
08
Stochastic Simulation in Alchemist

Danilo Pianini
danilo.pianini@unibo.it

Mirko Viroli
mirko.viroli@unibo.it

C.D.L. Ingegneria e Scienze Informatiche
Alma Mater Studiorum—Università di Bologna, Cesena

4 aprile 2016

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 1 / 60



Introduction

Goals

Understand the need for fast simulators for complex systems

Understand the limitations of classic approaches

Learn a bit of Alchemist

Methodology

From model checking to Monte Carlo

Kinetic Monte Carlo (exemplified with chemistry)

Speed up the Kinetic Monte Carlo

Alchemist: Kinetic Monte Carlo for Pervasive computing

Alchemist’s engine

Alchemist’s model

Quick tutorial on simulating collective behaviour

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 2 / 60



Outline

1 Simulation and Montecarlo

2 Exact stochastic simulation of chemical systems
The problem and a bit of the math behind
Speed up Gillespie

3 Alchemist
Motivation
Engine
Model
Architecture
Performance
Sapere incarnation
Simulation with the SAPERE incarnation: a mini-tutorial

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 3 / 60



Model checking: a recap

Pros

Complete exploration of the system

Exact verification of property values

Cons

In general extremely costly in terms of memory and time

Complexity quickly grows with states

normally only feasible with simple, small systems

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 4 / 60



Monte Carlo

Monte Carlo method

When it’s impossible to explore the whole system

Find a procedure that randomly explores a part of it

Apply it repeatedly

Aggregate the result

Trivia: the name is after the famous Casino of Monte Carlo, and refers to
the exploration of the probabilities that gamblers can perform by
repeatedly play and recording results.

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 5 / 60



Monte Carlo method and simulation

The procedure can POSSIBLY (not compulsorily) be a simulation

Example

Which is the combined area AF of these figures?

Inscribe them within a rectangle of area AR

With a uniform distribution sample N points within that rectangle

Count how many of them are also inside the figures, let this number
be n

The area of the figures is (approximately) AF = n
NAR

This is not a simulation

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 6 / 60



Simulation

General definition

Imitation of the operation of a real-world process or system over time
[Banks et al., 2010].

Not necessarily run on computers
I e.g. putting a Formula 1 model into a wind tunnel is a sort of

simulation

Model

The imitation of the real-world process is called model.

A model is a simplified version of the reality

Simplification is often a requirement, because the original process:
I requires too much time
I is not replicabile in controlled environments
I is too dangerous to replicate
I is beyond our technical capacity

Elements relevant to the experiment must be retained in the model

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 7 / 60



Types of computer simulation

Time-driven

Time is simulated through discrete time slots (ticks)

At every tick, the model is updated to reflect the new state

All the changes occurring during the same tick are considered to be
simultaneous

Discrete events (DES)

Events are simulated one by one

For every simulated event, the time is shifted forward

Events are strictly ordered: in case two events are scheduled for the
same time, one of the two is executed first (and its outcome may
influence the remainder of the simulation)

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 8 / 60



Kinetic Monte Carlo and chemistry

Problem: we have a container with a precise number of molecules that
may react with each other. We want to forecast the evolution of the
system in future.

Relax to Continuous

In classic chemistry, there are methods based on differential equations
to understand the behaviour of such systems

They suppose the concentration of each reactant to be ∈ <
It is an approximation: you cannot have a quarter of a molecule!

These methods are accurate only for a high number of molecules

Stochastic simulation

What if our system counts few thousands molecules?

Monte Carlo way: let’s start with the system in initial state, let it run
and see how it behaves. Repeat.

