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MARCUS T. PEARCE & GERAINT A. WIGGINS
Centre for Cognition, Computation and Culture
Goldsmiths College, University of London

THE IMPLICATION-REALIZATION (IR) theory (Narmour,
1990) posits two cognitive systems involved in the
generation of melodic expectations: The first consists of
a limited number of symbolic rules that are held to be
innate and universal; the second reflects the top-down
influences of acquired stylistic knowledge. Aspects of
both systems have been implemented as quantitative
models in research which has yielded empirical support
for both components of the theory (Cuddy & Lunny,
1995; Krumhansl, 1995a, 1995b; Schellenberg, 1996,
1997). However, there is also evidence that the imple-
mented bottom-up rules constitute too inflexible a model
to account for the influence of the musical experience of
the listener and the melodic context in which expectations
are elicited. A theory is presented, according to which
both bottom-up and top-down descriptions of observed
patterns of melodic expectation may be accounted for
in terms of the induction of statistical regularities in
existing musical repertoires. A computational model
that embodies this theory is developed and used to rean-
alyze existing experimental data on melodic expectancy.
The results of three experiments with increasingly com-
plex melodic stimuli demonstrate that this model is capa-
ble of accounting for listeners’ expectations as well as or
better than the two-factor model of Schellenberg (1997).
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The generation of expectations is recognized as being an
especially important factor in music cognition. From a
music-analytic perspective, it has been argued that the
generation and subsequent confirmation or violation of
expectations is critical to aesthetic experience, and the
communication of emotion and meaning in music
(Meyer, 1956; Narmour, 1990). From a psychological
perspective, expectancy has been found to influence
recognition memory for music (Schmuckler, 1997), the

production of music (Carlsen, 1981; Schmuckler, 1989,
1990; Thompson, Cuddy, & Plaus, 1997; Unyk & Carlsen,
1987), the perception of music (Cuddy & Lunny, 1995;
Krumhansl, 1995b; Schellenberg, 1996; Schmuckler,
1989), and the transcription of music (Unyk & Carlsen,
1987). While most empirical research has examined the
influence of melodic structure, expectancy in music also
reflects the influence of rhythmic and metric structure
(Jones, 1987; Jones & Boltz, 1989) as well as harmonic
structure (Bharucha, 1987; Schmuckler, 1989).

The present research examines the cognitive mecha-
nisms underlying the generation of melodic expecta-
tions. Narmour (1990, 1992) has proposed a detailed
and influential theory of expectancy in melody which
attempts to characterize the set of implied continuations
to an incomplete melodic sequence. According to the
theory, the expectations of a listener are influenced
by two distinct cognitive systems: first, a bottom-up
system consisting of Gestalt-like principles that are
held to be innate and universal; and second, a top-
down system consisting of style-specific influences on
expectancy which are acquired through extensive
exposure to music in a given style. Krumhansl (1995b)
has formulated the bottom-up system of the IR theory
as a quantitative model, consisting of a small set of
symbolic rules. This model has formed the basis of a
series of empirical studies, which have examined the
degree to which the expectations of listeners conform to
the predictions of the IR theory and have led to several
different formulations of the principles comprising
the bottom-up component of the model.

While this body of research suggests that the expecta-
tions of listeners in a given experiment may be accounted
for by some collection of principles intended to reflect
the bottom-up and top-down components of Narmour’s
theory, the present research is motivated by empirical
data that question the existence of a small set of univer-
sal bottom-up rules that determine, in part, the expec-
tations of a listener. According to the theory presented
here, expectancy in melody can be accounted for
entirely in terms of the induction of statistical regulari-
ties in sequential melodic structure without recourse to
an independent system of innate symbolic predisposi-
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tions. While innate constraints on music perception
certainly exist, it is argued that they are unlikely to be
found in the form of rules governing sequential
dependencies between musical events. According to the
account developed here, patterns of expectation that do
not vary between musical styles are accounted for in
terms of simple regularities in music whose ubiquity
may be related to the constraints of physical perform-
ance. If this is the case, there is no need to make
additional (and problematic) assumptions about innate
representations of sequential dependencies between
perceived events (Elman et al., 1996).

The specific goals of this research are twofold. The first
is to examine whether models of melodic expectancy
based on statistical learning are capable of accounting
for the patterns of expectation observed in empirical
behavioral research. If such models can account for the
behavioral data as well as existing implementations
of the IR theory, there would be no need to invoke
symbolic rules as universal properties of the human
cognitive system. To the extent that such models can
be found to provide a more powerful account of the
behavioral data, the IR theory (as currently imple-
mented) may be viewed as an inadequate cognitive
model of melodic expectancy by comparison. Instead of
representing innate and universal constraints of the
perceptual system, the bottom-up principles may be
taken to represent a formalized approximate description
of the mature behavior of a cognitive system of induc-
tive learning. The second goal of the present research is
to undertake a preliminary examination of the kinds of
melodic feature that afford regularities capable of sup-
porting the acquisition of the patterns of expectation
exhibited by listeners.

In order to achieve these goals, a computational
model embodying the proposed theory of expectancy
is developed and used to predict empirical data on the
patterns of melodic expectation exhibited by listeners.
The fit of the model to the behavioral data is com-
pared to that obtained with a quantitative formulation
of the IR theory consisting of two bottom-up principles
(Schellenberg, 1997).

The question of distinguishing acquired and inherited
components of behavior is a thorny one, all the more so
in relation to the perception of cultural artifacts (which
are both created and appreciated through the applica-
tion of the human cognitive system). Following Cutting,
Bruno, Brady, and Moore (1992), three criteria are used
to compare the two cognitive models of melodic expec-
tation. The first criterion is scope, which refers to the
degree to which a theory accounts for a broad range
of experimental data elicited in a variety of contexts. In

order to evaluate the scope of the two models, the extent
to which they account for the patterns of expectation
exhibited by listeners is examined and compared in three
experiments which investigate expectations elicited in
the context of increasingly complex melodic stimuli.
Each experiment also incorporates analyses of more
detailed hypotheses concerning the melodic features
that afford regularities capable of supporting the acqui-
sition of the observed patterns of expectation.

The second criterion introduced by Cutting et al.
(1992) is selectivity, which refers to the degree to which
a theory accounts specifically for the data of interest
and does not predict unrelated phenomena. In order to
compare the models on the basis of selectivity, the
ability of each model to account for random patterns of
expectation is assessed in each experiment.

The third criterion discussed by Cutting et al. (1992)
is the principle of parsimony (or simplicity): a general
methodological heuristic expressing a preference for the
more parsimonious of two theories that each account
equally well for observed data. Although the precise
operational definition of parsimony is a point of debate
in the philosophy of science, variants of the heuristic
are commonly used in actual scientific practice (Nolan,
1997; Popper, 1959; Sober, 1981). This provides some
evidence that the principle is normative, that is, that it
actually results in successful theories. Further evidence
along these lines is provided by the fact that simplicity is
commonly used a heuristic bias in machine learning
(Mitchell, 1997) and for hypothesis selection in abduc-
tive reasoning (Paul, 1993).

Furthermore, quantifying the principle of parsimony
in terms of algorithmic information theory demonstrates
that simple encodings of a set of data also provide the
most probable explanations for that data (Chater, 1996,
1999; Chater & Vitányi, 2003). In the closely related field
of Bayesian inference, it is common to compare models
according to their simplicity, measured as a function of
the number of free parameters they possess and the
extent to which these parameters need to be finely tuned
to fit the data (Jaynes, 2003; MacKay, 2003). Chater (1999)
presents simplicity as a rational analysis of perceptual
organization on the basis of these normative justifica-
tions together with evidence that simple representations
of experience are preferred in perception and cognition.
Although this application of simplicity is not a primary
concern in the present research, we touch on it again as
a justification for preferring small feature sets and when
discussing the results of Experiment 3.

In psychology (as in many other scientific fields),
the relative parsimony of comparable models is most
commonly defined in terms of the number of free
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parameters in each model (Cutting et al., 1992). Here,
however, we use the principle in a more general sense
where the existence of a theoretical component
assumed by one theory is denied leading to a simpler
theory (Sober, 1981). To the extent that the theory of
inductive learning is comparable to the top-down com-
ponent of the IR theory (and in the absence of specific
biological evidence for the innateness of the bottom-up
principles), the former theory constitutes a more parsi-
monious description of the cognitive system than the
latter since additional bottom-up constraints assumed
to constitute part of the cognitive system are replaced by
equivalent constraints known to exist in the environ-
ment. In order to test this theoretical position, we exam-
ine the extent to which the statistical model subsumes
the function of the two-factor model of expectancy in
accounting for the behavioral data in each experiment.

Finally, the article concludes with a general discus-
sion of the experimental results, their implications, and
some promising directions for further development of
the theory.

Background

The Implication-Realization Theory

Building on the work of Meyer (1956, 1973), Narmour
(1990, 1991, 1992) has developed a complex theory of
melody perception called the Implication-Realization
(IR) theory. The theory posits two distinct perceptual
systems—the bottom-up and top-down systems of
melodic implication. While the principles of the former
are held to be hardwired, innate, and universal, the
principles of the latter are held to be learned and hence
dependent on musical experience.

The top-down system is flexible, variable and empiri-
cally driven. . . . In contrast, the bottom-up mode con-
stitutes an automatic, unconscious, preprogrammed,
“brute” system. (Narmour, 1991, p. 3)

In the bottom-up system, the rhythmic, metric, tonal,
and intervallic properties of a sequence of melodic
intervals determine the degree of closure conveyed
by the sequence. While strong closure signifies the
termination of ongoing melodic structure, an unclosed
or implicative interval generates expectations for the
following interval, which is termed the realized interval.
The expectations generated by implicative intervals are
described by Narmour (1990) in terms of several
principles of implication which are influenced by the
Gestalt principles of proximity, similarity, and good

continuation. In particular, according to the theory,
small melodic intervals imply a process (the realized
interval is in the same direction as the implicative inter-
val and will be similar in size) while large melodic inter-
vals imply a reversal (the realized interval is in a
different direction to the implicative interval and is
smaller in size).

Although the theory is presented in a highly analytic
manner, it has psychological relevance because it
advances hypotheses about general perceptual principles
that are precisely and quantitatively specified and there-
fore amenable to empirical investigation (Krumhansl,
1995b; Schellenberg, 1996). In particular, a number of
different authors have expressed the bottom-up system
as a quantitative model consisting of a number of
symbolic principles. The following description of the
principles of the bottom-up system is based on an influ-
ential summary by Krumhansl (1995b). Some of these
principles operate differently for small and large inter-
vals which are defined to be those of five semitones or
less and seven semitones or more respectively. The tri-
tone is considered by Narmour (1990) to be a threshold
interval assuming the function of a small or large inter-
val (i.e., implying continuation or reversal) depending
on the context.

