Basic inequalities

N.A.

A function $\Phi: I \rightarrow \mathbb{R}$ defined on an interval $I \subseteq \mathbb{R}$ is convex if for all integer $n \geq 2$:

$$
\sum_{j=1}^{n} t_{j}=1, t_{1}, \ldots, t_{n} \geq 0, a_{1}, \ldots, a_{n} \in I \Longrightarrow \Phi\left(\sum_{j=1}^{n} t_{j} a_{j}\right) \leq \sum_{j=1}^{n} t_{j} \Phi\left(a_{j}\right) .
$$

By induction, Φ is convex iff the inequality above holds for $n=2$.
Jensen's inequality. ${ }^{1}$ Let $\Phi:[0,+\infty) \rightarrow[0, \infty)$ be a convex function and let (X, μ) be a probability measure space. If $f \geq 0$ is a measurable function on X, then

$$
\begin{equation*}
\Phi\left(\int_{X} f d \mu\right) \leq \int_{X} \Phi(f) d \mu \tag{1}
\end{equation*}
$$

Proof. Let $f=\sum_{j} a_{j} \chi_{E_{j}}$ be a simple function: $\left\{E_{j}\right\}$ is a countable, measurable partition of X. Then, by convexity,

$$
\begin{aligned}
\Phi\left(\int_{X} f d \mu\right) & =\Phi\left(\sum_{j=1}^{n} a_{j} \mu\left(E_{j}\right)\right) \\
& \leq \sum_{j=1}^{n} \Phi\left(a_{j}\right) \mu\left(E_{j}\right)=\int_{X} \Phi(f) d \mu
\end{aligned}
$$

For general $f \geq 0$, let $\left\{f_{n}\right\}$ be a sequence of simple functions such that $f_{n} \nearrow f$. The desired inequality follows by a simple limiting argument ${ }^{2}$.

We can dispense with the positivity assumption provided f is integrable.
Proposition 1 Let $\Phi:(a, b) \rightarrow \mathbb{R}$ be convex, $-\infty \leq a<b \leq+\infty$, and let (X, μ) be a probability space. If $f: X \rightarrow \mathbb{R}$ is integrable and $f(X) \subseteq(a, b)$, then

$$
\Phi\left(\int_{X} f d \mu\right) \leq \int_{X} \Phi(f) d \mu
$$

Proof. Let $a<u<w<v<b$. By convexity,

$$
\begin{aligned}
w & =\frac{v-w}{v-u} u+\frac{w-u}{v-u} v \Longrightarrow \\
\Phi(w) & \leq \frac{v-w}{v-u} \Phi(u)+\frac{w-u}{v-u} \Phi(v) \Longrightarrow
\end{aligned}
$$

[^0]\[

$$
\begin{aligned}
(\Phi(w)-\Phi(u))(v-w) & \leq(\Phi(v)-\Phi(w))(w-u) \Longrightarrow \\
\frac{\Phi(w)-\Phi(u)}{w-u} & \leq \frac{\Phi(v)-\Phi(w)}{v-w} .
\end{aligned}
$$
\]

${ }^{3}$ Then, there is $C(w) \in \mathbb{R}$ such that

$$
\Phi(t) \geq \Phi(w)+C(w)(t-w)
$$

whenever $t \in(a, b)$.
Let now $w=\int_{X} f d \mu \in(a, b)$, by the Mean Value Theorem, and let $t=f(x)$. Integrating w.r.t. μ,

$$
\begin{aligned}
\int_{X} \Phi(f(x)) d \mu(x) & \geq \Phi\left(\int_{X} f d \mu\right)+C \int_{X}\left(f(x)-\int_{X} f d \mu\right) d \mu(x) \\
& =\Phi\left(\int_{X} f d \mu\right)
\end{aligned}
$$

■ ${ }^{4}$
Exercise 4 Suppose that Φ is also increasing and that for all ${ }^{5} T>0$ there is

$$
\begin{aligned}
& { }^{3} \text { Observe that the inequality in the second line also gives } \\
& \qquad \frac{\Phi(v)-\Phi(u)}{v-u} \leq \frac{\Phi(v)-\Phi(w)}{v-w}
\end{aligned}
$$

${ }^{4}$ A different proof.
Lemma 2 (An extension of the Monotone Convergence Theorem.) Suppose that $\varphi_{n} \in L(\mu)$ for $n \geq 1$ and that $\varphi_{n} \nearrow \varphi$. Then,

$$
\int \varphi_{n} d \mu \nearrow \int \varphi d \mu
$$

Proof. Let $\psi_{n}=\varphi_{n} \vee 0 \nearrow \psi=\varphi \vee 0$ and $\eta_{n}=\varphi_{n} \wedge 0 \nearrow \eta=\varphi \wedge 0$. Use MCT for ψ_{n} and DCT for η_{n}.