Very hard to do in a real setup: here it comes the simulation
Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 9 / 60



Outline

1 Simulation and Montecarlo

2 Exact stochastic simulation of chemical systems
The problem and a bit of the math behind
Speed up Gillespie

3 Alchemist
Motivation
Engine
Model
Architecture
Performance
Sapere incarnation
Simulation with the SAPERE incarnation: a mini-tutorial

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 10 / 60



Approach the problem

We need to find a procedure for simulating a chemical system. The system
is composed of molecules and reactions. Reactions assume the form:

A + B
µ−→ C

where A and B are reactants, µ is an indication of the reaction speed and
C is the product.
A solution has been first proposed in [Gillespie, 1977] (Gillespie algorithm
or Kinetic Monte Carlo):

1. Select next reaction using markovian rates: it supposes that a
chemical system has no memory, and computes the speed of a
reaction r as: ar = [A][B]µ

2. Execute it, changing the concentrations

3. Update the markovian rates which may have changed

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 11 / 60



Do the math: next reaction choice

If we assume every reaction is a Poisson process, the probability for it to
be the next one is:

P(next = µ) =

∫ ∞
0

P(µ, τ)dτ =

∫ ∞
0

aµe
−τ

∑
j ajdτ =

aµ∑
j aj

Details

P(µ, τ) = aµe
−τ

∑
j aj : the probability that the reaction P occurs at

time τ is its speed times the probability distribution. Being this a
Poisson process, the probability distribution is a negative exponential
function, whose exponent is the sum of the speeds of all the reactions
in the system.

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 12 / 60



Do the math: next reaction time

We can also compute the next time of occurrence:

P(τ)dτ =
∑
j

P(µ = j , τ)dτ =

∑
j

aj

 e−τ
∑

j ajdτ

∑
j

aj = λ −→ λe−λx

F (x ≤ t) =

∫ t

−∞
λe−λxdx =

∫ t

0
λe−λxdx =

[
−e−λt

]t
0

= 1− e−λt

Now, given a uniformly distributed random ρ in [0, 1], it’s possible to
compute it’s equivalent for the desired distribution:

1− e−λt = ρ⇒ t =
− ln (1− ρ)

λ
≡ − ln (ρ)

λ

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 13 / 60



Solve the problem: base algorithm

Algorithm

1. Set the simulation time T = 0

2. For each reaction r in the whole set of reactions R, compute ar .

3. Select the next reaction µ to execute. The probability for r to be
executed will be P(r = µ) = ar∑

(j∈R) aj

4. Execute the reaction, changing the concentrations.

5. Set the simulation time to T = Tprev − ln(1−r)
λ

6. GOTO 2

Data structures

Choosing the next reaction to execute can be done by storing in a list
like structure reactions and propensities, throwing a random number

in
[
0 :

∑
(j∈R) aj

]
, and selecting the first reaction whose propensity

summed to all the previous is equal or higher than the random (linear
complexity in time)

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 14 / 60



Speed it up: dependency graph

Algorithm

1. The propensities must be recomputed at each step, because they
depend on concentration of reactants, which may have changed.

2. However, not every reaction affects the speed of every other: for
instance, if A + B

µ1−→ C executes, the propensity of D + E
µ2−→ A will

not be affected.

3. We can improve consistently the performance of the algorithm by
keeping in memory which reactions influence which other, and
updating only those required.

Data structures

A map that connects each reaction to a set of reactions that must be
upgraded represents a good dependency graph

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 15 / 60



Speed it up: dependency graph

A+B→C

B+C→D E+G→A

D+E→E+F F→D+G

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 16 / 60



Next reaction

Algorithm

1. Instead of choosing the next reaction probabilistically by propensity,
generate a putative time for each reaction.

2. Sort the reactions by putative time, and take the first.

3. At each step, for each reaction whose putative time has changed,
re-sort the element.

4. The previous optimization (dependency graph) can be reused.

Data structures

We only need that the first element is the next to be executed.

The best solution is a binary heap*, which can be accessed in O(1)
and sorted in log(n), but with a much smaller average complexity.

* In the original work [Gibson and Bruck, 2000], the data structure is
called “Indexed priority queue”.

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 17 / 60



Next reaction: random reuse

Random generation

1. Generating random number is costly

2. In a purely chemical simulator, is the most heavy task
[Gibson and Bruck, 2000]

3. Reducing the number of generated random numbers is key

Random reuse

Next reaction allows for random reuse

In case the reaction which is being updated is not the one executed
but one of its dependencies, then:

I let T be the current simulation time, τc be the new putative time, ac
the new propensity, τp the previous putative time, ap the previous
propensity.