Registral direction states that small intervals imply
continuations in the same registral direction whereas
large intervals imply a change in registral direction. The
application of the principle to small intervals is related
to the Gestalt principle of good continuation.
Intervallic difference states that small intervals imply a
subsequent interval that is similar in size (�2 semitones
if registral direction changes and �3 semitones if direc-
tion continues), while large intervals imply a consequent
interval that is smaller in size (at least three semitones
smaller if registral direction changes and at least four
semitones smaller if direction continues). This principle
can be taken as an application of the Gestalt principles of
similarity and proximity for small and large intervals
respectively.
Registral return is a general implication for a return to
the pitch region (�2 semitones) of the first tone of an
implicative interval in cases where the realized interval
reverses the registral direction of the implicative interval.
Krumhansl (1995b) coded this principle as a dichotomy
although Narmour (1990) distinguishes between exact
and near registral return suggesting that the principle be
graded as a function of the size of the interval between
the realized tone and the first tone of the implicative
interval (Schellenberg, 1996; Schellenberg, Adachi, Purdy,
& McKinnon, 2002). This principle can be viewed as an
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application of the Gestalt principles of proximity in terms
of pitch and similarity in terms of pitch interval.
Proximity describes a general implication for small
intervals (five semitones or less) between any two tones.
The implication is graded according to the absolute size
of the interval. This principle can be viewed as an appli-
cation of the Gestalt principle of proximity.
Closure is determined by two conditions: first, a
change in registral direction; and second, movement to
a smaller-sized interval. Degrees of closure exist corre-
sponding to the satisfaction of both, one or neither of
the conditions.

In this encoding, the first three principles (registral direc-
tion, intervallic difference, and registral return) assume
dichotomous values while the final two (proximity and
closure) are graded (Krumhansl, 1995b). Although the
bottom-up IR principles are related to generic Gestalt
principles, they are parametrized and quantified in a
manner specific to music.

Narmour (1990) makes explicit use of the principles
of registral direction and intervallic difference to derive
a complete set of 12 basic melodic structures each con-
sisting of an implicative and a realized interval. These
basic structures are differentiated by the size and direc-
tion of the realized interval relative to those of the
implicative interval and the absolute size of the
implicative interval. In an experimental study of the IR
theory, Krumhansl (1995b) reports only limited sup-
port for the basic melodic structures suggesting that
expectations depend not only on registral direction
and intervallic difference but also on the principles of
proximity, registral return, and closure, which are less
explicitly formulated in the original presentation of the
IR theory (Krumhansl, 1995b).

In other respects, the quantitatively formulated
model developed by Krumhansl (1995b) lacks some of
the more complex components of the IR theory. For
example, Narmour (1992) presents a detailed analysis of
how the basic melodic structures combine together to
form longer and more complex structural patterns of
melodic implication within the IR theory. Furthermore,
tones emphasized by strong closure are transformed to
a higher level of structural representation which may
retain some of the registral implications of the lower
level. Krumhansl (1997) has found some empirical
support for the psychological validity of higher-level
implications in experiments with specially constructed
melodic sequences. Finally, although quantitative imple-
mentations have tended to focus on the parametric scales
of registral direction and interval size, the IR theory
also includes detailed treatment of other parametric

scales such as duration, metric emphasis, and harmony
(Narmour, 1990, 1992).

The IR theory also stresses the importance of top-
down influences on melodic expectancy. The top-down
system is acquired on the basis of musical experience
and, as a consequence, varies across musical cultures
and traditions. The influences exerted by the top-down
system include both extraopus knowledge about style-
specific norms such as diatonic interpretations, tonal
and metrical hierarchies, and harmonic progressions
and intraopus knowledge about aspects of a particular
composition such as distinctive motivic and rhythmic
patterns. Bharucha (1987) makes a similar distinction
between schematic and veridical influences on expectancy:
While the former are influenced by schematic represen-
tations of typical musical relationships acquired through
extensive exposure to a style, the latter are aroused by the
activation of memory traces for specific pieces or prior
knowledge of what is to come. Finally, the top-down sys-
tem may generate implications that conflict with and
potentially override those generated by the bottom-up
system. Efforts to develop quantitative implementations
of the IR theory have tended to focus on the bottom-up
system with the top-down system represented only by
relatively simple quantitative predictors.

It is important to emphasize that the present research is
primarily concerned with those concrete implementa-
tions of the IR theory that, although they lack much
of the music-analytic detail of Narmour’s theory, have
been examined in an empirical, psychological context.
Although Narmour considered the five principles sum-
marized above to be “a fair representation of his model”
(Schellenberg, 1996, p. 77) and refers the reader to
Krumhansl (1995b) among others for “evaluations of the
model” (Narmour, 1999, p. 446), the present research
is relevant to the IR theory of Narmour (1990, 1992) only
to the extent that the concrete implementations exam-
ined are viewed as representative of the basic tenets of the
theory. The IR theory has been the subject of several
detailed reviews published in the psychological and
musicological literature (Cross, 1995; Krumhansl, 1995b;
Thompson, 1996) to which the reader is referred for
more thorough summaries of its principal features.

Empirical Studies of Melodic Expectancy

Overview

Expectancy in music has been studied in experimental
settings from a number of perspectives including the
influence of rhythmic (Jones, 1987; Jones & Boltz, 1989),
melodic (Cuddy & Lunny, 1995; Krumhansl, 1995b)
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and harmonic structure (Bharucha, 1987; Schmuckler,
1989). A variety of experimental paradigms have
been employed to study expectancy including rating
completions of musical contexts (Cuddy & Lunny,
1995; Krumhansl, 1995a; Schellenberg, 1996), generating
continuations to musical contexts (Carlsen, 1981;
Schmuckler, 1989; Thompson et al., 1997; Unyk &
Carlsen, 1987), classifying and remembering musical
fragments (Schmuckler, 1997), reaction time experi-
ments (Aarden, 2003; Bharucha & Stoeckig, 1986), and
continuous response methodologies (Eerola, Toiviainen,
& Krumhansl, 2002). Although expectancy in music has
been shown to operate in a number of different contexts
over a number of different parameters and structural lev-
els in music, this review is restricted to studies of
expectancy in melodic music and, in particular, those
which have specifically addressed the claims of the IR
theory. The following two sections present reviews of
empirical research examining the predictions of the
bottom-up and top-down components of the theory.

The Bottom-up System

Cuddy and Lunny (1995) tested the bottom-up principles
of the IR theory (as quantified by Krumhansl, 1995b)
against goodness-of-fit ratings collected for continuation
tones following a restricted set of two-tone melodic
beginnings (see also Experiment 1). A series of multiple
regression analyses supported the inclusion of interval-
lic difference, proximity, and registral return in a theory
of melodic expectancy. Support was also found for a
revised version of registral direction, which pertains to
large intervals only, and an additional bottom-up
principle of pitch height, based on the observation that
ratings tended to increase as the pitch height of the
continuation tone increased. No support was found for
the bottom-up principle of closure.

Krumhansl (1995a) repeated the study of Cuddy
and Lunny (1995) with 16 musically trained American
participants using a more complete set of two-tone
contexts ranging from a descending major seventh to
an ascending major seventh. Analysis of the results
yielded support for modified versions of proximity,
registral return, and registral direction but not closure
or intervallic difference. In particular, the results sup-
ported a modification of proximity such that it is lin-
early graded over the entire range of intervals used and
a modification of registral return such that it varies as a
linear function of the proximity of the third tone to the
first. Finally, the principle of registral direction was
supported by the analysis except for the data for the
major seventh which carried strong implications for

octave completion (see also Carlsen, 1981). Support was
also found for two extra principles that distinguish real-
ized intervals forming octaves and unisons respectively.
Krumhansl (1995a) also examined the effects of bottom-
up psychophysical principles finding support for pre-
dictors coding the consonance of a tone with the first
and second tones of the preceding interval (based on
empirical and theoretical considerations).

Other experimental studies have extended these find-
ings to expectations generated by exposure to melodic
contexts from existing musical repertoires. Krumhansl
(1995b) reports a series of three experiments: The first
used eight melodic fragments taken from British folk
songs, diatonic continuation tones, and 20 American
participants of whom 10 were musically trained and 10
untrained (see also Experiment 2); the second used
eight extracts from Webern’s Lieder (Opus 3, 4, and 15),
chromatic continuation tones, and 26 American partic-
ipants generally unfamiliar with the atonal style of whom
13 were musically trained and 13 untrained; and the
third used 12 melodic fragments from Chinese folk songs,
pentatonic continuation tones, and 16 participants of
whom 8 were Chinese and 8 American. All the melodic
contexts ended on an implicative interval and all contin-
uation tones were within a two-octave range centered on
the final tone of the context. Analysis of the results
yielded support for all of the bottom-up principles
(with the exception of intervallic difference for the
second experiment). Overall, the weakest contribution
was made by intervallic difference and the strongest by
proximity. With the exception of the first experiment,
support was also found for the unison principle of
Krumhansl (1995a).

Schellenberg (1996) argued that the bottom-up models
discussed above are overspecified and contain redun-
dancy due to collinearities between their component
principles. As a result, the theory may be expressed more
simply and parsimoniously without loss of predictive
power. Support was found for this argument in an inde-
pendent analysis of the experimental data reported by
Krumhansl (1995b) using a model consisting of regis-
tral return, registral direction revised such that it applies
only to large intervals (although quantified in a differ-
ent manner to the revision made by Cuddy & Lunny,
1995), and a revised version of proximity (similar in
spirit, though quantitatively different, to the revision
made by Krumhansl, 1995a). In a further experiment,
Schellenberg (1997) applied principal components analy-
sis to this revised model with the resulting development
of a two-factor model. The first factor is the principle of
proximity as revised by Schellenberg (1996); the second,
pitch reversal, is an additive combination of the principles
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of registral direction (revised) and registral return. This
model is considerably simpler and more parsimonious
than Schellenberg’s revised model and yet does not
compromise the predictive power of that model in
accounting for the data obtained by Krumhansl (1995b)
and Cuddy and Lunny (1995).

Similar experiments with Finnish spiritual folk hymns
(Krumhansl, Louhivuori, Toiviainen, Järvinen, & Eerola,
1999) and indigenous folk melodies (yoiks) of the Sami
people of Scandinavia (Krumhansl et al., 2000) have,
however, questioned the cross-cultural validity of such
revised models. In both studies, it was found that the
model developed by Krumhansl (1995a) provided a
much better fit to the data than those of Krumhansl
(1995b) and Schellenberg (1996, 1997). By contrast,
Schellenberg et al. (2002) have found the opposite to be
true in experiments with adults and infants in a task
involving the rating of continuation tones following
contexts taken from Acadian (French Canadian) folk
songs. They suggest that the difference may be attribut-
able partly to the fact that none of the musical contexts
used in the experiments of Krumhansl et al. (1999,
2000) ended in unambiguously large and implicative
intervals (Schellenberg et al., 2002, p. 530). While
Schellenberg et al. (2002) and Krumhansl et al. (1999)
found strong support for the principle of proximity with
only limited influence of registral return and intervallic
difference, Krumhansl et al. (2000) found the strongest
bottom-up influence came from the principle of inter-
vallic difference with weak support for the principles of
proximity and registral return. The consonance predic-
tors of Krumhansl (1995a) made a strong contribution
to both models especially in the case of the folk hymns
(Krumhansl et al., 1999, 2000).

According to the IR theory, the principles of the bot-
tom-up system exert a consistent influence on expecta-
tions regardless of the musical experience of the listener
and the stylistic context notwithstanding the fact that the
expectations actually generated are predicted to be sub-
ject to these top-down influences. Indirect support for
this claim comes in the form of high correlations between
the responses of musically trained and untrained partici-
pants (Cuddy & Lunny, 1995; Schellenberg, 1996) and
between the responses of groups with different degrees of
familiarity with the musical style (Eerola, 2004a;
Krumhansl et al., 1999, 2000; Schellenberg, 1996).
Regardless of the cognitive mechanisms underlying the
generation of melodic expectations, it is clear that they
tend to exhibit a high degree of similarity across levels
of music training and familiarity. More direct evidence
is provided by qualitatively similar degrees of influence
of the bottom-up principles on the expectations of

musically trained and untrained participants (Cuddy &
Lunny, 1995; Schellenberg, 1996) and across levels of
relevant stylistic experience (Krumhansl et al., 1999;
Schellenberg, 1996). These findings have typically been
interpreted as support for the universality of the bottom-
up principles.

