
Fourier Transform: the discrete, infinite case (discrete, nonperiodic).

Our concern here is with functions/signals f : Z → C. It is not obvious that the norm of
such signal is finite, so we have to make some restriction. We also write f = (f(n))n=−∞

+∞ ,
mimicking the way we write a vector in CN.

Definition 1. The ℓ2-norm ‖f ‖ℓ2(Z)= ‖f ‖ℓ2 of a function f :Z→C is

‖f ‖ℓ28
∑

n=−∞

+∞
|f(n)|2

√

∈ [0,+∞].

The space ℓ2(Z) is the set of those f :Z→C for which ‖f ‖ℓ2<+∞.

Obvious examples of function in ℓ2 are those which vanish for all, but a finite number of
arguments in Z: if there is M > 0, that is, such that f(n)= 0 whenever |n|>M . An obvius
example of function which is not in ℓ2 is the constant function g(n)= 1, for all n in Z.

There are more interesting examples.

• Let p> 0. f(n)=
1

np for n> 1, and f(n)=0 otherwise, defines a function in ℓ2 if, and

only if, p>
1

2
.

• Let r ∈R. g(n) = r|n| defines a function in ℓ2 if, and only if, |r |< 1 and in that case

‖g‖ℓ22 =
1

1− r4
.

After the restriction to functions in ℓ2(Z) is done, we can develop (with care) some linear
algebra.

Linear algebra in ℓ
2(Z)

The Cauchy-Schwarz inequality is the basis upon which rigorous arguments in ℓ2 can be
based.

Theorem 2. [Cauchy-Schwarz inequality] Let f , g ∈ ℓ2(Z). Then, there exists

∑

j=−∞

+∞
g(j)f(j)8 lim

M→∞

∑

|j |6M

g(j)f(j)∈C.

Let <g, f >ℓ28
∑

j=−∞
+∞

g(j)f(j). Then, the Cauchy-Schwarz inequality holds:

|<g, f >ℓ2 |6 ‖g‖ℓ2‖f ‖ℓ2.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Almae Matris Studiorum Campus

https://core.ac.uk/display/31069496?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Proof. The inequality holds for functions vanishing off a finite set of arguments and the
general case can be established passing in the limit. Here are the details of the limiting
procedure. Let SM =

∑

|j |6M
g(j)f(j). Then, if M <N ,

|SN −SM | =

∣

∣

∣

∣

∣

∑

M<|j |6N

g(j)f(j)

∣

∣

∣

∣

∣

6
∑

M<|j |6N

|g(j)|2
√

·
∑

M<|j |6N

|f(j)|2
√

by theCauchy− Schwarz inequality in the finite case

→ 0 asM→∞ since the series
∑

n=−∞

+∞
|g(n)|2 and

∑

n=−∞

+∞
|f(n)|2 converge.

Hence, by Cauchy test for sequences, SM has a limit in C, which is -by definition-
∑

|j |6M
g(j)f(j). Also,

|<g, f >ℓ2 | = lim
M→∞

|SM |

6 lim
M→∞

(

∑

|j |6M

|g(j)|2
√

·
∑

|j |6M

|f(j)|2
√

)

= ‖g‖ℓ2‖f ‖ℓ2,

hence inequality also holds for infinite sums.

Corollary 3. If f , g ∈ ℓ2 and α∈C, then f + g ∈ ℓ2 and αf ∈ ℓ2. Moreover,

‖f + g‖ℓ26 ‖f ‖ℓ2+ ‖g‖ℓ2 and ‖αf ‖ℓ26 |α|‖f ‖ℓ2.

• If f , g ∈ ℓ2(Z) and α∈C, then (f + g)(j): =f(j)+ g(j) and (αf) (j): =αf(j) define
the sum f + g and the product αf . These operations make ℓ2(Z) into a vector space.
The sum f + g might be seen as the superposition of the two signals and the product
αf might be seen as the amplification of a signal f by a facor α.

• We want to measure the size of a signal. There are several ways to do that. The sim-

plest one is using the standard inner product : <g, f >=
∑

j=−∞
+∞

g(j)f(j). To measure

the size, then, we use the standard norm: ‖f ‖= <f , f >
√

=
∑

j=−∞
+∞ |f(j)|2

√

.

