency Fs = 200Hz.

3.2. Connectivity estimation

A multivariate model is fitted to each simulation data by means of the Matlab

package ARFIT, based on stepwise least square algorithm, [41], selecting the

best order Akaike’s information criterion. Then, Granger causality estimation is

achieved using the Matlab toolbox GCCA, [42], with the ordinary-least-squares

option, and frequency indexes computation is performed by applying the Matlab

toolbox implemented in [43]. Estimation of SEM path coefficients is accomplished
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by analysing data in R using its package ”sem”, [44]. Obtained results are aver-

aged over the one hundred realizations for each experiment.

3.3. Statistical significance

3.3.1. F-test for Granger causality

Statistic described in eq. 1.8 is an application to regression problems of classical

F-test:

F =
explained variance

unexplained variance

where explained variance is associated to the difference of the Residual Sum of

Squares of restricted and unrestricted models and the unexplained variance is

the Residual Sum of Squares of unrestricted model, corrected for numerator and

denominator degrees of freedom, eq.1.8. Model with more parameters will always

be able to fit the data at least as well as the model with fewer parameters. Thus

typically unrestricted model will give a lower prediction error than the restricted

one. In order to determine whether the unrestricted model gives a significantly

better fit to the data the F calculated from the data should be greater than the

critical value of the F-distribution for some desired false-rejection probability.

These tests are corrected for multiple comparisons via Bonferroni correction.

Hence, the applied threshold is
0.05

n(n− 1)
, where n=3 in our case.

3.3.2. Null hypothesis test for DTF and PDC

Statistical test applied for DTF and PDC is a modified version of the surrogate

data strategy proposed in [45]. Instead of shuffling the time series, their phases

are mixed up randomly in order to break time relationships. Then, a three-

variate autoregressive model is fit to surrogate data to compute DTF and PDC.
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3.4 Assessment of estimated indexes

Under the null hypothesis, for each experiment, performed as described in 2.3,

the null distribution is estimated by pooling together the peak value reached in

each realization, as shown in fig. 3.1. This choice has two main reasons. First,

it is cautious since considers high indexes values avoiding as much as possible

spurious connections. Second, it is a global value independent of the frequency

structure of the data. Threshold at P < 0.05 fixes γ0 critical value at its 95-th

percentile. Hence, there exists a connection for a specific frequency fo between

two signals if DTF/PDC function overcomes threshold line in correspondence to

fo.

Figure 3.1.: Representative example of null distribution resulting from 100 surrogate realizations
for DTF. a) DTF functions among ROI 1, ROI 2 and ROI 3 when causal influence
is absent: grey arrow indicates the peak value. b) DTF distribution by combining
results from all one hundred realizations.

3.4. Assessment of estimated indexes

Topology analysis. Network topology is estimated by means of MVAR indexes.

GC, DTF and PDC are calculated for each realization and statistical tests are

performed to evidence significant values. Comparison with true network gives

the amount of false negatives and false positives results and statistical power of

GC, DTF and PDC is described in terms of sensitivity and specificity:
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Data Analysis

Condition
True False

Outcome
Positive TP FP Type I error (α)
Negative FN TN Type II error (β)

Sensitivity Specificity

Table 3.1.: Relationships between actual condition (true or false) and predicted outcomes (pos-
itive or negative). False positives (FP) and negatives (FN) provide type I (α) and
type II (β) error rate, respectively. Ratio of true positives (TP) to combined TP and
FN gives the sensitivity amount, while ratio of true negative (TN) to combined FP
and TN furnishes the specificity.

Sensitivity =
TP

TP+FN

and

Specificity =
TN

FP+TN

where sensitivity relates to the ability of identifying true connections; specificity

refers to the test ability of identifying absence of connections, Tab.4.5.

Two-way analysis of variance (ANOVA) for repeated measures is used to exam-

ine the influence of the network model parameters, such are sigmoid slope and

connection weights, on the topology estimation, quantified by the percentage of

false negatives and positives.

Strength analysis. Network strength connections are evaluated by considering

the output scores of GC, eq. 1.7, DTF and PDC AUC integrals, eq. 1.21,

and SEM path coefficients. Since estimates and true weights are measured with

different scales, they are compared using linear regression to verify the existence

of a linear relationship between them.
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4. Assessment on in silico data: results

Field and forest, vale and mountain, flowery meadow, flashing sea,

Singing bird and flowing fountain call us to the joyous rejoice in Thee.

This chapter consists of two parts. The first one shows in silico data obtained

by tuning network model parameters, such are slopes of sigmoid relationships,

connection weights and linking direction. The second one reports connectivity

outputs of each method. Results obtained with in silico data aim to quantify the

accuracy of MVAR and SEM methods. Since they are based on linear equations,

it is a crucial aspect measuring to what extent they approximate connectivity of

non linear signals.

4.1. Simulation

4.1.1. NMM parameters

System stability analysis has been performed considering 77 different combi-

nations of NMM parameter values. Among the sets assuring the stability, a

subset of 288 have been considered to study the transfer functions frequency

response,Hex(f) and Hin(f), in order to find three sets producing well-defined

frequency peak in low (5 Hz), medium (16 Hz) and high frequency (32 Hz),

Fig.4.1. Parameter values adopted in NMM equations are reported in Tab.4.1.
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Assessment on in silico data: results

Figure 4.1.: Frequency response magnitude of excitatory and inhibitory impulse response,
Hex(f) and Hin(f), of each ROI computed on the linearized model described in
2.2.

4.1.2. Model predicted EEG signals

Examples of signals of the different network model are shown in Fig. 4.2, evidenc-

ing how the linking direction influences the frequency content. In feed-forward

and open-loop networks Fig. 4.2 (a) and (b), ROI 2 clearly exhibits spectral con-

tribute coming from ROI 1, while in ROI 3 there are not significant differences

between the two network models, since its intrinsic gain is very low in the pass-

band of ROI 1 and ROI 2 and, hence, frequency contents of inflowing ROIs are

less evident. Differently, networks in Fig.4.2 (c) and (d) produce an increasing in

ROI 3 PSD, thanks to the synergic connection of the feed-back link.

Focusing the attention on the feed-forward network, Figs. 4.3 and 4.4 show the
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4.1 Simulation

(a) Common parameters.

Parameters Symbols

Average gain (mV) Ge 5.17
Gs 4.45
Gf 57.1

Time Constant reciprocal (s−1) we 75
ws 30
wf 75

Sigmoid saturation (s−1) e0 2.5
Time delay (ms) ω 10
Input noise variance σ2 5

(b) Regions’ parameters.

Parameters Symbols ROI 1 ROI 2 ROI 3

Number of synaptic contacts Cep 55 5 130
Cpe 5 5 5
Csp 5 5 105
Cps 55 55 130
Cfp 56 56 80
Cfs 5 5 126
Cpf 0 5 30
Cff 5 5 30

Table 4.1.: Network model kinetics parameters. a) Common parameters are average gains, time
constant reciprocals, sigmoid saturations and time delays. Values are the same of
[38]. b) Regions’ parameters are the synaptic contact numbers.

model prediction in time and frequency domain in a representative realization

characterized by different values of network sigmoid slope, r. This parameter

influences frequency contents, since it directly modifies the intrinsic gain of each

ROI.
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Assessment on in silico data: results

(a) Feed-forward network. (b) Open-loop network.

(c) Network with feed-back link. (d) Cycle network.