However, there are several reasons to question this
conclusion. First, other research on melodic expectancy
has uncovered differences across levels of training. von
Hippel (2002), for example, conducted an experiment
in which trained and untrained participants were asked
to make prospective contour judgments for a set of arti-
ficially generated melodies. While the expectations of
the trained listeners exhibited the influence of pitch
reversal and step momentum (the expectation that a
melody will maintain its registral direction after small
intervals), the responses of the untrained listeners
exhibited significantly weaker influences of these prin-
ciples. Furthermore, in a study of goodness-of-fit
ratings of single intervals as melodic openings and clo-
sures, Vos and Pasveer (2002) found that the responses
of untrained listeners exhibited a greater influence of
intervallic direction than those of the trained listeners.

Second, it must be noted that the empirical data cover
a limited set of cultural groups and that differences in
observed patterns of expectation related to cultural
background have been found (Carlsen, 1981).
Furthermore, some studies have uncovered cross-
cultural differences in the strength of influence of the
bottom-up principles on expectancy. Krumhansl et al.
(2000), for example, found that the correlations of the
predictors for intervallic difference, registral return,
and proximity were considerably stronger for the
Western listeners than for the Sami and Finnish listen-
ers. Eerola (2004a) made similar observations in a repli-
cation of this study with traditional healers from South
Africa.

Third, the influence of the bottom-up principles
appears to vary with the musical stimuli used.
Krumhansl et al. (2000) note that while the Finnish lis-
teners in their study of expectancy in Sami folk songs
exhibited a strong influence of consonance, the Finnish
listeners in the earlier study of expectancy in Finnish
hymns (Krumhansl et al., 1999) exhibited a weaker
influence of consonance in spite of having a similar
musical background. Krumhansl et al. (2000) suggest
that this may indicate that the Finnish listeners in their
study adapted their judgments to the relatively large
number of consonant intervals present in their experi-
mental materials. More generally, the research reviewed
in this section diverges significantly in the support
found for the original bottom-up principles, revised
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versions of these principles, and new principles. The
most salient differences between the studies, and the
most obvious causes of such discrepancies, are the
musical contexts used to elicit expectations. Krumhansl
et al. (2000, p. 41) conclude that “musical styles may
share a core of basic principles, but that their relative
importance varies across styles.”

The influence of melodic context on expectations has
been further studied by Eerola et al. (2002) who used a
continuous response methodology to collect partici-
pants’ continuous judgments of the predictability of
melodies (folk songs, songs by Charles Ives, and
isochronous artificially generated melodies) simultane-
ously as they listened to them. The predictability ratings
were analyzed using three models: first, the IR model;
second, a model based on the entropy of a monogram
distribution of pitch intervals with an exponential decay
within a local sliding window (the initial distribution
was derived from an analysis of the Essen Folk Song
Collection, Schaffrath, 1992, 1994); and third, a variant
of the second model in which the pitch class distribu-
tion was used and was initialized using the key profiles
of Krumhansl and Kessler (1982). The results demon-
strated that the second model and, in particular, the
third model accounted for much larger proportions of
the variance in the predictability data than the IR model
while a linear combination of the second and third
models improved the fit even further (Eerola, 2004b). It
was argued that the success of these models was a result
of their ability to account for the data-driven influences
of melodic context.

Finally, it is important to note that universality or
ubiquity of patterns of behavior does not imply innate-
ness. To the extent that the bottom-up principles capture
universal patterns of behavior, they may reflect the
influence of long-term informal exposure to simple and
ubiquitous regularities in music (Schellenberg, 1996;
Thompson et al., 1997). In accordance with this posi-
tion, Bergeson (1999) found that while adults are better
able to detect a pitch change in a melody that fulfills
expectations according to the IR theory (Narmour,
1990) than in one that does not, 6- and 7-month-old
infants do not exhibit this difference in performance
across conditions. In addition, Schellenberg et al. (2002)
report experiments examining melodic expectancy in
adults and infants (covering a range of ages) using
experimental tasks involving both rating and singing
continuation tones to supplied melodic contexts. The
data were analyzed in the context of the IR model as
originally formulated by Schellenberg (1996) and the
two-factor model of Schellenberg (1997). The results
demonstrate that expectations were better explained

by both models with increasing age and musical expo-
sure. While consecutive pitch proximity (Schellenberg,
1997) was a strong influence for all listeners, the influ-
ence of more complex predictors such as pitch reversal
(Schellenberg, 1997) and registral return (Schellenberg,
1996) only became apparent with the older listeners.
Schellenberg et al. (2002) conclude with a discussion of
possible explanations for the observed developmental
changes in melodic expectancy: First, they may reflect
differences between infant-directed speech and adult-
directed speech; second, they may reflect general devel-
opmental progressions in perception and cognition
(e.g., perceptual differentiation and working or sensory
memory), which exert influence across domains and
modalities; and third, they may reflect increasing expo-
sure to music and progressive induction of increasingly
complex regularities in that music.

The Top-down System

In addition to studying the bottom-up principles of
the IR theory, research has also examined some puta-
tive top-down influences on melodic expectation many
of which are based on the key profiles of perceived
tonal stability empirically quantified by Krumhansl and
Kessler (1982). Schellenberg (1996) and Krumhansl
(1995b), for example, found support for the inclusion in
a theory of expectancy of a tonality predictor based
on the key profile for the major or minor key of the
melodic fragment. Cuddy and Lunny (1995) examined
the effects of several top-down tonality predictors. The
first consisted of four tonal hierarchy predictors similar
to those of Schellenberg (1996) and Krumhansl (1995b)
based on the major and minor key profiles for the first
and second tones of the context interval. The second,
tonal strength, was based on the assumption that the
rating of a continuation tone would be influenced by
the degree to which the pattern of three tones suggested
a tonality. The key-finding algorithm developed by
Krumhansl and Schmuckler (Krumhansl, 1990) was
used to rate each of the patterns for tonal strength. The
third tonality predictor, tonal region, was derived by
listing all possible major and minor keys in which each
implicative interval was diatonic and coding each con-
tinuation tone according to whether it represented a
tonic of one of these keys. Support was found for all
of these top-down influences although it was also found
that the predictors for tonal hierarchy could be replaced
by tonal strength and tonal region without loss of pre-
dictive power. Krumhansl (1995a) extended the tonal
region predictor developed by Cuddy and Lunny (1995)
by averaging the key profile data for all keys in which
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the two context tones are diatonic. Strong support was
found for the resulting predictor variable for all context
intervals except for the two (ascending and descending)
tritones. In contrast, no support was found for the tonal
strength predictor of Cuddy and Lunny (1995).

While neither Cuddy and Lunny (1995) nor
Schellenberg (1996) found any effect of music training
on the influence of top-down tonality predictors, Vos
and Pasveer (2002) found that the consonance of an
interval (based on music-theoretical considerations)
influenced the goodness-of-fit judgments of the trained
listeners to a much greater extent than those of the
untrained listeners in their study of intervals as candi-
dates for melodic openings and closures.

In a further analysis of their data, Krumhansl et al.
(1999) sought to distinguish between schematic and
veridical top-down influences on expectations (Bharucha,
1987). The schematic predictors were the two-tone con-
tinuation ratings obtained by Krumhansl (1995a) and
the major and minor key profiles (Krumhansl & Kessler,
1982). The veridical predictors consisted of monogram,
digram, and trigram distributions of tones in the entire
corpus of spiritual folk hymns and a predictor based on
the correct continuation tone. It was found that the
schematic predictors showed significantly stronger
effects for the nonexperts in the study than the experts.
In contrast, veridical predictors such as monogram and
trigram distributions and the correct next tone showed
significantly stronger effects for the experts than for the
nonexperts. Krumhansl et al. (2000) found similar
effects in their study of North Sami yoiks and showed
that these effects were related to familiarity with individ-
ual pieces used in the experiment. These findings sug-
gest that increasing familiarity with a given stylistic
tradition tends to weaken the relative influence of top-
down schematic knowledge of Western tonal-harmonic
music on expectancy and increase the relative influence
of specific veridical knowledge of the style.

There is some evidence, however, that the rating of
continuation tones may elicit schematic tonal expecta-
tions specifically related to melodic closure since the
melody is paused to allow the listener to respond.
Aarden (2003) reports an experiment in which partici-
pants were asked to make retrospective contour judg-
ments for each event in a set of European folk melodies.
Reaction times were measured as an indication of the
strength and specificity of expectations under the hypoth-
esis that strong and accurate expectations facilitate
faster responses (see also Bharucha & Stoeckig, 1986).
The resulting data were analyzed using the two-factor
model of Schellenberg (1997). While a tonality predictor
based on the key profiles of Krumhansl and Kessler

(1982) made no significant contribution to the model, a
monogram model of pitch frequency in the Essen Folk
Song Collection (Schaffrath, 1992, 1994) did prove to
be a significant predictor. In a second experiment,
participants were presented with a counter indicating
the number of tones remaining in the melody and were
asked to respond only to the final tone. In this case, the
Krumhansl and Kessler tonality predictor, which bears
more resemblance to the distribution of phrase-final
tones than that of all melodic tones in the Essen Folk
Song Collection, made a significant contribution to the
model. On the basis of these results, Aarden (2003)
argues that the schematic effects of tonality may be
limited to phrase endings whereas data-driven factors,
directly reflecting the structure and distribution of
tones in the music, have more influence in melodic
contexts that do not imply closure.

Finally, it is worth noting that the top-down tonality
predictors that have been examined in the context of
modeling expectation have typically been rather simple.
In this regard, Povel and Jansen (2002) report experi-
mental evidence that goodness ratings of entire melodies
depend not so much on the overall stability of the com-
ponent tones (Krumhansl & Kessler, 1982) but the ease
with which the listener is able to form a harmonic inter-
pretation of the melody in terms of both the global
harmonic context (key and mode) and the local move-
ment of harmonic regions. The latter process is compro-
mised by the presence of nonchord tones to the extent
that they cannot be assimilated by means of anchoring
(Bharucha, 1984) or by being conceived as part of a run
of melodic steps. Povel and Jansen (2002) argue that the
harmonic function of a region determines the stability
of tones within that region and sets up expectations
for the resolution of unstable tones.

Summary

While the results of many of the individual studies
reviewed in the foregoing sections have been interpreted
in favor of the IR theory, the overall pattern emerging
from this body of research suggests some important
qualifications to this interpretation. Empirical research
has demonstrated that some collection of quantitatively
formulated principles based on the bottom-up IR sys-
tem can generally account rather well for the patterns of
expectation observed in a given experiment but it is
also apparent that any such set constitutes too inflexi-
ble a model to fully account for the effects of differences
across experimental settings in terms of the musical
experience of the listeners and the melodic contexts in
which expectations are elicited. Regarding the top-down
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system, empirical research suggests that the expecta-
tions of listeners show strong effects of schematic factors
such as tonality although the predictors typically used
to model these effects may be too simple and inflexible
to account for the effects of varying the context in
which expectations are elicited.

