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Chapter 1- General Introduction 
Fire in forest stands is the result of combining fuel availability, meteorological conditions and 

source of ignition. In many ecosystems, fire plays an important role in regulating and shaping 

forest structure. In general, fire may cause loss of vegetation, successional change of species, 

alteration of the resource availability for both fauna and flora (DeBano et al., 1998; Núñez et al., 

2008). Fire severity summarizes ecosystem changes (physical, chemical and biological) induced by 

the passage of fire (White et al., 1996). High severity of fire is strongly correlated with the lack of 

vegetation cover, enhancing the impact of rainfall on bare soil, leading to runoff and erosion 

(Cocke et al., 2005). Post-fire regeneration depends on fire severity and environmental constrains 

such as availability of light, water, nutrients and seeds (Greene et al., 2005). In addition to this, 

post-fire recovery process of the ecosystems undergoes to the current climate change scenarios of 

increasing risk of wildfires and others severe disturbances induced by the greater frequency of 

extreme climatic events (Running, 2006).  

Resistance of the ecosystem to the changes and rate of recovery to the pre-fire conditions 

(resilience) are features to consider for planning post-fire actions (McCann, 2000; Proença et al., 

2010). However, evaluating the economic value of the wood, the degrees of hydro-geological risk 

and the pattern of fire severity, make the range of post-fire interventions rather wide (Beschta et 

al., 2004; Spanos et al., 2005; Foster and Orwig, 2006; Noss and Lindenmayer, 2006). Post-fire 

restoration activities should consider several factors, such as the characteristics of vegetation 

before the event, the concentration of residual ash, mineralization rate affecting the nutrient 

cycle, climatic factors, the influence of fauna living in the ecosystem (Rosario Nuñez et al., 2003; 

Hille and den Ouden, 2004; Casady et al., 2009; Puerta-Piñero et al., 2010). Characteristics of the 

stand affected by fire and restoration objectives should drive to a proper restoration planning. 

However, restoration activities have been frequently planned without a proper evaluation of 

ecological and economic consequences (Leverkus et al., 2012). Altering physico-chemical factors of 

the ecosystem, restoration activities can severely limit vegetation recovery (Beschta et al., 2004; 

Ordóñez et al., 2005; Noss and Lindenmayer, 2006). Salvage logging (felling and removal of burnt 

trees) is a common post-fire practice applied worldwide, sometimes coupled to artificial 

plantations (McIver and Starr, 2001; Beschta et al., 2004; Beghin et al., 2010). In order to keep 

safety slopes (i.e. tree-fall accidents) and for the extraction of valuable wood products, salvage 

logging has become the most common post-fire practice. The massive application of salvage 

logging as exclusive post-fire management practice has been the focus of an intense scientific 

debate (DellaSala et al., 2006; Noss and Lindenmayer, 2006; Lindenmayer et al., 2008) concerning 

the ecological consequences of salvage interventions on regeneration establishment and survival 

(Donato et al., 2006). In this context, restoration practices alternative or complementary to 

salvage logging emphasize the role of burnt wood in improving the availability of “safe sites”, 

where regeneration can find positive microclimatic conditions (Purdy et al., 2002; Greene et al., 

2007; de Chantal et al., 2009; Legras et al., 2010). The variability in functions, species composition 

and ecological niches in the forests of the Alps, bonded with a wide range of environmental and 
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climatic variables, makes it difficult to define the plans of proper mitigation measures. Actually, in 

the alpine environment there are few information of restoration outcomes, especially in regard to 

wildfire involving spread surfaces. Recent studies focusing comparisons between active 

restoration techniques with no intervention strategies, highlighted in these latter a greater 

efficiency in terms of costs, species diversity and vegetation recovery (Jonášová et al., 2006; 

Beghin et al., 2010; Leverkus et al., 2012). This research fits into this context bringing further 

elements of knowledge focused on post-fire management in alpine environment. 

The main objectives of this thesis were: 

• to analyze post-fire recovery dynamics and their relationship with fire severity and restoration 

activities; 

• to evaluate the role of deadwood on regeneration establishment and survival; 

• to assess the impact of different post-fire management practices on forest recovery. 

In order to deepen the knowledge on the role of fire towards forest dynamics, this research 

proposes a series of studies in whom the recovery processes of vegetation are explored through 

methods of integrated analysis, using different spatial- and temporal-scale approaches (Figure 

1.1). 

  

Figure 1.1 - Flowchart resuming the different spatial and temporal scales of analysis approached in the 
study. Each chapter take advantage of different combinations of investigation scales.   

 

A suitable spatial scale can be potentially identified for a specific process (Levin, 1992), but wildfire 

typically affects a mountain forest at many scales. Fire severity and seed dispersal capabilities may 
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define key spatial scales for regeneration (Wiens, 1989), whose recovery relies on patchily 

distributed biological legacies (Franklin et al., 2000). Aiming at identifying the factors that mostly 

influence the dynamics of vegetation recovery, a single spatial scale taking into account microsite 

characteristics, regeneration and environmental patterns in the burnt area could not be selected 

a-priori. Capability to detect ecological patterns is a function of both the extent and the resolution 

of an investigation (O’Neill et al., 1988). Since regeneration process is sensitive to several 

environmental factors at different scales, a multi-scale approach allows to overcome the 

insufficient information available on actual pattern of vegetation recovery (Wiens, 1989).  

The achievement of the targets planned by restoration management implies a post-intervention 

assessment of the recovery process over the time. Identification at-broad scale of areas with low 

resilience (high vulnerability) to wildfires or unexpected shifts of species composition over the 

time, may further improve post-fire restoration actions. 

The research has been carried on two study areas located in the Italian Alps where restoration 

activities were applied after major forest fires. Both fires burnt wide surfaces of pine forests 

located over slopes southern exposed and characterized by harsh conditions (dry environment 

with high solar radiation exposure) through the growing season. The two study sites were: 

- a forest of Pinus nigra and Pinus sylvestris situated in the South-Eastern Dolomites (Cellina valley, 

Friuli Venezia Giulia) where the study focuses on the effects of fire severity and post-fire 

management on the recovery process in medium-term (Figure 1.3), since the forest fire occurred 

in 1997; 

- a forest of Pinus sylvestris located in the Western Alps (Aosta Valley) affected by a wildfire in 

2005, enabling to assess, at short term, the effects of restoration activities on regeneration 

establishment, survival and potential changes in microclimate in the managed areas (Figure 1.2). 

This thesis includes four investigations performed following different spatio-temporal approaches 

(Figure 1.1). 

In the second chapter, one of the most wide burnt forest of the Alps is analyzed (Cellina valley). 

Different scales of investigations allow to gather an overview of the area with punctual 

observations all over the burnt forest 13 years after the fire and 10 years after the interventions. A 

broad-scale analysis was carried out by means of Remote Sensing techniques which enabled a 

spatio-temporal scan of the whole area from the pre-fire conditions (1994) to the 2010.  

The third chapter concerns a forest affected by a stand-replacing fire in Aosta valley. The study 

was performed in permanent monitoring areas where different post-fire restoration practices 

were applied. The experimental design allowed to combine observations at-microsite scale with 

sampling descriptions of regeneration processes carried at-treatment scale.  

Chapter four includes a Remote Sensing analysis of the burnt area in Aosta valley. Field 

investigations were combined to a RS-dataset describing at a broad scale the experimental area.  
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Chapter five concerns an experimental study of the main environmental parameters affecting the 

regeneration establishment and survival of the site located in Aosta valley. The study reports 

outcomes of a field campaign performed during summer 2011 among the monitoring areas 

managed with different post-fire interventions.  

Each chapter includes a final discussion of the main results. The study carried in Cellina valley 

includes the conclusions related to the site as well, whereas “General Conclusions” reports the 

most relevant outcomes from the whole research, highlighting the different scales of analysis.  

Most of analysis were performed using GIS supports on geographic databases provided by Aosta 

Valley Region and Friuli Venezia-Giulia Region. Investigations at-broad scale used Remote Sensing 

satellite imagery from Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper plus 

(ETM+) archives. An airborne LiDAR (laser Light Detection and Ranging) scan of the burnt area in 

Aosta valley site (summer 2011) provided an additional high-resolution information layer. 

 

 

Figure 1.2 - Landscape view of the burnt area in the Bourra site (Aosta valley - image taken in 2007). 
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Figure 1.3 - Views of the burnt 
area in Cellina valley (images 
taken in 2010). 
(Above) - within the M.te Lupo site 
an area subjected to passive 
restoration; there are still visible 
many standing dead trees. 
(Left) - a detailed view of a steep 
slope subjected to active 
restoration in the Arcola site. 
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Chapter 2 
Role of fire severity and effects of post-fire restoration in a burnt forest of the 

Alps: a Remote Sensing analysis. 
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Introduction 
In the last centuries, the anthropic activities have led to a diminished importance of natural 

disturbance as a regulator agent of the forest dynamics in the Alps. Wind-throw, insect pests and 

fungi attacks usually affect the ecosystems in the Alps at fine-scale; however, in the last decades, 

mountain areas are more subjected to broad-scale disturbances due to relevant changes of socio-

economic, ecological and climatic factors, often acting simultaneously (Ammer, 1996; 

Schönenberger, 2001; Nagel and Diaci, 2006; Firm et al., 2009). In this context, the fire considered 

as a disturbance, is increasing in both frequency that on the surface affected per event. In the 

Alps, fires involving large areas, even if quite rare, are often developed in heterogeneous gradients 

due to high variability of fuel load, topographical and meteorological conditions as well 

(Fahnestock and Hare 1964). The degree of change caused by fire in the organic matter of soil and 

vegetation can be defined as fire severity, the impact of fire on the ecosystem (White et al., 1996; 

Keeley, 2009).  

Monitoring fire severity over a forested mountain area could be quite complicated, due to the high 

spatial and temporal variation of the disturbance: on a broad-scale, remote sensing (RS) has 

proved to be a helpful tool for screening the effects of fire in many different ecosystems (Caetano 

et al., 1996; White et al., 1996; Hudak et al., 2007). Field measurements of severity can be 

combined with spectral information provided by RS, defining a map of fire severity (Key and 

Benson, 2006; Escuin et al., 2008). Multispectral images from the Landsat TM/ETM+ archives, 

allow the extraction of Vegetation Indices (VIs), which are indicators of the state of vegetation: 

several ecological studies used these indices for applications related with vegetation dynamics, 

and landscape transformations, such as those induced by fire (López-García and Caselles, 1991; 

Salvador et al., 2000; Isaev et al., 2002; Chafer et al., 2004; Key and Benson, 2005; Miller and 

Thode, 2007). At a broad-scale, RS imagery supports the estimation of fire-severity and the study 

of vegetation dynamics after disturbance, with low costs and reliable results (Diaz-Delgado and 

Pons, 2001; French et al., 2008; Veraverbeke et al., 2010). A clear comprehension of the spatial 

pattern of severity may facilitate the scheduling of restoration activities: i.e. steep slopes affected 

by high severity of fire require interventions aiming to promote vegetation recovery because of 

the high hydro-geological risk. An enhanced impact of rainfall on bare soil, often related with the 

lack of residual vegetation cover, following high severity fire, leads to runoff and erosion (Cocke et 

al., 2005). However, in the past restoration activities have been frequently planned without a 

proper evaluation of ecological and economic consequences: altering physico-chemical factors of 

the ecosystem, restoration activities can limit de-facto vegetation recovery (Johnstone and 

Kasischke, 2005; Johnstone and Chapin, 2006; Mendoza et al., 2009; Beghin et al., 2010). 

Furthermore, evaluating the economic value of wood, the degrees of hydro-geological risk and the 

pattern of fire severity, the range of post-fire interventions can be rather wide (Beschta et al., 

2004; Spanos et al., 2005; Foster and Orwig, 2006; Lindenmayer and Noss, 2006).        

This study investigates the vegetation recovery after a wildfire that affected a pine forest, in the 

North-Eastern Italian Alps. The dynamics of tree regeneration and the effects of restoration 
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activities are evaluated through the time, aiming to combine regeneration and environmental 

measures with RS data, at different scales of investigation. The main goals are: 

- to assess fire severity and vegetation response after the fire by means of time-series data from 

remote sensing images and field data sampling; 

- to investigate possible relationships between vegetation indices and ecological/environmental 

factors involved in the recovery processes; 

- to evaluate the effects of restoration activities on forest regeneration dynamics and their 

environmental implications. 
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Methods 
Study area 

The study area is located in Cellina valley on Eastern part of the Italian Alps. In the early spring of 

1997 a wildfire, driven by a strong wind blowing from East to West along the Southern slope 

above Barcis village, burnt around 2300 ha of pine forest (approximate center of study area is 

46°11'58"N  12°34'28"E).  The altitude of the fire-affected area ranges between 450-1300 m a.s.l. 

South-East limited by stream Cellina and North-West by rocky peaks of dolomites. Average annual 

temperature is 9-11 °C with minimum -5 °C (January) and maximum 27 °C (July); average annual 

precipitation is 2100 mm distributed throughout the year (more than 100 mm/month) with spring 

and autumn maximum. 

 
Figure 2.1 - Study area located in Cellina valley (Friuli Venezia-Giulia Region), included in the Eastern Italian 
Alps.   

 

The most common mineral soil type is calcareous-dolomitic and the soil is permeable, nutrient-

poor with shallow depth above the parent rock surface.    

The burnt area was mainly a forest dominated by Pinus nigra Arnold mixed with Pinus sylvestris L. 

and limited presences of Fagus sylvatica L. - Acer pseudoplatanus L. (at higher elevation, Northern 

exposition), Fraxinus ornus L. - Ostrya carpinifolia Scop. (at lower elevation, Southern exposition). 
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The P. nigra forest colonized the former grazing abandoned in post world war II years, becoming a 

protection stand with a positive role about the reduction of the soil erosion on the steepest 

slopes. 

After the fire, the local forest department defined the perimeter of burnt area, the ignition point, 

the daily chronological sequence of the area involved, the burnt and un-burnt forested areas  

within the perimeter (visually estimated). 

 

 

Figure 2.2 - Orthoimages of Cellina valley: perimeters of the burnt area (red line) and restored zones (area I: 
Arcola, area II: M. Lupo). The zoomed image reports the arrangement of sampling plots within Area II 
(M.Lupo): yellow - treated, red - control (un-treated).  

 

Data collection 

In 2000, two geographically different areas were subject to restoration (area I: Arcola; area II: 

M.Lupo); salvage logging and seedlings plantation of indigenous species were applied nearby the 

villages in the steepest slopes affected by high-severity fire. 

In summer 2010, a total of forty sampling plots (circular shape, 6 meter radius) were randomly 

distributed in area I (Arcola) and area II (M. Lupo). Within each area, ten sampling plot were 

placed in salvaged zones contrasted by ten control plots where no restoration was applied (no-

intervention) (Beghin et al., 2010; Jonásová et al., 2010).  
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Parameters collected at plot-level: 

- GPS position of the plot center (sub metric resolution), mainly exposition and slope 

degrees; 

- estimated (to the nearest 5%) ground cover of grasses, shrubs, bare soil and rock exposed, 

Coarse Wood Debris, Litter; 

- dead stumps or snags; 

- living trees diameter (DBH > 10 cm), species, height, crown length to the nearest meter, 

crown radius projection to the ground;  

- regeneration characteristics of woody species, seed or sprout origin, height, root collar 

diameter (RCD) and estimated age; for the sprouting regeneration the number of shoots 

was counted and the height of tallest shoot per stump measured. 

 
a) b) 

  

 

 

d) 

Figure 2.3 - images taken in 2010: 
a), b) restored areas (treated) with salvage logging 
and seedlings plantation; c), d) control areas (un-
treated), no interventions. 

c) 
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Climatic conditions, forest type and mineral soil exposure are factors influencing vegetation 

response to the disturbance; in addition to this, restoration activities and different levels of fire 

severity affect post-fire vegetation recovery (Johnstone and Kasischke, 2005; Johnstone and 

Chapin, 2006). In this context, considering the extension of the forest involved, the Landsat 

Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) multi-spectral satellite scenes, 

allow a broad-scale investigation. A temporal series of ten multispectral images was acquired from 

Glovis USGS website (Table 2.1). The images selected ranges between the 1991 and 2010, each 

taken in the middle of vegetation season (to reduce phenotypic diversity) showing less than 20% 

cloud-cover, with specific awareness to ensure that  the study area was totally cloud-free.  

Landsat  
sensor 

Acquisition  
date 

Path/Row 

TM 23-Jul-1991 191/028 

TM 05-Aug-1993 191/028 

TM 23-Jul-1994 191/028 

ETM+ 15-Sep-1999 191/028 

ETM+ 23-Aug-2000 192/028 

ETM+ 28-Jul-2002 192/028 

TM 01-Sep-2006 192/028 

TM 18-Jul-2007 192/028 

TM 17-Aug-2009 191/028 

TM 03-Jul-2010 191/028 
 

Table 2.1 - Summary of multispectral image characteristics. 

The entire dataset was converted from initial Digital Numbers to At-Surface Reflectance, according 

to - Chander et al., 2009. The Pseudo Invariant Features structures and methods were applied (Hall 

et al., 1991; Hill and Sturm, 1991), in order to compare the different images.  

A  comprehensive examination of the burnt area was conducted through the use of VIs extracted 

from the multispectral images, aiming to: 

- define spatial pattern of fire severity; 

- explore through the years the vegetation response to the fire, using a temporal series of 

multispectral images. 

 

Three groups of VIs were used to assess different levels of fire severity and the relationships of 

spectral information with regeneration characteristics measured in the sampling plots:  

I. Green-leaf indices: group of VIs chosen to evaluate the spectral differential responses of near- 

infrared (NIR), mid-infrared (SWIR) and photosynthetic active (RED) bands.  

 

 Normalized Burn Ratio (NBR): calculated combining  NIR and SWIR information (bands 4 

and 7 of Landsat TM/ETM+), is used to detect burnt areas (Miller and Yool, 2002; Brewer et 

al., 2005; Epting et al., 2005; Key & Benson, 2005). NBR values spans between +1 and -1 

(positive values in vegetated area, while negative values correspond to bare soil) and 
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presents a strong inverse correlation with fire severity. At this purpose, the subtraction 

(dNBR) of post-fire NBR values from pre-fire ones had wide applications for burnt area 

detection and fire severity investigation (Key and Benson, 2002; Howard and Lacasse, 

2004). 

         
        

        
  

 Normalized Difference Vegetation Index (NDVI): a measure of the photosynthetic 

‘greenness’, was used to evaluate vegetation cover dynamics since the early 1980s (Asrar 

et al., 1984; Tucker and Sellers, 1986; Wiegand et al., 1991, Woodcock et al., 2001). NDVI 

has been useful for a long time to assess phenological condition, (Justice et al., 1985; Reed 

et al., 1994) and monitor vegetation changes in low to moderate density cover, like semi-

arid areas (Kerr et al., 1989; Nicholson et al., 1990). 

         
       

       
  

 Soil Adjusted Vegetation Index (SAVI):  the presence of low-density vegetation cover and 

background noises, like soil brightness and color, plays a relevant role influencing the 

spectral responses of a vegetated area. SAVI was introduced to mitigate this problem 

(Huete, 1988): using the same spectral information of NDVI, an adjusting factor in SAVI 

reduces soil noise throughout a broad range of vegetation density. 

  

              
       

         
  

(with L = 0.5) 

II. Tasseled cap indices (TC): a combination of spectral information, derived from all Landsat 

TM/ETM+ bands; TC has been widely-used for temporal investigations of forest disturbances 

(Kauth and Thomas, 1976; Crist and Cicone, 1984). Taking advantage of sensitivity to the soil 

and vegetation moisture (Jin and Sader, 2005), TC indices enable to detect forest structure 

and land cover changes (Cohen and Spies, 1992; Cohen et al., 1995; Franklin et al., 2002;). 

Differential combinations of TC indices proved to be helpful for stand-replacing and complex 

patterns disturbances (Healey et al., 2005; Hais et al., 2009; He et al., 2011).  

 

 Brightness (Br), Greenness (Gr), Wetness (Wet):  principal components transformation of 

six Landsat TM and ETM+ bands (Crist and Cicone, 1984; Huang et al., 2002), these three 

components  include most of the spectral information (directly related to the 

environmental parameters: Br-soil exposed presence, Gr-vegetation cover, Wet-water 

content). 

 

 Modified Disturbance Index (mDI ): calculated by subtraction of TC basic components, mDI 

is used to highlight the spectral differences between live forest and areas affected by high-

severity fire (Healey et al., 2006), filtering the Greenness dynamics for mixed severity 

disturbance (Hais et al., 2009).  
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III. Forest z-score indices: in order to investigate the probability of a pixel being forested (Huang 

et al., 2008; Schroeder et al., 2011), an undisturbed forested area was set as training 

reference-forest (exposition, vegetation cover and density similar to the burnt area): two VIs 

were calculated in terms of pixel-distance of the burnt area from a reference forest (assuming 

the training forest as a sort of “normality” condition).   

 

 Integrated Forest Index (IFI): a z-score measure of a pixels likelihood of being forested; it 

has given good results in detecting forest change without prior knowledge of forest type 

(Huang et al. 2008, 2009, 2010). Extracting IFI values of a disturbed area, allows to identify 

forest pixels using a procedure of image analysis (Huang et al., 2008; Chen et al., 2011; 

Schroeder et al., 2011). 

            
 

 
   

         

   
   

     

where: p pixel of an image, i band (Landsat TM/ETM+ bands: RED-band 3, MIR-

band 5 and SWIR-band 7),      spectral value for pixel p,      and     mean and 

standard deviation of forest training pixels on band i. 

 Modified Composite Burn Index (mCBI): we supposed that the use of all spectral 

information could provide a more detailed map of all vegetation layers involved in the 

changes (Meng and Meentemeyer, 2011); mCBI merged sensitivity related to vegetation 

dynamics with the idea of normalized distance from a reference-forest (Huang et al., 2008). 

             
 

 
   

         

   
   

     

where band i and     refer to five Landsat TM and ETM+ bands (band 2÷7).  

Aiming at comparing multiple image dates, inter-annual noises factors as vegetation phenology 

and sensor-geometry displacements (sun-surface alignment) can be further reduced with a 

standardization of VIs (Rondeaux et al., 1996; Wulder et al., 2009); for every year taken into 

account, all indices were normalized with a rescaling technique to the mean and standard 

deviation values  of a undisturbed pine stand in the same area (Healey et al., 2005; Masek, 2005; 

Hais et al., 2009): 

       
     

  
 

where Ir is a rescaled index value, Iµ, Iσ are the mean and standard deviation of 

the reference forest index.  
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Data analysis 

An analysis of the fire severity affecting the burnt area was performed using the pre-fire 1994 and 

post-fire 1999 scenes. At this purpose we used two VIs: NBR, widely used in fire-severity mapping 

(Epting et al., 2005; Loboda et al., 2007; Escuin et al., 2008), and mCBI: 

 

                                                 

The mCBI index was introduced in comparing with dNBR performances because, in some study 

case, dNBR proved a diminished accuracy in discriminating between burnt pixels and un-burnt 

ones (Wulder et al., 2004; Chen et al., 2011). Subtraction and classification pixel by pixel of the VI 

values produced two fire severity maps (one for each index) according to three classes: high 

severity (greater  than 1 S.D., but lower than 2 SD), low severity (greater than 0.5 SD, but lower 

than 1 SD) and no change class (lower than 0.5 SD); values of differential VIs greater than 2 SD 

were considered outliers.  

The map of severity resulting from the dNBR index was compared with the one derived from  

dmCBI. Validation of indices performances was done by overlapping the severity maps over two 

different training areas, identified as burnt and un-burnt zones, whose perimeters were defined by 

ground measurements immediately after the fire. 

Using a twenty-meter circular buffer for each sample plot (Figure 2.4), a corresponding VI value 

was extracted (mean of the neighboring pixels crossed by the buffer plot) and organized in a data 

matrix (VIs data matrix).  

 

Figure 2.4 - A circular area, with a diameter of 20 meter, located around each 
sampled plot, was overlapped to VI layer: the VI value assigned to the sampled plot 
resulted from the average of the extracted values among crossing pixels (the small 
circles inside each pixel).  

 

The Two-way cluster analysis using Ward’s method and Euclidean distance (McCune and Grace, 

2002) was applied to this indices matrix to identify possible patterns of similar plots; Spearman 

rank correlation coefficients were calculated between VIs. Two-way cluster analysis performs two 

separate cluster analysis: a) looking for similarities of VI values  at plot level, b) looking for groups 

within the VIs (correlations between VIs). 

In order to evaluate the vegetation recovery patterns and effects of interventions towards natural 

regeneration, all forty sampled data plots were analyzed: twenty were grouped as treated and 

twenty as un-treated. A second matrix of data included all regeneration variables (seedlings 

density, number of living sprouts and shoots, age of seedlings, RCD and height). Furthermore, 

species diversity using Shannon index (Magurran, 2004) and the following structural parameters of 
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natural regeneration seedlings were considered: height diversity by THD index (Kuuluvainen et al., 

1996) with 10-cm horizontal layers, and TDD diameter diversity index (Rouvinen and Kuuluvainen, 

2005) applied to 1-cm RCD classes.  

A  third matrix reported the environmental parameters related to: 

- living adult trees: - basal area, trees density and canopy cover - calculated according to 

USDA-SVS tools (McGaughey, 2002); 

- taking into account the particular soil permeability and the prevalent  Southern exposition of 

the burnt area, a North-ness index (Nness) was calculated, assuming the north-exposition as 

the more suitable in terms of water availability for the forest growth (Beers et al., 1966; 

Elson et al., 2006). Higher values of Nness indicate north-facing slopes, while lower values 

correspond to Southern exposition. 

 

                               

- the total amount of incoming solar radiation (direct + diffuse) calculated by GIS tool raster 

analysis as a direct clear-sky short-wave radiation measurement based on latitude, season, 

time interval and a DEM (Kumar et al., 1997); the value of seasonal solar radiation was 

extracted for each sampling plot. 

Cluster analysis and Spearman rank correlation were performed to highlight the possible 

relationships within regeneration and environmental  matrix.  

VIs, regeneration and environmental matrices were normalized by standard deviation and outliers 

removed (> ± 2σ). 

Assuming the spectral clustering as underlying patterns, a PCA analysis technique was used to 

explore the relationships between VIs and:  

 regeneration variables (PCA-1); 

 environmental parameters (PCA-2). 