Lemma 3 Let $\Phi:(a, b) \rightarrow \mathbb{R}$ be a convex function and let $a<\alpha<\beta<b$. Then, there exist

$$
-\infty<\Phi^{\prime}(\alpha+) \leq \Phi^{\prime}(\beta-)<+\infty
$$

Proof. Whenever $0<h, k<\frac{\alpha+\beta}{2}$, we have

$$
\frac{\Phi(\alpha+h)-\Phi(\alpha)}{h} \leq \frac{\Phi(\beta)-\Phi(\beta-k)}{k} .
$$

The LHS decreases as $h \rightarrow 0$, while the RHS increases as $k \rightarrow 0$. Observe that both RHS and LHS are bounded. Take limits.

Proof. of Proposition 1 For $a<\alpha<\beta<b$, let

$$
\Phi_{\alpha}^{\beta}(t)=\left\{\begin{array}{l}
\Phi(\beta)+\Phi^{\prime}(\alpha+)(t-\alpha) \text { if } t \in(a, \alpha] \\
\Phi(t) \text { if } t \in[\alpha, \beta] \\
\Phi(\beta)+\Phi^{\prime}(\beta-)(t-\beta) \text { if } t \in[\beta, b)
\end{array}\right.
$$

Then, Φ_{α}^{β} is convex by the second lemma, $\Phi_{\alpha}^{\beta} \leq \Phi$ and, if $\alpha_{n} \searrow a$ and $\beta_{n} \nearrow b$, then $\Phi_{\alpha_{n}}^{\beta_{n}} \nearrow \Phi$.
If $f \in L^{1}(\mu)$, then $\varphi_{n}=\Phi_{\alpha_{n}}^{\beta_{n}} \circ f \in L^{1}(\mu)$ and $\varphi_{n} \nearrow \varphi=\Phi \circ f$. By the first lemma, the inequality is reduced to

$$
\Phi_{\alpha_{n}}^{\beta_{n}}\left(\int f d \mu\right) \leq \int \Phi_{\alpha_{n}}^{\beta_{n}}(f) d \mu
$$

This last inequality can be proved similarly to (1): for simple f it reduces to the definition of convex function; for $f \in L^{1}$ use DCT.
${ }^{5} \mathrm{Or}$, which is the same, for just one such T.
$C>0$ such that

$$
\begin{equation*}
\Phi(T x) \leq C \Phi(x) \tag{2}
\end{equation*}
$$

$\left(\Phi(t)=t^{p}, p \geq 1\right.$ is a function with these properties).
Show that, if we replace the assumption that $\mu(X)=1$ by $\mu(X)<\infty$, we obtain the inequality

$$
\begin{equation*}
\Phi\left(\int_{X} f d \mu\right) \leq C(\mu(X)) \int_{X} \Phi(f) d \mu . \tag{3}
\end{equation*}
$$

Find an example of a convex, increasing function Φ such that (2) and (3) both fail.

Exercise 5 Let $\psi:[0, \infty) \rightarrow[0, \infty), \psi(0)=0, \psi(x)=x \log (1 / x)$ if $x \neq 0$. Let $P=\left\{p_{j}\right\}_{1 \leq j \leq n}$ be a probability distribution: $\sum_{j=1}^{n} p_{j}=1, p_{j} \geq 0$. The entropy of P is $\mathcal{E}(P)=\sum_{j=1}^{n} \psi\left(p_{j}\right)$. Prove that the estimates

$$
0 \leq \mathcal{E}(P) \leq \log n
$$

hold and that they are sharp. What are the extremals?
Hölder's inequality. If $f, g \geq 0$ are nonnegative and measurable on the measure space $(Y, d x), 1 \leq p \leq \infty$ and p^{\prime} is the exponent conjugate to $p, \frac{1}{p}+\frac{1}{p^{\prime}}=1$, then

