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A function Φ : I → R defined on an interval I ⊆ R is convex if for all integer
n ≥ 2:

n∑
j=1

tj = 1, t1, . . . , tn ≥ 0, a1, . . . , an ∈ I =⇒ Φ

 n∑
j=1

tjaj

 ≤
n∑

j=1

tjΦ (aj) .

By induction, Φ is convex iff the inequality above holds for n = 2.
Jensen’s inequality.1 Let Φ : [0,+∞) → [0,∞) be a convex function and let
(X,µ) be a probability measure space. If f ≥ 0 is a measurable function on X,
then

Φ
(∫

X

fdµ

)
≤

∫
X

Φ(f)dµ. (1)

Proof. Let f =
∑

j ajχEj
be a simple function: {Ej} is a countable, measurable

partition of X. Then, by convexity,

Φ
(∫

X

fdµ

)
= Φ

 n∑
j=1

ajµ(Ej)


≤

n∑
j=1

Φ (aj)µ(Ej) =
∫

X

Φ(f)dµ.

For general f ≥ 0, let {fn} be a sequence of simple functions such that fn ↗ f .
The desired inequality follows by a simple limiting argument2.

We can dispense with the positivity assumption provided f is integrable.

Proposition 1 Let Φ : (a, b) → R be convex, −∞ ≤ a < b ≤ +∞, and let
(X,µ) be a probability space. If f : X → R is integrable and f(X) ⊆ (a, b), then

Φ
(∫

X

fdµ

)
≤

∫
X

Φ(f)dµ.

Proof. Let a < u < w < v < b. By convexity,

w =
v − w

v − u
u+

w − u

v − u
v =⇒

Φ(w) ≤ v − w

v − u
Φ(u) +

w − u

v − u
Φ(v) =⇒

1Some words on extremals?
2It is useful to split Φ = Φ1 + Φ2, with Φ1 increasing and Φ2 decreasing. Use Monotone

Convergence with Φ1 and Dominated Convergence with Φ2
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(Φ(w)− Φ(u))(v − w) ≤ (Φ(v)− Φ(w))(w − u) =⇒
Φ(w)− Φ(u)

w − u
≤ Φ(v)− Φ(w)

v − w
.

3 Then, there is C(w) ∈ R such that

Φ(t) ≥ Φ(w) + C(w)(t− w)

whenever t ∈ (a, b).
Let now w =

∫
X
fdµ ∈ (a, b), by the Mean Value Theorem, and let t = f(x).

Integrating w.r.t. µ,∫
X

Φ(f(x))dµ(x) ≥ Φ
(∫

X

fdµ

)
+ C

∫
X

(
f(x)−

∫
X

fdµ

)
dµ(x)

= Φ
(∫

X

fdµ

)
.

4

Exercise 4 Suppose that Φ is also increasing and that for all5 T > 0 there is
3Observe that the inequality in the second line also gives

Φ(v)− Φ(u)

v − u
≤

Φ(v)− Φ(w)

v − w
.

4A different proof.

Lemma 2 (An extension of the Monotone Convergence Theorem.) Suppose that
ϕn ∈ L(µ) for n ≥ 1 and that ϕn ↗ ϕ. Then,Z

ϕndµ↗
Z
ϕdµ.

Proof. Let ψn = ϕn ∨ 0 ↗ ψ = ϕ ∨ 0 and ηn = ϕn ∧ 0 ↗ η = ϕ ∧ 0. Use MCT for ψn and
DCT for ηn.

Lemma 3 Let Φ : (a, b)→ R be a convex function and let a < α < β < b. Then, there exist

−∞ < Φ′(α+) ≤ Φ′(β−) < +∞.

Proof. Whenever 0 < h, k < α+β
2

, we have

Φ(α+ h)− Φ(α)

h
≤

Φ(β)− Φ(β − k)
k

.

The LHS decreases as h→ 0, while the RHS increases as k → 0. Observe that both RHS and
LHS are bounded. Take limits.

Proof. of Proposition 1 For a < α < β < b, let

Φβ
α(t) =

8><>:
Φ(β) + Φ′(α+)(t− α) if t ∈ (a, α]

Φ(t) if t ∈ [α, β]

Φ(β) + Φ′(β−)(t− β) if t ∈ [β, b).

Then, Φβ
α is convex by the second lemma, Φβ

α ≤ Φ and, if αn ↘ a and βn ↗ b, then Φβn
αn ↗ Φ.

If f ∈ L1(µ), then ϕn = Φβn
αn ◦ f ∈ L1(µ) and ϕn ↗ ϕ = Φ ◦ f . By the first lemma, the

inequality is reduced to

Φβn
αn

„Z
fdµ

«
≤

Z
Φβn

αn
(f) dµ.

This last inequality can be proved similarly to (1): for simple f it reduces to the definition of
convex function; for f ∈ L1 use DCT.