Properties of the inner product on the vector space (CN ,+, ·).

• ∀f , g ∈CN⇒<g, f >=<f , g >

2



• ∀f , g, h∈CN∀a, b∈C⇒<h, af + bg >=a<h, f >+b<h, g >

• ∀f , g, h∈CN∀a, b∈C⇒<af + bg, h>=ā < f , h>+b̄ < g, h>

• ∀f ∈CN ⇒<f , f >>0 and <f , f > 0 if and only if f =0

• ∀f , g ∈CN⇒|<g, f > |6 ‖f ‖ · ‖g‖ (Cauchy-Schwarz inequality)

We can use the norm to define a distance between f , g ∈CN. We set it to be ‖g− f ‖.

The only property whose verification os not trivial is the Cauchy-Schwarz inequality. We
start with an obvious inequality and do some algebra:

0 6
∑

j ,k=0

N−1

|f(j)g(k)− g(j)f(k)|2

=
∑

j ,k=0

N−1

(f(j)g(k)− g(j)f(k))(f(j)g(k)− g(j)f(k))

=
∑

j ,k=0

N−1

|f(j)|2|g(k)|2 −
∑

j,k=0

N−1

f(j)g(j) f(k) g(k) −
∑

j ,k=0

N−1

g(j)f(j) g(k) f(k) +

∑

j ,k=0

N−1

|g(j)|2|f(k)|

= 2
∑

j=0

N−1

|f(j)|2 ·
∑

k=0

N−1

|g(k)|2− 2
∑

j=0

N−1

f(j)g(j) ·
∑

k=0

N−1

g(k)f(k)

= 2

[

∑

j=0

N−1

|f(j)|2
∑

k=0

N−1

|g(k)|2−
∣

∣

∣

∣

∣

∑

j=0

N−1

f(j)g(j)

∣

∣

∣

∣

∣

2
]

= 2[‖f ‖2‖g‖2− |<g, f > |2 ].

We have then |<g, f > |2 6 |<g, f > |2 + 1

2

∑

j ,k=0

N−1 |f(j)g(k) − g(j)f(k)|2 6 ‖f ‖2‖g‖2, as
wished.

We can also deduce the cases of equality.

Corollary 4. ∀f , g ∈ CN: |<g, f > | = ‖f ‖ · ‖g‖ if and only if 0 =
∑

j ,k=0

N−1 |f(j)g(k) −
g(j)f(k)|2, and the latter holds if and only if there are a, b∈C, not both vanishing, such that
af + bg=0.

That is, equality holds if and only if f and g are linearly dependent. (Exercise: prove the
last “if and only if” in the corollary).
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We consider vectors f =





f(1)



f(N)



 ∈ CN, which we can consider as functions f : {0, 1, 
 ,

N − 1} → C, and matrices A = (ajk)j=0,
 ,N−1 =











a00 a01 



 .
 
 a0,N−1

a10 a11






 a1,N−1




aN−1,0aN−1,1
 aN−1,N−1











=











a0
t

at
1




atN











, where

a0
t , 
 , aN

t are the rows of A and the symbol t stands for transpose , aj
t = (aj0, 
 , aj ,N−1),

which is the transpose of the column vector aj=







aj0




aj,N−1





.

The product follows the usual row-times-column rule:

Af =















∑

j=0

N−1
a0,kfk

∑

j=0

N−1
a1,kfk




∑

j=0

N−1
aN−1,kfk















.

Convention about summation. When convenient, we think of vectors f ∈CN as of N-
periodic functions f :Z→C; f(j+kN)= f(j) whenever j , k∈Z. Clearly, it suffices to know
the value of f(j) for just N consecutive values of j, in order to know f(j) for all j ∈Z.

This way we have that for f ∈CN,

∑

j=0

N−1

f(j+ l) =
∑

j=0

N−1

f(j) for l∈Z.

We also extend by periodicity N ×N matrices:

aj+lN ,k+mN = aj,k for j , k, l,m∈Z.

Adjoints, self-adjoint matrices and unitary matrices.

Let A= (aj ,k)j,k=0,
 ,N−1 be a matrix with entries aj,k ∈C. The adjoint of A is the matrix

A∗= (ak,j )j ,k=0,
 ,N−1=At̄. A matrix A is selfadjoint if

A=A∗.