Statistical Learning of Melodic Expectancy

The Theory

A theory of the cognitive mechanisms underlying the
generation of melodic expectations is presented here. It
is argued that this theory is capable of accounting
more parsimoniously for the behavioral data than the
quantitative formulations of the IR theory while making
fewer assumptions about the cognitive mechanisms
underlying the perception of music. From the current
perspective, the quantitatively formulated principles of
the IR theory provide a descriptive, but not explanatory,
account of expectancy in melody: They describe human
behavior at a general level but do not account for the
cognitive mechanisms underlying that behavior. To the
extent that the two theories produce similar predictions,
they are viewed as lying on different levels of explana-
tion (Marr, 1982; McClamrock, 1991). Both bottom-up
and top-down components of the quantitatively formu-
lated IR models have been found to provide an inade-
quate account of the detailed influences of musical
experience and musical context on melodic expectancy.
The theory proposed here is motivated by the need
to formulate a more comprehensive account of these
influences.

In particular, the present theory questions the need,
and indeed the validity, of positing a distinction between
bottom-up and top-down influences on expectation,
and especially the claim that the principles of the bottom-
up system reflect innately specified representations
of sequential dependencies between musical events.
According to the theory, the bottom-up principles of
the IR theory constitute a description of common regu-
larities in music which are acquired as mature patterns
of expectation through extensive exposure to music.
Rather than invoking innate representational rules
(such as the bottom-up principles and the basic melodic
structures of the IR theory), this theory invokes innate
general-purpose learning mechanisms which impose
architectural rather than representational constraints
on cognitive development (Elman et al., 1996). Given
exposure to appropriate musical stimuli, these learning
mechanisms can acquire domain-specific representa-
tions and behavior which is approximated by the prin-

ciples of the IR theory (see also Bharucha, 1987;
Gjerdingen, 1999).

It is hypothesized that the bottom-up principles of the
quantitatively formulated IR models (as well as other
proposed bottom-up influences on expectancy) reflect
relatively simple musical regularities which display a
degree of pan-stylistic ubiquity. To the extent that this is
the case, these bottom-up IR principles are regarded as
formalized approximate descriptions of the mature
behavior of a cognitive system that acquires representa-
tions of the statistical structure of the musical environ-
ment. On the other hand, top-down factors, such as
tonality, reflect the induction of rather more complex
musical structures which show a greater degree of
variability between musical styles. If this is indeed the
case, a single learning mechanism may be able to
account for the descriptive adequacy of some of the
bottom-up principles across degrees of expertise and
familiarity as well as for differences in the influence
of other bottom-up principles and top-down factors.
By replacing a small number of symbolic rules with a
general-purpose learning mechanism, the theory can
account more parsimoniously for both consistent and
inconsistent patterns of expectation between groups of
listeners on the basis of differences in prior musical
exposure, the present musical context, and the relative
robustness of musical regularities across stylistic
traditions.

Supporting Evidence

We shall discuss existing evidence that supports the
theory in terms of two questions: Are the regularities in
music sufficient to support the acquisition of the
experimentally observed patterns of melodic expecta-
tion? And: Is there any evidence that listeners possess
cognitive mechanisms capable of acquiring such behav-
ior through exposure to music?

Regarding the first question, research suggests that
expectancy operates very similarly in tasks that elicit
ratings of continuations to supplied melodic contexts
and tasks that elicit spontaneous production of contin-
uations to melodic contexts (Schellenberg, 1996;
Schmuckler, 1989, 1990; Thompson et al., 1997). If the
perception and production of melodies are influenced
by similar principles, it is pertinent to ask whether exist-
ing repertoires of compositions also reflect such influ-
ences of melodic implication. Thompson and Stainton
(1996, 1998) have examined the extent to which the
bottom-up principles of the IR theory are satisfied in
existing musical repertoires including the soprano and
bass voices of chorales harmonized by J. S. Bach,
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melodies composed by Schubert, and Bohemian folk
melodies. Preliminary analyses indicated that signifi-
cant proportions of implicative intervals satisfy the
principles of intervallic difference, registral return, and
proximity while smaller proportions satisfied the other
bottom-up principles. The proportions were highly
consistent across the three datasets. Furthermore, a
model consisting of the five bottom-up principles
accounted for much of the variance in the pitch of tones
following implicative intervals in the datasets (as well
as closural intervals in the Bohemian folk melodies—
Thompson & Stainton, 1998). With the exception of
intervallic difference for the Schubert dataset, all five
principles contributed significantly to the predictive
power of the model. These analyses demonstrate that
existing corpora of melodic music contain regularities
that tend to follow the predictions of the IR theory
and that are, in principle, capable of supporting the
acquisition of patterns of expectation that accord with
its principles.

Given these findings, an argument can be made that
the observed regularities in music embodied by the
bottom-up IR principles reflect universal physical con-
straints of performance rather than attempts to satisfy
universal properties of the perceptual system. Examples
of such constraints include the relative difficulty of
singing large intervals accurately and the fact that
large intervals will tend toward the limits of a singer’s
vocal range (Russo & Cuddy, 1999; Schellenberg, 1997).
von Hippel and Huron (2000) report a range of experi-
mental evidence supporting the latter as an explanation
of post-skip reversals (cf. the principles of registral direc-
tion and registral return of Krumhansl, 1995b), which
they account for in terms of regression toward the mean
necessitated by tessitura. In one experiment, for example,
it was found that evidence for the existence of post-skip
reversals in a range of musical styles is limited to those
skips (intervals of three semitones or more) that cross
or move away from the median pitch of a given corpus
of music. When skips approach the median pitch or
land on it, there is no significant difference in the pro-
portions of continuations and reversals of registral
direction. In spite of this, von Hippel (2002) found that
the expectations of listeners actually reflect the influ-
ence of perceived post-skip reversals suggesting that
patterns of expectation are acquired as heuristics repre-
senting simplified forms of more complex regularities
in music.

We turn now to the question of whether the cognitive
mechanisms exist to acquire the observed patterns of
melodic expectation through exposure to existing music.
Saffran, Johnson, Aslin, and Newport (1999) have ele-

gantly demonstrated that both adults and 8-month-old
infants are capable of learning to segment continuous
tone sequences on the basis of differential transitional
probability distributions of tones within and between
segments. On the basis of these and similar results with
syllable sequences, Saffran et al. (1999) argue that infants
and adults possess domain general learning mecha-
nisms that readily compute transitional probabilities on
exposure to auditory sequences. Furthermore, Oram
and Cuddy (1995) conducted a series of experiments in
which continuation tones were rated for musical fit in
the context of artificially constructed sequences of pure
tones in which the tone frequencies were carefully con-
trolled. The continuation tone ratings of both trained
and untrained listeners were significantly related to the
frequency of occurrence of the continuation tone in the
context sequence. Cross-cultural research has also
demonstrated the influence of tone distributions on
the perception of music (Castellano, Bharucha, &
Krumhansl, 1984; Kessler, Hansen, & Shepard, 1984;
Krumhansl et al., 1999). In particular, Krumhansl et al.
(1999) found significant influences of second order
distributions on the expectations of the expert listeners
in their study.

There is also evidence that listeners are sensitive to
statistical regularities in the size and direction of pitch
intervals in the music they are exposed to. In a statistical
analysis of a large variety of Western melodic music, for
example, Vos and Troost (1989) found that smaller
intervals tend to be of a predominantly descending
form while larger ones occur mainly in ascending form.
A behavioral experiment demonstrated that listeners
are able to correctly classify artificially generated pat-
terns that either exhibited or failed to exhibit the regu-
larity. Vos and Troost consider two explanations for
this result: first, that it is connected with the possibly
universal evocation of musical tension by ascending
large intervals and of relaxation by descending small
intervals (Meyer, 1973); and second, that it reflects
overlearning of conventional musical patterns. Vos and
Troost do not strongly favor either account, each of
which depends on the experimentally observed sensi-
tivity of listeners to statistical regularities in the size and
direction of melodic intervals.

The Model

The theory of melodic expectancy presented above pre-
dicts that it should be possible to design a statistical
learning algorithm possessing no prior knowledge of
sequential dependencies between melodic events but
which, given exposure to a reasonable corpus of music,
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would exhibit similar patterns of melodic expectation
to those observed in experiments with human partici-
pants (see also Bharucha, 1993). This section contains
a summary of the computational model that has been
implemented to test this prediction with a focus on
the principal characteristics of the representation
scheme used, how the statistical model acquires knowl-
edge during training, and how this knowledge is applied
in generating expectations. Detailed descriptions of
the computational methods used by the statistical
model may be found elsewhere (Conklin & Witten,
1995; Pearce, Conklin, & Wiggins, 2005; Pearce &
Wiggins, 2004).

THE REPRESENTATION SCHEME

The statistical model takes as its musical surface
(Jackendoff, 1987) sequences of musical events (placed
roughly at the note level), representing the instantiation
of a finite number of discrete features or attributes
which are given descriptive names appearing hence-
forth in typewriter font to distinguish them as such.
Figure 1 presents the first phrase of a chorale melody in
standard music notation and in terms of some of the
event attributes used in the present research. An event
consists of a number of basic features representing
its onset time (Onset), duration (Duration), and

pitch (Pitch) as shown in the upper panel of Figure 1.
In addition, events are associated with basic features
representing the current time signature, key signature,
mode, and phrase boundaries. These features are
derived directly from the score and, in the case of
phrase boundaries, the form of the text; it is assumed
that these score-based features are representative of per-
ceived features and that the cognitive tasks of melodic
segmentation (e.g., Deliège, 1987; Ferrand, Nelson, &
Wiggins, 2003), tonality induction (Vos, 2000), and
meter induction (e.g., Eck, 2002; Toiviainen & Eerola,
2004) may be addressed independently from the present
modeling concerns. Basic features are associated with an
alphabet: a finite set of symbols determining the possible
instantiations of that feature in a concrete event.

The representation scheme also allows for the deriva-
tion of features not present in the basic musical surface
but which can be computed from the values of one or
more basic features. Examples of such derived fea-
tures include interonset interval (IOI), pitch interval
(Interval), contour (Contour), and scale degree
(ScaleDegree) as shown in the second panel of
Figure 1. In some locations in a melody, a given derived
feature may be undefined (denoted by the symbol ⊥)
as is the case for Interval for the first event of
a melody. In addition, threaded features represent a
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undefined at a given location.
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melody in terms of the properties of potentially
noncontiguous events. An example is the feature
ThreadBar, shown in the third panel of Figure 1,
which represents the pitch interval between the first
events in consecutive bars; at all other metric positions,
the feature is undefined. Table 1 summarizes the basic
and derived features used in the present research.

Finally, the framework supports the representation of
melodies in terms of interactions between primitive fea-
tures using linked features. The linking of n features,
denoted using the symbol ⊗, simply results in a linked
feature whose elements are n-tuples composed of the ele-
ments of the component features. As an example, the bot-
tom panel of Figure 1 demonstrates the representation of
joint melodic and rhythmic structure in a link between
pitch interval and interonset interval (Interval ⊗
IOI). A linked feature is undefined if any of its compo-
nent features are undefined at a given location.

Although the present research uses data derived from
scores, the representation scheme is rather flexible

and could be extended to represent expressive aspects of
music performance (without otherwise changing the
nature of the computational model) to the extent that
the expressive features of interest can be represented as
discrete properties of discrete events or can be derived
from representational primitives that can be represented
in such a way. We expect this to be the case for the forms
of expressive variation in timing and dynamics most
commonly studied in the literature on music perform-
ance (see C. Palmer, 1997, for a review). The represen-
tation scheme is described in full elsewhere (Conklin &
Witten, 1995; Pearce et al., 2005) and has been extended
to accommodate the representation of homophonic and
polyphonic music (Conklin, 2002).

