Fourier Transform: the discrete, infinite case (discrete, nonperiodic).

Our concern here is with functions/signals $f: \mathbb{Z} \rightarrow \mathbb{C}$. It is not obvious that the norm of such signal is finite, so we have to make some restriction. We also write $f=(f(n))_{n=-\infty}^{+\infty}$, mimicking the way we write a vector in \mathbb{C}^{N}.

Definition 1. The ℓ^{2}-norm $\|f\|_{\ell^{2}(\mathbb{Z})}=\|f\|_{\ell^{2}}$ of a function $f: \mathbb{Z} \rightarrow \mathbb{C}$ is

$$
\|f\|_{\ell^{2}}:=\sqrt{\sum_{n=-\infty}^{+\infty}|f(n)|^{2}} \in[0,+\infty] .
$$

The space $\ell^{2}(\mathbb{Z})$ is the set of those $f: \mathbb{Z} \rightarrow \mathbb{C}$ for which $\|f\|_{\ell^{2}}<+\infty$.

Obvious examples of function in ℓ^{2} are those which vanish for all, but a finite number of arguments in \mathbb{Z} : if there is $M>0$, that is, such that $f(n)=0$ whenever $|n|>M$. An obvius example of function which is not in ℓ^{2} is the constant function $g(n)=1$, for all n in \mathbb{Z}.

There are more interesting examples.

- Let $p>0 . f(n)=\frac{1}{n^{p}}$ for $n \geqslant 1$, and $f(n)=0$ otherwise, defines a function in ℓ^{2} if, and only if, $p>\frac{1}{2}$.
- Let $r \in \mathbb{R} . g(n)=r^{|n|}$ defines a function in ℓ^{2} if, and only if, $|r|<1$ and in that case $\|g\|_{\ell^{2}}^{2}=\frac{1}{1-r^{4}}$.

After the restriction to functions in $\ell^{2}(\mathbb{Z})$ is done, we can develop (with care) some linear algebra.

Linear algebra in $\ell^{2}(\mathbb{Z})$

The Cauchy-Schwarz inequality is the basis upon which rigorous arguments in ℓ^{2} can be based.

Theorem 2. [Cauchy-Schwarz inequality] Let $f, g \in \ell^{2}(\mathbb{Z})$. Then, there exists

$$
\sum_{j=-\infty}^{+\infty} \overline{g(j)} f(j):=\lim _{M \rightarrow \infty} \sum_{|j| \leqslant M} \overline{g(j)} f(j) \in \mathbb{C}
$$

Let $<g, f>_{\ell^{2}}:=\sum_{j=-\infty}^{+\infty} \overline{g(j)} f(j)$. Then, the Cauchy-Schwarz inequality holds:

$$
\left|<g, f>_{\ell^{2}}\right| \leqslant\|g\|_{\ell^{2}}\|f\|_{\ell^{2}} .
$$

Proof. The inequality holds for functions vanishing off a finite set of arguments and the general case can be established passing in the limit. Here are the details of the limiting procedure. Let $S_{M}=\sum_{|j| \leqslant M} \overline{g(j)} f(j)$. Then, if $M<N$,

$$
\begin{aligned}
\left|S_{N}-S_{M}\right|= & \left|\sum_{M<|j| \leqslant N} \overline{g(j)} f(j)\right| \\
\leqslant & \sqrt{\sum_{M<|j| \leqslant N}|g(j)|^{2}} \cdot \sqrt{\sum_{M<|j| \leqslant N}|f(j)|^{2}} \\
& \text { by the Cauchy }- \text { Schwarz inequality in the finite case } \\
\rightarrow & 0 \text { as } M \rightarrow \infty \text { since the series } \sum_{n=-\infty}^{+\infty}|g(n)|^{2} \text { and } \sum_{n=-\infty}^{+\infty}|f(n)|^{2} \text { converge. }
\end{aligned}
$$

