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Fourier Transform: the discrete, infinite case (discrete, nonperiodic).

Our concern here is with functions/signals f: Z — C. It is not obvious that the norm of

such signal is finite, so we have to make some restriction. We also write f = (f(n));>° .,

mimicking the way we write a vector in CV.

Definition 1. The (*>-norm || f ||z =||fle of a function f:7Z— C is

—+00

Iflle=4/ > [f(m)]” €0, +oc].

n=—oo

The space (*(7) is the set of those f: 7 — C for which || f|e < +oo.

Obvious examples of function in ¢2 are those which vanish for all, but a finite number of
arguments in Z: if there is M >0, that is, such that f(n)=0 whenever |n|> M. An obvius
example of function which is not in 2 is the constant function g(n)=1, for all n in Z.

There are more interesting examples.

o Let p>0. f(n)= % for n>1, and f(n)=0 otherwise, defines a function in ¢? if, and
only if, p > %

e Let r€R. g(n)=r"l defines a function in ¢? if, and only if, |r| <1 and in that case

1
||9||§2:m-

After the restriction to functions in #*(7Z) is done, we can develop (with care) some linear
algebra.

Linear algebra in ¢*(Z)

The Cauchy-Schwarz inequality is the basis upon which rigorous arguments in ¢? can be
based.

Theorem 2. [Cauchy-Schwarz inequality] Let f, g € (*(Z). Then, there exists

> 9fG)=lim > g()f)eC
J=—oo ljl<M

Let <g, f>p:=""7"_9(5)f(4). Then, the Cauchy-Schwarz inequality holds:

j=—o00 9

<9, f>e|<lgllelf e
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Proof. The inequality holds for functions vanishing off a finite set of arguments and the
general case can be established passing in the limit. Here are the details of the limiting
procedure. Let SM:ZUKM 9(7) f(7). Then, if M < N,

[Sv=Sul = | > 9()f()

M<[GI<N

l9( \/ | f()P
\/M<|j<N M<|j|I<N

by the Cauchy — Schwarz inequality in the finite case
+oo

— 0as M — oosince the series Z |g(n)]?and Z | f(n)|? converge.

n=—oo n=—oo

/A

Hence, by Cauchy test for sequences, S); has a limit in C, which is -by definition-
S e 9V £(). Also,

|<g, f>r| = hm |Sa]

< lim (\/ \/ )
M — o0
l7l<M |]|<M

= llglel flle

hence inequality also holds for infinite sums.

Corollary 3. If f,g€(? and a € C, then f+ g€ (? and of € (2. Moreover,

1f+glle<flle+lglleandaffle<|allf e

o If f,g€(*(Z) and a € C, then (f+g)(j):=f(j) + 9(j) and (aof) (j): =crf(j) define
the sum f + ¢ and the product o f. These operations make ¢*(Z) into a vector space.
The sum f 4+ g might be seen as the superposition of the two signals and the product
af might be seen as the amplification of a signal f by a facor a.

e We want to measure the size of a signal. There are several ways to do that. The sim-

plest one is using the standard inner product: <g, f >=3""7"_¢(5)f(j). To measure

]_—OO

the size, then, we use the standard norm: || f||=v<f,f>= \/Z]__OO | F()2

Properties of the inner product on the vector space (CV, +, ).

e VfgeC'=<yg, f>=<f,9>



Vf,g,he C"a,be C=<h,af+bg>=a<h, f>+b<h,g>

Vf,g,h€e C"Va,be C=<af+bg,h>=a < f,h>+b <g,h>

VfeCVN=<f,f>>0and <f, f>0if and only if f=0

Vi, geCV=|<g, f>|<|Ifllllg|l (Cauchy-Schwarz inequality)

We can use the norm to define a distance between f,ge CV. We set it to be ||g — f|.

The only property whose verification os not trivial is the Cauchy-Schwarz inequality. We
start with an obvious inequality and do some algebra:

0 < O 1)~ 9() SR
= S (k) - 9() FRN TR 90 — gD IR
7. k=0
= ORWE - Y fOIDTRE — Y s OTDaE k) +
4,k=0 J,k=0 3,k=0
90 PIF(E)
7. k=0
= 2> 110 Z|g =2 f(1)9g(7) Y k) F()
:22_] |Z|g _f<j>m

= 2/ 1%lgl*— |<97f>\ )

We have then |<g, f > [*<|<g, f> >+ %Zé\fk_:lo 1f(7)gk) = g(i) fFR)P < fIP gl as
wished.

We can also deduce the cases of equality.

Corollary 4. Vf, g € CV: |<g, f> | = £ - llg]l if and only if 0="""|f(5)g(k) —
g(7) f(k)?, and the latter holds if and only if there are a,b€ C, not both vanishing, such that
af+bg=0.

That is, equality holds if and only if f and g are linearly dependent. (Exercise: prove the
last “if and only if” in the corollary).



