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Basic inequalities

N.A.
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A function @ : I — R defined on an interval I C R is convex if for all integer

n > 2:
n n n
thZL ti,...,tn, >0, ay,...,a, €I = P thaj < tJ<I’(aj)
j=1 j=1 j=1

By induction, ® is convex iff the inequality above holds for n = 2.
Jensen’s inequality.! Let ® : [0, +00) — [0,00) be a convex function and let
(X, 1) be a probability measure space. If f > 0 is a measurable function on X,

- <1>< /X fdu> < /X o(f)dp. (1)

Proof. Let f =3, a;jxg; be asimple function: {E};} is a countable, measurable
partition of X. Then, by convexity,

<I>(/deu> = @ jilaju(Ej)

;‘I’(GJ)M(EJ'):/X‘I)(f)dM'

IN

For general f > 0, let {f,} be a sequence of simple functions such that f,,  f.
The desired inequality follows by a simple limiting argument?. m
We can dispense with the positivity assumption provided f is integrable.

Proposition 1 Let @ : (a,b) — R be conver, —co < a < b < +o0o, and let
(X, u) be a probability space. If f : X — R is integrable and f(X) C (a,b), then

@( /. fdu> < [ w(in

Proof. Let a < u < w < v < b. By convexity,

v —w w—1u
w = U+ v =
V—U V—u
v —w w—u
P < P [0)) —
() < =+ )

1Some words on extremals?
21t is useful to split ® = &1 + P2, with ®; increasing and ®5 decreasing. Use Monotone
Convergence with ®; and Dominated Convergence with ®o
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(@(w) = @(u))(v—w) < (®(v) = B(w))(w —u) =
ew) —2w) _ 2(v) - 2w)

3 Then, there is C'(w) € R such that
o(t) = ®(w) + C(w)(t - w)

whenever ¢ € (a,b).
Let now w = [ fdu € (a,b), by the Mean Value Theorem, and let ¢t = f(x).

Integrating w.r.t. 1,
@ ( / fdu) vef (f(a:) -/ fdu> du(z)
()

Exercise 4 Suppose that ® is also increasing and that for alP T > 0 there is

\Y)

/ B(f(x))du(x)
X

.4

3Observe that the inequality in the second line also gives
Do) = Bu) _ D) — B(w)

v—u - v —w

4A different proof.

Lemma 2 (An extension of the Monotone Convergence Theorem.) Suppose that
on € L) for n > 1 and that ©n / @. Then,

/sondu/ /<pdu~

Proof. Let Y, = 9n VO /9 =¢pVO0and n, = pn A0 /" n=¢pA0. Use MCT for ¢, and
DCT for n,. m

Lemma 3 Let @ : (a,b) — R be a convex function and let a < o < 3 < b. Then, there exist
—o00 < ®'(a+) < @'(B—) < +oo.
Proof. Whenever 0 < h,k < #, we have
Dot h) —D(a) _ B(3) ~ (B~ k)
h - k '
The LHS decreases as h — 0, while the RHS increases as k — 0. Observe that both RHS and

LHS are bounded. Take limits. m
Proof. of Proposition 1 For a < a < 8 < b, let

®(B) + @' (at)(t — ) if t € (a,q]
O3 (1) =< ®(t) if t € [o, B]
o(B) +@'(B-)(t - B) if t € [B,b).

Then, <I>§ is convex by the second lemma, @g < ® and, if oy, \, aand B, / b, then @Qg /.
If f € L'(p), then @, = @5; of € LY (p) and ¢, / ¢ = ® o f. By the first lemma, the

inequality is reduced to
ol ( / fdu) < [o () du

This last inequality can be proved similarly to (1): for simple f it reduces to the definition of
convex function; for f € L' use DCT. m
50r, which is the same, for just one such 7.



C > 0 such that
O(Tx) < CP(x). (2)
(®(t) =tP, p > 1 is a function with these properties).
Show that, if we replace the assumption that p(X) = 1 by p(X) < oo, we
obtain the inequality

@( / fdu) < Cux)) [ a(n 3)

Find an ezample of a conver, increasing function ® such that (2) and (8) both

fail.

Exercise 5 Let ¢ : [0,00) — [0,00), ¥(0) = 0, ¢(x) = xlog(1l/x) if x # 0. Let
P ={p;ti<j<n be a probability distribution: 2?21 p; =1, p; > 0. The entropy
of Pis E(P) = Z;lzl Y(p;). Prove that the estimates

0<E&(P) <logn
hold and that they are sharp. What are the extremals?

Holder’s inequality. If f,g > 0 are nonnegative and measurable on the mea-
sure space (Y, dz), 1 < p < oo and p’ is the exponent conjugate to p, %Jr 1% =1,
then

/fgdx < N fllzellgll po -

Proof. The case p = oo or p = 1 is elementary, so we assume 1 < p < oo.

We use the convexity of t — tP and Jensen’s inequality with the measure space
g’

lgll®

(Z, ), where Z is the support of g and dy =

. P
[tode = [ 1725
||g||LPI g
’ p
’ N\ P P
gl U (1) 2 da:]
gl

p—Z
Iflleellgll . ™ = 1 flleellgll e

!
dz - |lg|”,

IN

IN

]

We have equality in Holder’s inequality if and only if gp/ = fP a.e..
Iterated Holder’s inequality. If p; € [1,00], Zj i =1land f; > 0is a
family of measurable functions, then '

[ gida <1450

The inequality follows from two-Holder’s by induction.