Hence, by Cauchy test for sequences, S_{M} has a limit in \mathbb{C}, which is -by definition$\sum_{|j| \leqslant M} \overline{g(j)} f(j)$. Also,

$$
\begin{aligned}
\left|<g, f>_{\ell^{2}}\right| & =\lim _{M \rightarrow \infty}\left|S_{M}\right| \\
& \leqslant \lim _{M \rightarrow \infty}\left(\sqrt{\sum_{|j| \leqslant M}|g(j)|^{2}} \cdot \sqrt{\sum_{|j| \leqslant M}|f(j)|^{2}}\right) \\
& =\|g\|_{\ell^{2}}\|f\|_{\ell^{2}},
\end{aligned}
$$

hence inequality also holds for infinite sums.

Corollary 3. If $f, g \in \ell^{2}$ and $\alpha \in \mathbb{C}$, then $f+g \in \ell^{2}$ and $\alpha f \in \ell^{2}$. Moreover,

$$
\|f+g\|_{\ell^{2}} \leqslant\|f\|_{\ell^{2}}+\|g\|_{\ell^{2}} \text { and }\|\alpha f\|_{\ell^{2}} \leqslant|\alpha|\|f\|_{\ell^{2}} .
$$

- If $f, g \in \ell^{2}(\mathbb{Z})$ and $\alpha \in \mathbb{C}$, then $(f+g)(j):=f(j)+g(j)$ and $(\alpha f)(j):=\alpha f(j)$ define the sum $f+g$ and the product αf. These operations make $\ell^{2}(\mathbb{Z})$ into a vector space. The sum $f+g$ might be seen as the superposition of the two signals and the product αf might be seen as the amplification of a signal f by a facor α.
- We want to measure the size of a signal. There are several ways to do that. The simplest one is using the standard inner product: $\left\langle g, f>=\sum_{j=-\infty}^{+\infty} \overline{g(j)} f(j)\right.$. To measure the size, then, we use the standard norm: $\|f\|=\sqrt{\langle f, f\rangle}=\sqrt{\sum_{j=-\infty}^{+\infty}|f(j)|^{2}}$.

Properties of the inner product on the vector space $\left(\mathbb{C}^{N},+, \cdot\right)$.

- $\forall f, g \in \mathbb{C}^{N} \Rightarrow<g, f>=\overline{<f, g>}$
- $\forall f, g, h \in \mathbb{C}^{N} \forall a, b \in \mathbb{C} \Rightarrow<h, a f+b g>=a<h, f>+b<h, g>$
- $\forall f, g, h \in \mathbb{C}^{N} \forall a, b \in \mathbb{C} \Rightarrow<a f+b g, h>=\bar{a}<f, h>+\bar{b}<g, h>$
- $\forall f \in \mathbb{C}^{N} \Rightarrow<f, f>\geqslant 0$ and $<f, f \geqslant 0$ if and only if $f=0$
- $\forall f, g \in \mathbb{C}^{N} \Rightarrow|<g, f>| \leqslant\|f\| \cdot\|g\|$ (Cauchy-Schwarz inequality)

We can use the norm to define a distance between $f, g \in \mathbb{C}^{N}$. We set it to be $\|g-f\|$.
The only property whose verification os not trivial is the Cauchy-Schwarz inequality. We start with an obvious inequality and do some algebra:

$$
\begin{aligned}
0 & \leqslant \sum_{j, k=0}^{N-1}|f(j) g(k)-g(j) f(k)|^{2} \\
& =\sum_{j, k=0}^{N-1}(f(j) g(k)-g(j) f(k)) \overline{(f(j) g(k)-g(j) f(k))} \\
& =\sum_{j, k=0}^{N-1}|f(j)|^{2}|g(k)|^{2}-\sum_{j, k=0}^{N-1} f(j) \overline{g(j)} \overline{f(k)} g(k)-\sum_{j, k=0}^{N-1} g(j) \overline{f(j)} \overline{g(k)} f(k)+ \\
& \sum_{j, k=0}^{N-1}|g(j)|^{2}|f(k)| \\
& =2 \sum_{j=0}^{N-1}|f(j)|^{2} \cdot \sum_{k=0}^{N-1}|g(k)|^{2}-2 \sum_{j=0}^{N-1} f(j) \overline{g(j)} \cdot \sum_{k=0}^{N-1} g(k) \overline{f(k)} \\
& =2\left[\sum_{j=0}^{N-1}|f(j)|^{2} \sum_{k=0}^{N-1}|g(k)|^{2}-\left|\sum_{j=0}^{N-1} f(j) \overline{g(j)}\right|^{2}\right] \\
& =2\left[\|f\|^{2}\|g\|^{2}-|<g, f>|^{2}\right] .
\end{aligned}
$$