$$
\int f g d x \leq\|f\|_{L^{p}}\|g\|_{L^{p^{\prime}}} .
$$

Proof. The case $p=\infty$ or $p=1$ is elementary, so we assume $1<p<\infty$. We use the convexity of $t \rightarrow t^{p}$ and Jensen's inequality with the measure space (Z, μ), where Z is the support of g and $d \mu=\frac{g^{p^{\prime}}}{\|g\|_{L^{p^{\prime}}}^{p^{\prime}}} d x$.

$$
\begin{aligned}
\int f g d x & =\int f g^{1-p^{\prime}} \frac{g^{p^{\prime}}}{\|g\|_{L^{p^{\prime}}}^{p^{\prime}}} d x \cdot\|g\|_{L^{p^{\prime}}}^{p^{\prime}} \\
& \leq\|g\|_{L^{p^{\prime}}}^{p^{\prime}}\left[\int\left(f g^{1-p^{\prime}}\right)^{p} \frac{g^{p^{\prime}}}{\|g\|_{L^{p^{\prime}}}^{p^{\prime}}} d x\right]^{1 / p} \\
& \leq\|f\|_{L^{p}}\|g\|_{L^{p^{\prime}}}^{p^{\prime}}=\|f\|_{L^{p}}\|g\|_{L^{p^{\prime}}}
\end{aligned}
$$

We have equality in Hölder's inequality if and only if $g^{p^{\prime}}=f^{p}$ a.e..
Iterated Hölder's inequality. If $p_{j} \in[1, \infty], \sum_{j} \frac{1}{p_{j}}=1$ and $f_{j} \geq 0$ is a family of measurable functions, then

$$
\int \Pi_{j} f_{j} d x \leq \Pi_{j}\left\|f_{j}\right\|_{L^{p_{j}}} .
$$

The inequality follows from two-Hölder's by induction.
There is a continuous generalization of Hölder's inequality, which can be stated as follows. Let μ be a probability measure on some space X and $h=$ $h(t, x): X \times Y \rightarrow \mathbb{R}$ be mesurable and nonnegative. Then,

$$
\log \left[\int_{Y} \exp \left(\int_{X} h(t, x) d \mu(t)\right) d x\right] \leq \int_{X} \log \left[\int_{Y} \exp (h(t, x)) d x\right] d \mu(t)
$$

This inequality follows easily from iterated Hölder's and an approximation argument. ${ }^{6}$

Let f, g be nonnegative, measurable functions on \mathbb{R}. The convolution of f and g is $f * g: \mathbb{R} \rightarrow \mathbb{R} \cup\{\infty\}$:

$$
f * g(x)=\int f(x-y) g(y) d y
$$

Note that the convolution can be defined as well among sequences with indeces in \mathbb{Z} :

$$
(a * b)_{n}=\sum_{m \in \mathbb{Z}} a_{n-m} b_{m},
$$

and functions defined on the circle:

$$
f * g\left(e^{i \alpha}\right)=\int_{-\pi}^{\pi} f\left(e^{i(\alpha-\theta)}\right) g\left(e^{i \theta}\right) \frac{d \theta}{2 \pi} .
$$

In general, it makes sense to define convolutions whenever we have a group with a (left) translation invariant measure.
Young's inequality. Suppose that f, g are nonnegative and measurable on \mathbb{R} and that $p, q, r \in[1,+\infty]$ are such that

$$
\begin{equation*}
\frac{1}{p}+\frac{1}{q}=1+\frac{1}{r} \geq 0 \tag{4}
\end{equation*}
$$

(The conditions imply that $r \geq p, q$.) Then,

$$
\begin{equation*}
\|f * g\|_{L^{r}} \leq\|f\|_{L^{p}}\|g\|_{L^{q}} . \tag{5}
\end{equation*}
$$