Figure 4.2.: Model predicted EEG signals in time and frequency domain for each network model
in basal condition, where all weights are equal to 1 and r = 0.56.
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4.1 Simulation

Figure 4.3.: Basal condition (A=B=C=1). Model predicted EEG signals in time and frequency
domain in a representative realization for each dataset. (Upper panel r = 0.36;
middle panel r = 0.56; lower panel r = 0.66.)
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Assessment on in silico data: results

Figure 4.4.: Model predicted EEG signals in time and frequency domain in a representative
realization of experiments characterized by different values of A, B and C parameters
of the network bold link(r = 0.56 dataset).
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4.2 Connectivity estimation

4.2. Connectivity estimation

In order to estimate connectivity via Granger causality and frequency indexes, a

MVAR model has been fitted to the time series obtained by simulation. Optimum

model order has been selected by Akaike’s criterion with values varying within

the range 5-7.

4.2.1. Feed-forward network

Analysis of a single condition

Results reported below show the complete list of outcomes produced by connec-

tivity estimation for the representative condition with increasing strength in the

link between ROI 1 and ROI 2. GC estimates of strength and percent of true and

false positives are displayed in Tab. 4.2. DTF and PDC frequency functions are

illustrated in Figs. 4.2.1 and 4.2.1, respectively. Their AUC values and percent of

true and false positives are summarized in Tabs. 4.3 and 4.4. Statistical perfor-

mances of each index in terms of type I error (α%), type II error (β%), sensitivity

and specificity are reported in Tab.4.5. Finally, SEM outputs are show in Tab.

4.6.

Links A=2 B=C=1 A=3 B=C=1 A=4 B=C=1

ROI1→ ROI2
ROI1→ ROI3
ROI2→ ROI3
ROI2→ ROI1
ROI3→ ROI1
ROI3→ ROI2

0.16 (100%)
0.03 (72%)
0.03 (98%)
< 0.001 (7%)
< 0.001 (3%)
< 0.001 (3%)

0.27 (100%)
0.03 (57%)
0.04 (100%)
< 0.001 (6%)
0.002 (7%)
< 0.001 (4%)

0.36 (100%)
0.02 (51%)
0.04 (100%)
< 0.001 (9%)
< 0.001 (2%)
0.003 (9%)

Table 4.2.: Average GC index estimates with the percentage of true and false positives).
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Assessment on in silico data: results

Figure 4.5.: DTF index as a function of frequency. Panels (a), (b) and (c) are relative to different
values of A, the weight parameter linking ROI 1 to ROI 2. Yellow and red bands
represent 100 realizations of DTF and threshold, blue and dotted red lines are their
mean functions and average thresholds, respectively.

Links A=2 B=C=1 A=3 B=C=1 A=4 B=C=1

ROI1→ ROI2
ROI1→ ROI3
ROI2→ ROI3
ROI2→ ROI1
ROI3→ ROI1
ROI3→ ROI2

7.60 (83%)
7.10 (89%)
7.25 (94%)
1.22 (9%)
0.46 (5%)
0.30 (5%)

9.60 (81%)
7.88 (76%)
8.29 (85%)
1.50 (6%)
0.52 (5%)
0.23 (5%)

10.55 (92%)
8.66 (80%)
9.14 (73%)
1.97 (3%)
0.49 (3%)
0.21 (3%)

Table 4.3.: DTF index estimates as AUC integrals computed from the mean DTF function with
percentages of true and false positives).

Figure 4.6.: PDC index as a function of frequency. Panels (a), (b) and (c) are relative to different
values of A, the weight parameter linking ROI 1 to ROI 2. Yellow and red bands
represent 100 realizations of PDC and threshold, blue and dotted red lines are their
mean functions and average thresholds, respectively.

Links A=2 B=C=1 A=3 B=C=1 A=4 B=C=1

ROI1→ ROI2
ROI1→ ROI3
ROI2→ ROI3
ROI2→ ROI1
ROI3→ ROI1
ROI3→ ROI2

6.22 (59%)
3.86 (18%)
8.92 (96%)
0.87 (5%)
0.47 (5%)
0.28 (5%)

8.25 (55%)
3.39 (8%)

10.75 (100%)
1.03 (5%)
0.53 (5%)
0.23 (5%)

9.24 (62%)
3.26 (3%)

12.40 (95%)
1.28 (3%)
0.52 (3%)
0.17 (3%)

Table 4.4.: PDC index estimates as AUC integrals computed from the mean PDC function with
percentages of true and false positives).
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4.2 Connectivity estimation

GC

Condition
True False

Outcome
Positive 2929 189 α = 5%
Negative 671 3411 β = 18%

Sensitivity Specificity
0.81 0.94

DTF

Condition
True False

Outcome
Positive 2863 149 α = 4%
Negative 737 3451 β = 20%

Sensitivity Specificity
0.79 0.95

PDC

Condition
True False

Outcome
Positive 2005 124 α = 4%
Negative 1595 3476 β = 44%

Sensitivity Specificity
0.55 0.96

Table 4.5.: Statistical measures of GC, DTF and PDC performances.

Links A=2 B=C=1 A=3 B=C=1 A=4 B=C=1

ROI1→ ROI2
ROI1→ ROI3
ROI2→ ROI3
ROI2→ ROI1
ROI3→ ROI1
ROI3→ ROI2

0.36
0.14
0.13
0.03
0.04
0.03

0.45
0.12
0.20
0.03
0.03
0.03

0.51
0.10
0.25
0.03
0.04
0.04

Table 4.6.: SEM average estimates.
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Assessment on in silico data: results

Analysis of all experiments

Following paragraphs report overall results throughout all experiments performed

on the feed-forward network, describing both topology and strength estimate.

Topology. Network topology is inferred by means of statistical test responses,

such are F-test for GC and comparison with the null hypothesis threshold for

DTF and PDC.

Percentage of positive connections identified between each pair of ROIs, per-

formed by considering a total number of 3000 tests, are listed in Tabs. 4.7-4.8-4.9,

for the three indexes, respectively. As expected, percentage of identified connec-

tions is larger in links where the connection is true and in each condition the

strongest link clearly emerged, since it always has the highest score. Results of

two way ANOVA computed to analyse the influence of network model parame-

ters reveal that there are no statistical differences among datasets and conditions

i), ii) and iii), except for false negatives amount of GC outputs. A significant

difference (P < 0.05) appears within experiments only, where false negatives

percentage relative to predominant links is smaller respect to those character-

ized by equal strength connections. Results averaged by pooling datasets and

conditions are condensed in Fig.4.7, reporting the mean percentage of statistical

significant connections for each index. Green arrows are true connections and

the red ones represent links where connection is absent. For each index amount

of false connections is about 5%, while true recognition varies depending on the

kind of connection, which can be direct or linear mixed with interacting ROIs,

and the statistical testing strategy used. Statistical performance measures are

summarized in Tab. 4.10 reporting probability of error I less than 5% but high

false negative rates for each index. Great value of specificity, about 95% for each

index, respect to sensitivity suggests the methods are highly conservative.
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4.2 Connectivity estimation

Links DATASET 1 DATASET 2 DATASET 3
A = B = C = 1 A = B = C = 1 A = B = C = 1

ROI1→ ROI2 63 97 98
ROI1→ ROI3 46 88 98
ROI2→ ROI1 3 4 5
ROI2→ ROI3 51 92 100
ROI3→ ROI1 5 4 9
ROI3→ ROI2 3 3 1

Links DATASET 1 DATASET 2 DATASET 3
x2 x3 x4 x2 x3 x4 x2 x3 x4

ROI1→ ROI2 99 100 100 100 100 100 100 100 100
ROI1→ ROI3 33 40 14 72 57 51 90 72 67
ROI2→ ROI1 4 2 4 7 6 9 4 8 12
ROI2→ ROI3 56 75 73 98 100 100 100 99 100
ROI3→ ROI1 3 7 4 3 7 2 5 7 6
ROI3→ ROI2 7 6 1 3 4 9 2 10 10