In both analysis, VIs were used as dependent variables, while the regeneration descriptors (in PCA-

1) and the environmental variables (in PCA-2) as explanatory variables; VI cluster was used as 

passive categorical indicator variable. 

In order to verify the separation between the groups of VIs-clustered plots, a multi-response 

permutation procedure - MRPP (Biondini et al., 1988) was performed separately for VIs, 

regeneration variables and environmental parameters matrices; MRPP is a non-parametric 

procedure which verifies the hypothesis there shall be any difference between two or more a-

priori groups (VIs clusters in our study), while test statistics describe the separation between the 

groups (McCune and Grace, 2002). Furthermore, overlaying data rank correlations were explored 

among regeneration, environmental and VIs data.  

A Discriminant Analysis classification - DA (Legendre and Legendre, 1998) was performed on the 

VIs-clustered plots, allowing  to classify the entire burnt area into associated pixel groups. 
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The field-data collected was divided into two groups: treated and untreated plots; a MRPP was 

applied to assess separation between groups, using a Euclidean distance measure. 

VI values, regeneration and environmental variables of plots belonging to different treatments 

were compared, according to the non-parametric Mann-Whitney W-test (95% confidence level). 

The differences between regeneration variables among different treatments were examined using 

a permutational multivariate analysis of variance (PerMANOVA), with Euclidean distance measures 

and one fixed factor (Anderson, 2001; McArdle and Anderson, 2001). PerMANOVA allows to apply 

a nonparametric F-test for differences in mean within-group distances among groups (Peck, 2010).  

To evaluate the post-fire dynamics of vegetation recovery, we used the temporal series of VIs 

between 1991 and 2010 (discontinuous) for each treatment (treated, no intervention). 

The ANOVA comparisons with Tukey HSD post hoc test were performed on VIs: 

- among contiguous years within each treatment; 

- between treatments in the same year.  

Processing and editing RS data were supported by ENVI version 4.7 (ITT VIS, 2009). All multivariate 

analysis (PCA, MRPP, Two-way cluster, PERMANOVA) were conducted using PC-ORD version 6.0 

(McCune and Mefford, 2011). Comparison and DA were performed by means of Statgraphics 

(Statgraphics Centurion XVI, 2010).  
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Results 
Severity map 

The ability of VIs in detectingt changes of fire severity, enabled to describe zones associated to 

different severity levels within the burnt area (Figure 2.5).   

 
 

a) b) 

Figure 2.5 - Maps of fire severity classified according to 3 levels: no change (white), low severity (orange), 
high severity (red); 
a) dNBR derived, b) dmCBI derived . 
 

The dNBR index classified as burnt pixels 46% of the area delimited by the perimeter, 31% at high 

severity level; dmCBI allocated as burnt the 34% of total pixels inside the perimeter, 18% at high 

severity (Table 2.2).  

 

 
Table 2.2 - Definition of fire severity classes referred to the severity maps built by dNBR and dmCBI. 

   

In the overall statistical, a comparison between the two indices leads to highlight the tendency of 

dNBR to overestimate the number of pixels classified as burned (Table 2.3). Therefore, within the 

burnt pixels group, the pixels classified by dNBR as high severity are clearly higher than dmCBI. 

 

(ha) (%) (ha) (%) (ha) (%) (ha) (%) 
dmCBI 333.0 18.3 285.8 15.7 1204.6 66.1 
dNBR 557.7 30.6 276 15.1 989.6 54.3 

High severity Low Severity No change 

 

Greater than 1 SD Greater than 0.5 SD Lower 0.5 SD 

1823 100.0 

tot. surface 
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Table 2.3 - Comparison between the ability of fire severity indices to detect burnt and un-burnt 
pixels over the training areas. 

 

Using the two training areas as ground truth, it was possible to test the ability of discriminating 

burnt/un-burnt pixels for both severity indices; dNBR showed a higher percentage of commission 

error in areas unaffected by fire (pixels classified them as burnt  areas despite being un-burnt). As 

previously noticed within the burnt classes, dNBR confirms its tendency to identify as high severity 

a greater percent of pixels than dmCBI. 

 

  
a) b) 

Figure 2.6 - Detailed view of the training areas overlapped to the correspondent maps of fire 
severity: a) dNBR), b) dmCBI. Burnt training area (blue), un-burnt training area (green). 

 

The burnt area diagrams highlighted the range of elevation classes involved by fire, from 500 m 

(the ignition point) to 1300 m a.s.l. (Figure 2.7, 2.8). Slopes with south, south-west exposure were 

mostly affected by fire, with high severity spots located mainly around south-facing slopes, while 

north-facing areas were minimally involved. Both fire-severity maps showed the macro-

differences in fire behavior according to the morphology of the slopes (facing exposition), the 

climatic factors (mainly wind direction) and topographic influence (rock slopes, crossing streams) 

as spatial constraints as well.   

(ha) (%) (ha) (%) (ha) (%) (ha) (%) 
dmCBI 7.29 30.6 10.17 42.6 6.39 26.8 23.85 73.2 
dNBR 12.87 54.0 4.41 18.5 6.57 27.5 23.85 72.5 

dmCBI 0.63 1.4 0.54 1.2 43.83 97.4 45 97.4 
dNBR 5.13 11.4 6.75 15.0 33.12 73.6 45 73.6 

Correctly classified High severity Low Severity No change Total 

Burnt 

Unburnt 
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a) b) 

Figure 2.7 - Fire severity  and extension of burnt area as detected by dNBR index, according to: a) slope 
exposition,  b) altitude classes. 
 
 
 

  
a) b) 

Figure 2.8 - Fire severity and extension of burnt area as detected by dmCBI index, according to: a) slope 
exposition, b) altitude classes. 

 

Vegetation recovery 

The cluster dendrogram described as VIs values are arranged according to three spectral clusters 

Sp1, Sp2, Sp3 (Figure 2.9). A residual information greater than 80% highlights strong similarities 

among VIs that allow to select five indices as representative for unique spectral information (see 

VIs similarities in Figure 2.9):  

- NDVI, SAVI, Brightness, Grenness: rank correlation r = 0.88 ÷ 0.95 , p < 0.001; 

- mDI, Wetness: rank correlation r = 0.84 , p < 0.001; 

- IFI; 

- NBR. 
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Figure 2.9 - Two-way cluster dendrogram showing the three clusters of plots (Sp1, Sp2, Sp3) as results of 
common arrangement of the VIs values among the sampled plots. VIs similarities (to the right) allows to 
restrict the subsequent analysis to five VIs (red triangles), for a acceptable description of the spectral 
variability: IFI, NBR, mDI, NDVI and SAVI (keeping NDVI and SAVI because of the wide applications in other 
previous studies). 
 

MRPP procedure with the selected VIs among the three spectral groups (Sp1, Sp2, Sp3), shows a 

strong and significant separation between groups (T = -22.0; p < 0.0001) with high within-group 

homogeneity (A = 0.42). In the clustered arrangement of the sampled plots about half of the plots 

were assigned to Sp2, while the remaining plots were equally divided into Sp1 and Sp3.  

Regeneration data referring to each group show: 

i. in Sp1, the highest conifer (pine) seedlings density and the lowest values of growth and 

structural parameters (age, average RCD, TDD, THD); 

 
ii. in Sp2, the highest values of growth (age, average RCD, TDD, THD) and growth variability 

parameters; 

 
iii. in Sp3, the highest broadleaf seedlings density and the greatest density of shoots and 

sprouts. 

 

Environmental variables among spectral groups exhibit a greater severity associated with higher 

burnt wood presence (snags and CWD) in Sp2 and lower tree density and canopy cover; plots 

assigned to Sp1 manifest the greatest tree density and cover, while a lower value of tree density 

was associated to the highest incoming radiation values and the lowest radiation variability in Sp3. 
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Spectral 
group 

Plot 
(n) 

Agemax 
(years) 

NRCfO50 
(n/ha) 

NRCfU50 
(n/ha) 

NRBlO50 
(n/ha) 

NRBlU50 
(n/ha) 

NSprout 
(n/ha) 

NShoot 
(n/ha) 

Nsp 
(n) 

H’ 
(-) 

Sp1 10 
7.6b 
(0.5) 

3061.9a 
(945.5) 

2922.0a 
(924.5) 

503.6b 
(133.0) 

385.6b 
(212.0) 

2391.7b 
(311.4) 

9293.1c 
(1432.7) 

7.4a 
(0.6) 

1.12b 
(0.09) 

Sp2 20 
9.1a 
(0.3) 

1188.6b 
(234.9) 

938.5b 
(286.1) 

606.7b 
(130.6) 

283.0b 
(71.6) 

3043.3b 
(293.9) 

14371.0b 
(1484.2) 

7.7a 
(0.4) 

1.54a 
(0.05) 

Sp3 10 
7.9b 
(0.5) 

901.1b 
(160.4) 

536.6b 
(141.3) 

1843.9a 
(384.6) 

553.3a 
(104.2) 

3756.9a 
(343.3) 

21184.5a 
(1620.2) 

7.2a 
(0.4) 

1.48a 
(0.05) 

 
 

Spectral 
group 

Plot 
(n) 

avgDR 
(cm) 

StdDR 
(cm) 

avgHR 
(cm) 

StdHR 
(cm) 

DmCf 
(cm) 

DmBl 
(cm) 

TDD 
(-) 

THD 
(-) 

Sp1 10 
1.1c 
(0.1) 

0.7c 
(0.1) 

61.7b 
(5.9) 

34.3b 
(4.9) 

1.2b 
(0.1) 

1.1b 
(0.2) 

0.90b 
(0.09) 

1.57c 
(0.10) 

Sp2 20 
2.3a 
(0.3) 

1.7a 
(0.2) 

109.2a 
(11.3) 

78.3a 
(8.7) 

2.9a 
(0.5) 

1.5a 
(0.2) 

1.29a 
(0.06) 

1.72b 
(0.05) 

Sp3 10 
1.6b 
(0.2) 

1.2b 
(0.2) 

106.7a 
(7.3) 

76.9a 
(5.8) 

2.2a 
(0.5) 

1.4a 
(0.1) 

1.28a 
(0.07) 

2.21a 
(0.07) 

 

Table 2.4 - Regeneration characteristics related to each group (mean ± SE): the upper table reports maximum of 
estimated age (Agemax), density of conifer (NRCf) and broadleaf (NRBl) seedlings, sprouting density (NSprout, 
NShoot), number of woody species (Nsp), Shannon index (H’). The -O50 and -U50 suffix refer respectively to 
seedlings taller and shorter than 50cm. In the bottom table avgDR, avgHR are the average of Root collar 
diametesr RCD and height of seedlings, StdDR and StdHR represent the standard deviation of RCD and height of 
seedlings, DmCf, DmBl the mean diameter of conifers and broadleaf regeneration, TDD, THD the diversity 
indices of diameter and height of seedlings. The Plot column reports the total plot score per group. Different 
letters highlight differences between groups (Mann-Whitney non-parametric comparison, p<0.05). 
 

 

Spectral 
group 

Plot 
(n) 

Snags 
(n/ha) 

Shrubs 
(%) 

Herbs 
(%) 

CWD 
(%) 

Litter 
(%) 

Soil 
(%) 

BATree 
(m²/ha) 

NTree 
(n/ha) 

TCC 
(%) 

Sp1 10 
609.9b 
(195.6) 

20.0a 
(2.9) 

55.5a 
(4.4) 

7.5b 
(0.8) 

10.0a 
(1.7) 

7.0b 
(1.10) 

18.4a 
(4.7) 

458.8a 
(135.2) 

50.3a 
(11.8) 

Sp2 20 
1117.5a 
(162.8) 

20.0a 
(2.2) 

45.6b 
(3.4) 

13.1a 
(1.4) 

8.3a 
(1.0) 

12.9a 
(1.8) 

6.8b 
(2.0) 

209.7b 
(66.1) 

18.6b 
(5.7) 

Sp3 10 
365.5c 
(156.9) 

25.0a 
(2.1) 

45.0b 
(3.5) 

8.5b 
(1.7) 

9.0a 
(1.2) 

12.5a 
(2.0) 

8.4b 
(3.1) 

189.9b 
(85.1) 

17.5b 
(5.5) 

 
 

Spectral 
group 

Plot 
(n) 

Nness 
(-) 

Rad 
(KWh/m²) 

StRad 
(KWh/m²) 

Severity 
(dNBR) 

Sp1 10 
-0.37b 
(0.12) 

599.6c 
(36.3) 

65.19a 
(15.62) 

2.41b 
(0.31) 

Sp2 20 
-0.58a 
(0.04) 

661.0b 
(23.7) 

60.23a 
(9.26) 

3.04a 
(0.13) 

Sp3 10 
-0.45b 
(0.11) 

778.0a 
(9.9) 

16.77b 
(3.84) 

2.18b 
(0.13) 

 

Table 2.5 - Environmental parameters extracted from the spectral groups (mean ± SE): the upper table includes 
density of snags, estimated soil cover (Shrubs, Herbs, CWD, Litter, Soil); BAtree, Ntree, TCC represent the basal 
area, the density and the canopy cover estimate of living trees (DBH > 10 cm). The bottom table reports values 
of Nness (north-ness exposition index), Rad and StRad (average and standard deviation of incoming solar 
radiation), Severity (average fire severity according to dNBR map). The Plot column reports the total plot score 
per group. Different letters highlight differences between groups (Mann-Whitney non-parametric comparison, 
p<0.05). 



 
31 

All pixels classified as burnt were divided into three groups according to DA procedure, that uses 

spectral groups (Sp1-3) as classification factors and VIs as variables discriminating among the 

groups. DA allows to assign the burnt pixels to the spectral groups by means of Classification 

Function (Table 2.6).   

Discriminant 

Function 

Wilks 

Lambda 

P-

Value 

Classification 

rate 

1 0.108 0.0000 
97.8% 

2 0.437 0.0000 
 

Classif. 

Function FC1 FC2 FC3 

VIs 

IFI -24.57 -24.94 -23.69 

SAVI -4575.8 -4553.5 -4297.4 

mDI -6107.4 -6232.7 -5969.3 

NBR 2969.7 2999.9 2924.4 

constant -901.56 -965.45 -944.13 
 

Table 2.6 - (To the left): results from Discriminant Analysis (DA) of VIs amongst three spectral groups 
(Sp1, Sp2, Sp3). Classification rate shows the percent of pixels exactly classified according to the 
Classification Functions FC1, FC2, FC3. (To the right): classification functions as resulting from DA. The 
classification functions are used to determine which Sp-group any individual pixel is most likely to belong 
to. 

 
 

  
a) b) 

Figure 2.10 - Severity classification of the burnt pixels assigned by DA procedure to the three spectral 
groups, according to:  a) dNBR, b) dmCBI maps .  

 

The burnt pixels assigned to every spectral group were classified into different severity levels 

overlapping the map of fire severity (Figure 2.10). The results highlight group two (Sp2) as the 

largest in terms of number of burnt pixels and severity level as well. Sp3 appears minimally 

involved in the burnt area. Different performances of severity indices (dNBR, dmCBI) were 

connected to sensitivity: the discrimination previously noticed in burnt/un-burnt validation (Table 

2.2), linked to dNBR tendency of identifying a higher number of burnt pixel, as in Sp1 and Sp3 

cases. 

Relationships between VIs  and regeneration data has been explored with PCA tool (PCA1): the 

first two components showed significant correlations of mDI (r = 0.83), IFI (r = - 0.93) and NBR (r= 
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0.79) with the secondary axis, while, NDVI (r=-0.98 ), SAVI (r=-0.99) were negative correlated with 

the first axis. The first two axes explain the 95% of total variation. PCA1 biplot suggests strong 

positive correlations between NDVI and SAVI indices, while a negative correlation was noticed  for 

IFI and mDI. The first component was related to the density of pine seedlings (NCf), number of 

shoots (Nshoot - sprouting regeneration) whereas the second resumed the variations of broadleaf 

seedlings (NBl). 

 

  

Figure 2.11 - a) PCA1: VIs and regeneration variables, NRCfO50, NRBlO50 represent the density of conifer 
and broadleaf seedlings taller than 50 cm; Nshoot is the density of shoots from sprouting regeneration, 
DmCf represents the average diameter of conifer seedlings. 
b) PCA2: VIs and environmental parameters, Rad is the incoming solar radiation, BATree, TCC represent the 
basal area and the fractional canopy cover of the living trees (1, 2, 3 represent the centroids of spectral 
groups Sp1, Sp2, Sp3). 
 

The biplot PCA2 shows the associations linking VIs and environmental variables: the first 2 axes 

explained a total variance of approximately 93%. The first factor showed high loadings on 

Incoming solar radiation (Rad), Tree Canopy Cover (TCC), basal area of living trees (BATree), 

whereas the second axis pursued the variations of fire-severity (SevNBR). 

The first two components maintained the same correlation coefficients with the VIs, as described 

for PCA1. 

For both PCA bi-plots, three centroids represented the average position in the ordination space of 

each spectral group of plots. Clear separation between centroids was noted along the ordination 

axis, by relating group1 with the high values of tree cover, basal area (PCA2) and conifer (pine) 

regeneration (PCA1); group 2 with the high values of severity (PCA2), diameter of pine seedlings 

(PCA1) and group 3 with higher incoming solar radiation (PCA2), density of shoots and broadleaf 

seedlings. 
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VIs show sensitivity to the different layers of vegetation recovery (Table 2.7): NDVI, SAVI are most 

positively correlated with re-sprouting regeneration and bare soil, negatively to tree canopy cover 

and density. NBR resulted correlated with broadleaf seedling, re-sprouting regeneration and bare 

soil. IFI and mDI show inverse relationships: mDI is positively correlated with litter, density of 

seedlings and tree canopy cover; relationships of opposite sign come from IFI which shows a 

positive correlation with CWD. 

 

PineU50 PineO50 BleafU50 BleafO50 Sprouts Shoots 

ndvi -0.58 -0.39 

  

0.37 0.65 

ifi 

   

-0.38 

  savi -0.63 -0.42 

   

0.63 

mDI 0.48 

  

0.38 

  nbr 

  

0.50 0.51 0.44 0.55 
 

     

 
CWD Litter Soil TCC 

ndvi 

  

0.43 -0.39 

ifi 0.35 -0.36 

 

-0.30 

savi 

  

0.45 -0.47 

mDI -0.32 0.37 

 

0.56 

nbr 

  

0.35 

 
 

Table 2.7 - Spearman rank correlations (p < 0.01; p < 0.05) among VIs, regeneration variables (above) 
and ground cover type (bottom); PineU50, PineO50 represent respectively the density of pine 
regeneration shorter and taller than 50cm, BleafU50 is the density of broadleaf seedlings shorter 
than 50 cm, Sprouts, Shoots are the density of sprouting regeneration, CWD (coarse wood debris), 
Litter, Soil represent the correspondent fractional ground cover, TCC the canopy cover of living trees.  

 

 

The definition of the three spectral groups (Sp1, Sp2, Sp3), each well related to the different 

regeneration and environmental variables, allows to built a map resuming the spatial distribution 

of vegetation responses in the burnt area detected in year 2010; this map (Figure 2.12) allows to 

discriminate areas covered by vegetation from those where the recovery dynamics seem to have a 

slower rate. 

The effects of restoration activities on field-data and the extracted VIs were evaluated by means of 

a MRPP, to assess any differences between treated and un-treated plots: regeneration variables 

showed no separation among groups (T=-1.7, p>0.05, A=0.3). PerMANOVA highlighted a minimal 

difference (F = 3.27; P < 0.01) and low variability explained by the treatments (10%). MRPP 

performed on environmental parameters (T=-9.3, p<0.001, A=0.14) and VIs (T=-6.3, p<0.001, 

A=0.10) showed a significant separation between treated and un-treated groups, with a low 

homogeneity-within group arrangement.  
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Figure 2.12 - Map of vegetation recovery detected in 2010, according to the spectral groups arrangement: the 
residual living trees and pine regeneration (Sp1 - dark green), the re-sprouting and broadleaf species 
regeneration (Sp3 - light green), the highest severity zones with lowest regeneration density (Sp2 - brown).   
 

 

 

 

Treatment 
Plot 

(n) 

Agemax 

(years) 

NRCfO50 

(n/ha) 

NRCfU50 

(n/ha) 

NRBlO50 

(n/ha) 

NRBlU50 

(n/ha) 

NSprout 

(n/ha) 

NShoot 

(n/ha) 

Nsp 

(n) 

H’ 

(-) 

Treated 20 
9.2a 

(0.3) 

920b 

(147.9) 

530.1b 

(168.7) 

661.7b 

(160.4) 

284.6b 

(58.2) 

3474.5a 

(320.9) 

16692.5a 

(1453.2) 

7.5a 

(0.4) 

1.55a 

(0.05) 

Un-treated 20 
7.9b 

(0.4) 

1501.6a 

(336.4) 

2028.1a 

(572.4) 

1096.3a 

(256.2) 

405.8a 

(117.0)) 

2749.0b 

(267.5) 

12650.3b 

(1450.8) 

7.0a 

(0.3) 

1.29b 

(0.06) 

 
 

Treatment 
Plot 

(n) 

avgDR 

(cm) 

StdDR 

(cm) 

avgHR 

(cm) 

StdHR 

(cm) 

DmCf 

(cm) 

DmBl 

(cm) 

TDD 

(-) 

THD 

(-) 

Treated 20 
2.3a 

(0.3) 

1.7a 

(0.3) 

110.5a 

(11.4) 

77.6a 

(8.9) 

3.2a 

(0.5) 

1.4a 

(0.2) 

1.33a 

(0.07) 

1.78a 

(0.06) 

Un-treated 20 
1.6b 

(0.2) 

1.1b 

(0.2) 

89.0b 

(10.2) 

62.5b 

(8.4) 

1.7b 

(0.4) 

1.4a 

(0.1) 

1.09b 

(0.07) 

1.79a 

(0.10) 
 

Table 2.8 - Regeneration characteristics in the treated and un-treated plots (mean ± SE): the upper table reports 
maximum of estimated age (Agemax), density of conifer (NRCf) and broadleaf (NRBl) seedlings, sprouting 
density (NSprout, NShoot), number of woody species (Nsp), Shannon index (H’). The -O50 and -U50 suffix refer 
respectively to seedlings taller and shorter than 50cm. The bottom table reports the average and standard 
deviation of seedling diameter (avgDR, StdDR), the average and standard deviation of seedling height (avgHR, 
StdHR), the mean diameter of conifer and broadleaf seedlings (DmCf, DmBl), the diversity indices of diameter 
and height of seedlings (TDD, THD). The Plot column reports the total plot score per group. Different letters 
highlight differences between groups (Mann-Whitney non-parametric comparison, p<0.05). 
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The Mann-Whitney test applied on the regeneration dataset showed significant differences 

between management (p<0.05) in seedling densities (higher in un-treated plots), seedling 

diameter and age, TDD and Shannon index values (greater in treated plots). 

 

Treatment 
Plot 
(n) 

Snags 
(n/ha) 

Shrubs 
(%) 

Herbs 
(%) 

CWD 
(%) 

Litter 
(%) 

Soil 
(%) 

BATree 
(m²/ha) 

NTree 
(n/ha) 

TCC 
(%) 

Treated 20 
1369.7a 
(210.9) 

22.7a 
(2.2) 

40.0b 
(3.4) 

14.0a 
(1.5) 

7.3a 
(0.7) 

16.0a 
(1.8) 

3.8b 
(1.6) 

110.1b 
(49.8) 

9.4b 
(4.1) 

Un-treated 20 
642.9b 
(123.7) 

19.0a 
(2.2) 

55.7a 
(2.9) 

8.0b 
(1.0) 

9.3a 
(1.0) 

8.0b 
(1.1) 

12.9a 
(2.8) 

334.7a 
(84.8) 

36.5a 
(7.5) 

 
 

Treatment 
Plot 
(n) 

Nness 
(-) 

Rad 
(KWh/m²) 

StRad 
(KWh/m²) 

Severity 
(dNBR) 

Treated 20 
-0.65b 
(0.04) 

700.8a 
(17.1) 

54.1a 
(9.0) 

3.06a 
(0.12) 

Un-treated 20 
-0.34a 
(0.12) 

658.7a 
(34.4) 

51.7a 
(11.6) 

2.55b 
(0.18) 

 

Table 2.9 - Environmental parameters in the treated and un-treated plots (mean ± SE): the upper table 
includes density of snags, estimated ground cover (Shrubs, Herbs, CWD, Litter, Soil); BAtree, Ntree, TCC 
represent the basal area, the density and the fractional canopy cover of living trees (DBH > 10 cm). The 
bottom table reports values of Nness (north-ness exposition index), Rad and StRad (average and standard 
deviation of incoming solar radiation), Severity (average fire severity according to dNBR map). Different 
letters highlight differences between groups (Mann-Whitney non-parametric comparison, p<0.05). 
 

 

The comparison on environmental data highlights higher values of severity, CWD, snags and bare 

soil in the treated plots, while tree density and cover, grass cover resulted greater in the un-

treated group (Table 2.9). The comparison of VIs between treated and un-treated groups, showed 

the higher IFI values for treated plots and mDI values un-treated plots (Table 2.10). 

 

Treatment 
Plot 
(n) 

NDVI SAVI NBR mDI IFI 

Treated 20 
-0.26a 
(0.12) 

0.15a 
(0.13) 

-0.88a 
(0.16) 

-2.24b 
(0.17) 

8.33a 
(0.38) 

Un-treated 20 
-0.48a 
(0.14) 

-0.29a 
(0.16) 

-0.62a 
(0.18) 

-0.71a 
(0.29) 

6.01b 
(0.40) 

 

Table 2.10 - Standardized values of VIs in the treated and un-treated plots (mean ± SE). Different 
letters highlight differences between groups (Mann-Whitney non-parametric comparison, p<0.05). 