Theorem 5. The adjoint A∗ of a matrix A satisfies <A∗ f , g >=<f , Ag > whenever f ,

g ∈CN.
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Proof.

<A∗ f , g > =
∑

j=0

N−1

(A∗ f)(j) g(j)

=
∑

j=0

N−1
∑

k=1

N−1

(A∗)j ,kf(k) g(j)

=
∑

j=0

N−1
∑

k=1

N−1

ak,jf(k) g(j)

=
∑

j=0

N−1
∑

k=1

N−1

f(k) ak,jg(j)

=
∑

j=0

N−1
∑

k=1

N−1

f(k) (Ag)(k)

= <f ,Ag > .

A matrix U is unitary if U∗U =UU∗= Id, where Id is the identity matrix Id=













10
 0
01
 0



00
 1













.

The finite Fourier transform.

Let f ∈CN. Its finite Fourier transform f̂ ∈CN is defined by

f̂ (k)=
∑

j=0

N−1

f(j)exp

(

−2πi
jk

N

)

.

We might see f � f̂ =Ff as the linear map induced by the matrix

F8 (Fj,k)j ,k=0,
 ,N−1=

(

exp

(

−2πi
jk

N

))

j,k=0,
 ,N−1

.

Observe that the matrix F =F t is symmetric: Fj ,k=Fk,j.

The adjoint matrix is

F∗
8 (Fj ,k

∗ )j,k=0,
 ,N−1=

(

exp

(

2πi
jk

N

)

)

j,k=0,
 ,N−1

=

(

exp

(

2πi
jk

N

))

j,k=0,
 ,N−1

.

Theorem 6. The matrix
1

N
√ F is unitary.

Proof. Let z= exp
(

2πi
j

N

)

, with j=0,
 , N − 1. Then,

0= zN − 1= (z− 1)(1+ z+
 + zN−1) = (z − 1)
∑

l=0

N−1

zl= (z− 1)
∑

l=0

N−1

exp

(

2πi
jl

N

)

,
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so that either j=0 (i.e. z=1), or j=1,
 , N − 1, and
∑

l=0

N−1
exp

(

2πi
jl

N

)

=0.

We have then that:

(F∗F)m,n =
∑

l=0

N−1

Fm,l
∗ Fl,n

=
∑

l=0

N−1

exp

(

2πi
ml

N

)

exp

(

−2πi
nl

N

)

=
∑

l=0

N−1

exp

(

2πi
(m−n) l

N

)

=

{

N ifm−n=0
0 ifm−n=0

= N Id;

hence,
(

1

N
√ F

)∗( 1

N
√ F

)

= Id, as wished.

We immediately deduce two of the most important properties of the Fourier transfrm.

Theorem 7. (Fourier inversion formula). Let f ∈ CN and let f̂ ∈ CN be its Fourier
transform. Then, f can be reconstructed as

f(j)=
1

N
F∗f̂ (j)=

1

N

∑

k=0

N−1

f̂ (k)exp

(

2πi
kj

N

)

.

Proof. By definition of f̂ ,
1

N
F∗f̂ =

1

N
F∗Ff =

1

N
N Id f = f , by the Theorem above.

Theorem 8. (Plancherel’s Formula) Let f , g ∈CN. Then,
1

N

∥

∥ f̂
∥

∥

2 = ‖f ‖2 and
1

N
< ĝ ,

f̂ >=<g, f > .

Proof. The first conclusion follows from the second after setting f = g. We have:

<ĝ , f̂ > = <ĝ , f̂ >

= <Fg,Ff >

= <F∗Fg, f >

= <N Id g, f >

= N < g, f > .

Linearity of the Fourier transform. Let f , g ∈CN and λ, µ∈C. Then,

F(λf + µg)=λFf + µFg.
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Convolution and its relation with the Fourier tranform. Let f , g ∈ CN. Their
convolution is f∗g ∈CN,

f∗g(k) =
∑

j=0

N−1

f(k− j)g(j).

Here our convention on periodization becomes useful. For instance, if N =4,

f∗g(3) = f(3)g(0)+ f(2)g(1)+ f(1)g(0)+ f(0)g(−1)

= f(3)g(0)+ f(2)g(1)+ f(1)g(0)+ f(0)g(−1+4)

= f(3)g(0)+ f(2)g(1)+ f(1)g(0)+ f(0)g(3).