Links DATASET 1 DATASET 2 DATASET 3
x2 x3 x4 x2 x3 x4 x2 x3 x4

ROI1→ ROI2 73 48 43 86 80 74 96 90 84
ROI1→ ROI3 98 99 100 100 100 100 100 100 100
ROI2→ ROI1 2 6 3 5 6 4 6 4 2
ROI2→ ROI3 54 41 50 90 96 95 100 100 99
ROI3→ ROI1 10 3 2 3 6 7 6 13 11
ROI3→ ROI2 6 5 3 3 5 10 6 2 1

Links DATASET 1 DATASET 2 DATASET 3
x2 x3 x4 x2 x3 x4 x2 x3 x4

ROI1→ ROI2 65 65 79 98 97 96 99 97 98
ROI1→ ROI3 41 39 46 84 78 85 93 93 96
ROI2→ ROI1 1 6 6 2 4 4 3 5 6
ROI2→ ROI3 100 100 100 100 100 100 100 100 100
ROI3→ ROI1 2 4 4 7 8 7 7 1 4
ROI3→ ROI2 1 3 7 4 3 6 5 12 5

Table 4.7.: GC index: percent of true and false positives in each experiment. Bold arrow in
network model indicates the link with true strength multiplied by factors 2, 3 and 4.
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Assessment on in silico data: results

Links DATASET 1 DATASET 2 DATASET 3
A = B = C = 1 A = B = C = 1 A = B = C = 1

ROI1→ ROI2 76 83 82
ROI1→ ROI3 85 98 97
ROI2→ ROI1 14 7 6
ROI2→ ROI3 82 100 100
ROI3→ ROI1 5 0 0
ROI3→ ROI2 3 0 0

Links DATASET 1 DATASET 2 DATASET 3
x2 x3 x4 x2 x3 x4 x2 x3 x4

ROI1→ ROI2 80 94 92 83 81 92 71 83 72
ROI1→ ROI3 53 82 58 89 76 80 80 86 76
ROI2→ ROI1 6 3 3 9 6 3 4 3 5
ROI2→ ROI3 43 46 35 94 85 73 90 92 74
ROI3→ ROI1 5 3 3 5 5 3 4 3 5
ROI3→ ROI2 5 3 3 5 5 3 4 3 5

Links DATASET 1 DATASET 2 DATASET 3
x2 x3 x4 x2 x3 x4 x2 x3 x4

ROI1→ ROI2 46 19 29 38 41 43 40 33 43
ROI1→ ROI3 93 97 99 96 100 99 100 99 100
ROI2→ ROI1 9 5 6 9 9 9 5 5 3
ROI2→ ROI3 33 19 18 84 69 60 95 91 66
ROI3→ ROI1 10 2 6 8 8 8 4 4 3
ROI3→ ROI2 9 2 5 8 8 8 4 4 3

Links DATASET 1 DATASET 2 DATASET 3
x2 x3 x4 x2 x3 x4 x2 x3 x4

ROI1→ ROI2 38 35 43 41 30 44 32 31 36
ROI1→ ROI3 55 50 58 72 46 60 68 54 57
ROI2→ ROI1 8 7 3 7 5 6 10 5 5
ROI2→ ROI3 94 98 100 100 100 100 100 99 100
ROI3→ ROI1 8 7 3 7 4 4 10 5 5
ROI3→ ROI2 8 8 3 7 4 4 10 5 5

Table 4.8.: DTF index (AUC): percent of true positives and false positives in each experiment.
Bold arrow in network model indicates the link with true strength multiplied by
factors 2, 3 and 4.
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4.2 Connectivity estimation

Links DATASET 1 DATASET 2 DATASET 3
A = B = C = 1 A = B = C = 1 A = B = C = 1

ROI1→ ROI2 68 60 25
ROI1→ ROI3 72 86 84
ROI2→ ROI1 7 0 0
ROI2→ ROI3 84 100 100
ROI3→ ROI1 6 0 0
ROI3→ ROI2 3 0 0

Links DATASET 1 DATASET 2 DATASET 3
x2 x3 x4 x2 x3 x4 x2 x3 x4

ROI1→ ROI2 69 92 90 59 55 62 25 33 35
ROI1→ ROI3 11 8 4 18 8 3 16 8 6
ROI2→ ROI1 5 3 3 5 5 3 4 3 5
ROI2→ ROI3 51 45 45 96 100 95 97 99 96
ROI3→ ROI1 5 3 3 5 5 3 4 3 5
ROI3→ ROI2 5 3 3 5 5 3 4 3 5

Links DATASET 1 DATASET 2 DATASET 3
x2 x3 x4 x2 x3 x4 x2 x3 x4

ROI1→ ROI2 22 4 8 8 8 8 4 4 3
ROI1→ ROI3 82 96 98 93 99 99 94 98 100
ROI2→ ROI1 9 5 6 8 8 8 4 4 3
ROI2→ ROI3 34 27 30 88 85 69 96 98 85
ROI3→ ROI1 10 2 6 8 8 8 4 4 3
ROI3→ ROI2 9 2 5 8 8 8 4 4 3

Links DATASET 1 DATASET 2 DATASET 3
x2 x3 x4 x2 x3 x4 x2 x3 x4

ROI1→ ROI2 34 27 42 18 15 27 11 7 16
ROI1→ ROI3 24 22 14 34 15 13 28 11 19
ROI2→ ROI1 8 7 3 7 4 4 10 5 5
ROI2→ ROI3 97 100 100 100 100 100 100 100 100
ROI3→ ROI1 8 7 3 7 4 4 10 5 5
ROI3→ ROI2 8 8 3 7 4 4 10 5 5

Table 4.9.: PDC index (AUC): percent of true positives and false positives in each experiment.
Bold arrow in network model indicates the link with true strength multiplied by
factors 2, 3 and 4.
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4.2 Connectivity estimation

(a) GC topology (b) DTF topology

(c) PDC topology

Figure 4.7.: Estimated topology for each index: overall true (bold line) and false (dotted line)
positives in percent throughout the experiments.

Strength estimation. Estimates of strength parameters for all experiments by

each index are reported in Tabs. 4.11,4.12,4.13,4.14.

Since estimates and true weights are measured with different scales, as shown in

a representative realization in Fig.4.8, estimates are analysed in terms of their

correlation with true value, so as to assess the ability of each index to reproduce

strength proportionality within networks.
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Assessment on in silico data: results

Figure 4.8.: Strength outputs in a representative realization for dataset with r = 0.56. True
network model is depicted in a), while b),c) d) and e) report the averaged results
obtained with GC, DTF, PDC and SEM methods. As regards c) and d), the panel
in the right side shows DTF and PDC estimates as function of frequency; yellow
bands represent 100 realizations, blue and dotted red lines are their mean functions
and average thresholds, respectively. Network graph on the left side reports the
corresponding AUC value computed from the mean function.
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4.2 Connectivity estimation
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Assessment on in silico data: results

Fig. 4.2.1 displays scatter-plots showing regression between estimates and true

weights, pooling together results over experimental conditions for all methods and

datasets. Tab.4.15 reports the correlation coefficient R for each regression line.