 

Multitemporal sequences of VIs 

The diagrams in Figure 2.13 show the evolution of NDVI and SAVI (mean and CI 95% according to 

Tukey HSD) in the treated and un-treated plots The indices exhibit a similar behavior before the 

fire and a strong difference between the pre-fire period, with stationary values, and the post-fire 

one, where the temporal series, after the common-in-time lowest value, tend to increase their 

values. The upper bars (non-significant differences between years) show three homogeneous 

groups of the index values between a year and the subsequent, identifying three different periods: 
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I) pre-fire, II) early post-fire (the lowest index values), III) late post-fire. The plots belonging to the 

treated group didn’t show any statistically significant difference neither in NDVI nor in SAVI, 

except for 2002, the year in which the treated plots assumed quite high values of SAVI when 

compared with the un-treated group. Both indices retrieve pre-fire values around 2002, with a 

shift forward to 2006 for NDVI values of un-treated plots. NDVI and SAVI show different 

performances after recovering to pre-fire values: SAVI tends to increase, stabilizing at a higher 

level, in comparison with the values of the index before the fire; NDVI stops its increase around 

pre-fire values. The scenes in Figure 2.14 show NDVI maps in four different years, before (1993) 

and after the fire, proving a full recovery of the index values to the pre-fire ones. Therefore NDVI 

shows a higher range of variation than SAVI on early post-fire period.  

The spectral trajectory of NBR (Figure 2.15) in treated and un-treated plots exhibits relevant 

differences of the index values before and after the fire: three different periods of NBR values are 

highlighted by the upper bars: the pre-fire, the early and the late post-fire arrangements. 

Temporal paths of treated and un-treated groups are quite similar and significantly differ only in 

2006. After the fire, NBR values decrease to a minimum value in year 2000 for both groups; 

afterwards the trend sees an increase in NBR values, though not reaching the pre-fire ones. The 

maps (Figure 2.16) visually confirmed the temporal trajectory of NBR, stopping after an initial 

period of increase. The NBR trend didn’t present any particular divergence after the restoration 

treatments realized in 2000. 

The diagram of mDI (Figure 2.17) shows the temporal paths of a low-severity zone, treated and 

un-treated plots. In the restored zones mDI manifests evident changes between pre-fire and post-

fire values, while the low severity zone maintain a constant level in time. Upper bars highlight 

three different blocks of mDI values: I) a first  before the fire, II) a second period of concordance 

between a year and the subsequent after the fire;  III) since 2000, mDI values decrease in treated 

plots, whereas un-treated plots keep their values around a constant level. After the fire, both 

treated and un-treated plots decrease their mDI values reaching a minimum level: this latter is 

maintained in the un-treated plots whereas, after 2000, the spread with the treated plots become 

more conspicuous.  

IFI diagram (Figure 2.18) describes the variation of the values between pre-fire and post-fire 

period. Since small index values indicate a similarity with the spectral center of the forest training, 

the graphic area was divided into: a dense forest area, a low-density forest mixed with shrubs, a 

shrub-land area and a grassland. Before the fire, all the plots exhibited similar spectral values, in 

proximity of the border between dense and rare forest cover. After the fire, IFI rises to higher 

values: treated plots move into the grassland area and un-treated ones into the shrub-land zone. 

The comparison of IFI values through the time, according to the upper bars, displays three 

separate periods: a first pre-fire period, a second one immediately after the fire (up to the year 

2000 in treated plots, till the end of sequence within un-treated group); finally, a third period 

where the treated plots partially recover to the low-density forest. After the fire, a significant 

difference between treated and un-treated plots highlights the different levels of fire-severity 

among treatments. A series of thematic maps of IFI values (Figure 2.19), exhibits the differences in 

vegetation structure between pre- and post-fire, confirming a slower recovery rate in comparison 

to NDVI and SAVI path (Figure 2.13).  
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Figure 2.13 - Comparison of NDVI and SAVI temporal trajectories between Treated (TR) and un-treated 

(NTR) plots. In the upper part, the horizontal lines suggest non-significant differences between the years 

(Tukey HSD post hoc test; p<0.05). The marked year highlights a significant difference between TR and NTR 

groups.  
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1993 1999 

  

2002 2009 

Figure 2.14 - NDVI maps resuming four years through the temporal trajectory: index values ranging from 

the highest values (dark green) to the lowest (white), before (1993) and after the fire. 
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Figure 2.15 - Comparison of NBR temporal trajectories between Treated (TR) and Un-treated (NTR) plots. In 
the upper part, the horizontal lines suggest non-significant differences between the years (Tukey HSD post 
hoc test; p<0.05). The marked year highlights a significant difference between TR and NTR groups. 
 
 
 

  
1993 1999 

  

2006 2009 

Figure 2.16 - NBR maps resuming four years through the temporal trajectory: index values ranging from 
higher value (red) to lower (downward to light blue and white), before (1993) and after the fire. 

 
 

 
 

*

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1991 1993 1994 1999 2000 2002 2006 2007 2009 2010

R
es

ca
le

d
 in

d
ex

 v
al

u
es

Time (Years)

NBR (normalized)
NTR Training TR



 
40 

 

 
Figure 2.17 - Comparison of mDI temporal trajectories among Treated (TR), Un-treated (NTR) plots and a 

zone characterized by low-severity fire (Lsev). In the upper part, the horizontal lines suggest non-significant 

differences between the years (Tukey HSD post hoc test; p<0.05). The marked years highlight a significant 

difference between TR and NTR groups.  
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Figure 2.18 - Comparison of IFI temporal trajectories between Treated (TR) and Un-treated (NTR) plots. In 

the upper part, the horizontal lines suggest non-significant differences between the years (Tukey HSD post 

hoc test; p<0.05). The marked years highlight a significant difference between TR and NTR groups.  

Ref_Forst, _Shrub, _Herb represent upper thresholds delimitating areas of dense forest, low-density forest 

and shrubland respectively. IFI values greater than Ref_Herb are included in grassland zone 

 

 

 

  
1993 1999 

Figure 2.19 - IFI index classes according to Huang 
et al. (2009):  
- IFI < 6 Forest (dark green); 
- IFI < 9 Shrubland (light green); 
- IFI > 9 Grassland (brown); 
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Discussion 
The first target of this study was to analyze the relationships between fire-severity and mid-term 

response of vegetation in a pine forest, identified as one of the widest burnt areas of the Italian 

Alps in the last decades. After a fire, an ecosystem is affected by two types of consequences: the 

first occurs immediately after the event as a result of the combustion, ash, gas, production of 

exhaust fumes, loss of vegetation, heating of soil which causes chemical and physical modification 

and loss of microorganism communities. The other consequences arise over time, such as soil 

erosion, microclimate modifications, habitat changes and vegetation succession with species 

substitution (Brown et al., 2004; Eidenshink et al., 2007). Fire-severity plays a relevant role since 

the highest values of severity are often associated with higher rates of soil loss, lower rates of 

vegetation recovery caused by the destruction of the forest floor, loss of the seed bank and 

sensible reduction of the canopy (DeBano et al., 1998).  

Remote Sensing (RS) imagery analysis allows to survey the changes in progress as a cause of 

relevant modifications on surface reflectance characteristics. A relevant number of studies prove 

the ability of the Normalized Burn Ratio (NBR) index to recognize post-fire effects (Key and 

Benson, 2005; Smith et al., 2007; Escuin et al.,2008). Aiming to define the map of fire-severity, 

better performances are linked to dNBR (first year post-fire subtraction from pre-fire NBR values), 

because of its higher range of disturbance detection; dNBR also exhibits a good correlation with 

Composite Burn Index (CBI), an index of fire severity built by means of field measurements and 

ground-truth (van Wagtendonk et al., 2004; Key and Benson, 2006; French et al., 2008; Chen et al., 

2011). However, previous studies reported some cases where dNBR failed in detecting fire-

severity, showing poorly relationships with CBI (Epting et al., 2005; Allen and Sorbel, 2008; Hoy et 

al., 2008; Murphy et al., 2008).  

Considering the discontinuous vegetation cover due to changes in soil morphology, the detection 

of fire severity could be more suitable using the whole spectral information provided by the 

Landsat TM/ETM+ dataset (Meng and Meentemeyer, 2011); at this purpose, mCBI index has been 

introduced. However, in this study the first multispectral image available after the fire comes two 

years after the event; it is known that the ability to distinguish among the severity levels decreases 

with the arise of the regeneration layers (Wulder et al., 2004). 

The comparison between dNBR and mCBI in this site leads to a greater ability for mCBI index to 

distinguish between burnt and un-burnt pixels, showing a very low commission error. This result 

confirms other previous studies where NBR and dNBR indices have been considered not optimal 

for severity detection in forest with sparse tree cover, since their performance is strongly related 

with the pre-fire green biomass (Epting et al. 2005; Roy et al., 2006; Miller and Thode, 2007). 

The evaluation of the relationships between regeneration variables and environmental 

parameters, mediated by VIs from RS data, highlighted preferential patterns of vegetation 

recovery. Three spectral groups, clearly defined by the arrangement of VI values, identified three 

different scenarios: the first one associates high mDI and TCC (tree canopy cover) values, with low-

severity of the fire and the greatest density of seedlings; the regeneration is characterized by a 
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recent establishment, as suggested by the low values of height, age and mean diameter of the 

seedlings. The second scene is characterized likewise by low-severity conditions, but higher values 

of NDVI and differs from the previous one by a scarce presence of adult trees and higher presence 

of bare soil and rocks. Due to this constrains, the vegetation tends towards recovery mainly by 

means of re-sprouting species, even though the seedlings density of broadleaf species seems to 

follow a positive gradient of incoming solar radiation and low competition with others vegetation 

layers. Differences in vegetation recovery seem determined by environmental conditions: 

regeneration of P. nigra seems to take advantage from moderate levels of fire severity, perhaps 

due to the reduction in competitive pressure by herbaceous and shrub species, the exposure of 

bare mineral soil and better light availability, as highlited by previous studies (Ordonez et al., 2004; 

Zlatanov et al., 2010). Furthermore, the presence of broadleaf regeneration, within un-disturbed 

P. nigra stands, out-competes with pine seedlings (Amorini, 1983). In presence of high severity 

disturbance, the establishment of tree seedlings tends to be limited if compared with shrubs and a 

sensible reduction of adult trees caused by fire can be a relevant restriction, in terms of seed 

availability (Mendoza et al., 2009). P. nigra and P. sylvestris  don’t produce serotinous cones and 

the diffusion of the seeds occurs in late winter or spring (Gracia et al., 2002). When a high severity 

wild-fire affects a pine forest after this period, seeds are more likely to come from un-burnt 

marginal areas. However, in ordinary conditions, the diffusion of P. nigra and P. sylvestris seeds is 

usually short, no more than 50 m from dispersal trees; consequently, a gradient of decreasing 

seed availability  is inversely coupled with the adult tree density (Retana et al., 2002). 

Furthermore, after the passage of fire, severity may influence the residual living pines inducing low 

percentages of germination in seeds produced (Clark et al., 1998). As a consequence of the limited 

presence of adult pines, vegetation recovery is expected according to the re-sprouting strategy 

and seedling establishment of heliophilous species, especially from shrub layer (Mendoza et al., 

2009). 

All this leads to the third scenario where the analysis of regeneration and environmental data is 

strictly associated with the consequences of high-severity fire: the absence of adult trees and the 

highest values of IFI index. In these conditions seedling density is lower when compared with the 

others two scenes previously described. However, the structural parameters of regeneration, such 

as seedling height, age, average diameter and TDD, reveal that an early regeneration 

establishment (especially of pine seedlings) occurred under such environmental conditions. This 

could be due to different concurrent factors, i.e. the removal of relevant amounts of litter by high 

severity fire and the exposure de-facto of the mineral soil (Smith et al., 2007). Therefore, a greater 

presence of snags, CWD and burnt wood downed to the ground, probably induced these 

facilitative effects towards the regeneration establishment (Beghin et al., 2010; Castro et al., 

2011). The low presence of recently affirmed regeneration seems related with high-severity 

conditions, whereas slow recovery time is tied to the lack of seed availability, as reported also by 

Thomas and Wein (1985), Chen et al. (2011). 

The second target of this study was to provide an ecological significance to the elaborated VIs in 

order to use them to monitor the processes of recovery and vegetation post-fire dynamics, 

including an evaluation of the efficiency of restoration activities. The use of RS technique as a 

valuable tool for broad scale investigation on post-disturbance areas is proved by many studies, 
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even if the ecological meanings of VIs and the connections between spectral recovery and forest 

regeneration has not been focused yet (Meng and Meentemeyer, 2010; Solans-Vila and Barbosa, 

2010; Schroeder et al., 2011). The images from Landsat TM/ETM+ free-series data provide a large 

amount of spectral information on  a given area. VIs, indirectly related with many physical and 

biological parameters (i.e. LAI, amount of biomass, vegetation cover), enable to monitor the 

recovery of different vegetation layers (Carlson and Ripley, 1997). The multi-temporal analysis, by 

means of different green-leaf indices (so-called because NDVI, SAVI, NBR are indices commonly 

used to detect photo-synthetically active surfaces), displays a similar behavior in the areas 

affected by fire. After an abrupt drop of VI values, they can still be decreasing 2-3 years after the 

event, thus giving evidence of delayed mortality and reduction in canopy cover (Thies et al., 2006). 

Recovery of NDVI and SAVI values to the pre-fire ones is achieved in a few years (around 5 years). 

The short recovery time, the low specific sensitivity towards LAI (Leprieur et al., 1994) and the high 

correlation with the fractional vegetation cover of these VIs (Verstraete and Pinty, 1991), led to 

the conclusion that the re-sprouting of vegetation saturates the green-ness sensitivity of this 

group of VIs (Volcani et al., 2005). This conclusion confirms the previously detected correlations 

between NDVI and SAVI with the re-sprouting regeneration density. The recovery of SAVI to higher 

values than the pre-fire ones, is probably due to a better sensitivity of the index on sparse 

vegetation conditions (Gilabert et al., 2002). The spectral trajectories of NBR differs from NDVI and 

SAVI for a slower rate of recovery which does not reach pre-fire values. Differences between the 

recovery of NDVI and NBR are probably due to the limits of this latter in detecting the dynamics of 

grass regeneration, thus making NBR unsuitable to correctly evaluate post-fire effects in 

grasslands and shrub-lands (Lentile et al., 2006; Chen et al., 2011). However, the remarkable 

relationship with broadleaf regeneration allows using NBR to monitor forest dynamics connected 

with tree regeneration of deciduous species. This multi-temporal analysis agrees with recent 

studies which proved that NBR provides good estimates of severity in burnt forest, because of its 

wider range of sensitivity with respect to NDVI (Epting et al., 2005; Loboda et al., 2007; Escuin et 

al., 2008). Wider information about changes in forest structure come from IFI and mDI long-term 

survey of post-fire vegetation recovery; mDI index, derived from Tasseled cap indices (TC), exhibits 

a significant correlation with canopy cover of trees, and has proved to give good results in other 

forest type as well (Healey et al., 2005). mDI facilitates the assessment of the post-fire dynamics of 

tree canopy cover trough time (Hais et al., 2009). A global information of changes in forest-

structure comes from the temporal projection of IFI values. Differences on increasing rates and 

stabilizing levels of IFI values after the fire, imply some divergences in fire severity and forest 

structure among the examined zones: this behavior highlights, a greater efficiency of IFI index 

when compared to the green-leaf indices for long term monitoring of post-fire recovery (Chen et 

al., 2011). Coupling IFI values with field-data enabled to verify the index feasibility in detecting the 

severity magnitude, that is the cause of the transformations in the forest structure. Changes of 

forest structure trough time can be tracked by IFI spectral paths (Huang et al., 2009). As previously 

highlighted, the VIs of the green-leaf group showed some decreasing values since year 2000, 

meaning that the loss of vegetation and a reduction in canopy may continue for years after the 

fire. The second group of VIs, including mDI and IFI, exhibits a stable low level of values 

immediately after the fire. The relationships between the regeneration variables and the VIs, in 
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addition to the high separation between regeneration and environmental parameters among the 

spectral groups, provide a useful description of the state of vegetation recovery. This map of 

vegetation recovery within the burnt area could be helpful to evaluate the spatial dynamics of 

vegetation. 

The effects of restoration activities towards the vegetation recovery were evaluated by means of a 

temporal analysis of VIs combined with the field-data measurements. The analysis in the two 

restoration groups did not detect any appreciable consequence in regeneration density and cover 

due to the restoration treatments. Differences between treated and un-treated groups seem more 

likely due to the different severity of fire. Exploring the relationships between environmental and 

regeneration variables highlighted the role of fire severity in determining the differences of 

vegetation recovery after the fire. The treated areas, affected by a general greater fire severity, 

exhibit a lower density of regeneration than un-treated ones. Furthermore, in high severity areas 

the tendency of seedlings to an early establishment is highlighted where CWD and density of snags 

were greater. The presence of adult living trees, which act as seed dispersers, is a determining 

condition for the species of pine involved: most of seedlings were detected into the un-treated 

group, associated to the high rate of surviving trees. Differences between treated and un-treated 

groups have been investigated after the treatment interventions, by means of VIs: IFI and mDI 

significantly distinguish the differences of fire severity among the groups, immediately after the 

fire. Furthermore, modifications of the tree canopy cover and structure of the forest were 

observed in the years after the interventions as well. Previous studies proved mDI sensitivity to 

the seedlings plantation (Jonášová and Prach, 2004); in our case, the comparison of mDI values 

among treated and un-treated areas seems to confirm that the activities of reforestation in the 

salvage areas have not brought any appreciable result towards the vegetation recovery. 
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Conclusions  
The main goal of this paper was to arrange, at different scales of investigation, a general-purpose 

procedure to evaluate the role of fire severity and the effects of post-fire restoration in a burnt 

forest of the Alps; the study was conducted combining field ecological measurements with remote 

sensing data. The synergy between the field-data measurements and the analysis of the 

vegetation recovery through the years, has allowed to reach the following three objectives:  

I) mapping the fire severity to detect  the influence of severity on vegetation recovery, over a 

wide burnt area;  

II) assessing the vegetation response to the fire over time. 

III) evaluating the effects of restoration activities on regeneration establishment. 

I) The change-detecting is a consolidated procedure to define maps of fire severity subtracting 

pixel by pixel the post-fire values from pre-fire ones. The forest is characterized by a complex of 

spectral signatures related to the multistrata set of trees, shrubs, grass and intermediate 

combinations; each layer exhibits a specific response detected by Landsat TM/ETM+ sensors. A 

map of fire severity defined by means of change-detection of NBR index, is limited to the 

spectral information exclusively provided by the Landsat bands associated with NBR. A new VI 

was introduced (mCBI), based on the sum of all the contributions of those spectral bands 

proved to be sensitive to the different vegetation-strata. A change-detection technique applied 

to mCBI allowed an enhanced discrimination of severity classes. However, the evaluation of this 

procedure to define severity maps requires a future validations and feedback, through field-

severity indices and ground-measures (i.e CBI index validation).  

II) Disturbance history and vegetation response through the years can be evaluated according to 

the temporal availability and resolution of the Landsat multispectral archive (Huang et al., 

2009). Recovery processes are strongly influenced by severity. Regeneration establishment of P. 

Nigra and P. sylvestris in mid-term observations is clearly greater in areas where low levels of 

severity allow the survival of seed-trees. This fact appears to be related more to species-

specifics characteristics of seed dispersion than to environmental constrains (Donato et al., 

2006; Pausas et al., 2003). In order to schedule proper restoration treatments aiming at the 

recovery of the vegetation cover, a powerful tool may consist in combining the information 

provided by the maps of fire severity with hydro-geological hazard (Chen et al., 2011). 

Therefore, fire severity mapping and surveying of post-fire dynamics of vegetation allow to 

identify areas in which vegetation recovery may have difficulty to evolve from the earlier stages 

of succession. 

Despite the past widespread use of NDVI to investigate post-disturbance vegetation dynamics, 

in this particular situation it appears specifically related with the re-sprouting recovery, 

resulting unsuitable to detect the complexity of interactions between the different layers of 
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vegetation. NDVI seems more correlated with the fractional vegetation cover: in this case, 

sprouting and deciduous regeneration provide the faster vegetation response. An assessment 

of the dynamics of vegetation covering the soil appears possible by analyzing the performance 

of other indices through time (IFI, mDI): these VIs have proved to be more related to vegetation 

structure and tree canopy cover, appearing a feasible way to explore the different responses of 

vegetation to the disturbance. 

III) In this study, the effects of restoration activities appear negligible regarding the re-planting of 

saplings for vegetation cover improvements. However, in areas affected by higher severity 

levels, an early regeneration establishment has been noticed where the presence of burnt 

wood on the soil was greater. At this purpose, planning of restoration activities in P.nigra and 

P.sylvestris forests should consider the presence of living trees as seed dispersers, and the 

positive effect induced by the release of burnt wood in situ, with regard to the establishment of 

natural regeneration.  
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Chapter 3 

Deadwood facilitation on seedling establishment after a stand-replacing wildfire in 

Aosta Valley. 
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Introduction 
After a major disturbance, natural regeneration of forest ecosystems results from the complex 

interactions between propagules and site factors (Kozlowski, 2002). Numerous scales related 

biotic and abiotic factors (Clark et al. 1998, 1999) influence current recruitment patterns, playing a 

role in determining future forest structure and composition (Barbeito et al., 2009) by affecting the 

initially established tree cohort. The type of regeneration (seed or sprouting) directly influences 

the spatial pattern of plants (Pardos et al., 2008). 

The successful establishment of a seedling depends on several processes, such as seed viability, 

dispersal, germination, the presence of symbiotic organisms (e.g., mycorrhizae), mortality factors 

due to seedling predation, competition, and abiotic stress (Nathan and Muller-Landau, 2000; 

Castro et al., 2004; Kipfer et al., 2009), whose impact is usually local and species-specific (Pardos et 

al., 2008). 

Mechanisms operating at small scales may in particular limit the abundance and performance of 

seedlings (Collins and Good, 1987). 

Seedling establishment is a key component in plant distribution patterns (Harper, 1977).  

After germination, seedling mortality rates are usually high and the probability of long-term 

survival is strictly related to the physical habitat surrounding a seedling (Collins and Good, 1987). 

Preferential recruitment is associated with the availability of ‘safe sites’ for germination and is 

linked to the regeneration niche concept (Grubb, 1977). This is particularly evident in climatically 

stressed sites, where seedlings establishment is strongly limited by harsh conditions. Mature 

plants, shrubs, deadwood or rocks can play a positive role in ameliorating microsites along with 

surface microtopography (Castro et al., 2002; Resler et al., 2005; Franzese et al., 2009; Beghin et 

al., 2010; Legras et al., 2010). Especially in water stressed/limited environment these elements can 

reduce soil temperature (shading effect) and wind (less transpiration), and increase relative 

humidity (Flores and Jurado, 2003; Castro et al., 2011). Intra- or interspecific facilitation 

mechanisms and sheltering effects of abiotic elements proved to be determinant in tree seedling 

establishment and survivorship in arid environments (Callaway, 2007).  

In drought-stressed Mediterranean mountain ecosystems, already established vegetation has 

been often identified as one of the main factors favouring tree regeneration survival through a 

direct protection against high radiation, high temperatures, and high transpiration rates (e.g. 

Callaway, 1995, 2007). After a stand-replacing fire, with no mature plants or shrubs remaining to 

facilitate seedling performance after germination, deadwood, rocks as well as surface 

microtopography may be critical to restoration patterns. 

An accurate description of early successional dynamics and the role that microhabitat plays in tree 

seedling establishment following a major disturbance may be of great importance to clarify 

restoration patterns aiding in defining ecologically adequate management strategies and 

silvicultural practices (Pardos et al., 2008; Legras et al., 2010). Post-fire management may greatly 

affect the resilience of the ecosystem to restore, influencing recruitment both directly and 

indirectly recruitment (Beghin et al., 2010; Moreira et al., 2012). 
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In this context we implemented two different post-fire management treatments within a large 

wildfire in the Western Italian Alps (Aosta Valley). Our objectives were: (1) to analyse natural 

regeneration dynamics in a post-fire environment characterized by harsh conditions in terms of 

solar radiation and water availability; (2) to verify the impact of post-fire management (namely 

salvage logging) on seedling establishment and survival. We hypothesized that post-fire burnt 

wood management would greatly influence the availability of sites for seedling survival. To 

address these issues we conducted an experimental study contrasting two common post-fire 

management practices, no intervention and conventional salvage logging (Beghin et al., 2010), to 

identify the main environmental variables affecting naturally established seedlings and to quantify 

the effect of shelter elements, particularly lying and standing deadwood on tree recruitment. 
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Methods 
Study site 

The study site is located in the Aosta Valley Region (NW Italy), within the municipality of Verrayes, 

in an area named Bourra (45°46’14’’N, 7°29’58’’E), that was severely affected by a stand replacing 

fire in March 2005. The wildfire, which is one of the biggest and more severe fire events ever 

experienced in the region, burned 257 ha, completely destroying 160 ha of an almost pure Pinus 

sylvestris stand.  

 

 

 

Figure 3.1 - Ortho-image of the study area located 
in Bourra - Verrayes (Aosta valley): red 
boundaries mark the perimeter of the burnt area 
(overlapped to the image).  

 

A post-fire salvage-logging project was approved in December 2005; salvage logging operations 

started during autumn 2007. Approximately 8 ha within the burned surface were destined in 
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agreement with the Regional Administration to natural regeneration monitoring studies, 

establishing two adjoining areas, both characterized by total mortality of the previous stand. To 

contrast active management and non-intervention (Figure 3.2), one area was salvaged (salvage 

logging - SL) according to the conventional post-fire management activities in the Region (Beghin 

et al., 2010) was compared to another one left untouched (passive management - PM). Both areas 

have a surface of 5 ha; they are adjoining and were characterized by similar pre-fire conditions and 

total mortality of the previous stand. The altitude of the area ranges between 1650 m and 1800 m 

a.s.l. and the slope is facing south with an average inclination of 25°. The bedrock is formed by 

ophiolite and schist and the soils are classified as entisols (Soil Taxonomy USDA). The mean annual 

temperature is 5.6 °C and the mean annual precipitation is approximately 751 mm, the driest 

month being February, coinciding with the main peak of the fire season. 

The tree vegetation consisted almost solely of dense even-aged P. sylvestris stands, with a 

sporadic presence of Larix decidua Miller, Picea abies L. Karst, Quercus pubescens Will., Populus 

tremula L., Betula pendula Roth.  

 

  

Figure 3.2 - Images of treatments applied to the experimental area. 

 

Experimental design and field data collection 

Field surveys were conducted in summer 2010 following two different approaches in order to 

capture regeneration patterns at different spatial scales (site and microsite) (Kuuluvainen and 

Juntunen, 1998; Beghin et al., 2010; Jonásová et al., 2010). At site-scale we adopted a complete 

random design, locating on the ground 60 circular sample plots with a 6 m radius (about 113 m2). 

Twenty plots were established within the salvaged area, the remaining in the unsalvaged area. 