THE MODELING STRATEGY

The computational system itself is based on n-gram
models commonly used in statistical language model-
ing (Manning & Schütze, 1999). An n-gram is a
sequence of n symbols and an n-gram model is simply a
collection of such sequences each of which is associated
with a frequency count. During the training of the
statistical model, these counts are acquired through an
analysis of some corpus of sequences (the training set)
in the target domain. When the trained model is
exposed to a sequence drawn from the target domain, it
uses the frequency counts associated with n-grams to
estimate a probability distribution governing the iden-
tity of the next symbol in the sequence given the n � 1
preceding symbols. The quantity n � 1 is known as the
order of the model and represents the number of sym-
bols making up the context within which a prediction is
made.

The most elementary n-gram model of melodic pitch
structure (a monogram model where n � 1) simply
tabulates the frequency of occurrence for each chro-
matic pitch encountered in a traversal of each melody
in the training set. During prediction, the expectations
of the model are governed by a zeroth-order pitch
distribution derived from the frequency counts and do
not depend on the preceding context of the melody. In
a digram model (where n � 2), however, frequency
counts are maintained for sequences of two pitch
symbols and predictions are governed by a first-order
pitch distribution derived from the frequency counts
associated with only those digrams whose initial pitch
symbol matches the final pitch symbol in the melodic
context.

Fixed-order models such as these suffer from a
number of problems. Low-order models (such as the
monogram model discussed above) clearly fail to
provide an adequate account of the structural influence
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TABLE 1. The features used in the present research.

Feature Description

Pitch Chromatic pitch
Onset Onset time
Duration Duration
IOI interonset interval
DurRatio Duration ratio
FirstBar Whether an event is the first in the

current bar
PitchClass Octave equivalent pitch class or

chroma
Interval Chromatic pitch interval in semitones
IntervalClass Octave equivalent pitch interval class
Contour Melodic contour or registral direction
IntFirstPiece Interval in semitones from the first

event in the piece
IntFirstBar Interval in semitones from the first

event in the current bar
IntFirstPhrase Interval in semitones from the first

event in the current phrase
ScaleDegree Scale degree of chromatic scale

constructed on the tonic
InScale Whether a tone is diatonic in the

current key
ThreadTactus Interval in semitones between events

occurring on tactus pulses
ThreadBar Interval in semitones between the

initial events of successive bars
ThreadInitPhr Interval in semitones between the

initial events of successive phrases
ThreadFinalPhr Interval in semitones between the final

events of successive phrases
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of the context on expectations. However, increasing
the order can prevent the model from capturing much
of the statistical regularity present in the training set.
An extreme case occurs when the model encounters an
n-gram that does not appear in the training set in which
case it returns an estimated probability of zero. In order
to address these problems, the models used in the
present research maintain frequency counts during
training for n-grams of all possible values of n in any
given context. During prediction, distributions are
estimated using a weighted linear combination of all
models below a variable order bound, which is deter-
mined in each predictive context using simple heuristics
designed to minimize model uncertainty. The combina-
tion is designed such that higher-order predictions
(which are more specific to the context) receive greater
weighting than lower-order predictions (which are more
general). In a given melodic context, therefore, the pre-
dictions of the model may reflect the influence of both
the digram model and (to a lesser extent) the mono-
gram model discussed above. Furthermore, in addition
to the general, low-order statistical regularities captured
by these models, the predictions of the model can also
reflect higher-order regularities which are more specific
to the current melodic context (to the extent that these
exist in the training set). Pearce and Wiggins (2004)
give a comprehensive account of the generation of
predictions from the trained models, the details of
which lie beyond the scope of the present article.

INFERENCE OVER MULTIPLE FEATURES

One final issue to be covered regards the manner in
which the statistical model exploits the representation
of multiple features of the musical surface described
above. The modeling process begins with the selection
of a set of features of interest and the training of distinct
n-gram models for each of these features. For each
event in a melody, each feature is predicted using two
models: first, the long-term model that was trained over
the entire training set in the previous step; and second,
a short-term model that is trained incrementally for
each individual melody being predicted.

The task of combining the predictions from all these
models is achieved in two stages, both of which use a
weighted multiplicative combination scheme in which
greater weights are assigned to models whose predic-
tions are associated with lower entropy (or uncer-
tainty) at that point in the melody. In this scheme, a
combined distribution is achieved by taking the prod-
uct of the weighted probability estimates returned by
each model for each possible value of the pitch of the
next event and then normalizing such that the com-

bined estimates sum to unity over the pitch alphabet.
The entropy-based weighting method and the use of
a multiplicative as opposed to a linear combination
scheme both improve the performance of the model in
predicting unseen melodies (Pearce et al., 2005; Pearce &
Wiggins, 2004).

In the first stage of model combination, the predic-
tions of models for different features are combined
for the long-term and short-term models separately.
Distributions from models of derived features are first
converted into distributions over the alphabet of the
basic feature from which they are derived (e.g.,
Pitch). If a feature is undefined at a given location in
a melody, a model of that feature will not contribute to
the predictions of the overall system at that location. In
the second stage, the two combined distributions (long-
term and short-term) resulting from the first step are
combined into a single distribution which represents
the overall system’s final expectations regarding the
pitch of the next event in the melody. The use of long-
and short-term models is intended to reflect the influ-
ences on expectation of both existing extraopus and
incrementally increasing intraopus knowledge while
the use of multiple features is intended to reflect the
influence of regularities in many dimensions of the
musical surface. Pearce et al. (2005) give a full technical
description of the combination of predictions from
models of different melodic features.

Experimental Methodology

The present research has two primary objectives which,
in accordance with the level at which the theory is pre-
sented (and the manner in which it diverges from the IR
theory), are stated at a rather high level of description.
The first objective is to test the hypothesis that the sta-
tistical model presented above is able to account for the
patterns of melodic expectation observed in experi-
ments with human listeners at least as well as quantita-
tive formulations of the IR theory. Since the statistical
model acquires its knowledge of sequential melodic
structure purely through exposure to music, corrobora-
tion of the hypothesis would demonstrate that it is not
necessary to posit innate and universal musical rules to
account for the observed patterns of melodic expecta-
tion; melodic expectancy can be accounted for wholly
in terms of statistical induction of both intraopus and
extraopus regularities in existing musical corpora.

The methodological approach followed in examining
this hypothesis compares the patterns of melodic
expectation generated by the computational model to
those of human participants observed in previously

The Influence of Context and Learning 389

This content downloaded from 158.223.21.100 on Fri, 30 May 2014 11:58:51 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


reported experiments. Three experiments are presented
which elicit expectations in increasingly complex
melodic contexts: first, in the context of the single
intervals used by Cuddy and Lunny (1995); second, in
the context of the excerpts from British folk songs used
by Schellenberg (1996) and Krumhansl (1995b); and
third, throughout the two chorale melodies used by
Manzara, Witten, and James (1992).

In each experiment, the statistical models are com-
pared to the two-factor model of Schellenberg (1997)
plus a tonality predictor. Although the two-factor model
did not perform as well as that of Krumhansl (1995a) in
accounting for the expectations of the listeners in the
experiments of Krumhansl et al. (1999, 2000), the
converse was true in the experiments of Schellenberg
et al. (2002). While the debate surrounding the precise
quantitative formulation of the bottom-up system
appears likely to continue, this particular IR variant was
chosen from those reviewed above because it provides
the most parsimonious formulation of the bottom-up
principles without loss of predictive power in account-
ing for the data collected by Cuddy and Lunny (1995)
and Schellenberg (1996), which are used in Experiments
1 and 2 respectively. Following common practice, the
two-factor model of expectancy is supplemented with
a tonality predictor developed in previous research.
In the first experiment, the influence of tonality was
modeled using the tonal region predictor of Krumhansl
(1995a) while the second and third experiments used
the Krumhansl and Kessler key profiles for the notated
key of the context.

Following Cutting et al. (1992) and Schellenberg et al.
(2002), the statistical model and the two-factor model
of expectancy are compared on the basis of scope, selec-
tivity, and simplicity. Regarding the scope of the two
models, since the individual participant data were not
available for any of the experiments and the two mod-
els are not nested, Williams’ t statistic for comparing
dependent correlations (Hittner, May, & Silver, 2003;
Steiger, 1980) was used to compare the two models in
each experiment. It is expected that the relative per-
formance of the statistical model will increase with
longer and more realistic melodic contexts. The selec-
tivity of the models was assessed by using each model to
predict random patterns of expectation in the context
of the experimental stimuli used in each experiment.
Finally, with regard to simplicity, we examine the extent
to which the statistical model subsumes the function
of the bottom-up components of the two-factor model
in accounting for the behavioral data used in each
experiment. An alpha level of .05 is used for all
statistical tests.

The second objective is to undertake a preliminary
examination of which musical features present in (or
simply derivable from) the musical surface afford regu-
larities that are capable of supporting the acquisition of
the empirically observed patterns of melodic expecta-
tion. In each experiment, hypotheses are presented
regarding the specific features expected to afford such
regularities. The approach taken to testing these hypothe-
ses has been to select sets of features that maximize the
fit between experimentally determined human patterns
of expectation and those exhibited by the computa-
tional model. This was achieved using a forward step-
wise selection algorithm (Aha & Bankert, 1996; Blum &
Langley, 1997; Kohavi & John, 1996) which, given an
empty set of features, considers on each iteration all
single feature additions and deletions from the current
feature set, selecting the addition or (preferably) deletion
that yields the most improvement in the performance
metric and terminating when no such addition or
deletion yields an improvement.

While this hill-climbing algorithm significantly
reduces the size of the effective search space, the
solution is not guaranteed to be globally optimal.
The use of forward selection and the preference for
feature deletions over additions may be justified by
the observation that simplicity appears to be a power-
ful and general organizing principle in perception and
cognition (Chater, 1999; Chater & Vitányi, 2003). The
performance metrics and feature sets used are
described in greater detail separately for each experi-
ment in turn.

All models were trained using a corpus consisting of
152 Canadian folk songs and ballads (Creighton,
1966), 185 of the chorale melodies harmonized by
J. S. Bach (Riemenschneider, 1941), and 566 German
folk songs (dataset fink) from the Essen Folk Song
Collection (Schaffrath, 1992, 1994, 1995). The first of
these datasets was obtained from the Music Cognition
Laboratory at Ohio State University (see http://kern.
humdrum.net) while the remaining two were obtained
from the Center for Computer Assisted Research in the
Humanities (CCARH) at Stanford University (see http://
www.ccarh.org). Table 2 contains more detailed infor-
mation about the three datasets, which were selected to
represent a range of styles of melodic music within the
Western tonal tradition.

In discussing the experimental results, we shall talk
about finding support for the influence of a particular
feature on melodic expectancy. It should be kept in
mind that this shorthand is intended to convey that
support has been found for the existence of statistical
regularities in a given melodic dimension that increase
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the fit between the behavior of the statistical model and
the observed human behavior.