We have then $\left|<g, f>\left.\right|^{2} \leqslant\left|<g, f>\left.\right|^{2}+\frac{1}{2} \sum_{j, k=0}^{N-1}\right| f(j) g(k)-g(j) f(k)\right|^{2} \leqslant\|f\|^{2}\|g\|^{2}$, as wished.

We can also deduce the cases of equality.

Corollary 4. $\forall f, g \in \mathbb{C}^{N}:|<g, f>|=\|f\| \cdot\|g\|$ if and only if $0=\sum_{j, k=0}^{N-1} \mid f(j) g(k)-$ $\left.g(j) f(k)\right|^{2}$, and the latter holds if and only if there are $a, b \in \mathbb{C}$, not both vanishing, such that $a f+b g=0$.

That is, equality holds if and only if f and g are linearly dependent. (Exercise: prove the last "if and only if" in the corollary).

We consider vectors $f=\left(\begin{array}{c}f(1) \\ \ldots \\ f(N)\end{array}\right) \in \mathbb{C}^{N}$, which we can consider as functions $f:\{0,1, \ldots$, $N-1\} \rightarrow \mathbb{C}$, and matrices $A=\left(a_{j k}\right)_{j=0, \ldots, N-1}=\left(\begin{array}{c}a_{00} a_{01} \ldots \ldots \ldots \ldots \ldots \ldots a_{0, N-1} \\ a_{10} a_{11} \ldots \ldots \ldots \ldots \ldots \ldots a_{1, N-1} \\ a_{N-1,0} a_{N-1,1 \ldots} \ldots a_{N-1, N-1}\end{array}\right)=\left(\begin{array}{c}\boldsymbol{a}_{0}^{t} \\ a_{t_{1}} \\ \ldots \\ \boldsymbol{a}_{t_{N}}\end{array}\right)$, where $\boldsymbol{a}_{0}^{t}, \ldots, \boldsymbol{a}_{N}^{t}$ are the rows of A and the symbol ${ }^{t}$ stands for transpose, $\boldsymbol{a}_{j}^{t}=\left(a_{j 0}, \ldots, a_{j, N-1}\right)$, which is the transpose of the column vector $\boldsymbol{a}_{j}=\left(\begin{array}{c}a_{j 0} \\ \ldots \\ a_{j, N-1}\end{array}\right)$.

The product follows the usual row-times-column rule:

$$
A f=\left(\begin{array}{c}
\sum_{j=0}^{N-1} a_{0, k} f_{k} \\
\sum_{j=0}^{N-1} a_{1, k} f_{k} \\
\cdots \\
\sum_{j=0}^{N-1} a_{N-1, k} f_{k}
\end{array}\right)
$$

Convention about summation. When convenient, we think of vectors $f \in \mathbb{C}^{N}$ as of N periodic functions $f: \mathbb{Z} \rightarrow \mathbb{C} ; f(j+k N)=f(j)$ whenever $j, k \in \mathbb{Z}$. Clearly, it suffices to know the value of $f(j)$ for just N consecutive values of j, in order to know $f(j)$ for all $j \in \mathbb{Z}$.