For f , g∈CN, let their pointwise product be f · g∈CN, defined by (f · g)(j)= f(j)g(j). We
will often drop the multiplication symbol ·, as usual.

Theorem 9. Let f , g ∈CN. Then, F(f∗g)=Ff · Fg,

f∗g (j)= f̂ (j)ĝ (j) for j=0,
 , N − 1.

Proof. We change variable k− l=m and use periodicity from third to fourth line:

f∗g (j) =
∑

k=0

N−1

(f∗g)(k)exp
(

−2πi
kj

N

)

=
∑

k=0

N−1
∑

l=0

N−1

f(k− l)g(l)exp

(

−2πi
kj

N

)

=
∑

l=0

N−1

g(l)
∑

k=0

N−1

f(k− l)exp

(

−2πi
kj

N

)

=
∑

l=0

N−1

g(l)
∑

m=0

N−1

f(m)exp

(

−2πi
(l+m) j

N

)

=
∑

l=0

N−1

g(l)
∑

m=0

N−1

f(m)exp

(

−2πi
lj

N

)

exp

(

−2πi
mj

N

)

=
∑

l=0

N−1

g(l)exp

(

−2πi
lj

N

)

∑

m=0

N−1

f(m)exp

(

−2πi
mj

N

)

= ĝ (j)f̂ (j),

as wished.

From the usual properties of the multiplication between functions, we obtain the basic
properties of convolution.
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Proposition 10. Let f , g, h∈CN and λ, µ∈C. Then,

1. f∗g= g∗f (commutativity).

2. (f∗g)∗h= f∗(g∗h) (associativity).

3. (λf)∗g= λ(f∗g) (mixed associativity).

4. (λf + µg)∗h= λ(f∗h) + µ(g∗h) (distributive property).

Let’s prove the first to see how the Fourier transform can help.

g∗f = ĝ · f̂
= f̂ · ĝ
= f∗g ,

hence, by Fourier inversion,

g∗f =
1

N
F∗F(g∗f)= 1

N
F∗F(f∗g) = f∗g.

The other proofs are similar.

When we deal with convolution, we are not merely considering the index set {0, 1,
 ,N −1}
as a set, but we are also taking into account the sum operation. In fact, we have the expression
j − k with j , k ∈ {0, 1, 
 , N − 1} in the definition of convolution (and when j < k we fix
things using periodicity, i.e. replacing it by j − k+N).

To make this clear and useful in applications, we introduce the notion of forward shift (or
translation operator) Let j ∈Z and f ∈CN. Then, τjf ∈CN is defined by τjf(k):=f(k− j),
where indeed periodicity is used when it does not hold that 06 k− j6N − 1.

It is clear that τjτk= τj+k. Moreover, τj is a linear operator:

τj(λf + µg)(k) = (λf + µg)(k− j) =λf(k− j)+ µg(k− j)= λτjf(k) + µτjg(k).

Let A:CN →CN be a linear operator, which is identified as usual with an N ×N matrix.
We say that A is time invariant if

τjA=Aτj

for all j ∈Z. Clearly, this is the same as requiring the equality to hold for j=1.

The idea is that such A’s model devices, or phenomena, whose behavior does not change in
time: if a signal f is delayed by a unit of time (becoming τ1f), then the output Af of the
device changes only insomuch as it is delayed by the same amount of time, A(τ1f)= τ1(Af).
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There is an interegting relationship between the shifts and the standard basis δ0, 
 , δN−1.
(We might call δk the unit impulse at time k, for obvious reasons):

τjδk= δk+j ,

where we use periodicity in the index of δ: δk+N = δk for all k ∈Z.

Note that any element f in CN can be written:

f =
∑

j=0

N−1

f(j)δj=
∑

j=0

N−1

f(j)τjδ0=

(

∑

j=0

N−1

f(j)τj

)

δ0,

where in the last expression we have highlighted the fact that f can be seen as a linear
combination of translations applied to the unit impulse at 0, which looks a remarkably simple
way to look at it.

Theorem 11. Let A be a time invariant linear operator. Then, we can write A as a con-
volution operator:

Af =(Aδ0)∗f.