Experiment 1

Method

The objective in this experiment was to examine how
well the statistical model accounts for patterns of expec-
tation following single interval contexts. Cuddy and
Lunny (1995) report an experiment in which listeners
were asked to rate continuation tones following a two-
tone context. The participants were 24 undergraduate
students at Queen’s University in Canada of whom half
were musically trained and half untrained. The stimuli
consisted of eight implicative contexts corresponding to
ascending and descending intervals of a major second, a
minor third, a major sixth, and a minor seventh. All
participants heard half of the contexts ending on C4
and half ending on F�

4 (see Table 3) in an attempt to dis-
courage them from developing an overall top-down
sense of tonality for the entire experiment. Continua-
tion tones consisted of all 25 chromatic tones from one
octave below to one octave above the second tone of 
the implicative context. The two tones of each context
were presented as a dotted half note followed by a quar-
ter note while all continuation tones had a half note

duration. These durations were chosen to create a sense
of 4/4 meter continuing from the first bar (containing
the implicative interval) to the second bar (containing
the continuation tone).

The participants were asked to rate how well the
continuation tone continued the melody on a scale
from 1 (extremely bad continuation) to 7 (extremely
good continuation). The experiment yielded 200 con-
tinuation tone ratings for each participant. An analysis
of variance with the factors music training, context
interval, and continuation tone yielded one significant
interaction between context interval and continuation
tone. Since there was no effect of training and the data
exhibited high interparticipant correlation, the ratings
for each continuation tone were averaged across
participants and training levels. The mean continuation
tone ratings for trained and untrained participants are
available in Cuddy and Lunny (1995, Appendix).

In the present experiment, the trained model was
exposed to each of the eight contexts used by Cuddy
and Lunny (1995) for all of which the second tone was
F�

4. Due to the short contexts involved, the short-term
model was not used in this experiment. In each case,
the model returns a single probability distribution
(regardless of the number of features it considers) over
the set of 25 chromatic pitches ranging from F�

3 to F�
5.

Since the distributions returned by the model are
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TABLE 2. The melodic datasets used for model training.

Description No. compositions No. events Mean events/composition

Canadian folk songs/ballads 152 8,553 56.27
Chorale melodies 185 9,227 49.88
German folk songs 566 33,087 58.46
Total 903 50,867 56.33

TABLE 3. The melodic contexts used in experiment 1 (after Cuddy & Lunny, 1995, Table 2).

Context interval Second tone

Interval Direction C F�
Major second Ascending B�3–C4 E4–F�

4

Descending D4–C4 G�
4–F�

4

Minor third Ascending A3–C4 D�
4–F�

4

Descending E�4–C4 A4–F�
4

Major sixth Ascending E�3–C4 A3–F�
4

Descending A4–C4 D�
5–F�

4

Minor seventh Ascending D3–C4 G�
3–F�

4

Descending B�4–C4 E5–F�
4
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constrained to sum to one and are likely to violate the
parametric normality assumption, each of the pitches
was assigned a rank according to its estimated probabil-
ity in inverse order (such that high probability pitches
were assigned high ranks). The regression coefficient
of the mean ratings obtained by Cuddy and Lunny
(1995) regressed on the distribution ranks of the model
was used as a performance metric in feature selection.
In terms of features used, chromatic pitch (Pitch) and
pitch class or chroma (PitchClass; see Shepard,
1982) were included although they were not expected to
exert significant influences on expectancy as a result of
the limited context. It was hypothesized that more
abstract melodic features such as chromatic pitch interval
(Interval) and interval class (IntervalClass)
would be the most important source of regularities
underlying melodic expectancy (Dowling & Bartlett,
1981). Pitch contour (Contour) was also included to
examine the effects of a still more abstract representa-
tion of registral direction (Dowling, 1994). It was also
hypothesized that the patterns of expectation may
reflect a mode of perception in which subsequent tones
are appraised in relation to the first tone in the context
(IntFirstPiece). Given the impoverished context,
a sense of tonality may have been inferred based on the
first tone of the context as tonic (Cohen, 2000; Cuddy &
Lunny, 1995; Longuet-Higgins & Steedman, 1971;
Thompson et al., 1997). In spite of the limited context, it

was also hypothesized that pitch may have interacted
with rhythmic dimensions of the contexts in the gener-
ation of expectations (Jones, 1987; Jones & Boltz, 1989).
Consequently, a set of linked features was included
in the experiment which represent interactions
between three simple pitch-based features (Pitch,
Interval, and Contour) and three rhythmic fea-
tures (Duration, DurRatio, and IOI).

Results

The final set of features selected in this experiment
enabled the statistical model to account for approxi-
mately 72% of the variance in the mean continuation
tone ratings, R � .85, R 2

adj� .72, F(1,198) � 500.2,
p � .01. The relationship between the patterns of
expectation exhibited by the model and by the partici-
pants in the experiments of Cuddy and Lunny (1995) is
plotted with the fitted regression line in Figure 2. The
statistical model provided a slightly closer fit to the data
than the two-factor model, which accounted for
approximately 68% of the variance in the data, R � .83,
R 2

adj � .68, F(3,196) � 141.2, p � .01, although the dif-
ference was found not to be significant, t(197) � 1.1,
p � .27.

In order to examine the hypothesis that the statisti-
cal model subsumes the function of the bottom-up
components of the two-factor model, a more detailed
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FIG. 2. Correlation between participants’ mean goodness-of-fit ratings and the predictions of the statistical model for continuation
tones in the experiments of Cuddy and Lunny (1995).
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comparison of the two models was conducted. The
expectations of the statistical model exhibit significant
correlations in the expected directions with both com-
ponents of the two-factor model: Proximity, r(198) �
� .67, p � .01; and Reversal, r(198) � .31, p � .01.
Furthermore, the fit of the statistical model to the
behavioral data was not significantly improved by
adding Proximity, F(1,197) � 1.54, p � .22, Reversal,
F(1,197) � 0.01, p � .98, or both of these factors,
F(2,196) � 0.81, p � .45, to the regression model. This
analysis indicates that the statistical model entirely sub-
sumes the function of Proximity and Reversal in
accounting for the data collected by Cuddy and Lunny
(1995).

Finally, in order to examine the selectivity of the two
models, 50 sets of ratings for the stimuli (N � 200 in
each set) were generated through random sampling
from a normal distribution with a mean and standard
deviation equivalent to those of the listeners’ ratings.
With an alpha level of .05, just two of the 50 random
vectors were fitted at a statistically significant level by
each of the models and there was no significant differ-
ence between the fit of the two models for any of the
50 trials. Neither model is broad enough in its scope to
successfully account for random data.

The results of feature selection are shown in Table 4.
As predicted on the basis of the short contexts, the fea-
tures selected tended to be based on pitch interval
structure. The limited context for the stimulation of
expectancy is probably insufficient for the evocation of
statistical regularities in chromatic pitch structure. The
fact that Interval ⊗ Duration was selected over
and above its primitive counterpart (Interval) sug-
gests that expectations were influenced by the interac-
tion of regularities in pitch interval and duration. It
might appear surprising that regularities in rhythmic
structure should influence expectations with contexts

so short. Although this may be an artifact, recall that
Cuddy and Lunny (1995) carefully designed the rhyth-
mic structure of their stimuli to induce a particular
metric interpretation. The issue could be investigated
further by systematically varying the rhythmic struc-
ture of the stimuli used to obtain goodness-of-fit rat-
ings. Finally, the results reveal a strong influence of
IntFirstPiece on expectancy which may be partly
accounted for by the brevity of the contexts, which do
not contain enough information to reliably induce a
tonality, combined with the relatively long duration of
the first tone. Regularities in the three selected dimen-
sions of existing melodies are such that the statistical
model provides an equally close fit to the patterns of
expectation observed in the experiment of Cuddy and
Lunny (1995) as the two-factor model of Schellenberg
(1997).

Experiment 2

Method

The objective of this experiment was to extend the
approach of Experiment 1 to patterns of expectation
observed after longer melodic contexts drawn from
an existing musical repertoire. Schellenberg (1996,
Experiment 1) reports an experiment in which listeners
were asked to rate continuation tones following eight
melodic fragments taken from British folk songs
(R. Palmer, 1983; Sharp, 1920). The participants were
20 members of the community of Cornell University
in the United States of whom half had limited music
training and half had moderate music training. Figure 3
shows the eight melodic contexts of which four are in a
minor mode and four in a major mode. They were
chosen such that they ended on an implicative interval.
Four of the fragments end with one of two small inter-
vals (2 or 3 semitones) in ascending and descending
forms while the other four end with one of two large
intervals (9 or 10 semitones) in ascending and descend-
ing forms. Continuation tones consisted of the 15
diatonic tones in a two-octave range centered on the
final tone of the melodic context. The participants were
asked to rate how well the continuation tone continued
the melody on a scale from 1 (extremely bad continua-
tion) to 7 (extremely good continuation). The experi-
ment yielded 120 continuation tone ratings for each
participant. Significant interparticipant correlation for
all participants warranted the averaging of the data
across participants and training levels. The mean
continuation tone ratings are available in Schellenberg
(1996, Appendix A).
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TABLE 4. The results of feature selection in experiment 1
showing features added to the statistical model and regres-
sion coefficients (R) between participants’ mean goodness-
of-fit ratings and the predictions of the model for
continuation tones in the experiments of Cuddy and Lunny
(1995); the symbol ⊗ represents a link between two compo-
nent features.

Stage Feature added R

1 Interval ⊗ Duration .77
2 IntFirstPiece .84
3 IntervalClass .85
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The procedure used in the present experiment was
essentially the same as in Experiment 1 except that the
statistical model returned distributions over an alpha-
bet consisting of the diatonic tones an octave above and
an octave below the final tone of each melodic frag-
ment. Since the melodic fragments were longer, the
short-term model was used in this experiment. Several
features, corresponding to hypotheses about the musi-
cal regularities underlying the observed patterns of

expectation, were added to the set used in Experiment 1.
In particular, it was hypothesized that melodic expecta-
tions might be influenced by tonality and the interac-
tion of pitch with metric features. It should be
emphasized once again that these features were taken
from the notated score and may not accurately reflect
the perception of tonality and metric accent. In the
latter case, however, the stimuli were presented to the
participants with a subtle pattern of emphasis in intensity
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FIG. 3. The melodic contexts used in Experiment 2 (after Schellenberg, 1996, Figure 3).

This content downloaded from 158.223.21.100 on Fri, 30 May 2014 11:58:51 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


based on the notated time signature (Schellenberg,
1996) in order to clarify the metrical structure (e.g., in
the cases of Fragments 5 and 7 in Figure 3 which might
otherwise be more naturally perceived in 2/4 meter).

Regarding metric structure, it was hypothesized that
expectations might be influenced by regularities in
pitch interval between events occurring on metric pulses
(ThreadTactus) and the interval of a note from 
the first note in the bar (IntFirstBar) respectively
reflecting the influence of tactus and bar level metric
salience (Jones, 1987). Regarding the effects of per-
ceived tonality (Balzano, 1982; Krumhansl & Kessler,
1982), it was hypothesized that expectations might be
influenced by the representation of a melody in terms 
of scale degree (ScaleDegree). The hypothesis
underlying the use of this representational dimension is
closely related to an argument made by Krumhansl
(1990) that the statistical usage of tones in existing musi-
cal traditions is the dominant influence on perceived
tonal hierarchies (see also Aarden, 2003). The feature
ScaleDegree was also linked with Duration,
DurRatio, IOI, Interval, IntFirstPiece,
and FirstBar to investigate the interactions between
perceived tonal structure and these dimensions of
melodic, metric, and rhythmic structure (Jones, 1987;
Jones & Boltz, 1989).