This way we have that for $f \in \mathbb{C}^{N}$,

$$
\sum_{j=0}^{N-1} f(j+l)=\sum_{j=0}^{N-1} f(j) \text { for } l \in \mathbb{Z}
$$

We also extend by periodicity $N \times N$ matrices:

$$
a_{j+l N, k+m N}=a_{j, k} \text { for } j, k, l, m \in \mathbb{Z} .
$$

Adjoints, self-adjoint matrices and unitary matrices.

Let $A=\left(a_{j, k}\right)_{j, k=0, \ldots, N-1}$ be a matrix with entries $a_{j, k} \in \mathbb{C}$. The adjoint of A is the matrix $A^{*}=\left(\overline{a_{k, j}}\right)_{j, k=0, \ldots, N-1}=\overline{A^{t}}$. A matrix A is selfadjoint if

$$
A=A^{*} .
$$

Theorem 5. The adjoint A^{*} of a matrix A satisfies $\left.\left\langle A^{*} f, g\right\rangle=<f, A g\right\rangle$ whenever f, $g \in \mathbb{C}^{N}$.

Proof.

$$
\begin{aligned}
<A^{*} f, g> & =\sum_{j=0}^{N-1} \overline{\left(A^{*} f\right)(j)} g(j) \\
& =\sum_{j=0}^{N-1} \sum_{k=1}^{N-1} \overline{\left(A^{*}\right)_{j, k} f(k)} g(j) \\
& =\sum_{j=0}^{N-1} \sum_{k=1}^{N-1} \overline{\overline{a_{k, j}} f(k)} g(j) \\
& =\sum_{j=0}^{N-1} \sum_{k=1}^{N-1} \overline{f(k)} a_{k, j} g(j) \\
& =\sum_{j=0}^{N-1} \sum_{k=1}^{N-1} \overline{f(k)}(A g)(k) \\
& =<f, A g>.
\end{aligned}
$$

A matrix U is unitary if $U^{*} U=U U^{*}=\operatorname{Id}$, where Id is the identity matrix $\operatorname{Id}=\left(\begin{array}{c}10 \ldots 0 \\ 01 \ldots 0 \\ \ldots 0 . \ldots 1 \\ 00 \ldots\end{array}\right)$.

The finite Fourier transform.

Let $f \in \mathbb{C}^{N}$. Its finite Fourier transform $\hat{f} \in \mathbb{C}^{N}$ is defined by

$$
\hat{f}(k)=\sum_{j=0}^{N-1} f(j) \exp \left(-2 \pi i \frac{j k}{N}\right) .
$$

We might see $f \mapsto \hat{f}=\mathcal{F} f$ as the linear map induced by the matrix

$$
\mathcal{F}:=\left(\mathcal{F}_{j, k}\right)_{j, k=0, \ldots, N-1}=\left(\exp \left(-2 \pi i \frac{j k}{N}\right)\right)_{j, k=0, \ldots, N-1} .
$$

Observe that the matrix $\mathcal{F}=\mathcal{F}^{t}$ is symmetric: $\mathcal{F}_{j, k}=\mathcal{F}_{k, j}$.
The adjoint matrix is

$$
\mathcal{F}^{*}:=\left(\mathcal{F}_{j, k}^{*}\right)_{j, k=0, \ldots, N-1}=\left(\overline{\exp \left(2 \pi i \frac{j k}{N}\right)}\right)_{j, k=0, \ldots, N-1}=\left(\exp \left(2 \pi i \frac{j k}{N}\right)\right)_{j, k=0, \ldots, N-1} .
$$