Correlation evidences high significant linear relationship with R > 0.9 (P < 0.05)

for all GC estimates, while it slightly decreases for DTF and PDC, R ∼ 0.80 and

R ∼ 0.7, in links connecting ROI 3. As regards SEM, estimates are well correlated

with true weights in direct links, while it fails in estimating the link from ROI 2

to ROI 3.

Performances of regression lines are compared to study the interaction between

strength estimates and network model sigmoid slope. This comparison shows that

DTF and PDC estimates get worse with higher values of sigmoid slope (dataset

2 and 3), in particular in estimating strength of link connecting ROI 2 and ROI

3, while GC is highly correlated in all experiments.

Link from ROI 1 to ROI 2
DATASET 1 DATASET 2 DATASET 3

GC 0.99 0.99 0.98
DTF 0.97 0.95 0.92
PDC 0.95 0.85 0.84
SEM 0.98 0.98 0.97

Link from ROI 1 to ROI 3
DATASET 1 DATASET 2 DATASET 3

GC 0.99 0.99 0.98
DTF 0.92 0.82 0.80
PDC 0.99 0.95 0.93
SEM 0.97 0.97 0.97

Link from ROI 2 to ROI 3
DATASET 1 DATASET 2 DATASET 3

GC 0.99 0.98 0.98
DTF 0.90 0.77 0.75
PDC 0.90 0.72 0.66
SEM < 0.5 < 0.5 < 0.5

Table 4.15.: Regression coefficients relative to scatter-plots in Fig.4.2.1 for each index and
dataset.
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4.2 Connectivity estimation

4.2.2. Other network models

Results reported below show the outcomes produced by connectivity estimation

for the other three network models described in 2.3. GC estimates of strength

and percent of true and false positives are displayed in Tab. 4.16. DTF and

PDC frequency functions are illustrated in Figs. 4.10, 4.11 and 4.12. Their AUC

values and percent of true and false positives are summarized in Tabs. 4.17 and

4.18. Finally, SEM outputs are show in Tab. 4.19.

Topology and strength estimates confirm results obtained in the previous

Network Links Estimates

ROI1→ ROI2
ROI2→ ROI3
ROI1→ ROI3
ROI2→ ROI1
ROI3→ ROI1
ROI3→ ROI2

A = B = 1
0.06 (92%)
0.05 (89%)
< 0.001 (1%)
< 0.001 (2%)
< 0.001 (0%)
< 0.001 (0%)

A = 1 B = 2
0.06 (91%)
0.16 (100%)
< 0.001 (0%)
< 0.001 (0%)
< 0.001 (0%)
< 0.001 (0%)

ROI1→ ROI2
ROI2→ ROI1
ROI2→ ROI3
ROI1→ ROI3
ROI3→ ROI1
ROI3→ ROI2

A = B = C = 1
0.08 (98%)
0.11 (100%)
0.05 (85%)
< 0.001 (1%)
< 0.001 (2%)
< 0.001 (2%)

A = C = 1 B = 2
0.11 (100%)
0.28 (100%)
0.03 (71%)
< 0.001 (3%)
< 0.001 (1%)
< 0.001 (1%)

ROI1→ ROI2
ROI2→ ROI3
ROI3→ ROI1
ROI1→ ROI3
ROI3→ ROI2
ROI2→ ROI1

A = B = C = 1
0.06 (95%)
0.09 (86%)
0.05 (100%)
< 0.001 (0%)
< 0.001 (1%)
< 0.001 (2%)

A = C = 1 B = 2
0.06 (95%)
0.17 (100%)
0.08 (97%)
< 0.001 (0%)
< 0.001 (0%)
< 0.001 (0%)

Table 4.16.: GC index: average strength estimates and percent of true and false positives in each
experiment. Bold arrow in network graph indicates the link with doubled strength
in the second experiment.

section. GC recognizes very well network topology and demonstrates its ability

in distinguishing direct and indirect connections, reciprocal links and cycled rela-

tionships. Considering the open loop net in Tab. 4.16, upper panel, characterized

by two direct coupling (ROI 1 → ROI 2; ROI 2 → ROI 3) and an indirect link

(ROI 1 → ROI 3), we can observe a causality increase only between the signals
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Assessment on in silico data: results

Figure 4.10.: DTF and PDC index as function of frequency (open-loop network). Panels in the
left show to the basal condition, (A=B=1), while the other two are relative to the
experiment with A=1 and B=2. Yellow and red bands represent 100 realizations
and their threshold respectively, while blue and dotted red lines are their mean
functions.

involved in the connection with weight B. In presence of reciprocal links, as in

the second network graph, Tab. 4.16 middle panel, characterized by connection

between ROI 1 and ROI 2 in both ways, direct link between ROI 2 and ROI 3

and the indirect connection from ROI 1 to ROI 3, GC index, not only correctly

describes the net topology in more than 70% of times, but also gives a quanti-

tative measurement of the internal connection intensity. Indeed it is possible to

derive numerically the causality increase recorded in the link ROI 2 → ROI 1

when the corresponding true weight B of the connection itself is doubled. Ob-

serving results obtained with the cycle network, Tab. 4.16 lower panel, the B

weight increase influences the strength only in the connection from ROI 2 to ROI

3. Other significant links remain almost unvaried, despite the cyclic topology of
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4.2 Connectivity estimation

Figure 4.11.: DTF and PDC index as function of frequency (network with feed-back link). Panels
in the left show to the basal condition, (A=B=C=1), while the other two are
relative to the experiment with A=C=1 and B=2. Yellow and red bands represent
100 realizations and their threshold respectively, while blue and dotted red lines
are their mean functions.

the network.

Information obtained from DTF and PDC allow to observe the causality flow in

frequency domain, Fig. 4.10 - 4.11 - 4.12. Analyzing the results computed via

AUC, Tab. 4.17, we can notice that when connection weight increase, DTF value

reflects an increase in signal connectivity related to that connection both in direct

and indirect way. This limit, already described in previous section, is noticeably

identified in Fig. 4.10, panels (1)-(2). Even if not recognized as significant, DTF

index shows the influence of signal from ROI 1 to ROI 3 due to the presence of

an indirect connection. Connectivity analysis using PDC instead allows to distin-

guish direct connections from indirect ones. Indeed, with reference to the same

network, Fig. 4.10, panels (3)-(4), the contribution due to indirect connection

from ROI 1 to ROI 3 results heavily weakened, Tab. 4.10, upper panel.
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Assessment on in silico data: results

Figure 4.12.: DTF and PDC index as function of frequency (cycle network). Panels in the
left show to the basal condition, (A=B=C=1), while the other two are relative
to the experiment with A=C=1 and B=2. Yellow and red bands represent 100
realizations and their threshold respectively, while blue and dotted red lines are
their mean functions.