5Or, which is the same, for just one such T .
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C > 0 such that
Φ(Tx) ≤ CΦ(x). (2)

(Φ(t) = tp, p ≥ 1 is a function with these properties).
Show that, if we replace the assumption that µ(X) = 1 by µ(X) < ∞, we

obtain the inequality

Φ
(∫

X

fdµ

)
≤ C(µ(X))

∫
X

Φ(f)dµ. (3)

Find an example of a convex, increasing function Φ such that (2) and (3) both
fail.

Exercise 5 Let ψ : [0,∞) → [0,∞), ψ(0) = 0, ψ(x) = x log(1/x) if x 6= 0. Let
P = {pj}1≤j≤n be a probability distribution:

∑n
j=1 pj = 1, pj ≥ 0. The entropy

of P is E(P ) =
∑n

j=1 ψ(pj). Prove that the estimates

0 ≤ E(P ) ≤ log n

hold and that they are sharp. What are the extremals?

Hölder’s inequality. If f, g ≥ 0 are nonnegative and measurable on the mea-
sure space (Y, dx), 1 ≤ p ≤ ∞ and p′ is the exponent conjugate to p, 1

p + 1
p′ = 1,

then ∫
fgdx ≤ ‖f‖Lp‖g‖Lp′ .

Proof. The case p = ∞ or p = 1 is elementary, so we assume 1 < p < ∞.
We use the convexity of t→ tp and Jensen’s inequality with the measure space
(Z, µ), where Z is the support of g and dµ = gp′

‖g‖p′

Lp′
dx.

∫
fgdx =

∫
fg1−p′ gp′

‖g‖p′

Lp′

dx · ‖g‖p′

Lp′

≤ ‖g‖p′

Lp′

[∫ (
fg1−p′

)p gp′

‖g‖p′

Lp′

dx

]1/p

≤ ‖f‖Lp‖g‖p′− p′
p

Lp′ = ‖f‖Lp‖g‖Lp′ .

We have equality in Hölder’s inequality if and only if gp′
= fp a.e..

Iterated Hölder’s inequality. If pj ∈ [1,∞],
∑

j
1
pj

= 1 and fj ≥ 0 is a
family of measurable functions, then∫

Πjfjdx ≤ Πj‖fj‖Lpj .

The inequality follows from two-Hölder’s by induction.
There is a continuous generalization of Hölder’s inequality, which can be

stated as follows. Let µ be a probability measure on some space X and h =
h(t, x) : X × Y → R be mesurable and nonnegative. Then,

log
[∫

Y

exp
(∫

X

h(t, x)dµ(t)
)
dx

]
≤

∫
X

log
[∫

Y

exp(h(t, x))dx
]
dµ(t).
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This inequality follows easily from iterated Hölder’s and an approximation ar-
gument.6

Let f, g be nonnegative, measurable functions on R. The convolution of f
and g is f ∗ g : R → R ∪ {∞}:

f ∗ g(x) =
∫
f(x− y)g(y)dy.

Note that the convolution can be defined as well among sequences with indeces
in Z:

(a ∗ b)n =
∑
m∈Z

an−mbm,

and functions defined on the circle:

f ∗ g(eiα) =
∫ π

−π

f(ei(α−θ))g(eiθ)
dθ

2π
.

In general, it makes sense to define convolutions whenever we have a group with
a (left) translation invariant measure.
Young’s inequality. Suppose that f, g are nonnegative and measurable on R
and that p, q, r ∈ [1,+∞] are such that

1
p

+
1
q

= 1 +
1
r
≥ 0. (4)

(The conditions imply that r ≥ p, q.) Then,

‖f ∗ g‖Lr ≤ ‖f‖Lp‖g‖Lq . (5)

Proof. The case r = +∞ is contained in Hölder’s inequality. Consider r ∈
(1,∞) first. Then p, q ∈ [1,∞). Let P,Q ∈ [1,∞), to be chosen below, be such
that P−1 +Q−1 + r−1 = 1 and let a, b ∈ [0, 1] be such that

p = aP = (1−a)r, q = bQ = (1−b)r, i.e. a =
r

P + r
=

r
p
a + r

, b =
r

Q+ r
= . . . .

Hence,

a =
r − p

r
, b =

r − q

r
.

Let’s verify the condition on P,Q:

1
P

+
1
Q

=
a

p
+
b

q
=

1
p
− 1
r

+
1
q
− 1
r

= 1− 1
r
,

as wished. By Hölder’s inequality,

f ∗ g(x) =
∫
f(x− y)g(y)dy =

∫
f(x− y)ag(y)bf(x− y)1−ag(y)1−bdy

≤
[∫

(f(x− y)aP dy

]1/P [∫
(g(y)bQdy

]1/Q

·
[∫

f(x− y)(1−a)r(g(y)(1−b)rdy

]1/r

.