Theorem 6. The matrix $\frac{1}{\sqrt{N}} \mathcal{F}$ is unitary.
Proof. Let $z=\exp \left(2 \pi i \frac{j}{N}\right)$, with $j=0, \ldots, N-1$. Then,

$$
0=z^{N}-1=(z-1)\left(1+z+\ldots+z^{N-1}\right)=(z-1) \sum_{l=0}^{N-1} z^{l}=(z-1) \sum_{l=0}^{N-1} \exp \left(2 \pi i \frac{j l}{N}\right),
$$

so that either $j=0$ (i.e. $z=1$), or $j=1, \ldots, N-1$, and $\sum_{l=0}^{N-1} \exp \left(2 \pi i \frac{j l}{N}\right)=0$.
We have then that:

$$
\begin{aligned}
\left(\mathcal{F}^{*} \mathcal{F}\right)_{m, n} & =\sum_{l=0}^{N-1} \mathcal{F}_{m, l}^{*} \mathcal{F}_{l, n} \\
& =\sum_{l=0}^{N-1} \exp \left(2 \pi i \frac{m l}{N}\right) \exp \left(-2 \pi i \frac{n l}{N}\right) \\
& =\sum_{l=0}^{N-1} \exp \left(2 \pi i \frac{(m-n) l}{N}\right) \\
& =\left\{\begin{array}{l}
N \text { if } m-n=0 \\
0 \text { if } m-n=0 \\
\end{array}=N\right. \text { Id }
\end{aligned}
$$

hence, $\left(\frac{1}{\sqrt{N}} \mathcal{F}\right)^{*}\left(\frac{1}{\sqrt{N}} \mathcal{F}\right)=$ Id, as wished.
We immediately deduce two of the most important properties of the Fourier transfrm.

Theorem 7. (Fourier inversion formula). Let $f \in \mathbb{C}^{N}$ and let $\hat{f} \in \mathbb{C}^{N}$ be its Fourier transform. Then, f can be reconstructed as

$$
f(j)=\frac{1}{N} \mathcal{F}^{*} \hat{f}(j)=\frac{1}{N} \sum_{k=0}^{N-1} \hat{f}(k) \exp \left(2 \pi i \frac{k j}{N}\right)
$$

Proof. By definition of $\hat{f}, \frac{1}{N} \mathcal{F}^{*} \hat{f}=\frac{1}{N} \mathcal{F}^{*} \mathcal{F} f=\frac{1}{N} N$ Id $f=f$, by the Theorem above.
Theorem 8. (Plancherel's Formula) Let $f, g \in \mathbb{C}^{N}$. Then, $\frac{1}{N}\|\hat{f}\|^{2}=\|f\|^{2}$ and $\frac{1}{N}<\hat{g}$, $\hat{f}>=<g, f>$.

Proof. The first conclusion follows from the second after setting $f=g$. We have:

$$
\begin{aligned}
<\hat{g}, \hat{f}> & =<\hat{g}, \hat{f}> \\
& =<\mathcal{F} g, \mathcal{F} f> \\
& =<\mathcal{F}^{*} \mathcal{F} g, f> \\
& =<N \operatorname{Id} g, f> \\
& =N<g, f>
\end{aligned}
$$

Linearity of the Fourier transform. Let $f, g \in \mathbb{C}^{N}$ and $\lambda, \mu \in \mathbb{C}$. Then,

$$
\mathcal{F}(\lambda f+\mu g)=\lambda \mathcal{F} f+\mu \mathcal{F} g .
$$

Convolution and its relation with the Fourier tranform. Let $f, g \in \mathbb{C}^{N}$. Their convolution is $f * g \in \mathbb{C}^{N}$,

$$
f * g(k)=\sum_{j=0}^{N-1} f(k-j) g(j) .
$$

Here our convention on periodization becomes useful. For instance, if $N=4$,

$$
\begin{aligned}
f * g(3) & =f(3) g(0)+f(2) g(1)+f(1) g(0)+f(0) g(-1) \\
& =f(3) g(0)+f(2) g(1)+f(1) g(0)+f(0) g(-1+4) \\
& =f(3) g(0)+f(2) g(1)+f(1) g(0)+f(0) g(3) .
\end{aligned}
$$

For $f, g \in \mathbb{C}^{N}$, let their pointwise product be $f \cdot g \in \mathbb{C}^{N}$, defined by $(f \cdot g)(j)=f(j) g(j)$. We will often drop the multiplication symbol \cdot, as usual.