As regard SEM, its results evidence the difficulty in estimating connection se-

ries. Considering the scores of the first network in Tab.4.19, upper panel, SEM

is able to recognize strength increasing from ROI 2 to ROI 3 between the two

experiment, but in the basal condition, where weights are equal, it is not in agree-

ment with true network. Performances get worse in the cycle network estimation,

where SEM confuses the direction of one link, and, finally, fall down in estimating

networks with reciprocal connection.
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4.3 Summary

Network Links Estimates

ROI1→ ROI2
ROI2→ ROI3
ROI1→ ROI3
ROI2→ ROI1
ROI3→ ROI1
ROI3→ ROI2

A = B = 1
5.01 (71%)
6.48 (93%)
1.60 (2%)
0.29 (0%)
0.13 (0%)
0.16 (0%)

A = 1 B = 2
5.02 (41%)
12.48 (96%)
2.88 (6%)
0.28 (0%)
0.14 (0%)
0.15 (0%)

ROI1→ ROI2
ROI2→ ROI1
ROI2→ ROI3
ROI1→ ROI3
ROI3→ ROI1
ROI3→ ROI2

A = B = C = 1
1.04 (81%)
6.84 (42%)
6.44 (81%)
1.72 (0%)
0.21 (0%)
0.22 (0%)

A = C = 1 B = 2
1.02 (80%)
13.44 (16%)
6.74 (47%)
1.97 (0%)
0.23 (0%)
0.27 (0%)

ROI1→ ROI2
ROI2→ ROI3
ROI3→ ROI1
ROI1→ ROI3
ROI3→ ROI2
ROI2→ ROI1

A = B = C = 1
4.74 (73%)
6.23 (94%)
4.07 (17%)
0.61 (0%)
0.33 (0%)
1.21 (0%)

A = C = 1 B = 2
4.80 (23%)
12.56 (92%)
3.94 (0%)
1.80 (0%)
0.31 (0%)
2.26 (0%)

Table 4.17.: DTF index: strength estimates computed via AUC of the mean function in the
frequency domain and percent of true and false positives in each experiment. Bold
arrow in network graph indicates the link with doubled strength in the second
experiment.

4.3. Summary

So far, a gold standard for connectivity studies is not already emerged in liter-

ature, therefore, analysis of in silico results is needed to understand limits and

advantages of each index. Our simulation clearly shows that GC can be used as a

stand-alone index to explore significant connections underlying data and to give

insights on the strength up to scaling factor. As regard DTF and PDC, their

results are less accurate in terms of topology and strength estimates via AUC

integral, but are necessary to obtain information in frequency domain, even if

their combined use is preferred to have a better characterization of the coupling.

These results have been transferred into a practical procedure to analyse EEG

data, following three steps summarized in flowchart in Fig. 4.3. GC index is used

to both to explore network topology, assuming the existence of connection when

its value is statistically significant, and to infer connection intensities. Finally,
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Assessment on in silico data: results

Network Links Estimates

ROI1→ ROI2
ROI2→ ROI3
ROI1→ ROI3
ROI2→ ROI1
ROI3→ ROI1
ROI3→ ROI2

A = B = 1
4.97 (69%)
6.79 (97%)
0.53 (0%)
0.25 (0%)
0.13 (0%)
0.17 (0%)

A = 1 B = 2
4.96 (41%)
13.69 (97%)
0.66 (0%)
0.20 (0%)
0.14 (0%)
0.15 (0%)

ROI1→ ROI2
ROI2→ ROI1
ROI2→ ROI3
ROI1→ ROI3
ROI3→ ROI1
ROI3→ ROI2

A = B = C = 1
5.15 (44%)
5.28 (36%)
5.11 (12%)
0.81 (0%)
0.21 (0%)
0.22 (0%)

A = C = 1 B = 2
5.05 (16%)
11.84 (60%)
3.60 (0%)
0.93 (0%)
0.23 (0%)
0.27 (0%)

ROI1→ ROI2
ROI2→ ROI3
ROI3→ ROI1
ROI1→ ROI3
ROI3→ ROI2
ROI2→ ROI1

A = B = C = 1
4.70 (71%)
6.45 (98%)
4.10 (19%)
0.18 (0%)
0.14 (0%)
0.60 (0%)

A = C = 1 B = 2
4.74 (25%)
13.51 (97%)
4.04 (1%)
0.18 (0%)
0.13 (0%)
0.65 (0%)

Table 4.18.: PDC index: strength estimates computed via AUC of the mean function in the
frequency domain and percent of true and false positives in each experiment. Bold
arrow in network graph indicates the link with doubled strength in the second
experiment.

Network Links Estimates

ROI1→ ROI2
ROI2→ ROI3

A = B = 1
0.21
0.05

A = 1 B = 2
0.22
0.10

ROI1→ ROI2
ROI2→ ROI1
ROI2→ ROI3

A = B = C = 1
−
−
−

A = C = 1 B = 2
−
−
−

ROI1→ ROI2
ROI2→ ROI3
ROI3→ ROI1

A = B = C = 1
0.18
0.06
−0.05

A = C = 1 B = 2
0.15
0.11
−0.075

Table 4.19.: SEM index: average strength in each experiment. Bold arrow in network graph
indicates the link with doubled strength in the second experiment.

in order to study the spectral coupling, frequency patterns of DTF and PDC

together are evaluated.
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4.3 Summary

Figure 4.13.: Flowchart procedure to analyse EEG data connectivity.
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5. Application to EEG data: assessment

of hepatic encephalopathy

Thou art giving and forgiving, ever blessing, ever blessed,Wellspring of the

joy of living, ocean depth of happy rest! Thou our Father, Christ our

Brother, all who live in love are Thine, Teach us how to love each other,

lift us to the joy divine.

Hepatic encephalopathy (HE) is a worsening of brain function caused by liver

failure. When liver is affected by some disorders, such as cirrhosis or hepati-

tis, it is no longer able to change toxic substances that are either made by the

body or taken into the body. Hence, it releases intestinal neurotoxic substances

in the bloodstream reaching the systemic circulation and the brain. The toxic

substances are not entirely known, but certainly a central role is determined by

ammonia, which is a product of the digestion of proteins, [46].

HE clinical manifestations range from a slightly altered mental state to coma; it

may be either acute or chronic. The condition has been graded into five stages

based on deteriorations in mental and psychometric function. The identification

of patients with mild or subclinical encephalopathy is a problem in hepatology

but quantitative analysis of EEG provides objective measures of HE, such as

frequency analysis of the wake EEG, [47], [48]. Patients with liver disease do

not show any obvious EEG abnormalities until impairment of liver function is

sufficient to give rise to episodes of confusion. In the early phase of HE, the EEG

shows progressive slowing and disorganization of the alpha rhythm which becomes
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Application to EEG data: assessment of hepatic encephalopathy

mixed with random diffuse theta activity, often most marked in the temporal re-

gions. As clouding of consciousness becomes more evident the theta components

become dominant and the dominant frequency falls. Further progression of liver

failure is associated with diminished amplitude of this delta activity which be-

comes arrhythmic and finally disappears so that prior to death, the EEG shows

a generalized absence of activity of any kind, [46].

A reproducible human model to assess the risk of HE development in patients

with cirrhosis is made with the induction of hyperammonaemia by the oral admin-

istration of a mixture of amino acids, called amino acid challenge (AAC). Studies

in literature already investigated the clinical, psychometric and wake/sleep EEG

correlation with induced hyperammonaemia by analyzing EEG frequency con-

tents and its topographic distribution, [49]. They demonstrated that the wake

EEG in posterior brain areas is sensitive to hyperammonaemia and, hence, it can

be used to help the HE neurophysiological definition [50].

To obtain a more detailed picture about the effect of HE on brain circuits, this

study aims to explore EEG of cirrhotic patients in terms of connectivity. So far,

the altered brain state activity in patient with cirrhosis and different level of HE

has been analyzed during resting-state functional MRI studies [51], hence, this

study is a completely novel application. We focused our attention on a subset of

four electrodes each hemisphere, namely F3, P3, C3, O1 and F4, P4, C4, O2

to preliminary explore a plausible connectivity network from the occipital to the

frontal brain areas. In particular, we analyzed the effect of hyperammonaemia on

the wake EEG both of patients with cirrhosis and healthy volunteers, in order to

understand to what extent this condition affects the EEG rhythms distribution

and how it modifies the electrophysiological information flux.
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5.1 Study design

5.1. Study design

5.1.1. Dataset

Two groups were studied: 10 patients with cirrhosis (9 men; 1 woman; age 54±14

years; mean ± SD) and ten healthy volunteers (age 49± 13 years), served as ref-

erence.