I τc =
ac (τp−T )

ap
+ T

I This is possible due to the exponential distribution being memory less
I Note: ∀τp,T : τp ≥ T

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 18 / 60



Binary heap

2.0
4 4

3.7
1

7.3
2 1

5.5
1 0

2

8.9
1 0

4.2
0 0

9.1
0 0

10.1
0 0

inf
0 0

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 19 / 60



Slepoy’s Algorithm

Idea

Divide the reactions in groups depending on their propensity

Define the groups in such a way that throwing a limited number of
randoms the engine can select the next to execute in constant time

Updating the reactions can be done in constant time since the groups
have a well defined propensity interval

If the number of groups does not depend on the number of reactions,
then the algorithm is O(1).

Drawbacks

The algorithm assumes that the number of groups does not depend
on the number of reactions, namely, it supposes the propensities to
change only a little during the simulation

This assumption is mostly true in real purely chemical systems, but
does not hold in general

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 20 / 60



Slepoy’s Algorithm

From [Slepoy et al., 2008]

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 21 / 60



Outline

1 Simulation and Montecarlo

2 Exact stochastic simulation of chemical systems
The problem and a bit of the math behind
Speed up Gillespie

3 Alchemist
Motivation
Engine
Model
Architecture
Performance
Sapere incarnation
Simulation with the SAPERE incarnation: a mini-tutorial

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 22 / 60



From chemistry to pervasive computing

Background considerations

Pervasive computing scenarios are normally simulated by means of
“agent based simulators” (ABS) [Wooldridge and Jennings, 1995]

ABS are extremely flexible, but they lack performance: it’s the price
to pay for being able to simulate a very wide spectrum of situations

Many pervasive computing scenarios can be modelled as mobile
multi-compartmented chemical systems, where molecules are pieces of
data (equivalent to a network of Petri Nets)

A whole literature exists on how to make very fast kinetic Monte
Carlo algorithms

Idea

Instead of use classic ABSs and optimize at the simulation level, can we
take a kinetic Monte Carlo and extend it until it supports all the
abstractions we need?

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 23 / 60



Which scenarios

We want a tool that supports:

Self-organising systems

Pervasive computing systems

Crowds of people

Large scale situated systems

Smart Mobility

Crowd detection and steering

Sensor networks

Computational biology

Aggregate programming

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 24 / 60



From chemistry to pervasive computing

Requirements

Multiple compartments (from now on: nodes)

Molecules can be different data types

Nodes mobility

Non markovian events

More flexible concept of reaction

High performance

Idea

Instead of using a classic ABS and optimize at the simulation level, can we
take a kinetic Monte Carlo and extend it until it supports all the
abstractions we need?

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 25 / 60



Multiple compartments

Extension

Up to now we just used a single container with molecules

What if we had multiple intercommunicating containers?

Changes

Concept of “neighborhood”, namely the compartments that can
communicate with each compartment

Concept of moving molecules from a compartment to another

Possibly different set of reactions for each compartment

Challenges

Who does decide if two compartments are communicating?

How to model a molecule moving towards a new node?

How does the dependency graph change?

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 26 / 60



Spatial dependency graph

Challenge

There are more reactions: each node has its “copy”

A reaction may affect the propensities locally, in the neighborhood, or
globally

The fewer are the bindings between reactions, the higher is efficiency
of a dependency graph

We want to detect the context of the reactions and filter the
dependencies accordingly

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 27 / 60



Spatial dependency graph

Possible solution

Define three contextual levels: local, neighborhood, global

Assign to each reaction an “input context”, namely which parts of the
environment a reaction should read to compute is propensity

Assign to each reaction an “output context”, namely which part of
the environment will be modified by this reaction

A reaction r1 may influence a reaction r2 if one of the following is
true:

I r1 and r2 belong to the same compartment
I r1’s output context is global
I r2’s input context is global
I r1’s output context is neighborhood and r2 belong to a compartment

of the neighborhood
I r2’s input context is neighborhood and r1 belong to a compartment of

the neighborhood
I both r1’s output context and r2’s input context are neighborhood, and

there is a compartment shared by the two neighborhoods
Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 28 / 60



Non-markovian events

Example

Every second, an external device injects some quantity of molecules within
a compartment.

this event happens precisely every second: it is not a Poisson process!