There is a continuous generalization of Holder’s inequality, which can be
stated as follows. Let p be a probability measure on some space X and h =
h(t,x) : X x Y — R be mesurable and nonnegative. Then,

log { /Y exp < /X h(t,x)du(t)) dx} < /X log [ /Y exp(h(t,x))d:c] dp(t).



This inequality follows easily from iterated Holder’s and an approximation ar-
gument.6

Let f,g be nonnegative, measurable functions on R. The convolution of f
and gis fxg: R — RU{oo}:

fro@) = [ 1=t

Note that the convolution can be defined as well among sequences with indeces

in Z:
(a * b)n = Z Qp—mbm,

meZ
and functions defined on the circle:
- df
iy i(a—0) 0
Feate) = [ e e 3.

In general, it makes sense to define convolutions whenever we have a group with
a (left) translation invariant measure.
Young’s inequality. Suppose that f, g are nonnegative and measurable on R
and that p, ¢, € [1,+00] are such that
1+1:1+120. (4)
P q r

(The conditions imply that » > p, ¢.) Then,

lf*gller < fllcellgllza- (5)

Proof. The case r = 400 is contained in Holder’s inequality. Consider r €
(1,00) first. Then p,q € [1,00). Let P,Q € [1,00), to be chosen below, be such
that P~ + Q! +r~! =1 and let a,b € [0, 1] be such that

) r r r
p=aP = (1—a)r, ¢ =bQ = (1-b)r, Z.e.a:P—l-T:%—f—T,b:Q—f—T:””
Hence,

r—op r—gq
a= , b= .
r r
Let’s verify the condition on P, Q:
1 1 a b 1 1 1 1 1
— e —:———+———:1——7
P Q@ p» q p r q T r

as wished. By Holder’s inequality,

frglx) = /f(x —y)g(y)dy = /f(a: — )W)’ flx —y)' " "g(y)' ~dy

U(f(w - y)“de} . U(g(y)”Qdy} v
[ ira) "

61s there a direct proof?

IN




Taking into account the fact that the Lebesgue measure is translation invariant
and the relations on a,b, P, Q, p, q, we have

IN

[t =wgrae < U IAE [ | [ @ - 0] o

1 r/P 1 r
AT g 959 = (1 £11%0 gl e

Exercise 6 Prove that Young’s inequality (5) in R holds in the cases (4) only.
Suggestion: let §, f(x) = f(z/N\), X > 0; insert 05 f, drg instead of f and g in
(5) and let A renge in (0,00).

We have not proved the important (easier) case p = ¢ = r = 1. For these values
of the exponents, Young’s inequality says that (L', *) is a Banach algebra.

Exercise 7 Prove the case p=q =r =1 of Young’s inequality.

Problem. Find an iterated version for Young’s inequality and, if there is one,
write down a continuos version of it.

The best constant in Young’s inequality in R™ was found by W. Beckner in
1975 [Beck].
Schur’ Lemma. Let X be a measure space and let K : X x X — R be a
nonnegative, measurable functions. Define an operator T' defined by the kernel
K. If f is a nonnegative, measurable function, then

z) = / K(z,9)/ (4)dy

Let 1 < p < co. Suppose that there is a strictly positive function A on X such
that

/Ku,yw/( Jdy < ON' ( /K £y (2)dr < CNP(y).

Then, T is bounded from L? to LP.
Proof. Using Holder’s from first to second line with measure K (z,y)dy and
the hypothesis

[oppwe = /(/K £ )\ ()() )
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% / F@)PA () (y)dy = C" / F(y)dy.
| |

Exercise 8 Find a Schur’s Lemma ensuring that T : LP — L1, 1 < g <p < oo.



Jensen’s inequality deals with a probability space. A consequence of the
inequality is that L9(u) C LP(u) if p is a probability measure and p < ¢. At the
opposite end, we have the measure space N with the counting measure. Here,
ot Coeee.

Proposition 9 Let ¢ = {ax}r>0 be a sequence of nonnegative numbers. If
p < g, then |lallq < [lallp.

Proof. Since t4/? <t when t € [0, 1],
S () ()
(X ap)"” Yap) T\Xe)

Exercise 10 Prove the following. Let ® : [0,00) — [0,00) be such that (I)(“L) is

increasing. Then,
> Plar) < O3 ar)

if ag > 0.
For instance,

e —1) <X -1

Note that here, too, a differential inequality is the key to a class of integral
inequalities.

An other application of convexity is the proof of Minkowsky’s inequality. Let
® : [0,00) — [0,00) be a convex, increasing function such that ®(0) = 0. For a
measurable function f (on some fixed measure space), let

||f||<1>=inf{0>0: /¢(|f>d <1}.

Here, inf ) = +o0, by definition.
Exercise 11 If ®(t) =t*, p > 1, then || flle = ||f|lz>-

Theorem 12
1f+glle < flle + llglle-

Proof. Let a,b > 0 bes.t. [® (%) de <1, [® (l%l) dr < 1. By convexity,

|f + 4] a |f] b gl
/@<a+b)dx = /¢<a+ba+a+bb>dz
a |f| b lgl

< 1 (6)

Hence, a +b > ||f + g]la. The thesis follows by passing to infima. m
Under suitable hypothesis, Minkowsky’s inequality has the following integral

generalization:
| [ seon) < [ sl

The classic of inequalities is [HLP)].
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