Proof. The case $r=+\infty$ is contained in Hölder's inequality. Consider $r \in$ $(1, \infty)$ first. Then $p, q \in[1, \infty)$. Let $P, Q \in[1, \infty)$, to be chosen below, be such that $P^{-1}+Q^{-1}+r^{-1}=1$ and let $a, b \in[0,1]$ be such that
$p=a P=(1-a) r, q=b Q=(1-b) r$, i.e. $a=\frac{r}{P+r}=\frac{r}{\frac{p}{a}+r}, b=\frac{r}{Q+r}=\ldots$.
Hence,

$$
a=\frac{r-p}{r}, b=\frac{r-q}{r} .
$$

Let's verify the condition on P, Q :

$$
\frac{1}{P}+\frac{1}{Q}=\frac{a}{p}+\frac{b}{q}=\frac{1}{p}-\frac{1}{r}+\frac{1}{q}-\frac{1}{r}=1-\frac{1}{r}
$$

as wished. By Hölder's inequality,

$$
\begin{aligned}
f * g(x) & =\int f(x-y) g(y) d y=\int f(x-y)^{a} g(y)^{b} f(x-y)^{1-a} g(y)^{1-b} d y \\
& \leq\left[\int (f (x - y) ^ { a P } d y] ^ { 1 / P } \left[\int\left(g(y)^{b Q} d y\right]^{1 / Q}\right.\right. \\
& \cdot\left[\int f(x-y)^{(1-a) r}\left(g(y)^{(1-b) r} d y\right]^{1 / r} .\right.
\end{aligned}
$$

[^1]Taking into account the fact that the Lebesgue measure is translation invariant and the relations on a, b, P, Q, p, q, we have

$$
\begin{aligned}
\int[f(x-y) g(y)]^{r} d x & \leq\|f\|_{L^{p}}^{p r / P}\|g\|_{L^{q}}^{q r / Q} \int\left[\int f(x-y)^{p} g(y)^{q} d y\right] d x \\
& =\|f\|_{L^{p}}^{p(1+r / P)}\|g\|_{L^{q}}^{q(q+r / Q)}=\|f\|_{L^{p}}^{r}\|g\|_{L^{q}}^{r} .
\end{aligned}
$$

Exercise 6 Prove that Young's inequality (5) in \mathbb{R} holds in the cases (4) only. Suggestion: let $\delta_{\lambda} f(x)=f(x / \lambda), \lambda>0$; insert $\delta_{\lambda} f, \delta_{\lambda} g$ instead of f and g in (5) and let λ renge in $(0, \infty)$.

We have not proved the important (easier) case $p=q=r=1$. For these values of the exponents, Young's inequality says that $\left(L^{1}, *\right)$ is a Banach algebra.

Exercise 7 Prove the case $p=q=r=1$ of Young's inequality.
Problem. Find an iterated version for Young's inequality and, if there is one, write down a continuos version of it.

The best constant in Young's inequality in \mathbb{R}^{n} was found by W. Beckner in 1975 [Beck].
Schur' Lemma. Let X be a measure space and let $K: X \times X \rightarrow \mathbb{R}$ be a nonnegative, measurable functions. Define an operator T defined by the kernel K. If f is a nonnegative, measurable function, then

$$
T f(x)=\int K(x, y) f(y) d y
$$

Let $1<p<\infty$. Suppose that there is a strictly positive function λ on X such that

$$
\int K(x, y) \lambda^{p^{\prime}}(y) d y \leq C \lambda^{p^{\prime}}(x), \quad \int K(x, y) \lambda^{p}(x) d x \leq C \lambda^{p}(y) .
$$

Then, T is bounded from L^{p} to L^{p}.
Proof. Using Hölder's from first to second line with measure $K(x, y) d y$ and the hypothesis

$$
\begin{aligned}
\int(T f)^{p}(x) d x & =\int\left(\int K(x, y) \lambda(y) \lambda^{-1}(y) f(y) d y\right)^{p} d x \\
& \leq \int\left(\int K(x, y) \lambda^{p^{\prime}}(y) d y\right)^{p / p^{\prime}}\left(\int K(x, y) \lambda^{-p}(y) f(y)^{p} d y\right) d x \\
& \leq C \int \lambda^{p}(x)\left(\int K(x, y) \lambda^{-p}(y) f(y)^{p} d y\right) d x \\
& =C \int \lambda^{-p}(y) f(y)^{p}\left(\int K(x, y) \lambda^{p}(x) d x\right) d y \\
& \leq C^{\prime} \int f(y)^{p} \lambda^{-p}(y) \lambda^{p}(y) d y=C^{\prime} \int f(y)^{p} d y .
\end{aligned}
$$

Exercise 8 Find a Schur's Lemma ensuring that $T: L^{p} \rightarrow L^{q}, 1<q \leq p<\infty$.