Its probability distribution id a δ-Dirac Comb

Algorithms

The basic Gillespie algorithm is hard to modify to support such
events. The main reason is that the choice is not made depending on
time, but on propensity, which is an entity strictly bound to the
markovian model

The next reaction algorithm, instead, uses putative times: this makes
it able to simulate events independently from their distribution, since
we just need to correctly estimate the next time of occurrence.

I NOTE: the random reuse is NOT allowed for non-exponential events

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 29 / 60



Abstract model

Reaction
A proactive behaviour

Linking Rule
A function of the environment

that decides wether or not
two nodes are connected

Molecule
token representing a

chunk of data
(think of it as a pointer)

Concentration
Actual data associated

with a "molecule"

Environment
Riemannian manifold

where nodes live

Node
A container of reactions
and molecules situated

in the environment

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 30 / 60



Reactions

Number of

neighbors<3

Node

contains

something

Any other

condition

about this

environment

Rate equation: how conditions

influence the execution speed

Conditions Probability distribution Actions

Any other

action

on this

environment

Move a node

towards...

Change

concentration

of something

Reaction

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 31 / 60



Architecture

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 32 / 60



Against Repast

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 50  100  150  200  250  300  350  400  450  500

E
xe

cu
ti

o
n
 t

im
e
 [

s]

Number of agents

Performance comparison with Repast

Repast Alchemist

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 33 / 60



SAPERE incarnation

Motivation

Alchemist was initially developed within the SAPERE Project
(http://www.sapere-project.eu/)

At the model level, captures the required abstractions of a SAPERE
system

Details on the incarnation

In this incarnation, the concentration is defined as “list of tuples
matching a tuple template”

Basically, in this configuration Alchemist does not simulate a simple
collection of intercommunicating compartments, but a network of
(possibly mobile) programmable tuple spaces

This one and the incarnation supporting Protelis based aggregate
programming are the only two completely implemented

I there is a sketched biochemical implementation

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 34 / 60

http://www.sapere-project.eu/


Simulating in Alchemist

Alchemist XML

Alchemist 1.+ provides support for writing simulations using an XML file

Inspired by CellML, very verbose: a file can get well over 10MB

Not human friendly

Each incarnation normally provides also a DSL that translates a
human friendly language to the XML

Considered legacy, deprecated

Alchemist YAML

Alchemist 2.+ adds support for writing YAML instead

Human readable and small in size

Demands creation of actual model objects to the incarnation

Works for any (correctly implemented) incarnation

It is still possible to write DSLs if the need arises

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 35 / 60



Simulate using SAPERE

Using the Alchemist-SAPERE DSL

the DSL exposes the SAPERE Incarnation concepts directly, allowing
for short specifications

a compiler automatically produces the Alchemist XML

developed with the Xtext framework

Using YAML

No XML involved

The same syntax can be used for any incarnation

Support for running batches

No intermediate compilation

No large files involved

−→ We’ll use the new method

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 36 / 60



Minimal specification

YAML version:

1 incarnation: sapere

DSL version:

stringstyle1 default environment

stringstyle2 linking nodes in range 0

XML translation:

1 <?xml version="1.0" encoding="UTF-8"?>

2 <environment name="environment" type="Continuous2DEnvironment">

3 <linkingrule type="EuclideanDistance" p0="0"></linkingrule>

4 <concentration type="LsaConcentration"></concentration>

5 <position type="Continuous2DEuclidean"></position>

6 <random type="MersenneTwister" seed="RANDOM"></random>

7 </environment>

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 37 / 60



Single nodes

YAML

1 incarnation: sapere

2

3 network-model:

4 type: EuclideanDistance

5 parameters: [5]

6

7 displacements:

8 - in:

9 type: Point

10 parameters: [0, 0]

11 - in:

12 type: Point

13 parameters: [0, 1]

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 38 / 60



Single nodes (legacy approach)

stringstyle1 default environment

stringstyle2 linking nodes in range 5

stringstyle3
stringstyle4 place single node at point (0,0)

stringstyle5 place single node at point (0,1)