Given the relative environmental homogeneity of the salvaged area, a lower number of plots (20) 

were considered sufficient (Figure 3.3). 
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Figure 3.3 - Layout of the experimental design (SL and PM treatments) and distribution of 60 sampling 
plots (20 plots in SL, 40 plots in PM).  

 

Site-scale collected parameters (Table 3.1a-b) included UTM coordinates (submetric GPS device - 

Figure 3.4), regeneration characteristics (species, seed or sprout origin, root collar diameter - RCD, 

height, age), and ground cover. This latter was estimated to the nearest 5% and comprised litter, 

lying deadwood, bare soil, grasses, forbs, shrubs, and gravel. Game damaged was assessed by 

counting regeneration presenting signs of browsing. The number of standing dead trees was also 

recorded in the unsalvaged area. Regeneration age was estimated in the field by counting the 

terminal bud scars (internodes) along the main stem. Topographic variables (slope, aspect, 

elevation) were computed from a DTM (1-m resolution) derived from LiDAR data acquired in June 

2011.  

At microsite-scale we adopted a matched case-control design, where seedlings were actively 

located and 20cm x 20cm quadratic plots (microsites) were centred on them. Microsites with 

seedlings (cases) were then matched with microsites without seedlings (controls) for comparison. 

Controls were always positioned one meter east from their case (Figure 3.5). Sprout-origin 

regeneration was excluded from this analysis. Microsite-scale parameters were recorded in 720 

microsites, representing 360 matched pairs of cases and controls. Besides collecting the seedling 

(if present) characteristics, as described above, the parameters used to characterize microsites 

were: (1) seedbed type, classified as litter, rotten wood, bare soil, grasses, forbs, shrubs, and 

gravel; (2) presence and relative position (distance, azimuth) of standing or lying deadwood 
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elements within one meter from the microsite centre; (3) presence and relative position of rock 

elements (minimum height 10 cm) within 1 m from the microsite centre. Microsites position was 

recorded with a submetric GPS to allow further monitoring. 

 

 

Figure 3.4 -Left: setting up of a sampling plot (circular shape, 6 m radius) within a salvaged area. Right: 
detailed view of a GPS antenna placed to the plot center. 

 

 

 

 

Figure 3.5 - Design of investigation for microsite characteristics: the selected seedling (image to the left) was 
the centre of the 20 centimeters square-shaped microsite (case). Conventionally, at a distance of 1 meter in 
an easterly direction, an equal shaped microsite was fixed (control). The investigations at microsite level 
were conducted according to this matched case-control approach. 
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Data analysis 

Multivariate statistical analyses (ordination, grouping, and regression methods) were combined to 

assess the impact of environmental variables and post-disturbance management on tree 

regeneration and composition. A nonparametric group comparison procedure (MRPP) was used to 

test the effects produced by different post-disturbance management options on tree species 

composition. The variability in natural regeneration structure at site-scale (6 variables x 60 plots) 

(Table 3.1a) in relation to management type and environmental factors (13 variables x 60 plots) 

(Table 3.1b) was analyzed through redundancy analysis (RDA) (Rao, 1964; ter Braak and Prentice, 

1988). Redundancy analysis is an extension of principal component analysis and was used to 

investigate the variability explained by the explanatory variables and their correlation with 

regeneration structure variation. Redundancy analysis was performed using Canoco® (ter Braak 

and Smilauer, 1998), while MRPP test was performed using PC-ORD statistical package (McCune 

and Mefford, 1999). The statistical significance of all ordination analyses was tested by Monte 

Carlo permutation method based on 10,000 runs with randomized data. 

Conditional logistic regression analysis for matched-pairs data (Breslow, 1982) was used to relate 

the occurrence (case) and absence (control) of seedlings with microsite variables. The within-pair 

differences in all variables were calculated, resulting in a constant value of 1 for the response 

variable “seedling occurrence” and a set of new potential explanatory variables that are the 

differences between the case and the control for each matched pair (Gibbons et al., 2008). The 

probability of occurrence of a seedling as related to differences in the variables characterizing 

matching microsites pair is expressed by odd ratio values (OR). Odds ratios (OR = p/(1-p), with p = 

proportion of an event, i.e., a seedling present) were calculated by comparing proportions of 

microsites with and without seedlings. The conditional logistic regression was performed using the 

SPSS 17 statistical package. 

 

Table 3.1a - Regeneration variables included in the ordinations for plot-level analyses 

Variable category Code Description Unit Data source 

Regeneration 

structure 
PT 

Populus tremula regeneration 

density  
#ha-1 Field 

 Other trees 
Regeneration density of all 

tree species except P. tremula  
#ha-1 Field 

 RCD-Mean Mean root collar diameter cm Field 

 RCD-Std.Dev 
Standard deviation of root 

collar diameter 
cm Field 

 Age-Max Age of the oldest seedling years Field 

 Diversity 

Tree species diversity 

(Shannon index applied to tree 

species) 

- Field 
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Table 3.1b - Site variables included in the ordinations for plot-level analyses 

Variable category Code Description Unit Data source 

Environmental Slope Slope ° DTM (LiDAR) 

 HLI 
Heat load index (McCune and 

Grace 2002) 
- DTM (LiDAR) 

 Cover-div 

 Ground cover diversity 

(Shannon index applied to 

ground cover types) 

- Field 

 Shrubs Shrub cover % 

Field  

(visually 

estimated) 

 Forbs  Forb cover % 

Field  

(visually 

estimated) 

 Grasses  Grass cover % 

Field  

(visually 

estimated) 

 Soil Bare soil cover % 

Field  

(visually 

estimated) 

 Gravel  Gravel cover % 

Field  

(visually 

estimated) 

 Litter Litter cover % 

Field  

(visually 

estimated) 

 Ly.deadwood Coarse woody debris cover % 

Field  

(visually 

estimated) 

 St.deadwood Snag density #ha-1 Field 

 Salvage logging Post fire logging treatment  - 
Nominal 

variable  

 No intervention Absence of post fire treatment  - 
Nominal 

variable 
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Results  
Regeneration structure and composition at site-scale 

Tree regeneration ranged between 0 and 8319 seedlings ha-1, averaging 558 ha-1 (± 242) in passive 

management plots, 702 ha-1 (± 355) in salvaged plots. Sprouts accounted for 77% and 82 % of the 

total regeneration in PM and SL respectively. 

The estimated age of the regeneration ranged from 1 to 5 years. Mean diameter and height of 

sprout-origin regeneration were respectively 0.74 (±0.04) cm and 49.06 (±2.10) cm. Seedling mean 

diameter was 0.73 (±0.05) and mean height was 35.51 (±3.09). Damage from wild ungulate 

browsing was observed on 44% of regeneration individuals, thus affecting height values. No 

statistically significant differences were found (χ2 test; p < 0.05) among management types and 

species. The management type emerged as an influential factor only for seedling species 

composition (MRPP: T = -2.128, p < 0.05). Considering each species separately, P. sylvestris and L. 

decidua relative abundances were higher in passive management sites (Figure 3.6; Table3.2). Most 

sprouter species, particularly P. tremula, Q. pubescens and Sorbus aria were more abundant in 

salvaged plots (Figure 3.6; Table3.2). 

 

 

Figure 3.6 - Seedling of Pinus sylvestris in the passive management area (left); Quercus pubescens in a 
salvaged plot (right). 
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Table 3.2 - Mean density (seedlings/ha) and standard error (in parentheses) of regeneration, divided 
by species and management type. 

Species Passive Management Salvage logging Tot. 

Pinus sylvestris 14.50 (±12.28) - 9.66 (±8.20) 

Larix decidua 14.72 (±7.53) 5.06 (±5.06) 11.50 (±5.30) 

Populus tremula 387.90 (±238.92) 504.61 (±325.02) 426.80 (±191.17) 

Quercus pubescens 7.65 (±5.64) 54.91 (±30.36) 23.40 (±11.02) 

Fraxinus excelsior 10.02 (±7.82) 10.32 (±7.11) 10.12 (±5.69) 

Betula pendula 7.21 (±4.06) - 4.81 (±2.73) 

Salix caprea 66.27 (±14.10) 72.64 (±48.28) 68.39 (±18.38) 

Sorbus aria - 25.00 (±16.15) 8.33 (±5.51) 

Sorbus aucuparia 17.63 (±8.05) - 11.75 (±5.45) 

Juniperus communis 27.04 (±9.28) 9.77 (±6.73) 21.28 (±6.63) 

Tot. 558 (±242) 702 (±355) 606 (±198) 

 

 

The role of environmental and management factors on the structure of regeneration of tree 

species was analyzed through direct gradient analysis. Redundancy analysis of regeneration 

structure related to the examined management options and environmental variables is shown in 

Figure 3.7. The first and second axes accounted for 19.9 and 3.1% of the total variation, 

respectively. Density, diversity, and maximum age of tree seedlings were positively associated to 

lying and standing deadwood. Regeneration density of ‘other trees’ (all tree species except P. 

tremula) was weakly and negatively associated to sites with abundant bare soil, gravel, litter, and 

shrub cover at the ground. P. tremula density was uncorrelated with ‘other trees’ density and 

seemed not influenced by the presence of deadwood. 
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Figure 3.7 - Redundancy analysis (RDA of 60 plots) of regeneration structure in relation to environmental 
characteristics and management options at site-scale. Dashed arrows are the regeneration structure 
variables (RCD-Mean: average Root Collar Diameter ; RCD-Std.Dev: standard deviation of Root Collar 
Diameter; Diversity: Shannon diversity index; Populus: density of Populus tremula; Other trees: density of all 
tree species except P. tremula; Age-Max: maximum seedling age). Full line arrows represent the “biplot 
scores of site variables” (St.Deadwood: standing deadwood or snags; Ly.Deadwood: lying deadwood; 
Shrubs: shrubs cover; Litter: litter cover; Soil: bare soil cover; Gravel: gravel cover; Grasses: graminoids 
cover; Forbs: non-graminoid herb cover). Triangular dots are management options (No intervention: 
absence of post-fire treatment; Salvage logging: post-fire logging treatment) categorical variables. The 
species-environment correlation for the first RDA axis was 63.0. 
 

 

Microsite influence on seedling occurrence 

Three hundred and sixty matched pairs of microsites with and without seedlings were measured in 

the salvage logging and the untreated area. The root collar diameter of measured seedlings ranged 

from 0.1 to 3.2 cm with a mean of 0.84 cm (±0.02). Seedling height ranged from 6 to 134 cm with a 

mean of 38.57 cm (±1.09). The most abundant species measured were P. sylvestris (15%), Salix 

caprea (15%), Q. pubescens (14%), L. decidua (13%), and P. tremula (11%). The other species 

measured accounting for 31% of the total amount of seedlings were B. pendula, Sorbus aucuparia, 

S. aria, Prunus avium, Populus alba, Fraxinus excelsior, Juniperus communis, and Corylus avellana. 

The conditional logistic regression analysis for matched-pairs on presence-absence of tree 

seedlings demonstrated the importance of deadwood as a facilitative element (Table 3.3). 

 

  



 
72 

Table 3.3 - Results of conditional logistic regression analysis for 360 matched pair’s data (seedlings and 
controls). The significant explanatory variables used in the conditional logistic regression model are 
expressed in bold. Only variables having an odds ratio above 1 (i.e. indicating a higher occurrence of 
saplings on a given microsite than would be expected by chance) are shown. 

Explanatory variable Beta S.E. p-Value Odds ratio 

95% Confidence 

interval for  

odds ratio 

Proximity to      

Deadwood_W 1.281 0.279 0.000 3.600 2.084-6.221 

Deadwood_S 0.957 0.260 0.000 2.605 1.566-4.334 

Deadwood_E 0.937 0.236 0.000 2.553 1.607-4.057 

Deadwood_N 0.612 0.254 0.016 1.844 1.122-3.033 

Rocks_N 0.608 0.603 0.313 1.837 0.563-5.99 

Rocks_W 0.390 0.846 0.645 1.477 0.281-7.753 

Rocks_S 0.387 0.800 0.628 1.473 0.307-7.064 

 

 

Recruitment was highly associated with specific locations of surrounding deadwood. 

The proximity of at least one element of deadwood (stump, log or snag) within 1 m radius 

increased the probability of a successful establishment and survival of tree seedlings. 

Azimuth locations of seedlings with respect to deadwood were highly non-uniform (χ2 test; p < 

0.05). Seedling regeneration pattern thus evidenced a marked anisotropy. In particular seedlings 

occurred significantly more often than by chance when deadwood elements were located on west 

(odds ratio [OR] = 3.6), south (OR = 2.6), east (OR = 2.5), and north (OR = 1.9) azimuth quadrants 

(Table 3.3). All other explanatory variables (Table 3.4) used in the model emerged as not 

significantly (p > 0.05) affecting the occurrence or absence of tree seedlings. A further 

stratification involving separately the matched-pair data of seedling species did not produce any 

significant model. Analysing seedling species data and pooled deadwood presence/absence data 

nevertheless revealed a significant and positive (χ2 = 4.58; p < 0.05) influence of deadwood 

elements on P.sylvestris seedlings. 
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Table 3.4 - Mean and standard error (in parentheses) of explanatory variables used in the conditional 
logistic regression model of microsite plots with vs. without seedlings. 

Explanatory variable 
Seedling 

(n = 360) 

No seedling 

(n = 360) 

Seedbed (%)   

Grasses
 

29.25 (±1.49) 26.99 (±1.51) 

Bare soil  24.95 (±1.21) 21.55 (±1.32) 

Rotten wood 14.98 (±0.86) 15.99 (±1.16) 

Forbs 14.38 (±0.80) 18.09 (±1.06) 

Shrubs 14.37 (±1.13) 15.81 (±1.22) 

Proximity to (n)   

Deadwood_S 0.27 (±0.03) 0.15 (±0.02) 

Deadwood _N 0.25 (±0.03) 0.16 (±0.03) 

Deadwood_E 0.19 (±0.03) 0.11 (±0.02) 

Deadwood_W 0.19 (±0.03) 0.14 (±0.02) 

Rocks_N 0.04 (±0.01) 0.02 (±0.01) 

Rocks_E 0.04 (±0.01) 0.01 (±0.01) 

Rocks_S 0.02 (±0.01) 0.02 (±0.01) 

Rocks_W 0.02 (±0.01) 0.02 (±0.01) 
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Discussion 
Regeneration density five years after the fire was still low even though tree species recruitment 

started immediately after the fire. Resprouts dominated the regeneration layer and higher 

densities of regenerating stems were observed in particular for P. tremula. Populus tremula is able 

to produce both stump sprouts and root suckers, and this reproductive strategy is very efficient in 

maintaining the population under severe disturbance or stressful condition (Hamberg et al., 2011). 

Root suckers are specialized in efficiently and quickly encroaching a wide underground space after 

a high severity disturbance (Homma et al., 2003). The high production of juveniles from suckering, 

producing dense clonal thickets could balance the high browsing pressure since aspen is a 

preferred species by ungulates (Hamberg et al., 2011; de Chantal and Granström, 2007; Myking et 

al., 2011). Browsing of regeneration was actually rather high, affecting the height of sprout-origin 

individuals (data not shown). 

Despite the short time since post-fire interventions, management strategies proved to produce an 

immediate influence on regeneration species composition. Facultative sprouters (e.g. P. Tremula 

and Q. Pubescens), showing a preference for salvage logged areas, confirmed the high resilience of 

these species in harsher post-fire conditions due to their main regeneration strategy. On the 

contrary obligate seeders, namely those conifer species (P. Sylvestris and L. Decidua) that were 

present in the pre-fire stand, although less abundant in absolute numbers, were favoured by 

leaving deadwood on site.  

Regeneration was in fact positively associated with deadwood. Its density and species diversity 

were higher when lying and/or standing deadwood were present. This positive effect proved to be 

essential from the first post-fire growing season, as demonstrated by a stronger association 

evidenced for older seedlings (i.e. seedlings established in the harsher early post-fire 

environment).  

The removal of dead or damaged trees produced by salvage logging strongly reduces the 

availability of biological legacies (Lindenmayer, 2006). Furthermore salvage harvesting can 

produce ground disturbance affecting vegetation development (Macdonald, 2007). The presence 

of patches of standing dead trees could moreover favor tree recruitment by providing perching 

sites for frugivore birds, potentially improving species richness in the regeneration layer 

(McClanahan and Wolfe, 1993; Rost et al., 2009; Castro et al., 2009). 

Ground cover conditions contributed to patterns of seedling occurrence. Regeneration was most 

successful in sites where the amount of bare soil, litter, gravel or shrub species was reduced. In 

our dry site with a water stress condition, even pioneer conifer species (P. sylvestris and L. 

decidua) did not thrive on exposed mineral soil in open sites available in salvaged area, preferring 

safe sites close to deadwood. The facilitative effect of shrubs on tree seedling establishment and 

survival commonly seen in dry sites (see Callaway, 2007) is not evident in our site probably 

because in this short post-fire period they are both competing for colonizing the burnt area. We 

might expect future evidence of this facilitative role when shrubs cover will be higher as found in 
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other studies (Castro et al., 2004; Gómez-Aparicio et al., 2004) and in an older burned area having 

similar site conditions in the same region (Beghin et al., 2010). 

An exception was represented by P. tremula, the most abundant species in the regeneration layer, 

whose behaviour differed from the other regenerating tree species, being uncorrelated with the 

presence of deadwood. P. tremula proved to successfully encroach grass cover dominated sites 

(Figure 3.8). The fast growth of Populus root suckers undoubtedly provided a competitive 

advantage for light with the grass layer (Homma et al., 2003; Myking et al., 2011). Similar results 

were found by Beghin et al. (2010) with the sprouting ability of this broadleaved species providing 

an explanation for its widespread presence in areas characterized by a dominance of grasses, 

where reduced germination limited establishment of tree species dependent on sexual 

reproduction.  

  
 
 
Figure 3.8 - Patches of P. tremula exhibit a faster 
growth taking advantage from its sprouting ability. 
 

 
 

Analysing regeneration presence at the microsite level, the probability of a seedling was always 

higher when a deadwood element was present. 

The strong spatial association of tree seedlings with deadwood suggests that deadwood produces 

microsites that enhance the establishment of seedlings. 

The presence of abiotic shelter elements can potentially provide safe microsite conditions for 

recruitment, without producing competition dynamics with the seedlings. 

Nurse objects can enhance both seedling establishment and survival (Coop and Schoettle, 2009; 

Resler et al., 2005; Castro et al., 2011). They can efficiently act as seed traps for wind-dispersed 
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seed, and provide shading, resulting in reduced evaporation and higher soil moisture (Flores and 

Jurado, 2003; Carlucci et al., 2011).  

With water being a critical resource in xeric environments, microsites where microclimatic 

conditions help in conserving water can play a key role for tree seedling growth and development 

(Legras et al., 2010). Several studies have reported reduced growth and survival of tree species 

associated with low soil moisture content was present (e.g. Conard and Radosevich, 1982; 

Germaine and McPherson, 1999). 

In our study area, characterized by low winter temperatures, the beneficial effect of deadwood 

material could also result in holding higher soil temperatures during night, thus affecting winter 

seedling survival, as found by Castro et al. (2011). 

The positive anisotropic relationship that we found between seedlings and deadwood was also 

evidenced in other harsh environments where shield effects were produced by shrubs or live trees 

(Kitzberger et al., 2000; Haase, 2001; Lingua et al., 2008). 

In xeric woodlands direct protection from radiation and the effects of shade on soil water 

availability are among the main factors facilitating the establishment of regeneration, with 

seedlings preferentially occurring on shady sides of the shelter elements (Kitzberger et al., 2000; 

Callaway, 2007; Beghin et al., 2010; Castro et al., 2011), in microsites protected in the sunniest 

hours.  

On average, seedlings occurred four times more often than would be expected under the 

assumption of a random distribution if a deadwood element were present Westward. Besides the 

shadow effect, in this case the positive anisotropic relationship is probably also related with seed 

trapping. The main wind direction in our study site is East-west, and the live edge of untouched 

forest is bordering East, thus Westward deadwood elements are obstacles that can trap wind-

dispersed seed (Pounden et al., 2008). 

In our site only deadwood showed a positive effect on tree regeneration probably because rocks 

were generally small and single, not providing enough shadow.  

Seedbed characteristics did not prove to have a significant influence on seedling 

establishment/survival at microsite level. 

P. sylvestris was the species whose presence was more correlated with deadwood. Its seedling are 

known to be dependent on a sufficient water supply (Hille and den Ouden, 2004), consequently a 

stable soil moisture regime in the initial stages of recruitment is essential for their survival. P. 

sylvestris regeneration is therefore more likely to have taken advantage of the shelter effect 

provided by deadwood elements. 

Despite the facilitative effect produced by deadwood, P. sylvestris regeneration 5 years after the 

fire was still very scarce. The species has no cone serotiny (Tapias et al., 2004). Its winged seeds 

are typically dispersed by wind in a period of about 2 or 3 weeks after cone opening in early spring 

(Debain et al., 2007), thus benefitting from spring rains (Debain et al., 2005). Good seed 

production usually occurs every 4-6 years (Lanner, 1998). Variation in seed production and quality 

between years is higher in harsh environments (Karlsson and Örlander, 2000). Cones and seeds of 

P. sylvestris show a very limited resistance to fire (Habrouk et al., 1999), thus after a stand-

replacing fire the only potential sources for regeneration being unburned edges or green islands. 
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Despite its pioneer attributes, a difficulty of P. sylvestris to germinate after fire has been observed 

(Retana et al., 2002), together with a limited capacity of recolonization from unburned edge due 

to limited dispersal distances (Vilà-Cabrera et al., 2012).  

Foreseen changes in fire regimes worldwide (Dale et al., 2001; Cary, 2002; Flannigan et al., 2005; 

Westerling et al., 2006) and specifically in the Mediterranean Basin (Pausas and Fernández-Munõz, 

2012) will probably increase the vulnerability of pine stands to fire. The forthcoming scenario calls 

for a full understanding of post-disturbance tree recruitment processes; in particular, knowledge 

on severe crown fires’ effects needs to be further explored (Marzano et al., 2012). A recent rise in 

crown fire occurrence in P. sylvestris forests at the southwestern distribution limit of the species 

has already been reported (Pausas et al., 2008; Beghin et al., 2010). P. sylvestris stands in dry sites 

will more likely be affected, with possible vegetation shifts towards shrublands or mixed 

resprouter forests (Rodrigo et al., 2004; Vilà-Cabrera et al., 2012). Post-fire rehabilitation and 

restoration treatments of these ecosystems should thus be implemented in the light of this 

scenario, acknowledging their potential to alter microsites variety and diversity, with possible 

implications on the species composition of restored forests. 
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Chapter 4 
A broad scale analysis of concurrent post-fire restoration practices. 
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Introduction 
A wildfire involving a large surface in alpine environment may present complex patterns of 

severity due to the high spatial variability in both vegetation and climatic conditions. Extended 

periods without significant precipitation, strong permeability of soils, abrupt changes of climatic 

conditions and availability of burnable material are some of the factors triggering the fire. Remote 

Sensing (RS) techniques at broad-scale, provide tools to estimate fire-severity and vegetation 

recovery, with low costs and reliable results (Dìaz-Delgado and Pons, 2001; Mitri and Gitas, 2004; 

Hudak et al., 2007; Veraverbeke et al., 2010). Validation and improvement in detecting fire 

severity by RS require suitable field-data collections and measurements (Key and Benson, 2006; 

Escuin et al., 2008). Monitoring fire frequency and severity, by means of satellite sensors over 

large forested areas, allows to evaluate the possible reduction of ecosystem ability to recover pre-

fire conditions (Díaz-Delgado et al., 2002). Detecting fire severity by means of change-detection 

tools led to classify different zones showing a homogeneous impact of fire on soil and vegetation. 

Classes of fire severity are typically broad damage groups (low, moderate, high) defined by 

appropriate thresholds in the spectral changes due to fire (Patterson and Yool, 1998; Robichaud, 

2000; Dìaz-Delgado and Pons, 2001). Classes amplitude could have significant variations 

depending on vegetation types and eco-regions (Lentile et al., 2006). Multispectral images from 

Landsat TM/ETM+ archives, allow the extraction of Vegetation Indices (VIs), which are indicators 

of vegetation state and have been used in several studies on vegetation dynamics and landscape 

transformations, such as those induced by fire (García and Caselles, 1991; Isaev et al., 2002; Miller 

and Thode, 2007).  

The topography of burnt area significantly contributes in influencing post-fire vegetation dynamics 

(Jain and Graham, 2007). Detailed spatial information about the morphology of the slopes and 

vegetation structure across landscapes, can be derived from Light Detecting and Ranging (LiDAR) 

data. High resolution DTM, derived from LiDAR, allows a detailed description of terrain surface 

useful to assess microsite variables affecting the regeneration establishment, such as surface 

roughness, aspect, slope (De Chantal et al., 2009; Legras et al., 2010). LiDAR data can provide also 

reliable measures on vertical structure of vegetation, distinguishing tree characteristics (height, 

canopy extension and length) from lower background vegetation (Wulder et al., 2009; Wing et al., 

2010).  

The aim of this study was to describe at broad scale the impact of a wildfire affecting a Pinus 

sylvestris stand in the Western Italian Alps. Using a RS multispectral dataset in connection with 

field-data collection on regeneration characteristics, environmental parameters and topographical 

descriptors, within the study area we assessed: 

 - the fire severity over the burnt area; 

 - the role of fire severity, topography and environmental constraints on natural 

regeneration establishment; 
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 - the effects of restoration activities on environmental parameters which affect 

regeneration dynamics. 
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Methods 
The analysis was performed in the Bourra site (45°46’14’’N, 7°29’58’’E, Aosta valley - Italy). In 

order to explore the opportunities provided from the Remote Sensing (RS) techniques, 

investigations of the major environmental factors were performed linking field-data sampling of 

regeneration and site characteristics with a RS dataset available for the area.  

The P. sylvestris forest of Bourra was affected by a 257 ha wildfire during spring 2005 that 

completely destroyed 160 ha (Figure 4.1 - image comparison). The extension of the burnt area 

after the fire was defined by means of ground surveys: an area showing vegetation scorch was 

bounded discriminating, within this latter, the crown-fire conditions from those of surface-fire 

(Figure 4.2). 

 

 

Figure 4.1 - A landscape view of the study area: orthophotos taken before the fire in 2003 (left-above) and 
after the fire in 2009 (bottom). 