6Is there a direct proof?
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Taking into account the fact that the Lebesgue measure is translation invariant
and the relations on a, b, P,Q, p, q, we have∫

[f(x− y)g(y)]rdx ≤ ‖f‖pr/P
Lp ‖g‖qr/Q

Lq

∫ [∫
f(x− y)pg(y)qdy

]
dx

= ‖f‖p(1+r/P )
Lp ‖g‖q(1+r/Q)

Lq = ‖f‖r
Lp‖g‖r

Lq .

Exercise 6 Prove that Young’s inequality (5) in R holds in the cases (4) only.
Suggestion: let δλf(x) = f(x/λ), λ > 0; insert δλf, δλg instead of f and g in
(5) and let λ renge in (0,∞).

We have not proved the important (easier) case p = q = r = 1. For these values
of the exponents, Young’s inequality says that (L1, ∗) is a Banach algebra.

Exercise 7 Prove the case p = q = r = 1 of Young’s inequality.

Problem. Find an iterated version for Young’s inequality and, if there is one,
write down a continuos version of it.

The best constant in Young’s inequality in Rn was found by W. Beckner in
1975 [Beck].
Schur’ Lemma. Let X be a measure space and let K : X × X → R be a
nonnegative, measurable functions. Define an operator T defined by the kernel
K. If f is a nonnegative, measurable function, then

Tf(x) =
∫
K(x, y)f(y)dy.

Let 1 < p < ∞. Suppose that there is a strictly positive function λ on X such
that ∫

K(x, y)λp′
(y)dy ≤ Cλp′

(x),
∫
K(x, y)λp(x)dx ≤ Cλp(y).

Then, T is bounded from Lp to Lp.
Proof. Using Hölder’s from first to second line with measure K(x, y)dy and

the hypothesis∫
(Tf)p(x)dx =

∫ (∫
K(x, y)λ(y)λ−1(y)f(y)dy

)p

dx

≤
∫ (∫

K(x, y)λp′
(y)dy

)p/p′ (∫
K(x, y)λ−p(y)f(y)pdy

)
dx

≤ C

∫
λp(x)

(∫
K(x, y)λ−p(y)f(y)pdy

)
dx

= C

∫
λ−p(y)f(y)p

(∫
K(x, y)λp(x)dx

)
dy

≤ C ′
∫
f(y)pλ−p(y)λp(y)dy = C ′

∫
f(y)pdy.

Exercise 8 Find a Schur’s Lemma ensuring that T : Lp → Lq, 1 < q ≤ p <∞.
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Jensen’s inequality deals with a probability space. A consequence of the
inequality is that Lq(µ) ⊂ Lp(µ) if µ is a probability measure and p < q. At the
opposite end, we have the measure space N with the counting measure. Here,
`1 ⊂ `∞.

Proposition 9 Let a = {ak}k≥0 be a sequence of nonnegative numbers. If
p < q, then ‖a‖q ≤ ‖a‖p.

Proof. Since tq/p ≤ t when t ∈ [0, 1],∑
aq

k

(
∑
ap

h)q/p
=

∑ (
ap

k∑
ap

h

)q/p

≤
∑ (

ap
k∑
ap

h

)
= 1.

Exercise 10 Prove the following. Let Φ : [0,∞) → [0,∞) be such that Φ(x)
x is

increasing. Then, ∑
Φ(ak) ≤ Φ(

∑
ak)

if ak ≥ 0.
For instance, ∑

(eak − 1) ≤ e
P

ak − 1.

Note that here, too, a differential inequality is the key to a class of integral
inequalities.

An other application of convexity is the proof of Minkowsky’s inequality. Let
Φ : [0,∞) → [0,∞) be a convex, increasing function such that Φ(0) = 0. For a
measurable function f (on some fixed measure space), let

‖f‖Φ = inf
{
C > 0 :

∫
Φ

(
|f |
C

)
dx ≤ 1

}
.

Here, inf ∅ = +∞, by definition.

Exercise 11 If Φ(t) = tp, p ≥ 1, then ‖f‖Φ = ‖f‖Lp .

Theorem 12
‖f + g‖Φ ≤ ‖f‖Φ + ‖g‖Φ.

Proof. Let a, b > 0 be s.t.
∫

Φ
(
|f |
a

)
dx ≤ 1,

∫
Φ

(
|g|
b

)
dx ≤ 1. By convexity,∫

Φ
(
|f + g|
a+ b

)
dx ≤

∫
Φ

(
a

a+ b

|f |
a

+
b

a+ b

|g|
b

)
dx

≤
∫

a

a+ b
Φ

(
|f |
a

)
+

b

a+ b
Φ

(
|g|
b

)
dx

≤ 1. (6)

Hence, a+ b ≥ ‖f + g‖Φ. The thesis follows by passing to infima.
Under suitable hypothesis, Minkowsky’s inequality has the following integral

generalization: ∥∥∥∥∫
X

f(t, ·)dλ(t)
∥∥∥∥

Φ

≤
∫

X

‖f(t, ·)‖Φdλ(t).

The classic of inequalities is [HLP].
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