Theorem 9. Let $f, g \in \mathbb{C}^{N}$. Then, $\mathcal{F}(f * g)=\mathcal{F} f \cdot \mathcal{F} g$,

$$
\widehat{f * g}(j)=\hat{f}(j) \hat{g}(j) \text { for } j=0, \ldots, N-1
$$

Proof. We change variable $k-l=m$ and use periodicity from third to fourth line:

$$
\begin{aligned}
\widehat{f * g}(j) & =\sum_{k=0}^{N-1}(f * g)(k) \exp \left(-2 \pi i \frac{k j}{N}\right) \\
& =\sum_{k=0}^{N-1} \sum_{l=0}^{N-1} f(k-l) g(l) \exp \left(-2 \pi i \frac{k j}{N}\right) \\
& =\sum_{l=0}^{N-1} g(l) \sum_{k=0}^{N-1} f(k-l) \exp \left(-2 \pi i \frac{k j}{N}\right) \\
& =\sum_{l=0}^{N-1} g(l) \sum_{\substack{N=0}}^{N-1} f(m) \exp \left(-2 \pi i \frac{(l+m) j}{N}\right) \\
& =\sum_{l=0}^{N-1} g(l) \sum_{m=0}^{N-1} f(m) \exp \left(-2 \pi i \frac{l j}{N}\right) \exp \left(-2 \pi i \frac{m j}{N}\right) \\
& =\sum_{l=0}^{N-1} g(l) \exp \left(-2 \pi i \frac{l j}{N}\right) \sum_{m=0}^{N-1} f(m) \exp \left(-2 \pi i \frac{m j}{N}\right) \\
& =\hat{g}(j) \hat{f}(j),
\end{aligned}
$$

as wished.
From the usual properties of the multiplication between functions, we obtain the basic properties of convolution.

Proposition 10. Let $f, g, h \in \mathbb{C}^{N}$ and $\lambda, \mu \in \mathbb{C}$. Then,

1. $f * g=g * f$ (commutativity).
2. $(f * g) * h=f *(g * h)$ (associativity).
3. $(\lambda f) * g=\lambda(f * g)$ (mixed associativity).
4. $(\lambda f+\mu g) * h=\lambda(f * h)+\mu(g * h)$ (distributive property).

Let's prove the first to see how the Fourier transform can help.

$$
\begin{aligned}
\widehat{g * f} & =\hat{g} \cdot \hat{f} \\
& =\hat{f} \cdot \hat{g} \\
& =\widehat{f * g},
\end{aligned}
$$

hence, by Fourier inversion,

$$
g * f=\frac{1}{N} \mathcal{F}^{*} \mathcal{F}(g * f)=\frac{1}{N} \mathcal{F}^{*} \mathcal{F}(f * g)=f * g .
$$

The other proofs are similar.
When we deal with convolution, we are not merely considering the index set $\{0,1, \ldots, N-1\}$ as a set, but we are also taking into account the sum operation. In fact, we have the expression $j-k$ with $j, k \in\{0,1, \ldots, N-1\}$ in the definition of convolution (and when $j<k$ we fix things using periodicity, i.e. replacing it by $j-k+N)$.

To make this clear and useful in applications, we introduce the notion of forward shift (or translation operator) Let $j \in \mathbb{Z}$ and $f \in \mathbb{C}^{N}$. Then, $\tau_{j} f \in \mathbb{C}^{N}$ is defined by $\tau_{j} f(k):=f(k-j)$, where indeed periodicity is used when it does not hold that $0 \leqslant k-j \leqslant N-1$.