 

From 2007 to 2009 the area was subjected to salvage logging interventions, consisting in felling 

the burnt trees and removing the wood. An experimental area (surface extension around 4 ha) 
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was set within the crown-fire perimeter and no intervention was applied. A similar extension of 

salvage area (SL) was used as control aiming to contrast the “No intervention” (Passive 

management - PM). 

 

Figure 4.2 - Perimeter of the burnt area with the crown-fire area (map by G.Cesti). The experimental zones 
are completely included within the crown-fire area.  

 

Data collection 

During summer 2010 a field campaign was carried out in 60 sampling plot randomly distributed 

(for details on sampling design and field protocol see Chapter 3 - section Methods). Within these 

plots regeneration variables and environmental parameters were recorded. Considering the low 

density and the differentiated dynamics of seedlings (Chapter 3 - section Discussions), the 

regeneration variables collected at-plot level (density of seedlings, estimated maximum age, Root 

Collar Diameter) were splitted into 2 groups: Populus tremula seedlings and other-species 

seedlings. The environmental parameters collected at-plot level were: ground cover (percentage 

estimate of litter, lying deadwood, bare soil, grasses, forbs, shrubs and gravel), standing dead trees 

(within the unsalvaged area), stumps (within the salvaged area). 
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The RS dataset consists of Landsat TM/ETM+ multispectral-information provided by USGS through 

GLOVIS support (Global Visualization Viewer at http://www.glovis.usgs.gov, last access November, 

15th). Two data-images temporally related with the fire were downloaded (in 2003 to acquire the 

spectral signature of the area before and, in 2006, after the fire). The scenes selected (Table 4.1) 

were taken approximately in the middle of growing season (to reduce phenotypic diversity), 

cloudless and according to the Landsat format at level 1T. The images were already radiometric, 

geometric, precision-corrected and a Digital Elevation Model was used to correct parallax error 

due to local topographic relief – (see Landsat Data Format Control Book-DFCB- at USGS website). 

 

Landsat sensor Acquisition date Path/Row 

TM 13-Aug-2003 195/028 

TM 20-Jul-2006 195/028 

TM 01-Sep-2010 195/028 
 

Table 4.1 - Acquisition dates of the Landsat TM images used in this study. 

 

In June 2011 an Airborne Laser Scanning data on the overall area were acquired. A Digital Terrain 

Model (DTM) and a Digital Surface Model (DSM) were extracted from the LiDAR dataset, both with 

1-m resolution. Topographic variables (slope, aspect, elevation, referred to GPS position of each 

sampling plot), were extracted from the DTM and inserted into a data matrix of site-descriptors. 

Furthermore, a set of orthophotos referred to years 2003, 2009, and 2011 was acquired. 

Subtracting DTM values from DSM ones provided the normalized DSM (nDSM), which is the height 

of detected objects with respect to the ground. Aiming at describing the surface roughness 

associated with the experimental area, a Roughness Index (RI) was elaborated as the standard 

deviation of nDSM within a given moving window (3 x 3 pixels) after the removal of negative 

values and those greater than 1 m (conservative threshold for filtering out standing dead trees). 

Considering the trees taller than 4 m as potential disperser seeder, a data-layer of minimum 

distance and associated direction from potential seed tree was built, filtering nDSM to the lower 

threshold of 4m. Annual potential solar radiation was estimated for the study area and extracted 

for each plot using DTM layer at 1m resolution in a Geographical Information System (GIS) (Rich et 

al., 1994; Fu and Rich, 2002). 

RS dataset was arranged and combined with ground-measures by means of multivariate tools, 

aiming at investigating the sensitivity of LandsatTM/ETM+ multispectral sensors to detect the 

environmental patterns affecting the study area. The multispectral dataset was pre-processed 

converting the initial Digital Numbers to At-Surface Reflectance (Chander et al., 2009); afterwards, 

Pseudo Invariant Features (PIF) structures and methods were applied to the images enabling the 

temporal comparison between the different Landsat data (Hall et al., 1991; Hill and Sturm, 1991). 

The extraction of Vegetation Indices (VIs) from multispectral images, enabled to build a map of fire 

severity. According to the methods introduced in Chapter 2, the NBR and the mCBI were 

elaborated in relation to the pre-(2003) and post-(2006) fire conditions.  

http://www.glovis.usgs.gov/
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Normalized Burn Ratio (NBR) :        
        

        
 

where near-infrared (NIR) and mid-infrared (SWIR) correspond to Landsat TM bands 4 

and 7 respectively. 

For mCBI definition, an undisturbed forested area had been set as training reference-forest 

(exposition and vegetation cover similar to the pre-fire condition of the burnt area): mCBI was 

calculated in terms of pixel-distance of the burnt area from the reference forest, assuming this 

latter as a sort of training area for “normality” condition:  

modified Composite Burn Index (mCBI):           
 

 
   

         

   
   

    

where, p pixel image, i band (five Landsat TM bands b2÷b7):),     spectral value for pixel 

p,     and     mean and standard deviation of training pixels on band i.  

An additional set of VIs was extracted from 2010 data-images: 

I. Green-leaf indices: highlight the spectral differential responses of near-infrared (NIR), 

photosynthetic active (RED) and (BLUE) bands.  

 Fractional vegetation cover (Fc): the proportion of vegetation cover detected by 

Normalized Difference Vegetation Index (NDVI), which is defined as a ratio of red 

(RED) and near-infrared (NIR) reflectance, Landsat TM/ETM+ bands 3 and 4 

respectively (Tucker and Sellers, 1986; Wiegand et al., 1991; Nishida et al., 2003). 

        
       

       
     

             

                
 

where NDVImax and NDVImin correspond to full vegetation (Fc = 1) and bare soil 

(Fc = 0) conditions. 

 Soil Adjusted Vegetation Index (SAVI): a VI exploiting the same spectral information 

of NDVI, corrected by an adjusting factor to reduce soil noise throughout a broad 

range of vegetation density (Huete, 1988). 

                
       

         
 

(with L = 0.5). 

 Enhanced Vegetation Index (EVI): derived from NDVI-method, should correct some 

distortions caused by the particles in the air as well as soil background noises 

(Huete et al., 2002). 

             
       

                    
  

where BLUE corresponds to Landsat TM/ETM+ band 1. 
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II. Tasseled cap indices (TC): a combination of spectral information, derived from all Landsat 

TM/ETM+ bands (Crist and Cicone, 1984; Jin and Sader, 2005). 

 Brightness (Br), Greenness (Gr), Wetness (Wet): principal components 

transformation of six Landsat TM and ETM+ bands (Huang et al., 2002). 

 Modified Disturbance Index (mDI): derived from difference between TC basic 

components, mDI is sensitive to the contrast between the spectral signature of live 

forest and the area affected by high-severity fire (Healey et al., 2006); the 

uncertainties of mixed severity conditions are avoided filtering the Greenness 

component (Hais et al., 2009).  

                              

III. Forest z-score indices: VIs calculated in terms of pixel-distance of the burnt area from a 

reference forest (i.e. the previously introduced mCBI). 

 Integrated Forest Index (IFI): considering as a reference the same training area 

chosen for mCBI definition, IFI exhibits a z-score measure of a pixels likelihood of 

being forested (Huang et al., 2008, 2010). Classifying the pixels of a burnt area 

according to some empirical IFI thresholds, allows to identify the zones covered by 

different vegetation layers (Chen et al., 2011; Schroeder et al., 2011). 

              
 

 
   

         

   
   

    

where: p pixel of an image, i band (Landsat TM/ETM+ bands: RED-band 3, 

MIR-band 5 and SWIR-band 7),     spectral value for pixel p,      and     mean 

and standard deviation of forest training pixels on band i. 

 

Data analysis 

A change-detection procedure was applied to test the ability of dNBR in detecting the different 

levels of fire severity (Key and Benson, 2006; Loboda et al., 2007; Escuin et al., 2008). Likewise, the 

dmCBI was obtained subtracting post-fire mCBI values from the pre-fire ones. This latter was used, 

together with dNBR, to evaluate the performances of both VIs on severity-detection. At this 

purpose, ground-measures were used as references. As a consequence of dNBR and dmCBI 

definition, two correspondent maps of severity were built classifying pixels into three classes: a 

high severity (greater than 2 standard deviation δ), a low severity (greater than 1δ, but lower than 

2δ) and no changes (lower than 1δ). Thresholds of the classes were calibrated according to the 

ground-measured perimeters of crown-fire and surface-fire areas.  

The VIs values corresponding to the sixty plots were extracted by averaging the VI-value of pixels 

included within a circular area (20 m diameter) centered on each plot (Figure 4.3). These values 

were used to fill a first matrix (VIs matrix). A second matrix was created with the parameters 

collected at-plot level (regeneration, topographic and environmental variables). 
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A two-way cluster analysis was performed on VIs matrix to find similarities of VI values at-plot 

level and correlations between VIs (McCune and Grace, 2002). 

 

 

Figure 4.3 - A circular area, with a diameter of 20 meters, located around each sampled plot, was 

overlapped to VI layer: the VI value assigned to the sampled plot resulted from the average of the 

extracted values among crossing pixels (the small circles inside each pixel).  

 

VIs data associated with the 60 plots were subjected to Non-metric Multidimensional Scaling 

(NMS) ordination to display the variations and to verify the grouping of VIs data-plots highlighted 

by cluster-analysis. The relationships among this groups and the environmental parameters were 

explored setting the environmental parameters as 2nd data matrix. NMS was used to explore 

possible patterns among VIs groups and environmental data providing a biologically meaningful 

view of multispectral data. The NMS was chosen because of the high number of zeros for the 

regeneration occurrences and the relaxed assumptions in terms of normality (Legendre and 

Legendre, 1998; Zuur et al., 2010). We used Euclidean distance measures for NMS ordination, 

specifying 2 dimensions and 250 iterations (data relativized respect to standard deviation). The 

significance of dimensional solutions was assessed using Monte Carlo permutation procedures 

(250 interactions) and the evaluation of stress reduction (McCune and Grace, 2002). 

In order to test the multivariate differences among VIs groups, a nonparametric Multi-Response 

Permutation Procedure (MRPP) was used with a Euclidean distance measure (Biondini et al., 

1988). The MRPP procedure was also used to perform pairwise comparisons among groups. 

A Discriminant Analysis classification - DA (Legendre and Legendre, 1998) was performed on VIs-

matrix, using the spectral groups as classification variable in order to derive functions which 

allowed to extend DA classification to the entire experimental area. 

Assuming the significant sensitivity of Landsat TM/ETM+ sensors to the environmental patterns 

(Jakubauskas, 1996), the relationships between VIs and field-data were further explored by means 

of Spearman correlations coefficients (p-value < 0.01). 

The impacts of environmental constraints on regeneration density were evaluated through 

General Linear Models (GLMs) procedure (McCulloch, 2000) using environmental data matrix as 

 uantitative predictor, while “Management-type” (Salvage, Unsalvage) and “direction of the 

nearest seed tree” as categorical variables.  
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All variables were assessed for normality, prior to statistical analyses. Data were log- or angular-

transformed when required to improve normality and homoscedasticity (Zar, 2009). For all 

statistical tests, p = 0.05 was considered significant where no other indication was given. 

All multivariate procedures were performed using PC–ORD 6.0 software (McCune and Mefford, 

2011). Comparison and DA were performed by means of Statgraphics Centurion version XVI 

(StatPoint Technologies Inc, Virginia, USA). Processing and editing of RS data were supported by 

ENVI version 4.7 (ITT Visual Information Solutions, Boulder, Colorado, USA). 
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Results 
Detection of fire severity 

Change-detection of NBR and mCBI indices before and after the fire, enabled to define two maps 

describing the levels of fire severity detected (Figure 4.4).  

 

  
a) b) 

Figure 4.4 - Maps of fire severity classified according to 3 classes: no change (white), low severity (orange), 

high severity (red); continue lines delimit the total burnt area (green) and the crow-fire area (blue). The 

zones beyond the perimeter, eastwards, were involved in earthmoving and excavation over the years after 

the fire; a) dNBR map, b) dmCBI map.  

 

 

The field survey carried right after the fire allowed to evaluate the performances of the two VIs 

(dNBR , dmCBI) with respect to the boundaries of the burnt area (Table 4.2). 

 

 
High severity Low severity Nochange Tot. surface 

 
(ha) (%) (ha) (%) (ha) (%) (ha) (%) 

dmCBI 140.9 55 36.1 14 79.8 31 
256.9 100 

dNBR 159.8 62 25.6 10 71.6 28 
 

Table 4.2 - Definition of fire severity classes referred to the severity maps built by dNBR and dmCBI: the 

surface involved was computed referring to the perimeter of the burnt area resulting by ground 

measurements after the fire. Amplitude of severity classes is calibrated by means of the crown-fire 

perimeter achieved by ground-measurements: the low severity class includes changes greater than 1 

standard deviation, while, the high severity one over 2 standard deviation units.  
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A comparison between the two indices performances shows a quite similar result in classifying 

burnt pixels within the perimeter delimiting the burnt area (identifying around 70% pixels within 

the area affected by fire). A slight tendency of dNBR to classify a higher number of pixels as 

burned and with higher severity than dmCBI was found (Table 4.2). Considering the zones named 

“crown-fire” and “surface-fire” within the burnt area, a similar behaviour of the two indices seems 

to occur (Table 4.3). As expected, the “crown-fire” area includes mostly high severity pixels (80-

86% of total), while “surface-fire” area takes in mainly no-change pixels (61-70%) with equal 

amount of pixels classified as low severity ones (both to 16%). 

 

 
High severity Low severity Nochange Tot. surface 

 

 
(ha) (%) (ha) (%) (ha) (%) (ha) (%) 

dmCBI 128 80 20 13 12 7 160 100 Crown-
fire area dNBR 138 86 10 6 13 8 160 100 

dmCBI 13 14 16 16 68 70 97 100 Surface-
fire area dNBR 22 23 15 16 59 61 97 100 

 

Table 4.3 - Comparison between the ability of fire severity indices to discriminate pixels with different levels 
of severity within the crown-fire area and the surface-fire one.  

 

Figures 4.5 and 4.6 show that wildfire affected greatly south and south-east facing slopes located 

between 1300 and 1900 m a.s.l.  

 

 

 
 

a) b) 

Figure 4.5 - Fire severity and extension of the burnt area as detected by dNBR index, according to: a) slope 

exposition, b) altitude classes. 
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a) b) 

Figure 4.6 - Fire severity and extension of the burnt area as detected by dmCBI index, according to: a) slope 

exposition, b) altitude classes. 

  

Spectral and environmental patterns 

Cluster analysis highlights grouping of VIs values among the sixty plots into four distinct groups, 

keeping a residual information around 70% (Figure 4.7). According to the management-type, a 

notable differentiation of the plots assigns the SL plots to groups Sp3, Sp4 and the unsalvaged 

plots to groups Sp1, Sp2.  

 

 

 

Figure 4.7 - Two-way cluster dendrogram showing the four clusters of plots (Sp1-Sp4) as results of common 

arrangement of the VIs values among the sampled plots. VIs similarities (to the right) allows to restrict the 

subsequent analysis to five VIs, for a acceptable description of the spectral variability: IFI, SAVI, NBR, Fc and 

mDI.  

 

VIs Residual information (%)
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The results from MRPP analysis show a significant differentiation of VIs among the spectral groups 

(Table 4.4). The four groups were well separated by a very low test statistics (T = -25.4) and a 

relatively high chance-corrected within-group agreement (A = 0.44). The average within-group 

distance was lower in group Sp2 and higher in Sp3, respectively indicating greater homogeneity of 

VIs values within group Sp2 and greater dispersion among the plots of group Sp3. 

 

 Sp1 Sp2 Sp3 Sp4 

Size (n) 32 10 12 6 

Avg. distance 
within-group 

0.25 0.22 0.39 0.28 

Sp1 
 T=-13.7 

A=0.22 
P<0.001 

T=-16.5 
A=0.22 
P<0.001 

T=-12.6 
A=0.21 
P<0.001 

Sp2 
  T=-13.3 

A=0.46 
P<0.001 

T=-8.8 
A=0.41 
P<0.001 

Sp3 
   T=-9.7 

A=0.39 
P<0.001 

Global T=-25.4,  A=0.44,  P<0.001 

Table 4.4 - MRPP statistics testing the overall differences among VIs groups: global and 

pairwise comparisons.  

 

NMS biplot displays the plot arrangement among the four different groups (Sp1-Sp4). Shift from 

groups Sp1 to Sp3 follows a gradient along axis 1, while along axis 2 group Sp4 is separated from 

the others (Figure 4.8). Changes along axis 2 follow variations in fire severity (both indices dNBR 

and dmCBI). VIs characterized by sensitivity to the greenness component of the vegetation (SAVI, 

EVI, TCap-Greenness) exhibit the strongest positive correlations with axis 1 (r > 0.9). Indices mDI 

and TCap-Wetness have the greatest positive correlations with the axis 2 (r > 0.7), conversely, IFI 

shows a strong negative correlation with axis 2 (r = -0.85) (Table 4.5). 
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Figure 4.8 - Non-metric multidimensional scaling ordination of VIs data matrix. Each symbol represents a plot (N = 
60 plots). Free polygons contain data-plots included in the same group: each group has a centroid labelled from 1 
to 4 corresponding to Sp1-Sp4 groups previously identified by cluster analysis. Vector lengths are proportional to 
the correlations with ordination axes. The final solution had two dimensions, stress = 2.87 and P = 0.004. 

 

 

 VIs 
Correlation 

coeff. 
Axis 1 Greenness 0.974 

 SAVI 0.945 

 EVI 0.933 

 NBR 0.770 

 Brightness 0.765 

 Fc 0.648 

 mDI -0.663 

Axis 2 Wetness 0.844 

 mDI 0.747 

 Fc 0.699 

 NBR 0.589 

 IFI -0.885 

 Brightness -0.630 

Table 4.5 - Pearson’s r correlation coefficients (p < 0.05) from main data-matrix of VIs. 
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VIs reporting information of fire severity are both included in ordination (2nd matrix of 

environmental data) showing significant correlations with axis 2 (Table 4.6). 

 

 Environmental 
variable 

Correlation  
coefficient 

Axis 2 SeveritydmCBI -0.600 

 SeveritydNBR -0.448 

 Solar radiation -0.427 

 Slope -0.338 

Table 4.6 - Pearson’s r correlation coefficients (p < 0.05) from the second data-matrix 
of environmental parameters. 

 

All pixels included in the burnt area were divided into four groups according to DA procedure, that 

uses spectral groups (Sp1-4) as classification factor and VIs as variables discriminating among the 

groups. Considering the similarities among VIs in the 2-way diagram (Figure 4.7) and the 

correlations between them showed in NMS ordination, the three TCap-components and EVI index 

were not taken into consideration for DA analysis. DA allows to assign each pixel to the 

correspondent spectral group by means of the Classification Function (Table 4.7). The map in 

Figure 4.9 reports the burnt area classified according to the four spectral groups.  

 

Discriminant 
Function 

Wilk 
Lambda P-Value 

Classification 
rate 

1 0.017 <0.001 
96.1 % 2 0.12 <0.001 

3 0.56 <0.001 
 

 FC1 FC2 FC3 FC4 

SAVI -349780 -341660 -347817 -358833 

NBR 87181.6 85236.6 86892.1 89260.1 

mDI 67947.9 65021.5 67751.5 72669.2 

IFI 1528.9 1481.4 1523.3 1595.6 

Fc 80340.1 78159.7 80023.6 82781.6 

Const. -14704.5 -14115.4 -14668.1 -15082.6 
 

Table 4.7 - (Left): results from Discriminant Analysis (DA) of VIs amongst the four spectral groups (Sp1-4). 
Classification rate shows the percentage of pixels classified according to the Classification Functions FC1-4. 
(Right): coefficients of Classification Functions used to determine which of the Sp-groups every single pixel is 
most likely to belong to.  
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Figure 4.9 - Map of Spectral groups as defined by DA-classification functions. In the top box, a detailed view 
of the experimental area: groups Sp1-2 mostly include unsalvage plots, Sp3-4 salvage ones. Pixel resolution 
displayed is the standard-Landsat TM/ETM+ resolution (30m). 
 

The DA classification of pixels in the experimental area shows, within Salvage Logging, similar 

percentages of surface assigned to Sp1 and Sp3; unsalvaged area is mostly covered by Sp1 (Table 

4.8). High numbers of zero-frequencies for seedlings, heterogeneous and small size groups (low 

number of plots), do not allow a statistic comparison of the regeneration density among the 

Spectral groups; anyway, the extremes values of regeneration density are denoted in Sp3 (higher 

density) and Sp4 (absence of regeneration).  

 

Amount of surface (%) SpGr1 SpGr2 SpGr3 SpGr4 Total 

No Intervention 65.5 29.0 5.5 - 100 

Salvage Logging 35.9 7.5 41.5 15.1 100 
 

Table 4.8 - A summarized list of cumulated area loading each Spectral group with respect to the treatments. 
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Group 4 exhibits higher distances from the seed trees, loads of annual solar radiation, and slope 

degrees (Table 4.9). Maximum roughness is associated with group 1 which shows lower distance 

from seeders. Despite the fact that the experimental areas have been entirely placed in zones 

affected by high severity fire, group 3 exhibits a mean value of severity index slightly lower than 

the other groups and lower values of solar radiation. 

 

Site variables 
 

SpGr1 SpGr2 SpGr3 SpGr4 
mean  
(±δ) 

n 
mean  
(±δ) 

n 
mean  
(±δ) 

n 
mean  
(±δ) 

n 

Seeder-distance 
(m) 

108a 
(±46) 

49500 167c 
(±33) 

18000 140b 
(±49) 

22500 189d 
(±21) 

7200 

Radiation 
(kW·h/m²· y-1) 

1473b 
(±76) 

49500 1487c 
(±51) 

18000 1464a 
(±67) 

22500 1506d 
(±53) 

7200 

Severity 
(-) 

18.7a 

(±2.8) 
55 18.2a 

(±2.0) 
20 16.8a 

(±4.6) 
22 23.0b 

(±1.4) 
11 

Roughness 
(-)  

0.17a 

(±0.08) 
49500 0.16a 

(±0.08) 
18000 0.15b 

(±0.07) 
22500 0.15b 

(±0.06) 
7200 

Slope 
(°) 

26a 
(±6) 

49500 28ab 
(±5) 

18000 26a 
(±7) 

22500 32b 
(±4) 

7200 

 

Table 4.9 - Environmental parameters characterizing the experimental area: the columns report mean 
values ± standard deviation for each group, n the number of pixels included in the statistics (1m pixel 
resolution, except for Severity, 30m pixel resolution). Different letters highlight differences between Spectral 
groups (ANOVA comparison using post-hoc Tukey HSD, p-value < 0.05). Seeder-distance is the minimum 
distance from a potential seeder tree, Radiation is the annual potential solar radiation (diffuse + direct), 
Severity is dmCBI-data layer, Roughness is Roughness Index (RI)-data layer, Slope is Slope degrees. 
 

Correlations between VIs and the field vegetation data indicate weak relationships (Table 4.10). Fc 

(fractional vegetation cover) is positively correlated with regeneration presence and inversely with 

Gravel ground cover. Grass layer seems to be positively related with mDI index. 

 

 
Herbs Litter Gravel 

Snags 

(density) 

Seedlings 

(density) 

Age-max 

seedlings 

Fc   -0.49  0.36 0.39 

mDI 0.35      

NBR    -0.43   

SAVI  0.37  -0.40   
 

Table 4.10 - Spearman’s correlations between spectral indices and field vegetation data in year 2010. Herbs, 
Litter and Gravel are referred to the estimated ground cover. Snags is the density of standing dead trees, 
Seedling and Age-max are referred to the density of seedlings and the maximum estimated age of these 
seedlings per plot. All the correlation coefficients reported are considered as significant with p-value < 0.01. 
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Site variables (Figure 4.10, 4.11, 4.12) show significant relationships with Wetness component of 

TCap indices and IFI (Table 4.11a). Annual loads of solar radiation, level of fire severity and slope 

degrees are negatively correlated with Wetness component. Conversely, IFI is positively related 

with surface roughness (RI), annual solar radiation, fire severity and slope degrees. Site variables 

are significantly related with regeneration and ground cover parameters as well (Table 4.11b). 

Seeder distance is negatively related with the density of seedlings and seedlings-species diversity. 

Surface roughness is positively related with CWD (Coarse Wood Debris) and regeneration. Fire 

severity shows positive relationships with IFI index (Table 4.11a), CWD and standing dead trees 

(Snags).  

 

a) 
Seeder 

distance 
Roughness 

Solar 

radiation 
Severity Slope 

Wetness 

(TCap-component) 
  -0.38 -0.37 -0.35 

IFI  0.35 0.35 0.41 0.35 

      
 

b) 
Seeder 

distance 
Roughness 

Solar 

radiation 
Severity 

Seedlings 

(density) 
-0.55 0.32   

Age-max 

seedlings 
    

RCD- 

variability 
-0.53 0.35   

Snags 

(density) 
-0.53   0.38 

CWD -0.60 0.53  0.43 

Bare soil 0.41    

Gravel   0.43  

Species-diversity 

(Shannon) 
-0.44    

 

Table 4.11 - Spearman’s correlation coefficients between Site-variables and :  
a) VIs extracted for each plot, b) regeneration variables and ground cover (RCD variability is referred to 
standard deviation of Root Collar Diameter of the seedlings measured for each plot; CWD is Coarse Wood 
Debris estimated; Snags is density of standing dead trees and Species diversity is the Shannon index 
calculated for the seedling species within each plot). All the correlation coefficients reported are significant 
with p-value < 0.01. 
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Density of seedlings is influenced by the seeder distance (GLM - Seeder distance factor, p-value < 

0.001) (Table 4.12). Spearman correlation (-0.55) highlights the relationship between regeneration 

and Seeder distance (Table 4.11b). GLM reports weak but significant influence of solar radiation 

and management-type predictors with respect to the regeneration establishment (Table 4.12). 

Solar radiation doesn’t show particular connections with regeneration density, but the inverse 

correlation (-0.38) to Wetness (TCap-component) may indicate an indirect effect in seedlings 

presence caused by the reduction in soil moisture (Table 4.11a). 