Results

The final set of features selected in this experiment
enabled the statistical model to account for approxi-
mately 83% of the variance in the mean continuation
tone ratings, R � .91, R 2

adj � .83, F(1,118) � 571.4,
p � .01. The relationship between the patterns of
expectation exhibited by the model and by the partici-
pants in the experiments of Schellenberg (1996) is plot-
ted with the fitted regression line in Figure 4. The
statistical model provided a closer fit to the data than
the two-factor model, which accounted for approxi-
mately 75% of the variance in the data, R � .87,
R 2

adj � .75, F(3,116) � 121.9, p � .01, and this differ-
ence was found to be significant, t(117) � 2.18, p � .03.

In order to examine the hypothesis that the statistical
model subsumes the function of the bottom-up com-
ponents of the two-factor model, a more detailed
comparison of the two models was conducted. The
expectations of the statistical model exhibit signifi-
cant correlations in the expected directions with both
components of the two-factor model: Proximity,
r(118) � �.74, p � .01; and Reversal, r(118) � .49,
p � .01. Furthermore, the fit of the statistical model to
the behavioral data was not significantly improved by
adding Proximity, F(1,117) � 3.86, p � .05, or Reversal,
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FIG. 4. Correlation between participants’ mean goodness-of-fit ratings and the predictions of the statistical model for
continuation tones in the experiments of Schellenberg (1996).
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F(1,117) � 1.64, p � .2, to the regression model.
However, adding both of these factors did significantly
improve the fit of the statistical model to the data,
F(2,116) � 6.03, p � .01. The resulting three-factor
regression model accounted for approximately 84% of
the variance in the mean continuation tone ratings,
R � .92, R2

adj � .84, F(3,116) � 210.7, p � .01.
Since the variables of the two-factor model are

defined in terms of pitch interval, this departure from
the results of Experiment 1 may reflect the relative
paucity of features related to pitch interval selected in
the present experiment (see Table 5). Since the feature
selection algorithm does not cover the space of feature
sets exhaustively, it is quite possible that there exist
feature sets that include features related to pitch inter-
val, that do not compromise the fit to the data achieved
by the present statistical model but for which the addi-
tion of the two components of the two-factor model
does not yield an improvement. Nonetheless, since the
improvement yielded by the addition of the two predic-
tors of the two-factor model was so small (an additional
1% of the variance, given 17% left unaccounted for
by the statistical model alone), this analysis indicates
that the statistical model almost entirely subsumes the
function of Proximity and Reversal in accounting for
the data collected by Schellenberg (1996).

Finally, in order to examine the selectivity of
the two models, 50 sets of ratings for the stimuli
(N � 120 for each set) were generated through ran-
dom sampling from a normal distribution with a
mean and standard deviation equivalent to those of
the listeners’ ratings. With an alpha level of .05, just
two of the 50 random vectors were fitted at a statisti-
cally significant level by each of the models and there
was no significant difference between the fit of the

two models for any of the 50 trials. Neither model is
broad enough in its scope to successfully account for
random data.

The results of feature selection are shown in Table 5.
Strong support was found for Pitch especially when
linked with IOI, again illustrating the influence of joint
regularities in pitch structure and rhythmic structure
on expectations. The fact that Pitch was dropped imme-
diately after the addition of Pitch⊗ IOI suggests not
only that the addition of the latter rendered the pres-
ence of the former redundant but also that regularities
in Pitch, in the absence of rhythmic considerations,
provide an inadequate account of the influence of pitch
structure on expectations. In contrast to the impover-
ished contexts used in Experiment 1, the longer con-
texts used in this experiment are capable of invoking
states of expectancy based on regularities in chromatic
pitch structure. These regularities are likely to consist
primarily of low-order intraopus regularities captured
by the short-term model, although potentially higher-
order extraopus effects (via the long-term model) may
also contribute since two of the training corpora con-
tain Western folk melodies (cf. Krumhansl et al., 1999).
The features IntFirstBar and IntFirstPiece
also contributed to improving the fit of the model to the
human data, suggesting that regularities defined in ref-
erence to salient events (the first in the piece and the
first in the current bar) are capable of exerting strong
influences on melodic expectations. Finally, one feature
representing a joint influence of regularities in tonal
and melodic structure (ScaleDegree⊗ Interval)
was selected. While this feature improved the fit of the
statistical model, it is surprising that features modeling
tonality were not selected earlier. This may be a result of
the fact that British folk melodies are frequently modal
(rather than tonal) and the fragments used do not
always contain enough information to unambiguously
specify the mode (A. Craft, personal communication,
September 9, 2003).

Regularities in the four selected dimensions of exist-
ing melodies are such that the statistical model provides
a closer fit to the patterns of expectation observed in the
experiment of Schellenberg (1996) than the two-factor
model of Schellenberg (1997).

Experiment 3

Method

Most experimental studies of expectancy, including
those of Cuddy and Lunny (1995) and Schellenberg
(1996), have examined the responses of participants
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TABLE 5. The results of feature selection in experiment 2 show-
ing features added to and dropped from the statistical model
and regression coefficients (R) between participants’ mean
goodness-of-fit ratings and the predictions of the model for
continuation tones in the experiments of Schellenberg (1996);
the symbol ⊗ represents a link between two component
features.

Stage Feature added Feature dropped R

1 Pitch .84
2 IntFirstBar .88
3 IntFirstPiece .89
4 ScaleDegree ⊗ Interval .9
5 Pitch ⊗ IOI .91
6 Pitch .91
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only at specific points in melodic passages. Results
obtained by this method, however, cannot address the
question of how expectations change as a melody
progresses (Aarden, 2003; Eerola et al., 2002; Schubert,
2001; Toiviainen & Krumhansl, 2003). The purpose of
this experiment was to examine the statistical model
and the two-factor model (Schellenberg, 1997) in the
context of expectations elicited throughout a melodic
passage.

Manzara et al. (1992) have used an interesting method-
ological approach to elicit the expectations of listeners
throughout a melody. The goal of their research was to
derive an estimate of the entropy of individual pieces
within a style according to the predictive models used
by human listeners. The experimental stimuli used
by Manzara et al. (1992) consisted of the melodies
from Chorales 61 and 151 harmonized by J. S. Bach
(Riemenschneider, 1941), which are shown in Figure 5.
The experimental methodology followed a betting
paradigm developed by Cover and King (1978) for
estimating the entropy of printed English. Participants
interacted with a computer program displaying a score
which retained all the information of the original except
that the pitch of every note was B4. Given an initial
capital of S0 � 1.0, the participants were asked to move
through the score sequentially, selecting the expected
pitch of each note and betting a proportion p of their
capital repeatedly until the selected pitch was correct,
after which they could move to the next note. No time
limits were set and the participants could listen to the
piece up to and including the current candidate note at
any point. At each stage n, the participants’ capital was

incremented by 20pSn � 1 (there were 20 chromatic
pitches to choose from) if the selection was correct and
decremented by the proportion bet if it was incorrect.
This proportional betting scheme was designed to elicit
intuitive probability estimates for the next symbol to be
guessed and rewards not only the correct guess but also
accurate estimates of the symbol’s probability. The
entropy of the listener at stage n can be estimated as
log220 � log2 Sn where Sn is the capital won by the
listener at this stage. Higher entropies indicate greater
predictive uncertainty such that the actual pitch of the
event is less expected.

Unlike the conventional probe tone method, the
betting paradigm allows the collection of responses
throughout a melodic passage (but see Toiviainen &
Krumhansl, 2003, for a development of the probe tone
methodology to allow the collection of real-time con-
tinuous responses). In addition, Eerola et al. (2002)
report convergent empirical support for the use of
entropy as a measure of predictability in melody per-
ception. Furthermore, since it elicits responses prior to
revealing the identity of the note and encourages the
generation of probability estimates, the betting para-
digm offers a more direct measure of expectation than
the probe tone method. However, the responses of
listeners in the betting paradigm are more likely to
reflect the result of conscious reflection than in the
probe tone paradigm and may be influenced by a poten-
tial learning effect.

The participants in the experiments of Manzara et al.
(1992) were grouped into three categories according to
formal musical experience: novice, intermediate, and
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FIG. 5. The two chorale melodies used in Experiment 3 (after Manzara et al., 1992).
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expert. The experiment was organized as a competition
in two rounds. Five participants in each category took
part in the first round with Chorale 151 (see Figure 5),
while the two best-performing participants from each
category were selected for the second round with
Chorale 61 (see Figure 5). As an incentive to perform
well, the overall winner in each of the categories won a
monetary prize. The capital data for each event were
averaged across participants and presented as entropy
profiles for each chorale melody (see Figures 6 and 7).

Manzara et al. (1992) were able to make some inter-
esting observations about the entropy profiles derived.
In particular, it was found that the ultimate tones in
phrases tended to be associated with greater pre-
dictability than those at the middle and beginning of
phrases. High degrees of surprisal, on the other hand,
were associated with stylistically unusual cadential
forms and intervals. The entropy profiles for both
pieces also exhibit high uncertainty at the beginning of
the piece due to lack of context, followed by increasing
predictability as the growing context supported more
confident predictions. For both pieces, the results
demonstrated a rise in uncertainty near the end of the
piece before a steep decline to the final cadence. Witten,
Manzara, and Conklin (1994) found a striking similar-

ity between the human entropy profiles and those gen-
erated by a statistical model derived from 95 chorale
melodies (Conklin & Witten, 1995), suggesting that the
relative degrees of expectancy elicited by events
throughout the pieces were similar for both the partici-
pants and the model.

The experimental procedure used by Manzara et al.
(1992) differs from that used by Cuddy and Lunny
(1995) and Schellenberg (1996) as does the nature of the
data collected. Consequently the methodology followed
in this experiment differs slightly from that used in
Experiments 1 and 2. The main difference is that the
expectations of the statistical model for each note in
each melody were represented using entropy (the nega-
tive log, base 2, of the estimated probability of the
observed pitch). The performance metric was the
regression coefficient of the mean entropy estimates for
the participants in the experiments of Manzara et al.
(1992) regressed on the model entropy. Chorales 61 and
151 were not present in the corpus of chorale melodies
used to train the statistical model. Five features were
added to the set used in Experiment 2 in order to
examine the influence of phrase, metric, and tonal
structure on expectations elicited in the longer contexts
of the two melodies. Specifically, features were incorpo-
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FIG. 6. The entropy profiles for Chorale 61 averaged over participants in the experiment of Manzara et al. (1992)
and for the statistical model developed in Experiment 3.
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rated to represent pitch interval between the first event
in each consecutive bar (ThreadBar) and between
events beginning or ending consecutive phrases
(ThreadInitPhr and ThreadFinalPhr respec-
tively). A feature representing pitch in relation to the
first event in the current phrase (IntFirstPhrase)
was also added to assess the potential influence of
phrase-level salience on expectations. Finally, a feature
was added to represent whether or not a tone is diatonic
in the notated key of the piece (InScale).

Results

The final set of features selected in this experiment
enabled the statistical model to account for approxi-
mately 63% of the variance in the mean entropy
estimates reported by Manzara et al., R � .8, R 2

adj � .63,
F(1,84) � 145, p � .01. Profiles for both model entropy
and human entropy are shown in Figures 6 and 7 for
Chorales 61 and 151 respectively. The entropy profiles
illustrate the close correspondence between model
entropy and human entropy throughout each of the
chorale melodies (see also Witten et al., 1994). The sta-
tistical model provided a closer fit to the data than the
two-factor model, which accounted for approximately
13% of the variance in the data, R � .41, R2

adj � .13,

F(3,78) � 5.17, p � .01, and this difference was found to
be significant, t(79) � 5.15, p � .01. In the multiple
regression analysis of the two-factor model and in com-
paring it to the statistical model, the data for the first two
events of each melody were not used since the two-fac-
tor model requires a context of a single interval in order
to generate expectations.