Jensen's inequality deals with a probability space. A consequence of the inequality is that $L^{q}(\mu) \subset L^{p}(\mu)$ if μ is a probability measure and $p<q$. At the opposite end, we have the measure space \mathbb{N} with the counting measure. Here, $\ell^{1} \subset \ell^{\infty}$.

Proposition 9 Let $a=\left\{a_{k}\right\}_{k \geq 0}$ be a sequence of nonnegative numbers. If $p<q$, then $\|a\|_{q} \leq\|a\|_{p}$.
Proof. Since $t^{q / p} \leq t$ when $t \in[0,1]$,

$$
\frac{\sum a_{k}^{q}}{\left(\sum a_{h}^{p}\right)^{q / p}}=\sum\left(\frac{a_{k}^{p}}{\sum a_{h}^{p}}\right)^{q / p} \leq \sum\left(\frac{a_{k}^{p}}{\sum a_{h}^{p}}\right)=1
$$

Exercise 10 Prove the following. Let $\Phi:[0, \infty) \rightarrow[0, \infty)$ be such that $\frac{\Phi(x)}{x}$ is increasing. Then,

$$
\sum \Phi\left(a_{k}\right) \leq \Phi\left(\sum a_{k}\right)
$$

if $a_{k} \geq 0$.
For instance,

$$
\sum\left(e^{a_{k}}-1\right) \leq e^{\sum a_{k}}-1
$$

Note that here, too, a differential inequality is the key to a class of integral inequalities.

An other application of convexity is the proof of Minkowsky's inequality. Let $\Phi:[0, \infty) \rightarrow[0, \infty)$ be a convex, increasing function such that $\Phi(0)=0$. For a measurable function f (on some fixed measure space), let

$$
\|f\|_{\Phi}=\inf \left\{C>0: \int \Phi\left(\frac{|f|}{C}\right) d x \leq 1\right\}
$$

Here, $\inf \emptyset=+\infty$, by definition.
Exercise 11 If $\Phi(t)=t^{p}, p \geq 1$, then $\|f\|_{\Phi}=\|f\|_{L^{p}}$.
Theorem 12

$$
\|f+g\|_{\Phi} \leq\|f\|_{\Phi}+\|g\|_{\Phi}
$$

Proof. Let $a, b>0$ be s.t. $\int \Phi\left(\frac{|f|}{a}\right) d x \leq 1, \int \Phi\left(\frac{|g|}{b}\right) d x \leq 1$. By convexity,

$$
\begin{align*}
\int \Phi\left(\frac{|f+g|}{a+b}\right) d x & \leq \int \Phi\left(\frac{a}{a+b} \frac{|f|}{a}+\frac{b}{a+b} \frac{|g|}{b}\right) d x \\
& \leq \int \frac{a}{a+b} \Phi\left(\frac{|f|}{a}\right)+\frac{b}{a+b} \Phi\left(\frac{|g|}{b}\right) d x \\
& \leq 1 \tag{6}
\end{align*}
$$

Hence, $a+b \geq\|f+g\|_{\Phi}$. The thesis follows by passing to infima.
Under suitable hypothesis, Minkowsky's inequality has the following integral generalization:

$$
\left\|\int_{X} f(t, \cdot) d \lambda(t)\right\|_{\Phi} \leq \int_{X}\|f(t, \cdot)\|_{\Phi} d \lambda(t)
$$

The classic of inequalities is [HLP].

References

[Beck] W. Beckner Inequalities in Fourier analysis. Ann. of Math. (2) 102 (1975), no. 1, 159-182.
[HLP] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities.Reprint of the 1952 edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1988. xii +324 pp.

[^0]: ${ }^{1}$ Some words on extremals?
 ${ }^{2}$ It is useful to split $\Phi=\Phi_{1}+\Phi_{2}$, with Φ_{1} increasing and Φ_{2} decreasing. Use Monotone Convergence with Φ_{1} and Dominated Convergence with Φ_{2}

[^1]: ${ }^{6}$ Is there a direct proof?