 

Response General Linear statistical Model Predictor D.f. F-ratio p-value 

Seedlings 

 (density) 

R2 F-ratio p-value Seeder distance 1 17.4 <0.001 

0.47 4.24 <0.001 
Solar radiation 1 5.2 0.02 

Management-type 1 4.1 0.04 
 

Table 4.12 - Fitting models relating response variable “density of seedlings” to the predictors “Seeder 
distance”, “annual potential solar radiation”, “management-type” (salvage, unsalvage treatments as 
categorical predictor). P-value < 0.01 meaning a statistical relationship between response and predictors at 
99% confidence. 

 
The variable “Direction from the nearest seed source“ (eight cardinal directions) used as 

categorical predictor did not show significant effect with regard to regeneration density (D.f. = 7, 

F-ratio = 1.88, p = 0.09). Including ground-cover and site-variables to the predictors listed in Table 

4.12, GLM fitted significantly to the same response variable (seedling density), increasing R2 to 

0.61, F =2.9, p < 0.01 (model explained by the same significant predictors). 
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Figure 4.10 - Map of the potential solar radiation in the experimental area: annual cumulated values 
ranging from low levels (dark) to the highest (light grey). Values of solar radiation were estimated by GIS 
tools on the basis of DTM (1-m resolution) derived from LiDAR data acquired in June 2011. 
 

 

  

Low: 450 (kW·h/m²)

Annual Solar Radiation

High: 1500 (kW·h/m²)
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Figure 4.11 - Map of the entire burnt area showing the minimum distance of each pixel from a potential 

seed-tree. Distance information was achieved from nDSM data-layer (1m resolution) ranging from low 

(white) to high distances (black). The maximum distance from potential seeders within the experimental 

area (red perimeter) is equal to 253 m.  

Map of distance from seed-trees

Distance to the nearest seeder
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Figure 4.12 - Detailed view of the RI-data layer (used as indirect measure of surface roughness) in the 

experimental area. SL treatment (within red boundaries) exhibits a homogeneous surface with low level of 

RI (light grey). More variations are notable within the unsalvage area (green-line delimited) where the 

values of RI are greater (dark grey-black).  

 

  

Low

Roughness Index

High
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Discussions 
Fire severity detection 

The wildfire in Bourra site has had a strong impact on the P. sylvestris forest, causing the loss of 

woody plants in the burnt area. Destruction of the forest floor, dramatic decrease of seed 

availability and sensible reduction of the canopy are associated with a wide extension of the 

surface affected by high levels of fire severity. These conditions often led to high rates of soil loss 

making the site hostile to natural regeneration establishment (DeBano et al., 1998; Díaz-Delgado 

et al., 2003). A coarse detection of fire severity has proven to be reliable on a broad scale, by mean 

of Landsat TM multispectral data calibrated by ground truth (86% of crown-fire area was detected 

as high severity). The efficiency of dNBR in severity detection has been compared with dmCBI 

index, in order to use a wider spectral information with respect to dNBR (Huang et al., 2008; Meng 

and Meentemeyer, 2011). The ability of both indices in defining maps of fire severity resulted 

similar, though confirming the tendency for dNBR to classify a higher number of pixels as burned 

and identifying, within these latter, more high severity pixels than dmCBI (a trend also mentioned 

in the study reported in chapter 2). The choice of appropriate thresholds to set the amplitude of 

severity classes, has to receive the necessary feedback from field-data surveys. However, the 

evaluation of dmCBI performances requires future detailed tests, especially linked to the 

opportunity of a specific protocol for ground-severity validation (e.g. design protocols in: Van 

Wagtendonk et al., 2004; Key and Benson, 2006; Chen et al., 2011). Both severity indices indicate, 

with equal clarity, the distribution of fire severity among classes of altitude and exposition. 

 

Spectral patterns and evaluation of environmental constraints 

Landsat TM/ETM+ multispectral data allow to schedule a wide range of VIs with proven sensitivity 

to the different strata of vegetation (Meng and Meentemeyer, 2011). Exploiting the ability of VIs 

to explore the burnt area at landscape level, field-data sampling plots have been assigned and 

splitted into four different spectral groups. The association of VIs with the environmental 

parameters and the site descriptors enables an analysis of the arising patterns. Spectral groups 

Sp1, Sp2 mostly include unsalvage plots, while Sp3, Sp4 salvage ones. All the groups are well 

separated and both the restoration treatments include groups of pixels corresponding to plots 

with scarce or absence of regeneration (pixels belonging to Sp4 in SL and to Sp2 in PM treatment). 

Within the salvage logging area (SL), Sp4 includes plots located in zones with higher values of IFI, 

fire severity and lower values of Wetness, mDI, Fc with respect to the other spectral groups; this 

combination of VIs values is associated with those areas with higher slope degrees, solar radiation 

loadings, in which the seeder distance is maximum. Spectral group Sp2, within the unsalvaged area 

(PM), includes plots showing low values of those VIs associated with the green component of 

vegetation (SAVI, EVI, Greenness-TCap, Fc). In addition to this, Sp2 involves zones showing greater 

solar radiation loadings, slope degrees and seeder distance (similar to the group Sp4). The other 

two groups (Sp3 in SL and Sp1 in PM) show higher values of those VIs usually linked to 

regeneration layers (Fc, SAVI) and those indicating positive environmental conditions for 
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regeneration establishment (mDI, Wetness-TCap). At this purpose, the significant negative 

correlations between Wetness TCap-component and solar radiation, slope and severity variables 

confirm the sensitivity of this VI towards soil moisture conditions (Patterson and Yool, 1998) 

(which are presumably the worst in the areas displaying, at the same time, greater solar radiation 

loadings, slope degrees and high levels of fire severity). Overall statistics within the experimental 

area, in terms of amount of surface assigned to each group, show a percentage of surface 

approximately equal to 70% presenting favorable factors for the regeneration establishment 

(areas included in groups Sp1 and Sp3). Despite the experimental areas being located in 

comparable high severity conditions (detected by ground measures and visual estimates), a 

gradient of increasing severity is associated with zones presenting scarcity of regeneration (areas 

included in group Sp4). However, the distance from the seed trees acquires a significant 

importance (as confirmed by GLMs): in spite of other positive environmental factors that promote 

regeneration recovery, seeds availability is a necessary requirement. The four groups include areas 

in which the distance from the seeders, seems a critical factor for the re-colonization process of 

the burnt slopes, especially for P. sylvestris regeneration (Retana et al., 2002; Vilà-Cabrera et al., 

2012). In addition to this, seeder distance exhibits a negative relationship with species diversity of 

regeneration (Shannon index); this may be a conse uence of the reduced “edge effect”, due to the 

increasing distances from the forest borders, affecting not only the processes directly connected 

with regeneration dynamics but also in relation to the changes in ecosystem communities (Yahner, 

1988; Desrochers and Fortin, 2000; Harper et al., 2005).  

This study supports the reliability of RS techniques, in this case of multispectral Landsat TM/ETM+ 

images, in detecting and surveying the process of vegetation recovery at-broad scale in an alpine 

environment. The combination of field-data sampling and spectral information allows to describe 

the severity of the event and the environmental patterns, extending the analysis to the landscape.  

In spite of the poorly establishment of seedlings from natural regeneration (see Chapter 3 - 

Results), VIs with different sensitivities to vegetation, site and environmental variables allowed to 

highlight those factors having a decisive role in the regeneration establishment. Distance from 

seeders becomes a relevant constraint in the recovery process of P. sylvestris and has to be 

considered for planning the restoration activities in conjunction with a detailed information on fire 

severity affecting the area. Under these specific constraints, salvage logging treatment may 

counteract the seedling establishment (see Chapter 3 - Discussion). 
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Chapter 5 
Microclimate implications of different post-fire management. 
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Introduction 
Close to the southern limits of their natural geographic distribution, the forests of Scots pine 

(Pinus sylvestris L.) are quite common in the Italian Alps, from East to West and along a broad 

altitudinal gradient. Pinus sylvestris is the most widespread conifer in Europe, showing an early-

seral character and a great sensitivity to land use (Caplat et al., 2006): in the inner valleys of the 

Alps, the continental climate and dry conditions promote the dominance of pine in the coniferous 

forests, especially on southern slopes. In these conditions fire is one of the most common natural 

disturbances, often with an active role in shaping pine forest dynamics (Pezzatti et al., 2009; Kloss 

et al., 2012). The impact of fire on alpine ecosystem depends on many factors: the amount and 

spatial pattern of burnt surface, the magnitude of the event, the edaphic and topographic 

characteristics. The high variability of the alpine environment (slopes morphology, fuel availability) 

combined with abrupt climatic variations, contrast de facto wildfires from spreading to extensive 

areas (Wastl et al., 2013). Average size of surface affected by fire in the Alps ranges from decades 

to few hundreds of hectares (Valese et al., 2011). The magnitude of fire-impact on the ecosystem 

is linked to the loss of vegetation cover, transformations of physical and chemical soil properties 

with remarkable changes in soil organic matter (SOM) and nutrient availability (Whelan, 1995; 

DeBano et al., 1998; DeBano, 2000). The different degrees of fire severity act providing contrasted 

micro-site conditions. High severity causes extreme changes in soil texture, bulk density and soil 

water properties (Ulery and Graham, 1993; Bodí et al., 2011; Gabet and Bookter, 2011). Uneven 

fire severity prompts variability in structure and vegetation composition, but also in soil 

respiration since fire acts removing plants and affecting soil microbes community: as a 

consequence, soil respiration often declines following the fire (Bergner et al., 2004; Hamman et 

al., 2008). When high severity affects large extensions, as in a wildfire, the balances of energy and 

water at-ground level can be heavily altered (Santos et al., 2003; Amiro et al., 2006).      

Reductions in canopy cover caused by wildfires bring to an enhanced near-ground solar radiation, 

that is the input of energy for several ecological processes (Royer et al., 2010). Solar radiation 

significantly affects water budget, changing the ratio of soil evaporation, thus providing relevant 

patterns of soil temperature and soil respiration (Breshears et al., 1998; Klopatek et al., 1998; 

Davidson et al., 2000; Zhang et al., 2010). A high level of solar radiation after a wildfire causes 

huge evaporative losses from the soil surface. Soil moisture content (SM) is one of the most 

influencing parameters in relation with eco-hydrology and land surface climatology (Verstraeten et 

al., 2008). High levels of direct solar radiation associated with low SM levels and high temperature 

typically make the site hostile to tree regeneration, since the germination process is sensitive to 

SM and seedlings need more time to develop root depth (Gray and Spies, 1997; Gray et al., 2005; 

Gutiérrez-Jurado et al., 2006). Germination and survival of herbaceous and woody species can be 

affected by little differences in SM, mostly in the Alps, where steep slopes typically present 

shallow soil depths, with marked variation of SM because of great exposure to solar radiation 

(Lauenroth et al., 1994).  
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Soil temperature is strictly linked with the amount of solar radiation reaching the ground, slope 

exposition and the season of the year: south-facing slopes could considerably differ in daily soil 

temperature from north-facing ones (Haskell et al., 2012). The increase in soil temperature leads 

to a great soil drying rate with high differences in daily temperature: as a consequence, natural 

and planted regeneration shows high mortality, especially due to desiccation during the first 

growing season (Russel, 1988; Gray et al., 2005). 

Soil temperature and SM are directly related to soil-nutrient concentration: water evaporation 

process promotes the upward movement of nutrients increasing the soil-nutrient availability. 

Slopes presenting high temperature and drier soils, as following a wildfire, cannot be easily 

exploited by regeneration, because of the lack of water available for transpiration and nutrient-

solution. At the mid-term, the perspective of nutrient loss due to runoff, leaching or erosion leads 

to soil impoverishment (Matías et al., 2011). Fire severity influences soil respiration rates: higher 

respiration rates in soils affected by low-severity fire without strong SM limitations (Castro et al., 

2011; Marañón-Jiménez et al., 2011). Furthermore, soil respiration is an index of fungi and 

microbes activities, directly connected with pedological processes (Bergner et al., 2004).  

The transfer of soil water to the atmosphere is a process involving a complex range of sources 

such as evaporation from water bodies, land surfaces, surface snow-packs, vegetation canopy 

interception and plant transpiration. Evapotranspiration (ET, evaporation from the soil + plant 

transpiration) could be considered in terms of mass and energy transfer as well (Verstraeten et al., 

2008). SM is a limiting factor for soil evaporation and plant transpiration processes (ET), linking soil 

water dynamics with the energy balance at ground level (Priestley and Taylor, 1972; Churkina et 

al., 1999). Energy partition at ground level between Evapotranspiration (ET) and sensible heat flux 

(H) is strongly dependent on soil temperature, SM, vapour pressure deficit and surface roughness 

(Allen et al., 1998; Shuttleworth, 2007). The input of energy to the biosphere-system by means of 

solar radiation, is partially conditioned by the reflected component at surface level (albedo); 

immediately after the fire, the burned surfaces show a dramatic change in albedo, related to fire 

severity (Field et al., 2007). 

Post-fire regeneration depends on fire severity since intensity of Soil Organic Matter (SOM) 

consumption, mineral soil exposure and seedbed preservation drive variability in natural 

regeneration patterns (Greene et al., 2005). However, seedling establishment and survival heavily 

depend on environmental constrains as well, such as availability of light, water, nutrients and 

seeds. The most common post-fire management practice is salvage logging (felling and removal of 

burnt trees), sometimes coupled with seedlings plantations (McIver and Starr, 2001; Beschta et al., 

2004). The Alps slope morphology often counseled land-managers to apply salvage logging (SL) in 

order to keep safety slopes (i.e. against rainfall and aeolian soil erosion or tree-fall accidents), for 

the extraction of valuable wood products (Beghin et al., 2010). In the last decade, the scientific 

debate about the opportunity to apply salvage logging as main post-fire intervention led to 

investigate alternative management practices. An increasing number of studies focused on the 

critical evaluation of the ecological consequences of salvage interventions on regeneration 

establishment (Donato et al., 2006; Noss and Lindenmayer, 2006; Castro et al., 2011; Serrano-Ortiz 

et al., 2011). Post-fire restoration activities mostly aim at facilitating the establishment of 

herbaceous and tree regeneration. Post-fire site preparation and planting of saplings turned out to 
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be the most common restoration activities applied, with high costs and, sometimes little effects as 

a result of the interventions (Leverkus et al., 2012). Restoration activities alternative to salvage 

logging, usually manage the burnt wood in the site, using it to facilitate the vegetation recovery 

process. The role of microsites, at a scale of tens of centimeters, is enhanced since in these sites 

regeneration can find positive microclimate conditions (Purdy et al., 2002; Greene et al., 2007; de 

Chantal et al., 2009; Legras et al., 2010). There is an increasing trend of experimental applications 

where active restoration methods (burnt wood is managed) are contrasted by passive 

management (no intervention, burnt and living trees remain in situ) (Beschta et al., 2004; Noss et 

al., 2006; Beghin et al., 2010). In a forest affected by a wildfire, burnt wood may have a relevant 

role on post-fire recovery dynamics, providing favourable microsite features (i.e. in terms of soil 

temperature and moisture, nutrient storage - Gray and Spies, 1997; Haskell et al., 2012). Downed 

wood material (DWD) proved to improve seedlings recruitment (see chapter 3) especially in arid 

conditions, where drought season matched the maximum water demand of established 

regeneration.     

Establishment of natural regeneration was investigated in burnt areas managed with salvage 

logging and other restoration practices, that kept burnt wood in site. The positive role of dead 

wood in facilitating the establishment and survival of seedlings, led us to hypothesize an 

association with microsite features. The effects of post-fire restoration activities on the 

microenvironment were investigated, analyzing the response to the different treatments of the 

major parameters linked to microclimate: (I) near-ground solar radiation, (II) soil moisture and 

temperature, (III) surface roughness and (IV) total shortwave albedo. 
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Methods 
Site description 

The study area is located at Bourra site (45°46’14”N, 7°29’58”E), in the Aosta Valley Region 

(approximately 20 km East to Aosta, Italy). In march 2005 a stand-replacing fire burned 

approximately 260 ha of alpine forest dominated by Scot pine (Pinus sylvestris L.). Wildfire 

affected southern slopes (average inclination 25°) at an altitude ranging from 1650 to 1800 m a.s.l.  

 

 

Figure 5.1 - National boundaries along the Alpine region and location of the study area. 

 

In Aosta Valley the factors that mostly influence the climate are the significant differences in 

altitude and orientation of the slopes: the East-West orientation of the main valley determines a 

strong  climate variability with respect to the small lateral valleys. The main valley is characterized 

by a mean annual temperature of approximately 5.6°C and annual precipitation is close to 750 mm 

(250 mm in the summer season); on average, there are less than 100 rainy days per year, February 

being the driest month (Cold Continental climate - Dfc according to Köppen climate classification, 

Kottek et al., 2006; Peel et al., 2007). Snow falls in the study area are usually distributed in 

November-December and March-April, reaching an average annual amount of 150 cm, with fast 

melting dynamics caused by the southern exposition (Mercalli and Cat Berro, 2003). The soils are 

well drained Entisols (Soil Taxonomy USDA) and the bedrock is formed by ophiolite and schist. 
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Experimental design 

Given the quite homogeneous southern exposition of burned slopes, three adjacent areas of long-

term monitoring have been established, each one characterized by a different management 

strategy. Starting from autumn 2007 the whole burnt area was subjected to a Salvage Logging (SL) 

intervention, excluding two zones, managed as Cut and Release (CR) and Passive Management 

(PM).  

 

 

Figure 5.2 - Images taken in the experimental area: “Passive Management” and ”Cut & Release” treatments 
keep burnt material  in situ, showing the notable difference respect to “Salvage Logging”.  

 

In the salvage logging area, all the trees were felled, trunks and large branches removed, the 

residual wood stacked in piles (Beghin et al., 2010). A Passive Management (PM) area was 

delimited, where all trees were released and there wasn’t any kind of intervention applied. An 

intermediate management treatment was the Cut and Release mode (CR), where all the trees 

were felled over the ground and the wood remained in situ. CR and PM treatments were applied 

to homogeneous areas of approximately 2 ha each one, while for our studies, SL area was 

considered restricted such all experimental design proves to a sequence of three adjacent zones 
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(Figure 5.3). Each treatment had a comparable size, presented similar pre-treatment conditions in 

terms of pre-fire stand characteristics, soil, slope, aspect and fire severity (stand-replacing fire). 

 

Figure 5.3 - Study site layout in Bourra Forest - Verrayes, Aosta valley, Italy: arrangement of 
the treatments applied in 2007-2008. 

 

Survey of environmental factors 

Considering the simplified energy balance at ground level, ET is a part of the total energy coming 

from solar radiation (Shuttleworth et al., 1989), assuming that:  

Rn  = ET + G + H       (1) 

where Rn is the surface net radiation, G the ground heat flux and H the sensible heat flux (at 

this level photosynthesis energy storage is negligible since it is estimated as a few percent of 

Rn - Meyers and Hollinger, 2004).  

Soil Moisture (SM) is a limiting factor for soil evaporation and plant transpiration processes (ET), 

linking soil water dynamics with the energy balance at-ground level (Priestley and Taylor, 1972; 

Churkina et al., 1999). Combining the energy balance with the mass transfer it is possible to 

express ET referring to a standard vegetated surface (without any limit in soil water availability) 

according to the FAO Penman-Monteith equation (Allen et al., 1998): 
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  (2) 

where Rn is the net radiation, G is the soil heat flux, (es - ea) represents the vapour pressure 

deficit between the air and soil layers, ρa is the mean air density at constant pressure, cp is 

the specific heat of the air, ∆ represents the slope of the saturation vapour pressure-

temperature relationship, γ is the psychrometric constant, rs and ra are the (bulk) surface 

and aerodynamic resistances.  

In equation (1), the soil heat flux G is the energy to heat the soil (G > 0 = soil warming, G < 0 = soil 

cooling). Foe our aims, G may be negligible compared to Rn (Allen et al., 1998). 

Surface heat flux H, as a component of the energy balance at-ground level, is usually determined 

following the equation (Monin and Obukhov, 1959; Drexler et al., 2004):  

     
            

  
    (3) 

where ρ is the density of air, Cp is the specific heat of air, To is the surface aerodynamic 

temperature, Ta is the near-surface air temperature, and ra is the aerodynamic resistance to 

heat transfer (depending on surface wind speed and surface roughness); soil temperature 

(Ts) retrieval is often used instead of the surface aerodynamic temperature To (Kustas et al., 

1989) . 

The net surface radiation could also be presented as (Wang and Liang, 2008): 

 Rn = [Rd↓ - Ru↑]S + [Ld↓ - Lu↑]L + G   (4) 

meaning the short-wave radiation component within the S-brackets (Rd incoming, Ru 

reflected) and long-wave radiation the L-term (Ld incoming, Lu outgoing); arrows help to 

identify the path of the energy at-ground level. 

The component Ru shows high variability after a wildfire since it is related with the marked 

changes in albedo, as a consequence of soil and vegetation cover differences before and after the 

fire. These changes result comparable in magnitude to those induced by other significant land-

surface variations (Gash and Nobre, 1997; Field et al., 2007).  

During summer 2011 a field campaign was launched, focusing on the investigation of basic 

environmental factors influencing the establishment and first survival of natural regeneration 

seedlings. Factors directly monitored were near-ground solar radiation, soil temperature, and soil 

moisture. Furthermore, by means of remote sensing techniques, we derived a dataset concerning 

other two significant environmental parameters involved in the energy balance at ground level: 

surface albedo and slope surface roughness. All investigated parameters influence the energy 

balance at-ground level, according to equations (1)÷(4). 
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Solar radiation 

Near-ground solar radiation was estimated using hemispherical photographs collected on 16 

points located within the treatments: 5 points in SL, 7 in CR and 4 in PM (Figure 5.5). 

  
a) b) 

Figure 5.4 - Hemispherical images taken from different treatments 30 cm above the 
ground level: a) CR - Cut and Release; b) PM - Passive Management.  
 
 
 

 

Figure 5.5 - Layout arrangement and 16 measurement points for estimated near-ground 
solar radiation, by means of hemispherical images.  
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Photographs were taken  at 30 cm and 50 cm above the ground level, after the sunset or almost 

with uniform cloud cover, for homogenous light conditions. In each point a digital camera (Nikon 

CoolPix 5000) with a fish-eye lens of 180◦ field of view (Nikon FCE8) was mounted on a tripod, 

horizontally levelled and compass-oriented to the north. Hemispherical images allowed to 

estimate the characteristic near-ground solar radiation transmittance as affected by sky-view 

interferences surrounding a given point, the residual tree cover and the slope topography (Figure 

5.4). 

Each digital hemispherical image was processed by Gap Light Analyzer (GLA) tool Version 2.0 

(Frazer, 1999; Hardy et al., 2004) to extract the near-ground potential solar radiation (expressed as 

gap light transmission) and the site openness (proportion of free visible sky [SKY%]). GLA 

computed canopy openness ratio as Total Site Factor (TSF) ranging from 0, in a completely covered 

location (light absence), to 1 in a completely open one (100% light availability).  

 

Figure 5.6 - Gap Light Analyzer screenshot: registration and editing of an hemispherical image. 

TSF includes the estimated proportion of indirect and direct radiation compared with an open site 

at the same latitude, elevation and slope aspect. Site openness allowed to estimate the annual 

potential incoming near-ground solar radiation based on TSF and land position (geographic 

coordinates, elevation, slope inclination). TSF values were calculated at monthly intervals with GLA 

tools, considering  the variation of sun inclination and the portion of visible sky. Total Site Factor 

was calculated as TSF = DSF + ISF, sum of Direct Site Factor (DSF) and Indirect Site Factor (ISF), 

which are respectively the estimated proportion of direct and indirect (diffuse) radiation at ground 

level, compared with an open site. Diffuse shortwave radiation (beam scattered by atmospheric 

gases and aerosols) ranges from approximately 10% of total shortwave radiation under clear-sky 

conditions to 100% under overcast conditions or under dense canopies (Hay, 1976). In order to 
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standardize solar radiation constraints (Rich, 1989, 1990; Frazer, 1999), all GLA processes 

considered the following parameter settings: solar constant value = 1367 W/m2, Cloudiness index 

= 1 (no clouds), Spectral fraction = 1 (including the entire global solar radiation spectrum, from 

0.25 m to 25.0 m), sky-region brightness adopting SOC model with a Clear-Sky Transmission 

Coefficient = 0.65 (Frazer, 1999; Jarčuška, 2008; Promis and Butler-Manning, 2011). 

Soil temperature and moisture 

In order to evaluate soil temperature during the growing season, 13 measurement points were 

chosen within the experimental area to characterize each treatment and distributed according to a 

regular scheme (Figure 5.8): 4 points within PM perimeter, each one in the neighbourhood of 

clustered standing burnt trees, 6 points close to downed wood elements in CR area and 3 points in 

SL area. All measurement points were located at similar elevation, following the layout in 

Appendix. Soil temperatures were recorded every minute for the whole growing seasons (from 

June to September 2011) using 13 EL-USB data-loggers (Lascar electronics Ltd., Salisbury, UK), 

equipped with temperature sensor, that were buried 5 cm beneath the soil surface (Figure 5.7a). 

All temperature sensors locations were also covered by hemispherical images.  

Soil moisture was manually measured in the first 5 cm of the soil by means of Time Domain 

Reflectometry HH2 soil moisture meter and PM300 probe (Delta-T Devices Ltd, Cambridge, UK), 

calibrated for mineral soils (Figure 5.7b); in the same point, a measure of soil temperature was 

taken through a digital meter RX-4X8000 and K-thermocouple probe inserted at a 45◦ angle and at 

a depth of 10 cm under the ground (meter resolution 0.1 °C at 23 °C operations). The 

measurements were taken in 50 locations (20 for PM, 20 for CR, 10 in SL) including the 13 sites of 

soil temperature continuous monitoring (Figure 5.9). The measurement points were permanently 

flagged on terrain enabling us to come back each month from June to September. Blocks of 

measurements started at least 24 h after a significant precipitation event and the operations 

lasted a short period (1-2 days) to minimize variation due to time: each manual measure was 

recorded and performed at random order to prevent confounding interactions between time and 

treatment. 

 
a) 

 
b) 

Figure 5.7 - Equipment used for soil temperature and moisture measurement: a) EL-USB data-logger 
(Lascar electronics Ltd., Salisbury, UK) and b) TDR HH2 soil moisture meter and PM300 probe (Delta-T 
Devices Ltd, Cambridge, UK). 
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Figure 5.8 - Layout arrangement and 13 measurement points for soil temperature, by means of EL-

Lascar datalogger equipped with temperature sensor.  
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Figure 5.9 - Layout arrangement and 51 measurement points for soil moisture, by means of Delta 

TDR meter.  
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Surface short-wave albedo 

Albedo is defined as the incident radiation diffusely reflected from a reference surface (Monteith 

and Unsworth, 2008). Table 5.1 shows a list of measured surfaces albedo: it may range from 0.95 

for freshly fallen snow to 0.05 after a high-severity forest wildfire or for a wet bare soil. A green 

vegetation cover has an albedo of about 0.20-0.25, then the green grass reference crop is assumed 

to have a value of 0.23 (Figure 5.10). Albedo variation also depends on the radiation angle of 

incidence and the slope of the ground surface (Allen et al., 1998). The use of data from remote 

sensing earth observation, to estimate at regional scales biophysical parameters of land surface, 

such as albedo (Yao et al., 2011), is a viable tool for ecological investigations (Li and Islam, 1999; 

Verhoef and Bach, 2003; Wirth et al., 2009). A database of Landsat TM and Landsat ETM+ images, 

for the period 2003÷2011, was used to identify possible differences among treatments in inter-

annual surface total short-wave albedo in mid-summer images (Liang, 2000; Tsouni et al., 2008).   