1 <?xml version="1.0" encoding="UTF-8"?>

2 <environment name="environment" type="Continuous2DEnvironment">

3 <linkingrule type="EuclideanDistance" p0="5"></linkingrule>

4 <concentration type="LsaConcentration"></concentration>

5 <position type="Continuous2DEuclidean"></position>

6 <random type="MersenneTwister" seed="RANDOM"></random>

7 <node name="group_0_node_0" type="LsaNode" position="0.0,0.0">

8 <content></content>

9 </node>

10 <node name="group_1_node_0" type="LsaNode" position="0.0,1.0">

11 <content></content>

12 </node>

13 </environment>

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 39 / 60



Multiple nodes

1 incarnation: sapere

2

3 network-model:

4 type: EuclideanDistance

5 parameters: [0.5]

6

7 displacements:

8 - in:

9 type: Circle

10 parameters: [10000, 0, 0, 10]

stringstyle1 default environment

stringstyle2 linking nodes in range 0.5

stringstyle3
stringstyle4 place 10000 nodes within circle (0,0,10)

The corresponding XML is 30007 lines of code: it has a separate node tag
for each node in the scenario, making it impossible to write by hand, and
unconvenient for data exchange.

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 40 / 60



Grid of nodes

1 incarnation: sapere

2

3 network-model:

4 type: EuclideanDistance

5 parameters: [0.5]

6

7 displacements:

8 - in:

9 type: Grid

10 parameters: [-5, -5, 5, 5, 0.25, 0.25, 0, 0]

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 41 / 60



Irregular grid of nodes

1 incarnation: sapere

2

3 network-model:

4 type: EuclideanDistance

5 parameters: [0.5]

6

7 displacements:

8 - in:

9 type: Grid

10 parameters: [-5, -5, 5, 5, 0.25, 0.25, 0.1, 0.1]

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 42 / 60



Initial node content

1 incarnation: sapere

2

3 network-model:

4 type: EuclideanDistance

5 parameters: [0.5]

6

7 displacements:

8 - in:

9 type: Grid

10 parameters: [-5, -5, 5, 5, 0.25, 0.25, 0.1, 0.1]

11 contents:

12 - molecule: hello

13 - in:

14 type: Rectangle

15 parameters: [-1, -1, 2, 2]

16 molecule: token

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 43 / 60



Programming nodes

1 incarnation: sapere

2

3 network-model:

4 type: EuclideanDistance

5 parameters: [0.5]

6

7 displacements:

8 - in:

9 type: Grid

10 parameters: [-5, -5, 5, 5, 0.25, 0.25, 0.1, 0.1]

11 contents:

12 - in:

13 type: Rectangle

14 parameters: [-0.5, -0.5, 1, 1]

15 molecule: token

16 programs:

17 -

18 - time-distribution: 1

19 program: >

20 {token} --> {firing}

21 - program: "{firing} --> +{token}"

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 44 / 60



Code reuse in YAML

1 incarnation: sapere

2

3 network-model:

4 type: EuclideanDistance

5 parameters: [0.5]

6

7 send: &send

8 - time-distribution: 1

9 program: >

10 {token} --> {firing}

11 - program: "{firing} --> +{token}"

12

13 displacements:

14 - in:

15 type: Grid

16 parameters: [-5, -5, 5, 5, 0.25, 0.25, 0.1, 0.1]

17 contents:

18 - in:

19 type: Rectangle

20 parameters: [-0.5, -0.5, 1, 1]

21 molecule: token

22 programs:

23 - *send

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 45 / 60



Diffusion

1 incarnation: sapere

2

3 network-model:

4 type: EuclideanDistance

5 parameters: [0.5]

6

7 send: &send

8 - time-distribution: 1

9 program: >

10 {token} --> {token} *{token}

11 - program: >

12 {token}{token} --> {token}

13

14 displacements:

15 - in:

16 type: Grid

17 parameters: [-5, -5, 5, 5, 0.25, 0.25, 0.1, 0.1]

18 contents:

19 - in:

20 type: Rectangle

21 parameters: [-0.5, -0.5, 1, 1]

22 molecule: token

23 programs:

24 - *send
Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 46 / 60



Mathematical operations

1 incarnation: sapere

2
3 network-model:

4 type: EuclideanDistance

5 parameters: [0.35]

6
7 send: &grad

8 - time-distribution: 0.1

9 program: "{source} --> {source} {gradient, 0}"

10 - time-distribution: 1

11 program: "{gradient, N} --> {gradient, N} *{gradient, N+#D}"

