Laurea Magistrale in Ingegneria Informatica Laurea Magistrale in Ingegneria Elettronica e Telecomunicazioni per lo Sviluppo Sostenibile

Sistemi E Tecnologie per l'Automazione LM

Tipologie di Elaboratori Digitali Real Time per il Controllo (Controllori Real Time)

Ing. Gianluca Palli DEI - Università di Bologna Tel. 051-2093186 E-mail: gianluca.palli@unibo.it http://www-lar.deis.unibo.it/people/gpalli/

Revisionato il 23/10/2013

Obiettivo

Controllori 2

Controllori 3

Dopo aver descritto:

Tipologie di soluzioni/componenti HW

Ing. Gianluca Palli - Sistemi e Tecnologie per l'Automazione LM

- Caratteristiche dell'elaborazione Real Time
- I Tipologie di sistemi di elaborazione per il controllo (sempre al "livello dei controlli" nella piramide dell'automazione)

Tipologie di Elaboratori Digitali Real Time per il Controllo (detti Controllori Real Time)

- Controllori Embedded
- Controllori Industriali o General Purpose

Ing. Gianluca Palli - Sistemi e Tecnologie per l'Automazione LM

Controllori embedded

- Sistemi di controllo dedicati ad una particolare applicazione (o ad <u>una classe ristretta)</u>
 Progettati o commissionati da realizzatore di sistemi di controllo
- Progettati o commissionati da realizzatore di sistemi di controllo
 sono pa<u>rte integrante del sistema</u>, posizionato direttamente sul plant
- HW generalemente customa "livello di costruttore di sistema di controllo": schede a µP, µC, DSP
- S.O. real-time custom fortemente orientato all'applicazione specifica • Time driven, event driven o ibridi
- Attenzione alla predicibilità
- Attività hard real-time prevalgono:

Ing. Gianluca Palli - Sistemi e Tecnologie per l'Automazione LM

<u>controllo digitale</u> regolatori standard (PID) e <u>non</u>
 Industria aerospaziale, automobilistica, robotica, azionamenti
 elettrici, alimentatori di Power Electronics speciali

Tipologie di Controllori Real Time

Controllori 4

Controllori 5

Controllori industriali

- Realizzati per coprire una vasta gamma di applicazioni di controllo (General purpose)
 - Progettati da costruttore di "controllori general purpose"
- Es: Controllori Logici Programmabili (<u>PLC</u>), soft-PLC, Distributed Control Systems DCS
 - In altra parte del corso approfondiremo i PLC...
 - Attenzione: confusione sul termine DCS
 - <u>Architettura</u> implementativa al livello dei controlli della Piramide dell'Automazione con più elaboratori è Distribuita (ovvero è un Distributed Control System)
 - Con DCS si indica anche: particolare tipo <u>di unità di elaborazione</u> per il controllo

Ing. Gianluca Palli - Sistemi e Tecnologie per l'Automazione LM

Sistemi Real Time e i Sistemi di Controllo

Controllori industriali

- HW: general purpose (PC-based) o "custom a livello di costruttore di controllori"
 - Tipicamente con architettura modulare a bus(detta a Rack)
 - Tipicamente le CPU utilizzate sono µP particolari e DSP
 - Rari i µC: periferiche per il controllo sui moduli

- Controllori industriali
 - HW: general purpose (PC-based) o "custom a livello di costruttore di controllori"
 - Tipicamente con architettura modulare a bus (detta a Rack) Configurabilità e modularità
 - adattare l'I/O dell'unità di controllo general purpose alla particolare applicazione (interfacciamento sensori e comunicazione)
 - NB: i PC hanno una architettura a bus

Controllori industriali

- HW: general purpose (PC-based) o "custom a livello di costruttore di controllori"
 - Tipicamente con architettura modulare a bus(detta a Rack) • Varie tipologie di bus:
 - Bus proprietari:
 - Definiti dal costruttore del controllore industriale
 - Bus standard:
 - Dal mondo PC: ISA, EISA, PCI, PCI+
 - Dal mondo PC Industriale: PC104, PC104+
 - Tipicamente industriale: VME
 - Elevate prestazioni
 - Anche interconnessione di diverse CPU della stessa unità di elaborazione (sistema multiprocessore)
 - Attenzione BUS INTERNO ALL'ELABORATORE
 - Non confondere con i bus esterni come i bus di campol

Ing. Gianluca Palli - Sistemi e Tecnologie per l'Automazione LM

Tipologie di Controllori Real Time

Controllori 8

Controllori 9

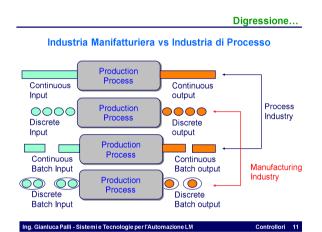
Controllori industriali

- S.O. Real-Time:
 - Definito dal Costruttore del Controllore Tipicamente TIME DRIVEN (soprattutto nei PLC)
- Rende trasparente il bus
- Virtualizza le periferiche e la gestione del tempo (ovviamente...) Spesso <u>commerciale/Standard</u>: VxWorks, RTAI Linux, FemLab, InTime, WinRTX
- Applicazioni: definite da progettista del sistema di controllo finale • Interfaccia di programmazione fornita dal costruttore del
 - controllore
 - · spesso maschera la mappatura implementativa (modello di spesso maschera la mappatura imperientativa (modello di esecuzione)
 sarà più chiaro in seguito quando si vedrà la programmazione del
 - controllo di seguenze per PLC