 

Surface albedo typical values 

Conifer forest (Summer) 0.08 to 0.15 

Deciduous forest 0.15 to 0.18 

Bare soil 0.17 

Green grass (Summer) 0.25 

Fresh asphalt 0.04 

Worn asphalt 0.12 

Fresh snow 0.75 - 0.95 

Old snow 0.40 - 0.70 
 

Table 5.1 -  Simplified list of total shortwave albedo values for a common range of 
surfaces (Campbell and Norman, 1998; Scharmer and Greif, 2000). 

The database comprised nine cloudy-free images, acquired from Glovis USGS website, of which 

one in spring immediately after the fire (Table 5.2). The database was pre-processed using 

published post-launch gains and offsets (Chander et al., 2009) to convert Landsat TM and ETM+ 

data to exo-atmospheric reflectance (Top-Of-Atmosphere). Afterwards, an atmospheric correction 

(QUick Atmospheric Correction, see Bernstein et al., 2005) was applied to the images, in order to 

guarantee temporal homogeneity and spatial comparability of the dataset (Huang et al., 2002). 

Radiometric calibration and atmospheric correction were performed by mean of ENVI tools (ITT, 

Visual Information Solutions). 

 

http://en.wikipedia.org/wiki/Deciduous_trees
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Landsat 

sensor 
Acquisition 

date 
Path/Row 

TM 13-Aug-2003 195/028 

ETM+ 22-Jul-2004 195/028 

ETM+ 19-Mar-2005 195/028 

ETM+ 10-Aug-2005 195/028 

ETM+ 10-Jun-2006 195/028 

ETM+ 15-Jul-2007 195/028 

ETM+ 10-Jul-2008 195/028 

TM 28-Jul-2009 195/028 

ETM+ 11-Aug-2011 195/028 
 

Table 5.2 - Acquisition dates of the Landsat5 Thematic Mapper (TM) and Landsat7 
Enhanced Thematic Mapper Plus (ETM+) images used in this study. 

Measures of remote total shortwave albedo were retrieved from the Landsat TM, ETM+ satellite 

images (Liang, 2000):   

                                                                         

 (5) 

where ρ1÷7 represent the top of atmosphere (TOA) reflectance bands at Landsat TM/ETM+  

sensors, after the pre-processing procedure. 

 

LANDSAT 

TM/ETM+ Bands 

Spectral  

wavelength 
Resolution 

Band 1 (BLUE) 450-520 nm 30-meter 

Band 2 (GREEN) 520-600 nm 30-meter 

Band 3 (RED) 630-690 nm 30-meter 

Band 4 (NIR) 770-900 nm 30-meter 

Band 5 (Mid IR) 1550-1750 nm 30-meter 

Band 7 (Mid IR) 2080-2350 nm 30-meter 
 

Table 5.3 - Summary spectral description of Landsat TM/ETM+ sensors. 

 

Surface roughness 

In equations (2) and (3), the transfer of heat and water vapour, from the evaporating surface into 

the air above the canopy, is determined by the resistance terms (Figure 5.10), which are directly 

related with surface roughness (Allen et al., 1998). In order to explore variations in microclimate 
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factors caused by different dead wood management, the surface roughness plays a significant role 

from the ecological point of view (i.e. microsites diversity favourable to seed germination, 

especially along steep slopes) influencing the local processes of evapotranspiration and sensible 

heat transfer (Kuuluvainen and Juntunen, 1998; Wang et al., 2007; de Chantal et al., 2009; Burles 

and Boon, 2011). Despite the abundance of methods to extract an index of surface roughness 

from topographic datasets, used especially at hydrological purposes (Cavalli and Tarolli, 2010 and 

references therein), a simple descriptive approach was chosen. A surface Roughness Index (RI) was 

introduced using a Digital Surface Model (DSM) and a Digital Terrain Model (DTM), both derived 

from LiDAR data, acquired in June 2011 and rasterized at 1m resolution. RI is calculated as the 

standard deviation of differences (DSM-DTM) within a given moving window (3 x 3 pixels) after the 

removal of negative values and those greater than 1m (conservative threshold for filtering out 

standing dead trees). 

 

Figure 5.10 - Scheme of resistances to transfer sensible heat and evapotranspiration according to 
the worldwide adopted FAO Penman-Monteith method: hypothetical reference crop assumed an 
albedo of 0.23, ra  (aerodynamic resistance), rs (surface resistance), closely resembling the 
evaporation of an extension surface of green grass of uniform height, actively growing and 
adequately watered (Allen et al., 1998).  

 

Climate records 

Metereological data were acquired from a station located at Nus-Saint Barthélemy (AO- Italy), 

relatively close to the study area and at similar elevation (1650 m a.s.l.; 45°47'24"N, 7°28'41"E). 

This station belong to a regional network of automated weather stations managed by the 

Meteorological Service of the Aosta Valley Region. The station collected data on rainfall, air 

temperature, incoming solar radiation at hourly resolution since 2002. 

Statistical analysis 

The effects of management and time of the year (month) on the variations of potential near-

ground radiation, were tested by repeated measures ANOVA, which was performed using the 

general linear models (GLM) procedure. The GLM procedure is designed to build a statistical 

model describing the impact of one or more factors (post-fire treatment) on one or more 
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dependent variables (potential near-ground radiation). In order to highlight any difference among 

treatments in terms of solar radiation reaching the soil, TSF relating to the entire growing season 

(from the end of March to October) was compared. TSF differences among treatments were 

tested applying a multi comparison procedure (ANOVA test and Bonferroni's multiple comparison 

procedure). Difference was considered to be significant if p-value was < 0.01 (99.0% confidence 

level). Furthermore, since the openness portion of sky (SKY%) and DSF are important factors for 

the snow-melting processes (ranging from March to May), a similar multi comparison analysis was 

performed among treatments, focused on SKY% and DSF variables. 

The soil temperature measurements for each sensor were hourly averaged and extracted from the 

entire growing season, and grouped by treatment-level. In order to avoid the variability caused by 

cloudy days and rainfall events, all data were summarized by calculating monthly mean 

temperature and mean diurnal curves for each month. The difference  between soil and air 

temperature (To-Ta = ∆Tsoil-air, equation (3)) is an important factor driving the partition of soil 

energy balance between evapotranspiration and sensible heat. It was thus calculated as the daily 

difference between maximum soil and air temperature. Furthermore, the rate of variation ∆Tsoil-

air was calculated for the day in correspondence to significant rainfall events, to evaluate the 

inertia-influences through time induced by the management type. Differences in soil temperature 

among treatments were analyzed with a General Linear Models (GLM) procedure, in which soil 

temperature was defined as the response-variable, while treatment and time (hour, month) as 

predictor variables. Statistically significant relationships between response and predictor variables 

were accepted for p-value < 0.01. Differences among treatments, about ∆Tsoil-air and the 

variation rate of (∆Tsoil-air), were investigated with the paired t-test among mean daily values, 

while, sign and signed ranked test with the medians. 

The Walter Index (Walter and Breckle, 2002) was calculated using the biweekly sum of daily 

precipitation and the average daily temperature collected:  

      
             

 
                  (6) 

where Precipitation is the sum of daily data collected over 2 weeks, and Temperature the 

average of mean daily temperature of the same 2 weeks.  

The WI has usually been applied to annual series of monthly data, but we used it to relate soil 

moisture with precipitation and temperature, thereby supplying an eco-hydrological point of view 

in a short time series (Kempes et al., 2008). In order to analyze any difference between treatments 

about SM measurements, a multiple comparison procedure was performed among treatments to 

determine significant differences between SM mean values. The method currently used to 

discriminate among means was Bonferroni’s procedure at 99.0% confidence level. 

Values of total shortwave albedo concerning each treated area were extracted from the 

correspondent raster data layer related to the temporal range 2003-2011 (considering an internal 

10m buffer-distance from the boundaries of each treatment, in order to avoid overlapping). 

Albedo data referring to the same year were analyzed by means of a multiple comparison 
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procedure. Mean values were discriminated among treatments using Bonferroni’s procedure at  

99.0% confidence level. 

Roughness index (RI) is a parameter derived from a Lidar data collection, rasterized at 1m 

resolution. Since the difference in surface extension among treatments and the non-normality of 

RI data, a Mann-Whitney (Wilcoxon) test was applied to compare RI medians among treatments. 

Furthermore, a Kolmogorov-Smirnov test allowed us to compare the distribution of the RI values 

between treatments; this test was performed by computing the maximum distance between the 

cumulative distributions of two RI dataset at a time (each dataset including RI values extracted 

from the area delimited by treatment perimeter).  

All variables were assessed for normality prior to statistical analyses. Data were log or angular-

transformed when required to improve normality and homoscedasticity (Zar, 2009). 
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Results 
Near-ground solar radiation 

The values of openness sky (SKY%) and transmitted radiation within each area were averaged  to 

characterize the incoming near-ground energy and an annual projection was applied (Figure 5.11) 

considering the topographic and geographic variables of the study area (slope inclination, aspect, 

elevation, latitude). The ratio of direct to total spectral radiation, reaching the ground over a 

specified period, is largely a function of cloud cover, but for most regions of boreal hemisphere the 

beam ratio is approximately 0.5, when computed for the entire year. 

 

 
Figure 5.11 - Annual potential shortwave radiation (MJ·m-2·d-1) at ground-level: partition 
between diffuse and direct radiation considering a ratio around 0.5 in the middle of the 
growing season, Latitude 45°46’14’’N, Longitude 7°29’58”E, 25° of slope inclination and 
southern exposition (Gap Light Analyzer processing). Total above radiation is the sum of 
Diffuse + Direct radiation. 

 

 A dynamic estimation of the potential incoming shortwave radiation reaching the ground, was 

modeled plotting the values of transmitted radiation for each treatment during the year (Figure 

5.12). SL can be approximated to a no-cover site, whereas CR revealed light differences, mostly 

from October to February. Passive Management exhibits great differences from February to 

October, until 10 MJ/m2·d from May to July, that is around the total transmitted radiation of a 

winter day (10 MJ/m2·d correspond to the energy required to vaporize 4 mm/d of free water, 

according to FAO Penman-Monteith standard conditions).  
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Figure 5.12 - Annual potential near-ground solar radiation (± 1 δ) estimated for each area: 
Cut and release (CR), Salvage logging (SL), Passive management (PM),  (Above) without sky 
obstructions (Gap Light Analyzer processing). 

 

  
a) b) 

Figure 5.13 - Yearly estimated solar radiation 
among different managed area:  c) indirect site 
factor (ISF), b) direct site factor (DSF) and a) 
total site factor (TSF = DSF + ISF), are the 
estimated proportion of indirect, direct, and 
total radiation, respectively, compared with an 
open site. Variability of the indices are 
represented by means of the coefficient of 
variation (CV - bars). 
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The monthly DSF - Direct Site Factor (and consequently TSF - Total Site Factor) resulted remarkably 

influenced by the treatment effects, according to the GLM at p < 0.01 (Table 5.4). The annual 

plotted values show a relevant variability, revealed by CV values during winter months (December, 

January and February) for CR treatment (Figure 5.13).  

Negligible variability during the year was found in SL, while, approximately constant CV values in 

PM treatment, in spite of the large annual variation of sun zenith angle and total solar radiation 

(Figure 5.14).  

 

Response General Linear statistical Model Predictor D.f. F-ratio p-value 

TSF 
R2 F-ratio p-value Management type 2 204.2 <0.001 

0.737 12.5 <0.001 
Time (month) 11 1.12 0.3510 

Management * Time 22 0.55 0.9496 
 

DSF 
R2 F-ratio p-value Management type 2 95.36 <0.001 

0.653 8.39 
<0.001 

Time (month) 11 7.94 <0.001 
Management * Time 22 0.74 0.7871 

 

Table 5.4 - The left half shows the fitting models relating response TSF and DSF to the predictors 
Management type (treatments SL, CR and PM); p-value < 0.01 implying a statistical relationship between 
response and predictors at 99% confidence level. The right part summarizes the statistical significance of 
each factor considered in the model: the p-values in bold indicate significant predictors at 99% confidence 
level. The R2 means how the model fitted explains variability in the response variable. 

   

TSF within each treatment was evaluated considering the growing season from April to September 

(Table 5.5). As expected, significant differences of TSF values were observed (F2,93 = 481.4 , p < 

0.001). SL exhibits the highest radiation charge (97%), PM treatment presents the lowest TSF 

(68%) and CR treatment shows (92%) a little lower than SL. The comparison of DSF and SKY%, 

among treatments (relating to the snow-melting period, from February to April) evidenced a clear 

distinction between SL (the greatest) and PM treatment (the lowest), with intermediate values for 

CR (Table 5.5). 

 

Variable Evaluation period ANOVA statistics Management type 

TSF April ÷ September 
F2,93 = 481.4 

pvalue < 0.001 
SL = 97.2 ± 0.4 a CR = 92.6 ± 3.3 b PM = 68.1 ±5.8c 

 

SKY% - 
F2,50 = 13.7   

pvalue < 0.001 
SL = 74.5 ± 2.6 a CR = 69.4 ± 3.2 b PM = 68.2 ±5.9b 

DSF February ÷ April 
F2,50 = 13.7   

pvalue < 0.001 
SL = 54.0 ± 3.4 a CR = 51.2 ± 4.3 a PM = 37.4 ±4.6b 

 

Table 5.5 - Results from multi-comparison ANOVA using Bonferroni’s procedure at 99% confidence level: 
Total Site Factor TSF, portion of openness sky (SKY%) and (DSF) Direct Site Factor (± S.D.) between different 
management type (Salvage Logging, Cut and Release, Passive Management). Reference range of evaluation 
for TSF spans from April to September, while SKY% and DSF variable ranged from March to May. The letters 
next the values highlight differences between treatment at α = 0.01 .      
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April June September 

Figure 5.14 - The sun-path plotted for different months:  notable 
differences in zenith values between June (summer solstice) and 
December (winter solstice). Thickness of the sun track shows 
zenith changes during each month displayed (Frazer, 1999; 
Muneer, 2004). 

 
December 

 

 

 

Soil temperature 

Daily ∆Tsoil-air series for each treatment were plotted taking into consideration the amount of 

daily rainfall (Figure 5.15). A large variability through the time is evident, especially in 

correspondence to the significant precipitation events, where the ∆Tsoil-air in each treatment 

drops down. The evaluation of ∆Tsoil-air trends over the entire period, highlights a clear difference 

between SL and the other management type, where SL treatment presents ∆Tsoil-air values twice 

(in average around  10 °C) the others treatments (Table 5.6, p < 0.01). Within a relative drought 

period (from 16 July to 30 August - characterized by the absence of notable precipitation), ∆Tsoil-

air presents the greatest differences; however, in the days immediately around the only significant 

rainfall event, PM and CR treatments exhibit ∆Tsoil-air values more similar to SL. Lack of 

precipitation lead to rising trend of (∆Tsoil-air), conversely, decreases of ∆Tsoil-air trend matches 

the rainy periods. 
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Figure 5.15 - Distribution of ∆Tsoil-air over the entire growing season for each management type (CR: 
Cut and release; PM: Passive management; SL: salvage logging) and daily precipitation. To be 
considered the 45 days without relevant rainfall (16 July - 30 August) and the contrasting trends (dashed 
lines) linked to lack or abundance of precipitation.   

 

 

 

∆Tsoil-air 
Treatment series 

Paired test Statistic value Comparison difference 

SL vs. CR 
t-test T = 30.8  p < 0.001 SL > CR 

Avg difference = 5.5 °C 
Median diff. = 5.9 °C 

Sign test S = 10.0  p < 0.001 
Signed rank test SR = 8.93 p < 0.001 

PM vs. CR 
t-test T = 12.7  p < 0.001 PM > CR 

Avg difference = 1.2 °C 
Median diff. = 1.1 °C 

Sign test S = 8.9  p < 0.001 
Signed rank test SR = 8.1 p < 0.001 

SL vs. PM 
t-test T = 22.9  p < 0.001 SL > PM 

Avg difference = 4.4 °C 
Median diff. = 4.4 °C 

Sign test S = 9.6  p < 0.001 
Signed rank test SR = 8.9  p < 0.001 

 

Table 5.6 - Summary of paired tests between treated areas about ∆Tsoil-air over the period June-
September. The t-test verifies the null hypothesis that the difference between treatments of mean daily 
value ∆Tsoil-air is equal to 0; p-value < 0.01 rejects the null hypothesis. The sign test verifies the null 
hypothesis for the paired medians daily values. The signed rank test is based on comparing the average 
ranks of values above and below the hypothesized median. The sign and signed rank tests are less 
sensitive to the presence of outliers but are somewhat less powerful than the t-test. 
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Daily rate of ∆Tsoil-air 

Treatment series 
Paired test Statistic value Comparison difference 

SL vs. CR 
t-test T = 4.2  p < 0.001 SL > CR 

Avg difference = 1.5 °C/d 
Median diff. = 1.0 °C/d 

Sign test S = 2.5  p < 0.01 
Signed rank test SR = 3.3 p < 0.001 

PM vs. CR 
t-test T = 0.03   p  = 0.97 

no statistical differences Sign test S = 0  p = 1.0 
Signed rank test SR = 0.14 p = 0.89 

SL vs. PM 
t-test T = 3.4  p = 0.002 SL > PM 

Avg difference = 1.4 °C 
Median diff. = 0.8 °C 

Sign test S = 3.2  p = 0.001 
Signed rank test SR = 3.05  p = 0.002 

 

Table 5.7 - Summary of paired tests between treated areas concerning the rate of daily changes in 
gradient soil-air temperature ∆Tsoil-air over the June-September period. The t-test verifies the null 
hypothesis that the difference between treatment of mean daily value (daily variation of ∆Tsoil-air) is 
equal to 0; p-value < 0.01 rejects the null hypothesis.  

 

During the period June-September, 23 significant rainfall events (daily precipitation value was > 

3mm) were identified. Daily variation rate of ∆Tsoil-air, in proximity to a significant rainfall event, 

was compared among treatments, to assess in which way the different management type 

influences the rate of ∆Tsoil-air daily changes (rate = [∆Tsoil-air]t - [∆Tsoil-air]t-1). Paired 

comparison shows that SL treatment presents lightly greater daily variation rates of ∆Tsoil-air than 

the others (Table 5.7), highlighting the lower inertia of SL to the temperature variation. The 

monthly arrangement of the hourly values of soil temperature highlights the predominant effect 

of the Management type (GLM Management factor, p-value < 0.001, Table 5.8). The comparison 

of hourly values between treatments shows that SL soil temperatures are always the greatest, 

with marked differences from June to August (Figure 5.16).  
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Figure 5.16 - Average diurnal soil temperature measured for each treated area during the period June 

- September. 

 

The CR hourly values remain the lowest for the entire period, while the PM series exhibits an 

intermediate behavior: the temperature is similar to CR values during the first half of the day, but 

differs in the hottest hours (from 14 to 19 - Figure 5.16). However, SL treatment sets the highest 

values, especially from 14 to 19 in the afternoon, for all the summer months (GLM interaction for 

Management * Time (hour),  p-value < 0.001, Table 5.8).  

 

 

Response General Linear statistical Model Predictor D.f. F-ratio p-value 

Soil 

temperature 

(°C) 

R2 F-ratio p-value Management type 2 2519.0 <0.001 

0.737 616.4 <0.001 
Management * hour 46 44.9 <0.001 

Management * month 6 19.0 <0.001 
 

Table 5.8 - Fitting models relating response Soil Temperature to the predictors Management type 
(treatments SL, CR and PM), and interactions with Time (hour, month); p-value < 0.01 meaning a 
statistical relationship between response and predictors at 99% confidence level. 
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June 

Factor Df 
Variance 

explained (%) 

Management type 2 12.69 

Time (hour) 69 87.31 
 

 
July 

Factor Df 
Variance 

explained (%) 

Management type 2 16.3 

Time (hour) 69 83.7 
 

  

 
August 

Factor Df 
Variance 

explained (%) 

Management type 2 11.57 

Time (hour) 69 88.43 
 

 
September 

Factor Df 
Variance 

explained (%) 

Management type 2 11.27 

Time (hour) 69 88.23 
 

Figure 5.17 - Diagrams showing the analysis of variance components of GLM applied: the variance of the 
output model splitted into 2 components, one for each factor of the model, to estimate the amount of 
variability contributed by each factor (variance component). Red bars shows the hourly (0 ÷ 23h) 
variance around the mean.  

 

 

Results of variance component analysis extracted from GLM procedure (Figure 5.17) highlight the 

effects of different Management type related with the soil temperature variability (SL shows the 

greatest diurnal variation of hourly soil temperature for all four months).   
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Soil moisture 

SM values were averaged for each treatment, plotted through the time (Figure 5.18) and WI index 

overlapped to SM series (negative values of WI reported relative drought periods).  

 

 
Figure 5.18 - Average Soil Water content in different treated areas (CR-cut and release, PM-
passive management, SL-salvage logging) and Walter climate index (WI). Biweekly 
temperature and precipitation (I = the first half, II = the second half of the month) are 
concurrently evaluated to highlight periods of relative water deficit (WI negative values). 
Overlapped bars represent standard deviation of the measures. 

 

Throughout summer 2011, mean values of SM (Table 5.9) measured in PM and CR (from 14.0 % to 

17.6%) were significantly greater than those measured in SL area (from 9.6% to 14.5%), except for 

August session, when quite similar values of SM were measured among the treatments, matching 

the drought period highlighted by WI index (Figure 5.18) and seasonal rainfall diagram (Figure 

5.15). Variability affecting measurements is similar for all experimental sessions and treatments, 

proving that the random measurement scheme applied over day time, overpasses time-

dependence interactions. 

 

Month 
Management type 

F-ratio p-value 
CR  PM SL 

Jun 14.7 ± 2.4a 16.8 ± 3.7a 9.9 ± 1.3b 18.65 <0.001 

Jul-I 17.6 ± 1.0a 16.3 ± 1.6a 9.6 ± 1.7b 87.23 <0.001 

Jul-II 17.1 ± 1.4a 16.8 ± 1.8a 11.0 ± 1.3b 57.8 <0.001 

Aug 14.0 ± 1.6a 12.9 ± 1.7ab 11.4 ± 1.8b 7.21 0.002 

Sep-II 17.1 ± 1.9a 16.2 ± 1.3ab 14.5 ± 2.4b 8.16 <0.001 
 

Table 5.9 - Summary of multiple sample-comparison between soil moisture (%) data (±SD) 
collected during summer 2011 and grouped according to management type (Cut and Release, 
Passive Management and Salvage Logging). ANOVA F-ratio in the table tests any significant 
difference amongst the means of the groups. Multiple range Tests output suggest which means are 
significantly different according to Bonferroni's procedure at 99.0% confidence interval. Different 
letters highlight differences between Management type (n = 25 measures/treatment per Month).  
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Surface roughness 

The Roughness Index (RI) values extracted from the study area ranging in (0 ÷ 0.5) span: there are 

marked differences among treatments (Table 5.10). 

 

Management 

type 
n 

RI  

Average ± SD 

RI  

Median 

PM 17686 0.17 ± 0.08 0.16 

CR 13898 0.18 ± 0.07 0.17 

SL 7877 0.11 ± 0.06 0.10 
 

Table 5.10 - Summary statistics for the RI index data extracted from each Management-type 
(Passive Management, Cut and Release, Salvage Logging). Average column includes ± 
Standard Deviation. 

 

Therefore, RI distribution shows significant differences among treatments: SL presents lower RI 

values than the others management type, as supported by frequency distribution diagrams (Figure 

5.19), K-S results (Table 5.11; DN = 0.30 ÷ 0.39; K-S = 22.3 ÷27.7; p-value < 0.001) and medians 

comparison (Table 5.11).  

 

Management type 
comparison 

Kolmogorov-Smirnov Test Mann-Whitney (Wilcoxon) Test 

SL vs. PM 
Estimated overall statistic DN = 0.30 
K-S statistic = 22.3  
p-value < 0.001 

W = 3.9E7 
p-value < 0.001 

SL vs. CR 
Estimated overall statistic DN = 0.39 
K-S statistic = 27.7 
p-value < 0.001 

W = 2.7E7 
p-value < 0.001 

CR vs. PM 
Estimated overall statistic DN = 0.09 
K-S statistic = 8.2 
p-value < 0.001 

W = 1.1E8 
p-value < 0.001 

 

Table 5.11 - Results from multiple-sample comparison applying a Kolmogorov-Smirnov test to 
compare the Roughness Index distributions: this test is performed computing the maximum 
distance  (DN) between the cumulative distributions of the two samples. Non-parametric Mann-
Whitney W-test to compare the medians of the RI values among the treatments: the test is 
constructed by combining the two samples, sorting the data from the smallest to the largest, and 
comparing the average ranks of the two samples in the combined data. Both Kolgomorov-
Smirnov and Mann-Whitney test are applied at 99.0% confidence level (significant differences 
between the distributions and between the medians of RI values respectively).  

 

Significant but small differences between PM and CR treatments, with the latter presenting the 

greatest RI values (0.18 ± 0.07). In both CR and PM a quite homogeneous  frequency distribution 

was found, meaning that surface roughness is spatially uniform within these areas (Figure 5.19).  
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These results were expected since in SL the increase in the surface roughness was due to the small 

piles of residual branches randomly distributed after the interventions. The loads of proportional 

cumulated area in RI was plotted in a quantile plot diagram to standardize and compare the trend 

among the treatments (Figure 5.20): a clear difference between SL and the other treatments 

indicates marked differences of surface roughness.   