12 - program: >

13 {gradient, N}{gradient, def: N2>=N} --> {gradient, N}

14 - time-distribution: 0.1

15 program: >

16 {gradient, N} --> {gradient, N + 1}

17 - program: >

18 {gradient, def: N > 30} -->

19
20 displacements:

21 - in:

22 type: Grid

23 parameters: [-5, -5, 5, 5, 0.25, 0.25, 0.1, 0.1]

24 contents:

25 - in:

26 type: Rectangle

27 parameters: [-0.5, -0.5, 1, 1]

28 molecule: source

29 programs:

30 - *grad

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 47 / 60



Synthetic variables

#ID – unique id for each LSA

#NODE – this node id

#O – the “orientation”, namely the node id of the local node when
an operation involving the neighborhood is performed

#D – distance with the neighbor

#T – current time

#RANDOM – a random number

#NEIGHBORHOOD – list of all neighbors ids

#SELECTEDNEIGH – neighbor selected when performing a “+”
operation

#ROUTE – distance using routes, only works with maps

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 48 / 60



Personalised time distribution

1 incarnation: sapere

2
3 network-model:

4 type: EuclideanDistance

5 parameters: [0.5]

6
7 send: &grad

8 - time-distribution:

9 type: DiracComb

10 parameters: [0.5]

11 program: "{token, N, L} --> {token, N, L} *{token, N+#D, L add [#NODE;]}"

12 - program: >

13 {token, N, L}{token, def: N2>=N, L2} --> {token, N, L}

14
15 displacements:

16 - in:

17 type: Grid

18 parameters: [-5, -5, 5, 5, 0.25, 0.25, 0.1, 0.1]

19 contents:

20 - in:

21 type: Rectangle

22 parameters: [-0.5, -0.5, 1, 1]

23 molecule: token, 0, []

24 programs:

25 - *grad

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 49 / 60



Personalised time distribution

Considerations:

The syntax is a shortcut for the desired Java class’ constructor

You can implement your own classes implementing
TimeDistribution and model arbitrary distributions

Alchemist is a discrete-event simulator: events are forced to be
ordered, even if they happen at the same time.

The same syntax (a YAML map with type and parameters key) can
be used to load arbitrary implementations of any simulation element

The Alchemist loader automatically assigns values to arguments of
type Environment, Node, Reaction, and TimeDistribution

depending on the context, letting the user specifying only the parts
strictly required.

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 50 / 60



The variables section

1 incarnation: sapere

2

3 variables:

4 rate: &rate

5 type: GeometricVariable

6 parameters: [2, 0.1, 10, 9]

7 size: &size

8 min: 1

9 max: 10

10 step: 1

11 default: 5

12 mSize: &mSize

13 formula: -$size

14 sourceStart: &sourceStart

15 formula: $mSize / 10

16 sourceSize: &sourceSize

17 formula: $size / 5

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 51 / 60



The variables section

1 network-model:

2 type: EuclideanDistance

3 parameters: [0.5]

4

5 send: &grad

6 - time-distribution: *rate

7 program: "{token, N, L} --> {token, N, L} *{token, N+#D, L add [#NODE;]}"

8 - program: >

9 {token, N, L}{token, def: N2>=N, L2} --> {token, N, L}

10

11 displacements:

12 - in:

13 type: Grid

14 parameters: [*mSize, *mSize, *size, *size, 0.25, 0.25, 0.1, 0.1]

15 contents:

16 - in:

17 type: Rectangle

18 parameters: [*sourceStart, *sourceStart, *sourceSize, *sourceSize]

19 molecule: token, 0, []

20 programs:

21 - *grad

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 52 / 60



Variables in Alchemist

Variables can be defined in a variable section

They are implementations of the Variable interface

Very useful for running batches

They can be specified as dependent variables by indicating a formula
(that will then be interpreted by an internal Javascript engine)

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 53 / 60



Class loading, movement

1 package it.unibo.alchemist.model.implementations.actions;

2
3 import...