We consider vectors f = ( f.(.%) ) € C¥, which we can consider as functions f: {0, 1
f(N) QOO BOL wenrernnrnnnnrennns ag,N—1 ag
N — 1} — C, and matrices A = (ajx)jo,. N1 = | @00 a1,N -1 “1 | where
aN —-1,00N —1,1.-GN —1,N —1 atn
ap, ..., aly are the rows of A and the symbol * stands for transpose, a’; = (ajo, ..., ajn-1),

a
which is the transpose of the column vector a; :( 7 )
aj N-1

The product follows the usual row-times-column rule:

[ S anhe )
Af=| XS0 wnde

N-— 1
Z an— 1kfk
7=0

Convention about summation. When convenient, we think of vectors f € CV as of N-
periodic functions f:Z— C; f(j+kN)= f(j) whenever j, k€ Z. Clearly, it suffices to know
the value of f(j) for just NV consecutive values of j, in order to know f(j) for all j € Z.

This way we have that for f € CV,

=2

N—
fg+0)= f(y)forl e Z.
=0

<
I

o
<.

We also extend by periodicity N x N matrices:
Aj4+IN k+mN = Qj k for j, k,l,m € Z.

Adjoints, self-adjoint matrices and unitary matrices.

Let A= (a; k) k=0, ~N—1 be a matrix with entries a; , € C. The adjoint of A is the matrix
A*=(ag.;)jk=o..N-1=A" A matrix A is selfadjoint if

A=Ax

Theorem 5. The adjoint A* of a matriz A satisfies <A* f, g >=<f, Ag> whenever f,
geCV.



Proof.

<A*flg> = (A" f)(J)g(s)

A matrix U is unitary if U*U =UU* =1d, where Id is the identity matrix Id =

The finite Fourier transform.

Let feCN. Its finite Fourier transform f € CV is defined by
N-1 ‘

_ gk

= Z f(y exp( 2 W)
j=

We might see f— f = Ff as the linear map induced by the matrix

ik
F = (Fjr)jk=o,., N_1:<exp(—27rz‘7w)) )
jk=0,..,N—1

.....

Observe that the matrix F = F" is symmetric: F; = Fj ;.

The adjoint matrix is

=y,...,

. 1 . .
Theorem 6. The matriz ﬁ}— 15 unitary.

Proof. Let z=exp (27m%), with 7=0,..., N —1. Then,

N-1 N-1
0=2N-1=C-1)(14z+... 42" H=(z-1)) 2=(2-1) exp<27rz'
1=0 1=0

.....



so that either j=0 (i.e. z=1),0or j=1,...,N —1, and ZlNzgl exp (27m'%) =0.
We have then that:

N-1
(]:*]:)m,n = Z Jr;;z,l]:l,n
=0

N-1
= Z exp QWiM exp —27Tz'n—l
N N

=0

=0

_ J Nifm—-n=0
1 0ifm—n=0
— NId:

hence, (%}—Y(%}-) =1d, as wished.

We immediately deduce two of the most important properties of the Fourier transfrm.

Theorem 7. (Fourier inversion formula). Let f € CN and let f € CV be its Fourier
transform. Then, f can be reconstructed as

L. = b
1= 57 Fi =3 Fme( 2rikd )
k=0

Proof. By definition of f, +JF*f = wJF*Ff=~-N1Id f = f, by the Theorem above.

Theorem 8. (Plancherel’s Formula) Let f, g € CV. Then, %Hf“z = |If* and % <4,
f>=<g,f>.

Proof. The first conclusion follows from the second after setting f = ¢g. We have:

<G, f> = <g,f>
= <Fg,Ff>
= <F'Fg, f>
— <NIdg, f>
= N<g, f>.

Linearity of the Fourier transform. Let f, g€ C" and )\, u € C. Then,

Ff+ ng) = Ff + uFg.



Convolution and its relation with the Fourier tranform. Let f, g € CV. Their
convolution is fxg¢c CV,

—_

fxg@3) = f(3)9(0)+ f(2)9(1) + f(1)g(0) + f(0)g(—1)
)+ f(1)g(0) + f(0)g(—1+4)

= f(3)g(0)+ F(2)9(1) + f(1)g(0) + f(0)9(3).
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For f,ge CY, let their pointwise product be f- g€ C¥, defined by (f-¢)(j)= f(j)g(j). We
will often drop the multiplication symbol -, as usual.

Theorem 9. Let f, g€ CN. Then, F(f*g)=Ff-Fg,

—

Fxg(j)=F(5)G(j)for j=0,..,N —1.

Proof. We change variable k — [ =m and use periodicity from third to fourth line:

fra(i) = ]: (f*g)(k‘)exp<‘2m%)
_ ]:201 : flk = l)g(l)exp<—2m%)
= Nf > f(k—l>exp<—2m%)
oo
_ ; g(l)mzzo f(m)exp< 2MM)
S ol )
) N-1 g(l)eXp<_2m%) exp( 2#1%)
— G

as wished.

From the usual properties of the multiplication between functions, we obtain the basic
properties of convolution.



Proposition 10. Let f,g,h€ CY and \, p€ C. Then,
1. fxg=gxf (commutativity).
2. (fxg)xh= fx(g*h) (associativity).
3. (Af)xg=A(f*g) (mized associativity).