In order to examine the hypothesis that the statisti-
cal model subsumes the function of the bottom-
up components of the two-factor model, a more detailed
comparison of the two models was conducted. The
expectations of the statistical model exhibit a significant
correlation in the expected direction with the Proximity
component of the two-factor model, r(80) � � .41,
p � .01, but not with Reversal, r(80) � .1, p � .39.
Furthermore, the fit of the statistical model to the behav-
ioral data was not significantly improved by adding
Proximity, F(1,79) � 0.01, p � .91, Reversal, F(1,79) �
0.07, p � .79, or both of these factors F(2,78) � 0.05,
p � .95, to the regression model. On this evidence, the
statistical model entirely subsumes the function of
Proximity and Reversal in accounting for the data col-
lected by Manzara et al. (1992).

Finally, in order to examine the selectivity of the
two models, 50 sets of entropy estimates for the two
chorales were generated through random sampling
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FIG. 7. The entropy profiles for Chorale 151 averaged over participants in the experiment of Manzara et al. (1992)
and for the statistical model developed in Experiment 3.
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from a normal distribution with a mean and standard
deviation equivalent to those of the listeners’ entropy
estimates. With an alpha level of .05, just two of the 50
random vectors were fitted at a statistically significant
level by the two-factor model and in only one of these
trials was there a significant difference between the
fit of the two models. Neither model is broad enough
in its scope to successfully account for random data.

The results of feature selection are shown in Table 6.
As in Experiments 1 and 2, the feature IntFirst-
Piece made a strong contribution to the fit of the
statistical model. Support was also found for one linked
feature representing the influence of tonality
(ScaleDegree ⊗ DurRatio), and the fact that this
feature was selected over its primitive counterpart again
provides evidence for the interactive influence of rhyth-
mic and pitch structure on expectancy. Finally, some
support was found for an influence of phrase-level reg-
ularities on expectancy (ThreadInitPhr).

In addition to showing the regression coefficient (R),
which was used as the evaluation metric in the feature
selection experiment, Table 6 also shows the entropy of
the statistical model averaged over all events considered
during prediction of the two melodies (H). The obser-
vation that H decreases as R increases suggests a
rational cognitive basis for the selection of melodic fea-
tures in the generation of expectations: Features may be
selected to increase the perceived likelihood (or expect-
edness) of events and reduce redundancy of encoding
(Chater, 1996, 1999). In order to examine this hypothe-
sis, a further selection experiment was run in which
features were selected to minimize model uncertainty
(as measured by mean per-event entropy) over
Chorales 61 and 151. The results of this experiment are
shown in Table 7, which shows average model uncer-
tainty (H) and the regression coefficient (R) of the mean
entropy estimates of the participants in the experiments

of Manzara et al. (1992) regressed on the model entropy
for each selected system.

Once again, the feature selection results generally
exhibit an inverse trend between R and H. However,
while the systems depicted in Tables 6 and 7 show a
degree of overlap, Table 7 also reveals that exploiting
regularities in certain features (especially those related
to melodic interval structure) improves prediction
performance but does not yield as close a fit to the
behavioral data as the system shown in Table 6. A closer
inspection of all 247 systems considered in this experi-
ment revealed a significant negative correlation
between R and H for values of H greater than 2.3
bits/symbol rs(N � 45) � �.85, p � .01, but not below
this point rs(N � 202) � �.05, p � .46. If listeners do
focus on representations that maximize the perceived
likelihood of events, this relationship may be subject 
to other constraints such as the number and kind of
representational dimensions to which they can attend
concurrently.

Discussion and Conclusions

The first goal of the present research was to examine
whether models of melodic expectancy based on statis-
tical learning are capable of accounting for the patterns
of expectation observed in empirical behavioral
research. The statistical model and the two-factor
model of expectancy (Schellenberg, 1997) were com-
pared on the basis of scope, selectivity, and simplicity
(Cutting et al., 1992; Schellenberg et al., 2002). The two
models could not be distinguished on the basis of selec-
tivity since neither was found to account for random
patterns of expectation in any of the three experiments.
Regarding the scope of the two models, the results
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TABLE 6. The results of feature selection in experiment 3 show-
ing features added to the statistical model, the average
entropy of the model (H) and regression coefficients (R)
between participants’ entropy estimates and those of the
model for the two chorale melodies used in the experiments of
Manzara et al. (1992); the symbol ⊗ represents a link between
two component features.

Stage Feature added R H

1 IntFirstPiece .74 2.29
2 ScaleDegree ⊗ DurRatio .79 2.16
3 ThreadInitPhr .8 2.14

TABLE 7. The results of feature selection for reduced entropy
over chorales 61 and 151 in experiment 3 showing features
added to the model, the average entropy of the statistical
model (H) and regression coefficients (R) between partici-
pants’ entropy estimates and those of the model for the two
chorale melodies used in the experiments of Manzara et al.
(1992); the symbol ⊗ represents a link between two compo-
nent features.

Stage Feature added R H

1 ScaleDegree ⊗ Interval .66 2.06
2 Interval ⊗ Duration .69 1.97
3 IntFirstPiece .74 1.94
4 ScaleDegree ⊗ FirstBar .75 1.92
5 ThreadInitPhr .76 1.9
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demonstrate that the statistical model accounted for the
behavioral data as well as, or better than, the two-factor
model in all three of the reported experiments.
Furthermore, the difference between the two models
became increasingly apparent when expectations were
elicited in the context of longer and more realistic
melodic contexts (see also Eerola et al., 2002). Finally,
regarding the simplicity of the two models, the results
indicate that the statistical model entirely (or almost
entirely in the case of Experiment 2) subsumes the
function of the principles of Proximity and Reversal
(Schellenberg, 1997) in accounting for the expectations
of listeners, rendering the inclusion of these rules in an
additional system of innate bottom-up predispositions
unnecessary.

Altogether, these experimental results demonstrate
that patterns of expectation elicited in a range of melodic
contexts can be accounted for in terms of the combined
influence of sensitivities to certain dimensions of the
musical surface, relatively simple learning mechanisms,
and the structure of the musical environment. In con-
trast to one of the central tenets of the IR theory, univer-
sal symbolic rules need not be assumed to account
for experimentally observed patterns of melodic expec-
tation. The quantitatively formulated bottom-up and
top-down principles of the IR models may be viewed as
formalized approximations to behavior that emerges as a
result of statistical induction of regularities in the
musical environment achieved by a single cognitive
system (cf. Thompson & Stainton, 1998).

The second goal of the present research was to under-
take a preliminary examination of the kinds of melodic
feature that afford regularities capable of supporting the
acquisition of the observed patterns of expectation. In
each experiment, only a small number of features (three in
Experiments 1 and 3, and four in Experiment 2) were
selected by the forward stepwise selection procedure
even though the evaluation functions used did not
explicitly penalize the number of features used by the
statistical model. In all three experiments, it was found
that regularities in pitch structure defined in relation to
the first note in a melody are capable of exerting strong
influences on expectancy. This influence of primacy on
perceived salience suggests that the first note in a melody
provides a reference point with which subsequent struc-
tures are compared in the generation of expectations
(Cohen, 2000; Cuddy & Lunny, 1995; Longuet-Higgins &
Steedman, 1971; Thompson et al., 1997). Furthermore,
the results of all three experiments provide evidence that
expectations are influenced by regularities in the interac-
tion of pitch structure and rhythmic structure (see also
Jones, 1987; Jones & Boltz, 1989).

In addition, the experimental results suggest that
induced regularities in different melodic features may
influence expectancy to varying degrees in different
contexts. The short contexts in Experiment 1, for exam-
ple, tended to generate expectations based on regulari-
ties in melodic interval structure rather than chromatic
pitch structure. In the second experiment, on the other
hand, support was found for the influence of chromatic
pitch structure as well as metric structure and tonal
regularities. Finally, in Experiment 3, support was
found for the influence of tonal structure and phrase-
level salience on the generation of expectations. These
differences suggest that melodic contexts differ in the
extent to which they emphasize different features used
in cuing attention to salient events. The results of
Experiment 3 also provided some evidence for a rela-
tionship, across different feature sets, between the pre-
dictive uncertainty of the statistical model and its fit to
the behavioral data suggesting that, subject to other
constraints, listeners employ representations which
increase the perceived likelihood of melodic stimuli
(Chater, 1996, 1999). The mechanisms by which atten-
tion is drawn to different features in different melodic
contexts and how regularities in these dimensions
influence expectancy is an important topic for future
empirical research. Improved methodologies for elicit-
ing and analyzing continuous responses to music
(Aarden, 2003; Eerola et al., 2002; Schubert, 2001;
Toiviainen & Krumhansl, 2003) will form an important
element in this research.

It is important to note that the concrete implementa-
tions of the IR theory discussed herein do not reflect the
full complexity of the analytical theory of Narmour
(1990, 1992). Further development of these models may
lead to improved accounts of behavioral data or the
explanation of future empirical observations that cannot
be accounted for by the statistical model. In the mean-
time, however, the experimental results provide strong
support for the present theory of expectancy in terms of
the influence of melodic context on the invocation of
learned regularities. In particular, the results confirm
that regularities in existing melodic traditions are suffi-
cient to support the acquisition of observed patterns of
expectation. According to the theory, expectations will
also be subject to the influence of prior musical experi-
ence. The present research used a single corpus of train-
ing data, and future research should examine this aspect
of the theory in greater depth. It would be predicted, for
example, that a model exposed to the music of one cul-
ture would predict the expectations of people of that cul-
ture better than a model trained on the music of another
culture and vice versa (see also Castellano et al., 1984).
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The theory also predicts that observed patterns of
expectation will become increasingly systematic and
complex with increasing age and musical exposure (cf.
Schellenberg et al., 2002). Future research might exam-
ine the developmental profile of expectations exhibited
by the statistical model as it learns, yielding testable pre-
dictions about developmental trajectories in the acquisi-
tion of melodic expectations exhibited by infants (see
also Plunkett & Marchman, 1996).

Another fruitful avenue for future research involves a
more detailed examination of the untested assumptions
of the statistical model, the elaboration of the theory, and
the proposition of hypotheses at finer levels of detail
(Desain, Honing, Thienen, & Windsor, 1998). Such
hypotheses might concern, for example, the develop-
mental status of the features assumed to be present in the
musical surface and the derivation of other features from
this surface as well as how the interaction between the
long- and short-term models is related to the effects of
intraopus and extraopus experience. The examination of
expectations for more complex musical structures
embedded in polyphonic contexts may reveal inadequa-
cies of the model. For example, its reliance on local
context in generating predictions may prove insufficient
to account for the perception of nonlocal dependencies
and recursively embedded structure (Lerdahl &
Jackendoff, 1983). Conversely, the computational model
may be overspecified in some regards as a model of
human cognition. For example, schematic influences on

expectancy are likely to be subject to the effects of limita-
tions on working memory although the model is not
explicitly constrained in this regard (Reis, 1999).

To conclude, not only does the theory put forward in
this article provide a compelling account of existing
data on melodic expectancy, but it also makes a number
of predictions for future research. In this regard, the
modeling strategy followed in the present research con-
stitutes a rich source of new hypotheses regarding the
influence of musical context and experience on expec-
tations and provides a useful framework for the empiri-
cal examination of these hypotheses.
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