It is clear that $\tau_{j} \tau_{k}=\tau_{j+k}$. Moreover, τ_{j} is a linear operator:

$$
\tau_{j}(\lambda f+\mu g)(k)=(\lambda f+\mu g)(k-j)=\lambda f(k-j)+\mu g(k-j)=\lambda \tau_{j} f(k)+\mu \tau_{j} g(k)
$$

Let $A: \mathbb{C}^{N} \rightarrow \mathbb{C}^{N}$ be a linear operator, which is identified as usual with an $N \times N$ matrix. We say that A is time invariant if

$$
\tau_{j} A=A \tau_{j}
$$

for all $j \in \mathbb{Z}$. Clearly, this is the same as requiring the equality to hold for $j=1$.
The idea is that such A 's model devices, or phenomena, whose behavior does not change in time: if a signal f is delayed by a unit of time (becoming $\tau_{1} f$), then the output $A f$ of the device changes only insomuch as it is delayed by the same amount of time, $A\left(\tau_{1} f\right)=\tau_{1}(A f)$.

There is an interegting relationship between the shifts and the standard basis $\delta_{0}, \ldots, \delta_{N-1}$. (We might call δ_{k} the unit impulse at time k, for obvious reasons):

$$
\tau_{j} \delta_{k}=\delta_{k+j}
$$

where we use periodicity in the index of $\delta: \delta_{k+N}=\delta_{k}$ for all $k \in \mathbb{Z}$.
Note that any element f in \mathbb{C}^{N} can be written:

$$
f=\sum_{j=0}^{N-1} f(j) \delta_{j}=\sum_{j=0}^{N-1} f(j) \tau_{j} \delta_{0}=\left(\sum_{j=0}^{N-1} f(j) \tau_{j}\right) \delta_{0}
$$

where in the last expression we have highlighted the fact that f can be seen as a linear combination of translations applied to the unit impulse at 0 , which looks a remarkably simple way to look at it.

Theorem 11. Let A be a time invariant linear operator. Then, we can write A as a convolution operator:

$$
A f=\left(A \delta_{0}\right) * f
$$

Viceversa, if $g \in \mathbb{C}^{N}$, then the operator $f \mapsto B f:=g * f$ is time invariant and $g=A \delta_{0}$.
Moreover, the norm of A is

$$
\left\|\left|A \left\|\|=\max _{0 \leqslant j \leqslant N-1}|\hat{g}(j)| .\right.\right.\right.
$$

We might view $A \delta_{0} \in \mathbb{C}^{N}$ as the response of the system A to a unit impulse at time $j=0$.
Proof. Let A be time invariant. Then,

$$
\begin{aligned}
A f(k) & =A\left(\sum_{j=0}^{N-1} f(j) \delta_{j}\right)(k) \\
& =\sum_{j=0}^{N-1} f(j) A\left(\tau_{j} \delta_{0}\right)(k) \\
& =\sum_{j=0}^{N-1} f(j) \tau_{j} A\left(\delta_{0}\right)(k) \\
& =\sum_{j=0}^{N-1} f(j) A\left(\delta_{0}\right)(k-j) \\
& =f * A\left(\delta_{0}\right)(k)
\end{aligned}
$$

as wished.

In the other direction, changing variable of summation $l=m-j$,

$$
\begin{aligned}
\tau_{j}(g * f)(k) & =g * f(k-j) \\
& =\sum_{l=0}^{N-1} g(k-j-l) f(l) \\
& =\sum_{l=0}^{N-1} g(k-j-l) f(l) \\
& =\sum_{l=0}^{N-1} g(k-m) f(m-j) \\
& =\sum_{l=0}^{N-1} g(k-m) \tau_{j} f(m) \\
& =g *\left(\tau_{j} f\right),
\end{aligned}
$$

as wished.
We have to prove the estimate for the norm $\|\|A\|\|$ of A, wich is of the form $A f=g * f$, with $g=A \delta_{0}$, as we saw before. On the one hand, when $f \neq 0$,

$$
\begin{aligned}
\|A f\|^{2} & =\|g * f\|^{2} \\
& =\frac{1}{N}\|\hat{g} \hat{f}\|^{2} \\
& =\frac{1}{N} \sum_{j=0}^{N-1}|\hat{g}(j)|^{2}|\hat{f}(j)|^{2} \\
& \leqslant \max _{0 \leqslant j \leqslant N-1}|\hat{g}(j)| \cdot \frac{1}{N} \sum_{j=0}^{N-1}|\hat{f}(j)|^{2} \\
& =\left(\max _{0 \leqslant j \leqslant N-1}|\hat{g}(j)|\right)^{2}\|f\|^{2} .
\end{aligned}
$$