4. (Af+ pg)xh=X(fxh)+ u(gxh) (distributive property).

Let’s prove the first to see how the Fourier transform can help.

g«f = g-f
= f-g
= fxg,

hence, by Fourier inversion,

g5 =5 F Flox ) = F F(fx9) = frg.

The other proofs are similar.

When we deal with convolution, we are not merely considering the index set {0,1,..., N —1}
as a set, but we are also taking into account the sum operation. In fact, we have the expression
j—k with j,k€{0,1,..., N — 1} in the definition of convolution (and when j < k we fix
things using periodicity, i.e. replacing it by 7 —k+N).

To make this clear and useful in applications, we introduce the notion of forward shift (or
translation operator) Let j € Z and f € CY. Then, 7;f € CV is defined by 7;f(k): =f(k — j),
where indeed periodicity is used when it does not hold that 0 <k —j< N —1.

It is clear that 7;7, = 7;4,. Moreover, 7; is a linear operator:
Ti(Af 4 ng) (k) = (Af + pg)(k — j) = Af(k = j) + pg(k — ) = A7, f (k) + prig (k).

Let A: CV — CV be a linear operator, which is identified as usual with an N x N matrix.
We say that A is time invariant if

TjA:ATj

for all j € Z. Clearly, this is the same as requiring the equality to hold for j=1.

The idea is that such A’s model devices, or phenomena, whose behavior does not change in
time: if a signal f is delayed by a unit of time (becoming 7 f), then the output A f of the
device changes only insomuch as it is delayed by the same amount of time, A(m f)=m1(Af).



There is an interegting relationship between the shifts and the standard basis dg, ..., dxy_1.
(We might call ¢ the unit impulse at time k, for obvious reasons):

0k = Okt

where we use periodicity in the index of d: dx ny =y for all k € Z.

Note that any element f in CV can be written:
-1 N-1 N-1
F=Y" )= f(j)7j50:<z f(j)Tj)507
j=0 J=0
where in the last expression we have highlighted the fact that f can be seen as a linear

combination of translations applied to the unit impulse at 0, which looks a remarkably simple
way to look at it.

Theorem 11. Let A be a time invariant linear operator. Then, we can write A as a con-
volution operator:

Af = (ASo)xf.

Viceversa, if g € CV, then the operator f+s Bf:= gxf is time invariant and g= Ady.

Moreover, the norm of A is
IIA[l = max [g(j)].

0<j<N -1

We might view Ady € CV as the response of the system A to a unit impulse at time j = 0.

Proof. Let A be time invariant. Then,

Af(k) = A f(j)5j)(/f)

as wished.



In the other direction, changing variable of summation [=m — j,

Ti(gxf)(k) = gxf(k—J)

- ggw—j—z)m
- ]jz_:g(k—j—l)f(l)
- ]lvz:;g(k m) f(m —j)
- N g(k —m)r,f (m)
= g*(7;f),

as wished.

We have to prove the estimate for the norm ||| A||| of A, wich is of the form A f = g« f, with
g=Ady, as we saw before. On the one hand, when f =0,

IALIZ = llg=fI*

= ¥ IO 0]

F))?

o

N—
1
< i(7)] -~
< <lgflg‘aujgc_ll‘q(ﬁl N;
OB

= ( max
0<j<N— 1

Then, I=Hl < maxocj<n—119(j)], hence, [[|Al] < maxoc;<n—119(5)].

In the other direction, we have that maxo<;<n—1|g(j)| = G(jo) for some 0 < jo < N — 1.
I

Choose fj such that f0:5j0. Then, using Plancherel’s formula, we have || fo||*= ]iv and:

1A Sl =

- ]lvz 19G) P18

iol?

j=0
N NPT
= L0 max 19())
 N\og<j<n-1 g\ )
ax [3() )~

= max -—

(()gjgzv—l g ) N
_ SN
= (, max_ 19O ) L fol



A oy .
Hence, ||| Al 2%211&&)(0@@\[_1 |g(4)|. In the end we have || A||| =maxo<j<n—1]|g(Jj)|, as

we wanted to prove.

Wneh ¢ > 0 the norm |||Al| can be found without before computing the Fourier transform
of g.

Remark 12. If ¢ >0, then maxocj<n—1/G(J )|—Zk 0 (k).

Let’s prove it. In general we have maxo<j<n—1/G(j)| < Ziv:_ol |g|(k), since for j=0,...,N —1
we have

N-—-1

Zlg

_ Z:é g(k:)exp( 2m'_)

In the other direction, §(0)= N 1 g(k) = Z

o lg(k)], since g >0. Overall,

N-1 N-1

gBI=Y o) =g(0)<_max [gG)I< Y lgl(k)

k=

)
e
Il

o

and this proves the Remark.

It can be shown that for general g, such estimate is far from optimal: we can find ¢’s with
. . N-1
very small maxocj<n—1|g(j)|, yet with very large >, _ " [g(k)|.
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