4
5 public class BrownianMove<T> extends AbstractMoveNode<T> {

6
7 private final double r;

8 private final RandomEngine rng;

9
10 public BrownianMove(final IEnvironment<T> environment, final INode<T> node,

11 final RandomEngine rand, final double range) {

12 super(environment, node);

13 r = range;

14 rng = rand;

15 }

16
17 @Override

18 public IPosition getNextPosition() {

19 return new Continuous2DEuclidean(genRandom() * r, genRandom() * r);

20 }

21
22 private double genRandom() {

23 return rng.nextFloat() - 0.5f;

24 }

25
26 @Override

27 public IAction<T> cloneOnNewNode(final INode<T> n, final IReaction<T> reaction) {

28 return new BrownianMove<>(getEnvironment(), n, rng, r);

29 }

30
31 }

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 54 / 60



Class loading, movement

1 incarnation: sapere

2

3 variables:

4 rate: &rate

5 type: GeometricVariable

6 parameters: [1, 0.1, 10, 9]

7 size: &size

8 min: 1

9 max: 10

10 step: 1

11 default: 5

12 mSize: &mSize

13 formula: -$size

14 sourceStart: &sourceStart

15 formula: $mSize / 10

16 sourceSize: &sourceSize

17 formula: $size / 5

18

19 network-model:

20 type: EuclideanDistance

21 parameters: [0.5]

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 55 / 60



Class loading, movement

1 send: &grad

2 - time-distribution: *rate

3 program: "{token, N, L} --> {token, N, L} *{token, N+#D, L add [#NODE;]}"

4 - program: >

5 {token, N, L}{token, def: N2>=N, L2} --> {token, N, L}

6 # Age information

7 - time-distribution:

8 type: DiracComb

9 parameters: [0.1]

10 program: >

11 {token, def: N>0, L} --> {token, def: N + 1, L}

12 # Cleanup old information

13 program: >

14 {token, def: N>30, L} -->

15

16 move: &move

17 - time-distribution: 0.5

18 type: Event

19 actions:

20 - type: BrownianMove

21 parameters: [0.1]

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 56 / 60



Class loading, movement

1 displacements:

2 - in:

3 type: Grid

4 parameters: [*mSize, *mSize, *size, *size, 0.25, 0.25, 0.1, 0.1]

5 contents:

6 - in:

7 type: Rectangle

8 parameters: [*sourceStart, *sourceStart, *sourceSize, *sourceSize]

9 molecule: token, 0, []

10 programs:

11 - *grad

12 - *move

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 57 / 60



Non exhaustive Alchemist UI keyboard shortcuts

P Pause/play

L enables and disables link painting

R Enables and disables realtime mode: tries to sync the simulation with
the real time, always ensuring at least 25fps.

→ Makes the simulation faster (less update calls to the UI)

← Makes the simulation slower (more update calls to the UI)

M Turns on and off the graphical marker for the node closest to the
mouse pointer

S Enters select mode (nodes can be selected)

O When in select mode, enables manual move mode for selected nodes

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 58 / 60



Bibliography I

Banks, J., Carson, J., Nelson, B., and Nicol, D. (2010).
Discrete-event system simulation.
Prentice Hall, 5th ed. edition.

Gibson, M. A. and Bruck, J. (2000).
Efficient Exact Stochastic Simulation of Chemical Systems with Many
Species and Many Channels.
The Journal of Physical Chemistry A, 104(9):1876–1889.

Gillespie, D. T. (1977).
Exact stochastic simulation of coupled chemical reactions.
Journal of Physical Chemistry, 81(25):2340–2361.

Slepoy, A., Thompson, A. P., and Plimpton, S. J. (2008).
A constant-time kinetic monte carlo algorithm for simulation of large
biochemical reaction networks.
The Journal of Chemical Physics, 128(20):205101+.

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 59 / 60



Bibliography II

Wooldridge, M. J. and Jennings, N. R. (1995).
Intelligent agents: Theory and practice.
Knowledge Engineering Review, 10(2):115–152.

Danilo Pianini (Università di Bologna) ISAC08 – StSimulation 4 aprile 2016 60 / 60


	Simulation and Montecarlo
	Exact stochastic simulation of chemical systems
	The problem and a bit of the math behind
	Speed up Gillespie

	Alchemist
	Motivation
	Engine
	Model
	Architecture
	Performance
	Sapere incarnation
	Simulation with the SAPERE incarnation: a mini-tutorial