Ten min of relaxed EEG was recorded in basal condition and after the adminis-

tration of AAC, according to the International 10−20 system, sampled at 256 Hz

and bad-pass filtered in the range 0.33−70 Hz. Then, derivations were referenced

to the average of all derivations. EEG was visually inspected to exclude focal ac-

tivity and any muscular artefacts, hence 40−seconds sections were selected for

analysis.

5.1.2. Spectral analysis

Spectral analysis was performed by using the parametric approach based on the

univariate autoregressive model identification by least squares, i.e.:

x(n) = −
p∑
i=1

aix(n− i) + e(n), n = 1, ...,M − 1 (5.1)

where p is the model order, ai are model parameters and e(n) is a white Gaussian

noise having zero mean and variance equal to σ2. The best model order is chosen

by applying the Akaike’s criterion. From AR model of eq.5.1 the power spectral

density is described as follows:

S(f) = σ2|H(f)| (5.2)

where

H(f) =
1

1 +
p∑
i=1

aie
j2πi

f

Fs
(5.3)
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Application to EEG data: assessment of hepatic encephalopathy

Spectral estimates are obtained for electrodes F4, P4, C4, O4 and F3, P3, C3,

O3 analysed in the frequency range 1.5− 26.5 Hz.

5.1.3. EEG connectivity analysis

As suggested by the simulation study, to estimate connectivity relationships

among the selected electrodes we followed flowchart in Fig. 4.3, but since signals

have been analysed in the narrow range 6 − 13 Hz, we considered GC estima-

tion only. To do that a MVAR model was identified for each subject, choosing

the optimal model order via Akaike’s criterion in the range 1 − 10, and then,

for each group an average network was obtained, including the connection sig-

nificant in more than 65% of the subjects, revealed by the index. Hence, scalar

values of GC in significant links have been considered to have insights on cou-

pling intensity. As for simulation study, estimates give an indirect measure of the

connection intensity, hence we can infer on the strength only up to a scalar factor.

5.1.4. Statistical analysis

Comparisons within and between population were performed using non para-

metric tests. Wilcoxon test for paired data was used to compare results be-

tween conditions before and after AAC within group. Mann-Whitney test was

used to determine the significance of differences between volunteers and patients.

P < 0.05 was considered to be statistically significant.
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5.2 Results

5.2. Results

5.2.1. Spectral analysis

Optimal MVAR model orders were chosen via Akaike’s criterion in the range

1−15. Fig. 5.1 shows signal of each ROI in left hemisphere in time and frequency

domain for a representative healthy volunteer before and after AAC, respectively,

while Fig. 5.2 reports the same conditions for a representative patient.

Inspection of the power spectrum revealed the prevalence of the dominant EEG

activity in the occipital area in both population, but magnitude of the spectra

was higher in patients in compared to healthy volunteers. Administration of AAC

induced an increase in power over the most of the scalp in healthy volunteers,

while less evident changes were observed in patients.

5.2.2. EEG connectivity estimation

Figs. 5.3, 5.4 and 5.5, 5.6 depict the average network for both populations and

hemisphere, before and after AAC. Both in human volunteers and patients, topol-

ogy presents different patterns between hemispheres, showing a denser network

especially in the right hemisphere after AAC. Intensity of each connection is es-

timated by exploited GC numerical values and Fig. ?? reports the differences

between the two conditions for both groups and hemispheres.

Differences between hemisphere both in topology and strength within groups

evidence the lateral asymmetry of the brain, showing a deeper influence of AAC

in right connectivity network. Comparing human volunteers with patients dis-

plays that the latter group does not change significantly after AAC, while the

first one exhibits a re-organization of the network connectivity, giving more sup-

port to the idea that patients stand constantly in hyperammonaemia condition.

This is well evident examining Fig. 5.2.2 which show the global effect of AAC in

increasing connection intensities.
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Application to EEG data: assessment of hepatic encephalopathy

(a) Basal condition, before AAC.

(b) Condition after AAC.

Figure 5.1.: ROIs signals of the left hemisphere in time and frequency domain for a representative
healthy volunteer.
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5.2 Results

(a) Basal condition, before AAC.

(b) Condition after AAC.

Figure 5.2.: ROIs signals of the left hemisphere in time and frequency domain for a representative
patient.
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Application to EEG data: assessment of hepatic encephalopathy

(a) Left hemisphere. (b) Right hemisphere.

Figure 5.3.: Estimated topology overall human volunteers in both hemisphere in basal condition
(before AAC).

(a) Left hemisphere. (b) Right hemisphere.

Figure 5.4.: Estimated topology overall human volunteers in both hemisphere after AAC.
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5.2 Results

(a) Left hemisphere. (b) Right hemisphere.

Figure 5.5.: Estimated topology overall patients in both hemisphere in basal condition (before
AAC).

(a) Left hemisphere. (b) Right hemisphere.

Figure 5.6.: Estimated topology overall human volunteers in both hemisphere after AAC.
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Application to EEG data: assessment of hepatic encephalopathy

Figure 5.7.: GC index: difference of the average GC estimates between the two conditions (after
AAC - before AAC) for both hemispheres and groups (upper panels: human volun-
teers; lower panels: patients). Black circles represent the significant links in both
conditions; bold line stands for zero.
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5.2 Results

This findings improve those obtained in previous work in which effects of AAC

were observed in changes in the power of the dominant EEG rhythms, only.

Application of connectivity measures provides more detailed in explaining the

behaviour of the scalp EEG consequent to hyperammonaemia, since they are

able to describe the coupling between signals and hence they furnish a network

map to decode the power topographic distribution of EEG.
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6. Discussion

Mortals, join the happy chorus, which the morning stars began, Father

love is reigning o’er us, brother love binds man to man. Ever singing,

march we onward, victors in the midst of strife, Joyful music leads us

Sunward in the triumph song of life!

6.1. Simulation study

The purpose of this study was to assess the ability of commonly used measures of

brain connectivity using in silico data. Our strategy was to reproduce plausible

neurophysiological processes in which we could manipulate coupling among ROIs,

each of them simulated by a neural mass model generating real power spectra

very similar to the empirical ones.

We tested two connectivity methods, MVAR indexes and SEM, both based on

linear regression equations, but different in describing data dynamics. MVAR

models consider past data information, whilst SEM describes variables interac-

tion using present instants, only. In connectivity estimate, the first approach was

used to infer both topology and strength connections, while the second one pro-

vides estimates of strength, since it assumes topology to be known. The aim was

to compare their performances in order to define a practical tool, useful in clinical

application with real data. Hence, firstly, we wanted to establish their validity

with a simulation study. Our approach uses ad-hoc network models, built taken

into account the number of ROIs and links, the different non linearity degree due
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to the neural mass model equations and the connection weights imposed between

each pair of ROIs.

Two interconnected ROIs is the simplest situation and at the most can be ex-

ploited to assess on the connectivity index ability to identify the influences di-

rection. Differently, working with at least three ROIs allows to analyse cascade

flows, reciprocal connections and cycle graphs. This issue is crucial in comparing

the performances of DTF and PDC, which mainly differ in distinguishing direct

from indirect connections.

Changes in sigmoid slope of the neural mass model in eq. 2.1 and in coupling

strength (2.3) have had an important impact on data characterizations.