Viceversa, if g ∈CN, then the operator f � Bf 8 g∗f is time invariant and g=Aδ0.

Moreover, the norm of A is

9A9= max
06j6N−1

|ĝ (j)|.

We might view Aδ0∈CN as the response of the system A to a unit impulse at time j=0.

Proof. Let A be time invariant. Then,

Af(k) = A

(

∑

j=0

N−1

f(j)δj

)

(k)

=
∑

j=0

N−1

f(j)A(τjδ0)(k)

=
∑

j=0

N−1

f(j)τjA(δ0)(k)

=
∑

j=0

N−1

f(j)A(δ0)(k− j)

= f∗A(δ0)(k),

as wished.
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In the other direction, changing variable of summation l=m− j,

τj(g∗f)(k) = g∗f(k− j)

=
∑

l=0

N−1

g(k− j − l)f(l)

=
∑

l=0

N−1

g(k− j − l)f(l)

=
∑

l=0

N−1

g(k−m)f(m− j)

=
∑

l=0

N−1

g(k−m)τjf(m)

= g∗(τjf),

as wished.

We have to prove the estimate for the norm 9A9 of A, wich is of the form Af = g∗f , with
g=Aδ0 , as we saw before. On the one hand, when f � 0,

‖Af ‖2 = ‖g∗f ‖2

=
1

N

∥

∥ ĝf̂
∥

∥

2

=
1

N

∑

j=0

N−1

|ĝ (j)|2
∣

∣ f̂ (j)
∣

∣

2

6 max
06j6N−1

|ĝ (j)| · 1
N

∑

j=0

N−1
∣

∣ f̂ (j)
∣

∣

2

=
(

max
06j6N−1

|ĝ (j)|
)

2‖f ‖2.

Then,
‖Af ‖
‖f ‖ 6max06j6N−1 |ĝ (j)|, hence, 9A96max06j6N−1 |ĝ (j)|.

In the other direction, we have that max06j6N−1 |ĝ (j)| = ĝ (j0) for some 0 6 j0 6 N − 1.

Choose f0 such that f0̂= δj0. Then, using Plancherel’s formula, we have ‖f0‖2= 1

N
and:

‖Af0‖2 =
1

N

∥

∥ ĝf0̂
∥

∥

2

=
1

N

∑

j=0

N−1

|ĝ (j)|2|δj0(j)|2

=
1

N
|ĝ (j0)|2

=
1

N

(

max
06j6N−1

|ĝ (j)|
)

2

=
(

max
06j6N−1

|ĝ (j)|
)

2 1

N

=
(

max
06j6N−1

|ĝ (j)|
)

2‖f0‖2.
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Hence, 9A9>
‖Af0‖
‖f0‖

=max06j6N−1 |ĝ (j)|. In the end we have 9A9=max06j6N−1 |ĝ (j)|, as
we wanted to prove.

Wneh g > 0 the norm 9A9 can be found without before computing the Fourier transform
of g.

Remark 12. If g> 0, then max06j6N−1 |ĝ (j)|=
∑

k=0

N−1
g(k).

Let’s prove it. In general we have max06j6N−1 |ĝ (j)|6
∑

k=0

N−1 |g |(k), since for j=0,
 ,N −1
we have

|ĝ (j)|=
∣

∣

∣

∣

∣

∑

k=0

N−1

g(k)exp

(

−2πi
jk

N

)

∣

∣

∣

∣

∣

6
∑

k=0

N−1

|g(k)| ·
∣

∣

∣

∣

exp

(

−2πi
jk

N

)∣

∣

∣

∣

=
∑

k=0

N−1

|g(k)|.

In the other direction, ĝ (0)=
∑

k=0

N−1
g(k) =

∑

k=0

N−1 |g(k)|, since g> 0. Overall,

∑

k=0

N−1

|g(k)|=
∑

k=0

N−1

g(k)= ĝ (0)6 max
06j6N−1

|ĝ (j)|6
∑

k=0

N−1

|g |(k),

and this proves the Remark.

It can be shown that for general g, such estimate is far from optimal: we can find g’s with
very small max06j6N−1 |ĝ (j)|, yet with very large

∑

k=0

N−1 |g(k)|.
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