 

  
RI Roughness Index 

 

Figure 5.19 - Paired frequency histograms 
present the distribution over RI class values 
between different treatments. Coupling the 
graphical comparison to Kolmogorov-Smirnov 
test enables to charachterize the distribution of 
RI values extracted from each treated area. 

RI 

 

 

  



 
143 

 

Figure 5.20 - Quantile plot-diagram illustrating the proportion of data in each Management type that is 
below a given value of Roughness Index (RI), as a function of RI. Closed plots reveal that the values 
extracted come from the same statistic population. The distance between the plot lines indicates a 
difference in RI distributions among the treatments (see frequency histogram and Kolmogorov-Smirnov 
test). Differences in the slope of the curves indicate a difference between the standard deviations. 

 
 
Total short-wave albedo 

Mean summer values and standard deviation bars of surface albedo were plotted through the 

time (Figure 5.21) for the period analyzed (2003÷2011), including albedo values immediately after 

the fire (end of March 2005). Temporal projection highlights 2005 disturbance and albedo 

dynamics related to the study area, focusing on the treatments (before and after the 

interventions). Albedo values before the fire were similar in all treated areas (Table 5.12; p > 0.01). 

  

 
Figure 5.21 - Temporal diagram of albedo values (histograms shows means ± standard deviation) 
related to (I) the treated areas before the fire (march 2005), (II) after the fire and before the 
interventions (autumn 2007) , (III) after the interventions (*: March right after the fire; **: August).  
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The drop in 2005 presents uniformly low albedo values among the treatments (around 0.07, 

approximately a black surface, see Table 5.1 and Figure 5.22); after the fire, the mean summer 

albedo progressively increased until 2007 (without differences among the areas before 

interventions).  

 

Year 
Management type 

F-ratio p-value 
CR (n=30)  PM (n=30) SL (n=40) 

2003 0.129 ± 0.007 0.129 ± 0.007 0.130 ± 0.014 0.27 0.93 
2004 0.128 ± 0.06 0.127 ± 0.05 0.129 ± 0.014 0.31 0.86 
2005* 0.075 ± 0.005 0.077 ± 0.01 0.079 ± 0.007 1.51 0.23 
2005** 0.115 ± 0.01 0.122 ± 0.008 0.122 ± 0.018 1.69 0.19 
2006 0.149 ± 0.011 0.159 ± 0.007 0.159 ± 0.011 2.64 0.08 
2007 0.157 ± 0.007a 0.161 ± 0.006ab 0.168 ± 0.013b 9.67 <0.01 
2008 0.171 ± 0.007ab 0.168 ± 0.005a 0.184 ± 0.009b 29.3 <0.001 
2009 0.176 ± 0.008ab 0.172 ± 0.005a 0.187 ± 0.010b 25.0 <0.001 
2011 0.179 ± 0.004ab 0.172 ± 0.004a 0.185 ± 0.008b 24.8 <0.001 

 

 
Table 5.12 - Summary of multiple sample-comparison between albedo data (±SD) Landsat 
TM/ETM - derived and grouped according to management type (Cut and Release, Passive 
Management  and Salvage Logging). ANOVA F-ratio in the table tests any significant 
difference amongst the means of the groups. Multiple range Tests output suggest which 
means are significantly different according to the Bonferroni's procedure at 99.0% 
confidence interval. Different letters highlight differences between Management type (n = 
number of samples per year). 

 

 

After the interventions (starting in autumn 2007), the mean values of summer albedo differ 

among the treatments: SL shows mean albedo values (0.184 ÷ 0.187) greater than PM (0.168 ÷ 

0.172) and CR (0.171 ÷ 0.179). All differences in albedo values among treatments are significant 

with p-values < 0.001 and marked F statistics (24.8 ÷ 29.3).  
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Figure 5.22 - Landscape view of the area some months after the fire. 
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Discussion 
Restoration activities following the Bourra wildfire, enabled us to further investigate some 

relationships in alpine environment between burnt wood management, natural regeneration 

recovery and microclimate variations, previously studied in other sites as well (Gray et al., 2005; 

Beghin et al., 2010; Castro et al., 2011; Marañón-Jiménez et al., 2011).  

Relevant differences of soil temperature and ∆Tsoil-air values were evaluated among treated 

areas for the entire period investigated. SL treatment exhibits the highest soil temperature values 

during the hottest hours of the day, likewise, daily ∆Tsoil-air values resulted clearly greater than 

those related to the other treatments. Furthermore, SL area presents clearly greater TSF values 

than the others but, at the same time, the lowest values of Soil Moisture (SM). Since we assume 

that our study site has homogeneous soil properties, slope inclination and aspect, the differences 

in soil temperature and SM seem to be a consequence of the differences in near-ground solar 

radiation (Russel, 1988; Breshears and Ludwig, 2010). Although, the differences in TSF (or near-

ground solar radiation), ∆Tsoil-air and SM among the treatments, prompt to consider different 

energy partitions between sensible and latent heat fluxes as well. Salvage area (SL) shows the 

lowest SM, highest ∆Tsoil-air and TSF values, identifying a limited evapotranspiration (Oudin et al., 

2005; Wang et al., 2007). Furthermore, as highlighted by equation (3), the sensible heat flux is a 

function of ∆Tsoil-air and surface roughness (Senay et al., 2007): PM and CR areas show similar 

distributions of roughness index (RI) but quite higher values than SL. The energy balance at ground 

level (increasing sensible heat fluxes and less evapotranspiration), associated with the highest soil 

temperatures during all monitored months, allows the supposition that low soil-water availability 

is a common feature presented by SL treatment (Sadler et al., 2000). Generally speaking, salvage 

treatment causes an increase in sensible heat flux since less incoming energy could be used to 

evaporate water, as scarcity in soil water becomes the limiting factor.  

After the fire, soil moisture (SM) become a limiting factor also for soil respiration and 

decomposition processes, which are strongly dependent on soil temperature (Davidson et al., 

2000; Allison and Treseder, 2008; Zhang et al., 2010). In turn, mineralization rate and soil nutrients 

availability are conditioned by a combination of SM and soil temperature (Jonasson et al., 1999, 

2006; Mlambo et al., 2007). During summer, evapotranspiration processes, inducing soil water 

movement, take an active role on the nutrient dynamics in the soil (Nye and Tinker, 1977). As a 

consequence, within the salvage area, lower SM levels with respect to the other treatments drive 

to a minor nutrients availability for the regeneration and to the concrete risk of soil degradation 

and erosion (Carroll et al., 2007; Matías et al., 2011). On the contrary, CR and PM areas exhibit 

greater SM than SL treatment, keeping burnt trees and DWD on site as a source of nutrients 

(Boulanger and Sirois, 2006; Boulanger et al., 2011), improving soil fertility and promoting 

microbial activity and soil respiration (Marañón-Jiménez et al., 2011; Ginzburg and Steinberger, 

2012). 

SL area shows a high thermal excursion and variability during the 24 hours. In addition to this, 

within the SL area the analysis of the rate of daily ∆Tsoil-air variations confirms the wide 
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fluctuations of daily temperature values, despite a buffered diurnal trend with less variability for 

the other treatments. The different behaviour of soil temperature between SL and the other 

treatments, is comparable to the pattern highlighted in other studies between canopy and inter-

canopy patches (Breshears et al., 1998). The effect provided by standing and fallen dead trees, 

branches and DWD shading the soil, allows to keep lower soil temperatures, and good availability 

of soil water for regeneration (Holmgren et al., 1997; Herr et al., 1999; Castro and Zamora, 2004; 

Legras et al., 2010). These results confirm the role of standing burnt trees and DWD (treatments 

PM and CR) as a positive trick to keep the difference between minimum and maximum daily soil 

temperature lower, and changes in SM lower as well, if compared with SL treatment (Harmon et 

al., 2004; Bhattacharjee et al., 2008; Haskell et al., 2012).  

The treatment affects the summer albedo in the experimental area. Burnt wood, partially shading 

the soil in CR and PM treatments, adsorbs a part of short-wave radiation reducing the albedo in 

these areas. Within the SL area, that part of short-wave radiation is reflected, as proved by higher 

values of albedo. A summary of the interconnection processes involved is reported in flowchart 

(Figure 5.22-23).  

Heating of burnt wood transforms this difference of radiation into long-wave emission 

contributing to keep the day-night temperature variability buffered (Pomeroy et al., 2009; Burles 

and Boon, 2011). The role of burnt material released (standing trees, trunks or branches on the 

soil) could become equally important also in the late winter in the Alps, when months are 

characterized by short days and a low solar elevation angle; the energy at ground level incoming 

by total broadband radiation is mostly provided by diffuse long-wave radiation, depending on sky 

openness, soil and burnt wood temperatures, and atmospheric emissivity (Lawler and Link, 2011). 

The presence of DWD and standing trees contribute to create warm, moist and protected 

microenvironment, suitable for regeneration establishment (Lampainen et al., 2004; de Chantal et 

al., 2009). Further investigations, extending the measurement campaign to the late winter 

months, could help to verify possible inversion in soil temperature trend (Breshears et al., 1998). 

During winter months, CR treatment shows a higher variability of DSF probably caused by the 

interaction between the increased DSF (low solar elevation angle) and the downed wood (DWD) 

material covering the area. Conversely, PM treatment exhibits an approximately constant 

variability among the year, implying that the standing dead trees provide the same homogeneous 

covering-effect all the year, in spite of the large annual variation of solar elevation angle and total 

solar radiation. A cross-evaluation among the treatments of TSF, DSF and ISF (Figure 5.13a-c) leads 

to note that during winter shortwave radiation is mostly coming from direct component.  

Changes in albedo values, together with the variation of surface roughness, could drive to 

consistent variation of energy fluxes at ground level. After a wildfire, albedo variations strongly 

depend on spatial pattern of fire severity, and little changes can significantly affect the energy 

balance shifting between sensible heat and evapotranspiration fluxes (equation (4)). The 

processes connected with surface cooling or warming are strictly connected to this energy balance 

(Huxman et al., 2005).   

High severity fire affected the study area quite uniformly, transforming the slope into a stressful 

environment where facilitative interventions may be crucial for vegetation recovery (Germino et 

al., 2002). The management applied, alternatively to SL, increases the surface roughness releasing 
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burnt material on site, providing microsite improvement for regeneration establishment and 

enhancing the surface aerodynamical resistance. Therefore, the burnt wood on the soil interferes 

with the surface boundary layer dynamics, thus influencing the turbulent flow (Monteith and 

Unsworth, 2008). The CR and PM areas are characterized from the greatest roughness index (RI) 

values, enabling a more efficient air mix, balancing both energy fluxes - evapotranspiration and 

sensible heat. At the same time, within the SL area the reduced land surface roughness implies 

higher wind speeds of the boundary surface layer. At the end, post-fire management forces 

environmental transformations in albedo, surface roughness, and ratio between 

evapotranspiration and sensible heat: these changes proved to be determinant to modify the 

surface fluxes, affecting the microclimate (Foley et al., 2003).  

The design of post-fire restoration, targeting the recovery of pine regeneration in the area, should 

focus on the combination of temperature, moisture and also fire-severity effects on the soil. 

Germination of Pinus seed occurs at a fixed soil temperature and moisture regime, conditions 

often favoured by mineral soils (Winsa and Sahlén, 2001; Hille and den Ouden, 2004). At this 

purpose, the water availability during and after the disseminating period, could be a matter for 

future insights. Pinus sylvestris seed dispersal occurs in late winter or spring (Gracia, 2002), when 

the major contribution to the Soil Moisture (SM) derives from snowmelt processes. Evaluating the 

influence of post-fire management on water budgets in winter-snowmelt periods versus summer-

drought periods (especially on Southern facing slopes), would be a future stretch of this 

investigation. During the winter months, SL area shows marked differences of incoming solar 

radiation with respect to CR and PM. Presence of standing and lying dead wood and the increasing 

weight of direct fraction in total solar radiation, influence the amount of energy reaching the 

snowpack. These differences of incoming energy between SL and the other treatments could 

cause a different spring runoff from burned slopes, a risk to be taken in consideration for the 

management planning (Winkler, 2011). Recent studies highlight significantly shortened snowmelt 

periods in the areas affected by wildfire, caused by the dramatic increase on solar radiation 

reaching the snow surface, respect to the pre-fire state (Burles and Boon, 2011; Winkler, 2011). SL 

area exhibits marked differences of incoming solar radiation, albedo and surface roughness with 

respect to the other areas. Overall these changes modify the ground energy balance, playing an 

important role in concerning to the snowmelt dynamics (Liston, 1995). A cross-evaluation among 

treatments of the sky openness (SKY%) and direct beam radiation (DSF) ranging in the months 

from February to April, allows a course assessment of post-fire management effects on snowmelt 

dynamics (Musselman et al., 2012). As expected, this comparison among treatments proves that 

SL area significantly differs from the others, probably reducing snow ablation timing (Lawler and 

Link, 2011) and influencing soil water availability for a spring establishment of regeneration. 
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Figure 5.22 - Flowchart of interactions between components affected by reduced Soil Water 

availability. Increasing or decreasing trends are showed by up/down arrows. 

 

  



 
150 

 

Figure 5.23 - Flowchart of interactions prompted by burnt wood presence resulting in improved Soil 

Water availability. Increasing or decreasing trends are showed by up/down arrows. 
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General Conclusions 
This research purposes a series of studies aiming at detecting patterns of vegetation recovery, 

environmental constraints and assessing the impact of post-fire management on seedling 

establishment. The studies were carried out in two different forests in the Alps where the analysis 

of vegetation recovery and the consequences of restoration activities were evaluated at short and 

medium-term.  

Recovery processes resulted strongly influenced by fire severity. Regeneration establishment of P. 

nigra and P. sylvestris (dominant species in pre-fire conditions) resulted clearly greater in areas 

where fire severity was lower, with surviving seed-trees. Distance from seed source arises as a 

relevant constraint in the recovery process of P. nigra and P. sylvestris.  

Together with seed availability, a necessary condition for seedling establishment and survival is 

the preservation of sufficient levels of soil water throughout the growing season (Hille and den 

Ouden, 2004). Under stressful environmental conditions, in terms of solar radiation and 

availability of soil water, a strong relationship between regeneration and standing or lying 

deadwood was highlighted. Pine regeneration seems to have taken benefit of the shelter effect 

provided by deadwood elements. The presence of burnt wood was decisive in influencing soil 

temperature and moisture, reducing the extreme values and buffering micro-climatic fluctuations. 

The facilitative effect produced by deadwood on regeneration recovery was identified at different 

scales. Analysis ranging from a broad scale to the microsite, highlighted that the presence of 

deadwood elements provides amelioration of recruitment conditions promoting the early 

establishment of regeneration.  

Restoration activities showed a strong effect in altering microclimate conditions. Extreme values of 

micro-environmental parameters have been detected in salvage logged area, while milder 

conditions were encountered in treatments characterized by retention of burnt wood material. 

These latter proved to be more effective in reducing diurnal variations, keeping low values of 

radiation and maximum soil temperatures, and preserving soil water during summer months. 

Management type influenced also species composition in the regeneration layer. Obligate seeders 

were more abundant in absence of any intervention, while facoltative sprouters were detected 

mostly in salvage logged areas. Under mixed levels of fire severity, where high severity zones were 

unevenly surrounded by medium-low ones, the effects of restoration activities in a medium-term 

context appear negligible in relation to the regeneration improvements. At this purpose, slopes 

with high insolation in a dry environment appear exacerbated by salvage logging which reduces 

the establishment and survival of seedlings. Conversely, facultative sprouters, confirmed the 

higher performances of these species in dry post-fire conditions due to their main regeneration 

strategy.  

Under these specific environmental constraints, salvage logging management may counteract 

seedling establishment, by loading the process of recovery mainly in the regeneration ability of 

sprouting species. 
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A contest of increasing frequency of climate extremes seems to drive significant changes in fire 

regimes worldwide (Running, 2006; Westerling et al., 2006; Pausas and Fernández-Muñoz, 2011) 

growing the chances of high-severity events. This study confirms the difficulty of these ecosystems 

in recovering the pre-fire conditions following large fire events. As a consequence, the overall 

distribution of these pine species may decrease (Retana et al., 2002; Vilà-Cabrera et al., 2012). 

In this scenario, post-fire interventions properly applied, may affect the temporal and spatial 

restoration of tree cover playing a crucial role in preserving biodiversity. Aiming at promoting the 

seedling establishment, post-fire restoration of P.nigra and P.sylvestris forests, should consider the 

fundamental presence of living trees as seed dispersers. Areas affected by low severity of the fire 

allow the survival of seed-trees and improve the establishment of seedlings, reducing understory 

competition. The harsh conditions of the slopes, where soil water availability is often a limiting 

factor for the regeneration, should discourage a widespread logging. Planning for interventions 

favoring the release of burnt wood, or patches of standing dead trees, reduces the environmental 

stress promoting regeneration establishment, saves biological legacies improving species richness. 
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Abstract 
Forest fires in the Alps are increasing both in frequency and size, especially on southern slopes 

where environmental conditions are more suitable for fire ignition and spread. Post-fire 

restoration activities are often applied without considering the large heterogeneity and variability 

of ecological constraints. Fire severity, species composition and site characteristics heavily affect 

vegetation recovery dynamics.  

The main objectives of this study were to test the hypothesis that post-fire burned wood 

management may greatly affect forest recovery and to identify the main environmental variables 

affecting seedling establishment and survival. 

We investigated restoration dynamics following high severity crown fire in two forests located in 

Western (Bourra site - Aosta Valley) and Eastern (Barcis site - Friuli Venezia Giulia) Italian Alps. 

Fires burnt large area of pine forests (P. sylvestris, P. nigra) located on southern slopes, 

characterized by harsh conditions (dry environment with high solar radiation exposure). In both 

sites active restoration strategies were adopted in the following years. These practices consisted in 

Salvage logging (cut and deadwood removal) followed by plantation or not, and Cut and release 

(living deadwood on site). Passive management area (remnants of burnt stand trees, where no 

intervention occurred) was also considered and compared. 

The recovery processes of vegetation were explored through methods of integrated analysis, using 

different spatial- and temporal-scale approaches. Field-data measures on regeneration, shelter 

elements and environmental variables were analyzed at microsite scale. Maps of fire severity were 

created by means of change-detection techniques on Landsat TM/ETM+ images. A scan through 

the time of forest recovery was performed associating regeneration and environmental data with 

Vegetation Indices (VIs) derived from a chronosequence of multispectral images. The evaluation of 

post-fire recovery dynamics, their relationships with fire severity and restoration activities are 

analyzed at a landscape scale, combining field-data, VIs, topographic and vegetation parameters 

extracted from LiDAR data. The influence of post-fire management on microclimate was 

investigated by means of instrumental measurements of environmental parameters affecting the 

regeneration dynamics. Measurements of soil temperature and moisture together with estimates 

of near-ground solar radiation were carried during a whole growing season within areas subjected 

to different restoration practices.  

Differences in species composition were found in the study sites among treatments. Regeneration 

density and diversity were positively associated with deadwood presence. Early establishment of 

pine seedlings was associated with the presence of standing or lying deadwood. Conversely, 

Populus tremula, regenerating mostly vegetatively, showed a different behaviour from the other 

tree species.  

Ground cover conditions contributed to patterns of seedling occurrence.  

The strong spatial association of seedlings with deadwood suggests that this latter produces 

microsites that enhance the establishment of regeneration. The relationship between nurse 

deadwood elements and regeneration was found to be highly anisotropic, as a consequence of the 
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higher protection from radiation and lower soil moisture loss in the shady sides of the shelter 

element. Marked differences in incoming solar radiation, soil moisture and temperature were 

detected among treatments, in particular, salvaged areas resulted strongly associated with severe 

environmental conditions. Higher fire severity diminishes seed availability reducing the seeders, 

thus the distance from seed source has emerged as an important constraint for pine regeneration 

establishment.  

In relation to different spatio-temporal scales of analysis, this research reports a significant impact 

of the post-fire management actions on forest recovery. Restoration practices may significantly 

affect environmental parameters, particularly in stressful conditions,. The presence of burnt wood 

provides an amelioration of microsite reducing the extreme values, buffering microclimatic 

fluctuations thus favoring the establishment of regeneration. Standing and lying deadwood, also 

resulting from active management, should be leaved in situ during restoration activities. 
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Riassunto 
Gli incendi boschivi nelle Alpi presentano negli ultimi decenni un trend di crescita sia in frequenza 

che per superficie, in particolare sui versanti meridionali dove l’eventuale innesco e la rapida 

diffusione dell’incendio sono favorite dalle condizioni ambientali. Le attività di ripristino post-

incendio vengono condotte spesso senza considerare le peculiarità dell’ambiente montano e la 

grande eterogeneità e variabilità dei principali parametri ecologico-ambientali. La severità 

dell’incendio, le caratteristiche del sito e la composizione specifica delle foreste coinvolte 

influiscono significativamente sulle dinamiche di ricostituzione della vegetazione. 

Gli obiettivi principali di questo studio consistono nel verificare l'ipotesi che la gestione post-

incendio della necromassa legnosa possa significativamente influire sulle dinamiche di 

ricostituzione della foresta, e di individuare le principali variabili ambientali che condizionano 

l’insediamento e la sopravvivenza della rinnovazione. 

Per verificare tali ipotesi, le dinamiche di ricostituzione a seguito di incendi ad alta severità sono 

state analizzate in due foreste situate una nelle Alpi occidentali (sito di Bourra - Valle d'Aosta) e 

una in quelle orientali (sito di Barcis - Friuli Venezia Giulia). L’incendio ha interessato, in entrambi i 

siti, una estesa superficie di pineta (P. sylvestris, P. nigra), soprattutto su versanti aridi esposti a 

Sud (con elevata esposizione alle radiazioni solari e scarsa disponibilità idrica). In entrambi i casi, 

negli anni successivi all’incendio, sono stati effettuati interventi (trattamenti) di ricostituzione 

attiva: “Salvage logging” (taglio ed esbosco del materiale legnoso, talvolta seguito da 

rimboschimenti localizzati) e “Cut and release” (taglio e rilascio a terra del materiale legnoso). A 

tali tipologie si sono contrapposte e comparate aree a “Passive management” (ricostituzione 

passiva, aree in cui non si sono effettuati interventi). 

Le dinamiche di ricostituzione della vegetazione sono state valutate integrando differenti metodi 

di analisi applicati a diverse scale sia spaziali che temporali. A scala di microsito si sono rilevati, per 

ogni semenzale, i principali parametri ambientali e l’eventuale presenza nelle vicinanze di 

necromassa e/o massi. Applicando tecniche di change-detection a opportuni indici di stato della 

vegetazione (Vegetation Indices - VIs), derivati da immagini Landsat TM/ETM+ (pre- e post-

incendio), si sono definite delle cartografie di severità dell’incendio per ciascun sito. Associando i 

VIs estratti da una crono-sequenza di immagini multispettrali con i rilievi dei dati ambientali e della 

rinnovazione, si sono individuate le dinamiche di ricostituzione della vegetazione. Si sono inoltre 

valutate, a scala di paesaggio, le relazioni fra la severità dell’incendio e i patterns della 

rinnovazione associati ai diversi trattamenti. A tale scopo, sono stati utilizzati dati topografici e 

strutturali della vegetazione estratti da dati LiDAR. L’influenza dei trattamenti sui principali 

parametri microclimatici è stata valutata per mezzo di misure strumentali di campo. In tale 

campagna di misure si sono monitorate la temperatura e l’umidità del suolo, unitamente alla 

stima della radiazione solare al suolo. 

Differenze significative si sono evidenziate nella composizione specifica della rinnovazione tra i 

trattamenti. Densità di rinnovazione e diversità specifica sono risultate positivamente correlate 

con la presenza di necromassa legnosa. Un precoce insediamento della rinnovazione di pino si è 
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evidenziato nelle aree ove vi fosse presenza di materiale legnoso a terra o piante morte in piedi. Il 

pioppo tremolo, specie rinnovatasi prevalentemente per via vegetativa, ha invece evidenziato una 

dinamica di ricolonizzazione diversa dalle altre specie arboree. Anche le condizioni di copertura del 

suolo hanno contribuito alla definizione dei patterns di ricostituzione della copertura vegetale.  

L’evidente associazione spaziale fra semenzali della rinnovazione ed elementi di necromassa 

conferma l’ipotesi che  uest’ultima contribuisca in maniera determinante alla creazione di 

micrositi idonei all’insediamento della rinnovazione stessa. L’effetto di facilitazione prodotto dalla 

necromassa legnosa, nei riguardi dell’insediamento dei semenzali, è risultato altamente 

anisotropo; ciò sembra associato all’ombreggiamento prodotto dallo shelter legnoso sul 

semenzale, che proteggendo il microsito dall’eccessivo carico radiativo consente anche la 

conservazione di adeguati livelli di umidità nel terreno. Notevoli differenze di radiazione solare, di 

umidità e temperatura del suolo sono stati riscontrati tra i trattamenti, in particolare, le aree 

gestite a salvage logging risultano essere associate a condizioni microclimatiche piuttosto critiche 

per la rinnovazione. Nelle aree percorse dal fuoco ad alta severità, la disponibilità di seme è 

diminuita consistentemente a causa della drastica riduzione di piante porta-seme. Ciò ha 

permesso di individuare la distanza dalle piante porta-seme quale fattore determinante per 

l’insediamento della rinnovazione di Pinus. In relazione alle diverse scale spazio-temporali di 

analisi, questa ricerca evidenzia un impatto significativo dei trattamenti nei riguardi delle 

dinamiche di ricostituzione della vegetazione forestale. La gestione del post-incendio può incidere 

in maniera significativa sulle condizioni del microclima, in particolare in situazioni ambientali 

critiche per la rinnovazione (p.es aridità dei versanti). La presenza di necromassa legnosa consente 

la formazione di micrositi nei quali i valori estremi e le fluttuazioni dei parametri microclimatici si 

riducono, creando condizioni favorevoli per l’insediamento e la sopravvivenza dei semenzali. Per 

tale motivo, risulta opportuno il rilascio di piante morte in piedi o di materiale legnoso a terra 

durante le operazioni di ricostituzione attiva post-incendio. 
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