Changing sigmoid slope values is twofold. First, it allows to vary the non-linearity

degree since the greater the slope is, the smaller the range of sigmoid linear ap-

proximation gets, approaching the climax over time faster. Second, since it affects

the intrinsic gain of each neural group, increasing in power content modifies the

amount of frequency coupling without changing weight connections. Applying

in silico data obtained with a non-linear procedure to MVAR indexes and SEM,

based on linear equations, furnishes a quantitative description to what extent

they are able to describe a phenomenon typically non-linear.

Varying connections weights simulates different strength of coupling. This ap-

proach enable both to evaluate methods sensitivity to different level of strength

and to understand which measures is more influenced by the mixing of interacting

signals.

By modifying these parameters, in silico data emulate key features observed in

empirical data, then estimate networks were computed. In addition, using surro-

gate data we determined the null distribution of each measure in order to evaluate

their statistical significance.
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6.2 Network connectivity estimation

6.2. Network connectivity estimation

As regards topology, as expected our analysis suggests the absence of causal influ-

ence where effectively no connection exists, i.e. ROI2→ ROI1, ROI3→ ROI1

and ROI3→ ROI2, since the percentage of revealed connections by all methods

is much lower than those of the three real direct connections, i.e. ROI1→ ROI2,

ROI1 → ROI2 and ROI2 → ROI3, fig. 4.7. No significant differences emerge

among datasets, but within each experiment comparing the predominant link

with those characterized by the same strength, Tabs. 4.7,4.8,4.9. All couple of

ROIs are related to each other according to a feed forward scheme characterized

by asymmetric information flow. The time domain signal mixing consequently

sums up overlapping frequency contents, obscuring underlying connectivity pat-

terns. Inevitably the MVAR model loses weaker connections and describes the

prevalent ones, only. Analysing statistical performances, Tab. 4.10, all methods

provide high values of specificity, meaning they clearly recognize where connec-

tion does not exist, as reported above. As regards sensitivity, GC reaches 84%,

while DTF and PDC provide less powerful performances, demonstrating they are

less robust to frequency overlapping due to signal mixing. Hence, GC can be con-

sidered a good network estimator. Moreover, results obtained with the additional

network models, 4.2.2, show its ability to recognize not only coupling direction,

but also to locate direct connection contributions in case of reciprocal and cycle

links. Furthermore, results according to DTF and PDC, greatly vary depend-

ing on the statistical testing strategy used. Unlike GC, which statistical test is

based on evaluation of the F-statistic and results depend on p-value only, there

exist different way to assess DTF and PDC connectivity significance. Alongside

well-known methods based on phase-randomization, adopted in this work, sur-

rogate data can be generated shuffling time series samples or using multivariate

ARMA. Other innovative approaches are proposed in literature for PDC analy-

sis, such are based on asymptotic statistic [52] and anti-symmetrisation testing
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[53]. An ad-hoc analysis to understand the optimal strategy was performed com-

paring permutation methods, both time samples and phase, and those based on

simulation with multivariate ARMA processes,[43]. Our experience evidenced

that, unlike phase-randomisation, thresholds obtained with sample-shuffling and

ARMA simulation provided smaller false negatives rate, but much more false pos-

itives. For this reason, in this work we preferred to be more cautious, adopt the

first one surrogate strategy with the disadvantage of having smaller sensitivity

values. Moreover, the average value of the threshold distribution that comes out

is always equal to 0.5, a well-established threshold value in literature to determine

the coherence significance, [54].

As regards strength, since true network and estimates are measured with differ-

ent scales, linear regression analysis is used to understand if they are sensitive

to strength modulations. Examining fig. 4.2.1, correlation evidences the ability

of MVAR index to quite well reproduce connection intensity, while SEM reveals

considerable difficulty in estimating connection between ROI2 and ROI3. SEM

weakness to describe just simple connectivity patterns is due to the over-simplified

model underlying SEM equations. Unlike MVAR approach, including past infor-

mation of each time series, SEM computes connection taking into account present

information, only. This is an implausible assumption, causing troubles in remov-

ing confounding effects, in particular in case of reciprocal and cycle nets.

Both DTF and PDC have shown to be able to give information about network

topology and connection intensity, even if results are less accurate than GC per-

formances. DTF allows to obtain good results, with a lower chance of error for

direct connections only. In case of indirect connections, DTF performances and

results reliability heavily depend on the method used to choose the significance

threshold. PDC, instead, allows to recognize direct from indirect connections but

in some instances, in presence of more patterns connecting the same ROIs, the

weaker connection is obscured, i.e. in Figs. ?? and Tab. ?? link from ROI 1 to

ROI 3 is not considered significant.
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Even if this study explored simple networks, some useful suggestions emerged. As

regard topology, we can confirmed that GC can be used as a good estimator, sup-

ported by its high values of sensitivity and specificity. As regard strength, SEM is

definitely too simple to describe complex interactions, such as neurophysiological

processes, and hence MVAR indexes are more appropriate. On the other hand,

GC, DTF and PDC do not allow clear conclusions on the absolute strength of the

coupling, because they are not a direct measure of strength connectivity, but the

regression analysis confirms the existence a linear relationship among true and

estimated intensity. Hence some processing are needed to evaluate their connec-

tivity scores, which results greatly depend on the strategy adopted. This work

evidences that GC is a stand-alone estimator for both topology and strength. In

order to study connectivity in frequency domain, DTF and PDC should be used

together, to obtain a robust network characterization.

6.3. Conclusions

The aim of this work was to critical assess a variety of brain connectivity methods

to provide a validated protocol to support both cognitive research and clinical

activity. To address the principal issues in characterizing connectivity among

cortical areas, we performed a simulation study, where three ROIs interacted

each other. It is remarkable that other authors performed such analysis using

in silico datasets, but we exploited an innovative strategy based on a non linear

neural mass model able to generate different EEG rhythms instead of simulating

a system using a MVAR model. This was a crucial aspect for our validation,

to understand to what extent the linear methods we considered, such are those

based on MVAR and SEM, are able to describe connectivity of non linear signals,

using an approach totally independent of MVAR and SEM linear equation and,

hence, avoiding any risk of self-reference.
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In this work we modelled four simple network graphs: feed-forward, open-loop

with two links, open-loop including a reciprocal connection and cycle closed-loop,

by combining three ROIs which coupling strength was tuned by varying the link-

ing parameters. The resulting signals were characterized by intrinsic rhythms (in

alpha, beta and gamma range) and some received from the connected ROIs. To

understand methods robustness and precision, we performed an extensive simu-

lation considering the feed forward network: three datasets were generated with

different non linearity degree, by changing the network mass model parameters.

Then, using these datasets network topology and connectivity strength were es-

timated and compared with true networks.

We demonstrated that Granger causality is a good estimator with high values

both of sensitivity and specificity, while frequency indexes, DTF and PDC, are

too much affected by the threshold choice and their interpretation in terms of

absolute strength connection is not clear.

As regard SEM, we proved the difficulty of its approach to describe just simple

situations. Even if SEM is based on linear regression as well as MVAR models,

it differently assumes there is no connection with past information, as if brain

connectivity could describe time series relationships by the instant we observe it.

Hence, it is not sufficiently robust to characterize neuronal dynamic activity.

Finally, our results suggest that Granger causality and DTF can be combined

in a practical procedure to be followed in clinical research, since they are more

robust to signal non linearity than PDC. Application described here showed how

connectivity analysis can add further information on neuronal signals behaviour

previously study by spectral analysis, only. Their results gave plausible explana-

tions on the processes relationships, quantifying the different brain states classi-

fication: healthy volunteer Vs patients, before Vs after AAC.