Then, $\frac{\|A f\|}{\|f\|} \leqslant \max _{0 \leqslant j \leqslant N-1}|\hat{g}(j)|$, hence, $\||A|\|\left|\leqslant \max _{0 \leqslant j \leqslant N-1}\right| \hat{g}(j) \mid$.
In the other direction, we have that $\max _{0 \leqslant j \leqslant N-1}|\hat{g}(j)|=\hat{g}\left(j_{0}\right)$ for some $0 \leqslant j_{0} \leqslant N-1$. Choose f_{0} such that $\hat{f}_{0}=\delta_{j_{0}}$. Then, using Plancherel's formula, we have $\left\|f_{0}\right\|^{2}=\frac{1}{N}$ and:

$$
\begin{aligned}
\left\|A f_{0}\right\|^{2} & =\frac{1}{N}\left\|\hat{g} \hat{f}_{0}\right\|^{2} \\
& =\frac{1}{N} \sum_{j=0}^{N-1}|\hat{g}(j)|^{2}\left|\delta_{j_{0}}(j)\right|^{2} \\
& =\frac{1}{N}\left|\hat{g}\left(j_{0}\right)\right|^{2} \\
& =\frac{1}{N}\left(\max _{0 \leqslant j \leqslant N-1}|\hat{g}(j)|\right)^{2} \\
& =\left(\max _{0 \leqslant j \leqslant N-1}|\hat{g}(j)|\right)^{2} \frac{1}{N} \\
& =\left(\max _{0 \leqslant j \leqslant N-1}|\hat{g}(j)|\right)^{2}\left\|f_{0}\right\|^{2} .
\end{aligned}
$$

Hence, $\||A|\| \geqslant \frac{\left\|A f_{0}\right\|}{\left\|f_{0}\right\|}=\max _{0 \leqslant j \leqslant N-1}|\hat{g}(j)|$. In the end we have $\left\|\left|A \|=\max _{0 \leqslant j \leqslant N-1}\right| \hat{g}(j) \mid\right.$, as we wanted to prove.

Wneh $g \geqslant 0$ the norm $\|\|A\|$ can be found without before computing the Fourier transform of g.

Remark 12. If $g \geqslant 0$, then $\max _{0 \leqslant j \leqslant N-1}|\hat{g}(j)|=\sum_{k=0}^{N-1} g(k)$.

Let's prove it. In general we have $\max _{0 \leqslant j \leqslant N-1}|\hat{g}(j)| \leqslant \sum_{k=0}^{N-1}|g|(k)$, since for $j=0, \ldots, N-1$ we have

$$
|\hat{g}(j)|=\left|\sum_{k=0}^{N-1} g(k) \exp \left(-2 \pi i \frac{j k}{N}\right)\right| \leqslant \sum_{k=0}^{N-1}|g(k)| \cdot\left|\exp \left(-2 \pi i \frac{j k}{N}\right)\right|=\sum_{k=0}^{N-1}|g(k)| .
$$

In the other direction, $\hat{g}(0)=\sum_{k=0}^{N-1} g(k)=\sum_{k=0}^{N-1}|g(k)|$, since $g \geqslant 0$. Overall,

$$
\sum_{k=0}^{N-1}|g(k)|=\sum_{k=0}^{N-1} g(k)=\hat{g}(0) \leqslant \max _{0 \leqslant j \leqslant N-1}|\hat{g}(j)| \leqslant \sum_{k=0}^{N-1}|g|(k)
$$

and this proves the Remark.

It can be shown that for general g, such estimate is far from optimal: we can find g 's with very small $\max _{0 \leqslant j \leqslant N-1}|\hat{g}(j)|$, yet with very large $\sum_{k=0}^{N-1}|g(k)|$.