We believe that the simulation study was very useful to highlight advantages and

disadvantages of such methods. Further efforts should be done to cover a greater

realism and complexity in the network model, introducing feedback loop and non
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linear relationships in equations modelling the linking between ROIs. In addition,

other multivariate methods should be evaluated to describe connectivity not only

in terms of frequency coupling.

As we know, there are many debates on the recent upsurge of Granger causality

and MVAR indexes, since they are not able to describe connectivity in terms of

physical control. In this work, our aim is to explore data and then estimate a

plausible network able to describe their relationships in terms of temporal prece-

dence. There are many ways to intend coupling between time series, but each

method must be used properly. Brain connectivity is still a highly promising

framework in modern theories in neuroscience and cognition, hence, more and

more advance techniques could be applied to neurobiological data and bring ad-

vantages to clinical applications.
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A. SEM analysis in frequency domain

A.1. Path coefficients interpretation

Path coefficients represent the dependent variable response to a unit change in an

explanatory variable, whilst the other variables in the model are held constant

([55]). The coefficient sign reveals what kind of covariance relationship exists

between network components. A positive coefficient means a synergic connection,

conversely, a negative one implies that the increasing activity in one variable leads

to a decrease in the activity of the variable it projects to.

Another plausible explanation of their meaning can be obtained in frequency

domain, considering each path coefficient of the model with Eq. 1.22 as a general

LTI system as follows:

v
′
2(t) = hA(t) ∗ v′1(t) + e

′
2(t)

v
′
3(t) = hB(t) ∗ v′1(t) + hC(t) ∗ v′2(t) + e

′
3(t)

= hB(t) ∗ v′1(t) + hC(t) ∗ hA(t) ∗ v′1(t) + hC(t) ∗ e′2(t) + e
′
3(t)

= hD(t) ∗ v′1(t) + hC(t) ∗ e′2(t) + e
′
3(t)

(A.1)

where hA(t), hB(t) and hC(t) are the connections impulse responses of the net-

work shown in Figure 1.22 and hD(t) = hB(t) + hC(t) ∗ hA(t).

In frequency domain, the linear system in Eq. A.1 is translated into the following

spectral density functions:

S
′
2(f) = |HA(f)|2S′1(f) + (σ

′
2)

2 (A.2)
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S
′
3(f) = |HD(f)|2S′1(f) + |HC(f)|2(σ′2)2 + (σ

′
3)

2, (A.3)

where

|HD(f)|2 = |HD(f)||HD(f)|

= |HB(f) +HC(f)HA(f)||HB(f) +HC(f)HA(f)|,
(A.4)

The above expressions evidence the action each variable exerts over the others.

Applying proper algebraic tricks, Eq. A.3 can be developed in order to highlight

the power contribution coming from each variable separately. By means of the

properties |zw| = |z||w| and |z + w| = |z|+ |w|,

|HC(f)HA(f)| = |HC(f)||HA(f)|, (A.5)

and

|HD(f)|2 ≤ (|HB(f)|+ |HC(f)HA(f)|)(|HB(f)|+ |HC(f)HA(f)|) (A.6)

can be substituted in Eq. A.3, obtaining an approximation of the spectral density

of v
′
3(t):

S
′
3(f) ≤ (|HB(f)|2 + |HC(f)|2|HA(f)|2 + 2|HB(f)||HC(f)||HA(f)|)S′1(f)

+|HC(f)|2(σ′2)2 + (σ
′
3)

2.

(A.7)

Eq.A.7 shows that power inflow of variable n = 3 is a cross-combination of all the

connection impulse responses. The linear equations which this method is based

introduce the cross-correlation effect when at least the same two variables are

linked with different paths, i.e. in the model 1.1 such are variables n = 1 and

n = 3.

Matching the power spectral density expressions of eq. A.2 and eq. A.7 with

the following, obtained by means of the Fourier Transform of the autocorrelation
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function of eq. 1.22:

S1(f) = FT [Rv1(τ)] (A.8)

S2(f) = FT [Rv2(τ)] = (k221)S1(f) + σ22 (A.9)

S3(f) = FT [Rv3(τ)]

= (k231)S1(f) + (k21 k32)
2S1(f) + 2( k31 k21 k32)S1(f)+

(k32)
2σ22 + σ23

(A.10)

In terms of power, the scalar path coefficients kij of SEM can be approximated

with the following integrals:

k21 ≈
(

1

fmax − fmin
∫ fmax
fmin

|HA(f)|2 df
)1/2

(A.11)

k31 ≈
(

1

fmax − fmin
∫ fmax
fmin

|HB(f)|2 + |HB(f)||HC(f)||HA(f)| df
)1/2

(A.12)

k32 ≈
(

1

fmax − fmin
∫ fmax
fmin

|HC(f)|2|HA(f)|2 + |HB(f)||HC(f)||HA(f)| df
)1/2

(A.13)

k21 exclusively depends on the transfer function, HA(f), associated to the re-

spective direct connection. k31 and k32 result in the combination of the transfer

functions included in all the paths targeting ROI3. This interpretation suggests

that path coefficients are composite measures, representing not only the direct

effect between two variables, but also the cross-effect mediated by the other vari-

ables in the linking pattern.

A.1.1. Parameters interpretation using the Neural Mass Model

In order to find a relationship among path coefficients and weights A, B and C, as

explained in §. A.1, the impulse responses of the network model can be rewritten
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SEM analysis in frequency domain

after linearization of the neural mass model, as formalized in Fig. 2.5:

v1(t) = (hex1(t) + hin1(t)) ∗ n(t)

v2(t) = hA(t) ∗ v1(t) + (hex2(t) + hin2(t)) ∗ n(t)

v3(t) = hB(t) ∗ v1(t) + hC(t) ∗ v2(t)) + (hex3(t) + hin3(t)) ∗ n(t)

(A.14)

where

hA(t) = hex2(t) ∗A

hB(t) = hex3(t) ∗B

hC(t) = hex3(t) ∗ C

Expressions of eq. A.11, eq. A.12 and eq. A.13 allow to calculate the approxima-

tion of SEM parameters in terms of A, B, C and network model transfer functions

as follows:

k∗21 =

(
1

fmax − fmin
∫ fmax
fmin

A2|Hex2(f)|2 df
)1/2

(A.15)

k∗31 =

(
1

fmax − fmin

)1/2

(∫ fmax
fmin

B2|Hex3(f)|2 +B|Hex3(f)|C|Hex3(f)|A|Hex2(f)| df
)1/2 (A.16)

k∗32 =

(
1

fmax − fmin

)1/2

(∫ fmax
fmin

C2|Hex3(f)|2A2|Hex2(f)|2 +B|Hex3(f)|C|Hex3(f)|A|Hex2(f)| df
)1/2

.

(A.17)

where Hexn , with n = 1, 2, 3, are the Fourier transform of the ROIs impulse

responses.

The same condition of the simulation study are considered to compute SEM path

coefficients and the ones derived by the model parameter, eqs. A.15, A.16, A.17.

Fig. A.1.1 reports the linear correlation between estimated kij values via SEM

(mean ± SD; N = 100) and k∗ij values derived via Eqs. A.15,A.16 and A.17.

High scores of R2 evidence the existence of a strong linear relationship between

84



A.1 Path coefficients interpretation

Figure A.1.: Comparison between estimated kij values via SEM (mean ± SD; N = 100) and k∗ij
values derived via Eqs. A.15,A.16 and A.17.
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them and confirm that path coefficients can be explain as composite measures

taking into account of all network contribute.
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