Controllori industriali **DUE GRANDI FAMIGLIE**

PLC:

- Soprattutto <u>Controllo di</u>
 <u>sequenze</u>
- Soft Real time
- Utilizzo:
- Industria manifatturiera (+)
- Industria di processo (-)


Ing. Gianluca Palli - Sistemi e Tecnologie per l'Automazione LM

Soprattutto <u>Controllo digitale</u>
 <u>STANDARD (PID)</u>

DCS:

- Hard Real time
- Tsample = 1-10ms
- Utilizzo:
- Industria di processo (+) Industria manifatturiera (-)

Controllori 10

Digressione...

Controllori 12

Industria Manifatturiera vs Industria di Processo

Industria Manifatturiera:

- Industria di processo: Produzione/distribuzione energia elettrica
- Produzione pezzi meccanici Produzione veicoli
- Produzione schede/componenti elettronici
- Produzione elettrodomestici
- Produzione alimenti confezionati
 Cibo solido
 - Bevande
 - Dolciumi

Produzione farmaci per il

- consumatore
- 0

- Distribuzione gas/acqua
 Industria chimica
- Industria petrolifera
- Produzione della carta
 Produzione alimenti sfusi

Ing. Gianluca Palli - Sistemi e Tecnologie per l'Automazione LM

4

Prima Considerazione:

Tipicamente:

- Controllori embedded:
 - sono <u>dentro ai prodotti finali (che necessitano di controllo)</u> • Automobile, Aereo, Azionamento elettrici...
- Controllori industriali
 - servono per controllare i sistemi di produzione
 - Produzione automobili, aerei, cioccolatini...

Ci sono delle eccezioni:

- In prodotti "grandi" (es: aeroplani) si possono anche usare controllori industriali
- Porzioni particolari di un sistema di produzione: controllo
 embedded
 - Es: sistema di taglio al laser

Ing. Gianluca Palli - Sistemi e Tecnologie per l'Automazione LM

Tipologie di Controllori Real Time

Seconda Considerazione:

- Tipicamente:
- Controllori embedded:
- realizzati da "<u>costruttori/realizzatori di sistemi di controllo</u>": HW, SO, Ambiente di sviluppo e SW applicativo sviluppato/gestito dalla stessa azienda
- Automotive, Azionamenti elettrici...
- Controllori industriali
- realizzati da "<u>costruttori di controllori</u>": HW, S.O. e ambiente di sviluppo fatto dal "costruttore di controllori"
- SW applicativo fatto da "realizzatore di sistemi di controllo"
- Macchine automatiche/utensili
- Industria di processo

Ing. Gianluca Palli - Sistemi e Tecnologie per l'Automazione LM

Controllori 14

Controllori 15

Controllori 13

Tipologie di Controllori Real Time

Seconda Considerazione (cont.):

Attenzione:

- Ci possono essere situazioni che stimolano approcci diversi: controllori industriali realizzati da "costruttori di sistemi di
- controllo"
- Riduzione costi
 - Solo per elevato numero di pezzi
- Maggiore protezione del proprio know how
- Indipendenza dal costruttore di controlli
 - Monofornitore...
- Attenzione: difficile ottenere le stesse prestazioni
 - ◆ Team di progetto articolato: HW/SW/Controlli
 - Casistica per la verifica
 - Aggiornamenti

Ing. Gianluca Palli - Sistemi e Tecnologie per l'Automazione LM

Alcune architetture tecnologiche basate su Controllori Industriali

Architetture basate su controllori industriali

Introduzione:

Modello <u>generale</u> per architettura tecnologica ("livello dei controlli" nella P.A.)

Ing. Gianluca Palli - Sistemi e Tecnologie per l'Automazione LM

Si analizzano alcune architetture tecnologiche <u>specifiche</u> molto usate:

- per industria di processo

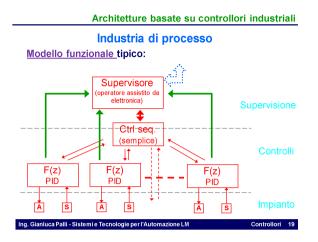
- per industria manifatturiera
- PLC e Motion Control

Ing. Gianluca Palli - Sistemi e Tecnologie per l'Automazione LM

Controllori 17

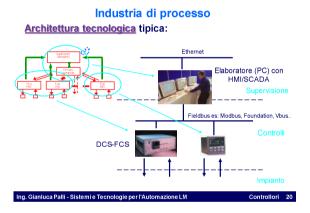
Controllori 18

Controllori 16


Architetture basate su controllori industriali

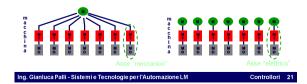
Industria di processo

Modello funzionale tipico:


- Unità di riferimento: impianto (o parte di esso)
- Controllo di diretto di variabili temporali prevale (PID domina)
 - Controllo Digitale (ancora qualche soluzione analogica omeccanica...)
 Controllo di portata, di pressione, livello, reazione chimica,
 - Controllo di portata, di pressione, livello, reazione chimic ampiezza e frequenza della tensione elettrica prodotta
- Controllo di sequenze modesto:
 - Avvio funzionamento di regime Arresto + Emergenze
 - Poche sequenze nel funzionamento di regime
 - Rare azioni dirette sul campo
 - Spesso gestito manualmente da operatore
- Monitoraggio dell'operatore molto approfondito e continuo

Ing. Gianluca Palli - Sistemi e Tecnologie per l'Automazione LM

Architetture basate su controllori industriali



Architetture basate su controllori industriali

Industria manifatturiera

Modello funzionale tipico:

- Unità di riferimento: Macchina (o parte di essa)
- Insieme di meccanismi che devono produrre moto coordinato
 In passato: vincoli meccanici
 - Oggigiorno: sempre più con controllo elettronico []
 azionamenti elettrici
 - Camme Elettriche o Elettroniche
 - Es: macchina etichettatrice (introduzione al corso)

Architetture basate su controllori industriali

Industria manifatturiera

Modello funzionale tipico:

Controllo di sequenze rilevante:

Quasi esclusivamente automatico

- Sequenze di lavorazione/movimentazione:
- Innescano: - diverse traiettorie di moto
- diverse interdipendenze tra gli organi

Ing. Gianluca Palli - Sistemi e Tecnologie per l'Automazione LM

Rilevanti azioni dirette sul campo

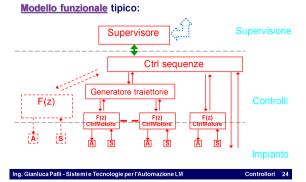
Architetture basate su controllori industriali

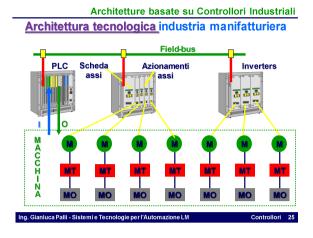
Controllori 22

Controllori 23

Industria manifatturiera

Modello funzionale tipico (continuazione):


- Controllo di diretto di variabili temporali
 - Quasi esclusivamente confinato all'interno degli
 - azionamenti elettrici
 - Visti spesso come attuatori Controllo Embedded
 - Altre rare occorrenze


 - Controllo temperatura colla per etichettatura • Controllo di tiro di nastri
- Monitoraggio/intervento dell'operatore saltuario
 - Solo per cambio rilevante nel funzionamento
 - Es: Cambio Formato

Ing. Gianluca Palli - Sistemi e Tecnologie per l'Automazione LM

Architetture basate su controllori industriali

Industria manifatturiera

Architetture basate su Controllori Industriali Architettura Tecnologica per Ind. Manifatturiera:

Variante Importante

- L'architettura vista ora I Macchine Automatiche
- Per MACCHINE UTENSILI A CONTROLLO NUMERICO alcune differenze
 - Simile ad Architettura dell'industria manifatturiera per la parte di Motion Control
 - Però specifiche diverse
 - ♦ Precisione ↑ ♦ Velocità
 - NB: in generale
 - Differente la generazione di traiettorie e sequenze di lavoro: Sistemi CAD/CAM

potrebbe non esservi un controllo di sequenze esplicito [] NO PLC

Ing. Gianluca Palli - Sistemi e Tecnologie per l'Automazione LM Controllori 26

> Architetture basate su Controllori Industriali Nota: Impostazione del corso

- Viste alcune architetture tecnologiche bassate su Ctrl Real-time
- ... ce ne sono molte altre
- Scopo di questa parte del corso:
 - NON ELENCARE tante soluzioni tecnologiche,

 - ma FORNIER METODO PER COMPRENDERE E CLASSIFICARE una gualunque architettura tecnologica per il livello dei controlli della PA (anche tramite gli esempi visti)
- Cardini del metodo:
 - Ogni soluzione è generalmente conforme alla arch. generale vista a inizio corso
 - Dietro ogni soluzione tecnologica c'è un modello funzionale Esplicito o implicito
 - Bisogna metterlo in luce!
 - Architetture funzionali del livello dei controlli della PA in genere sono conformi al modello generale visto a inizio corso.

Controllori 27

Ing. Gianluca Palli - Sistemi e Tecnologie per l'Automazione LM

9

Laurea Magistrale in Ingegneria Informatica Laurea Magistrale in Ingegneria Elettronica e Telecomunicazioni per lo Sviluppo Sostenibile

Sistemi E Tecnologie per l'Automazione LM

Tipologie di Elaboratori Digitali Real Time per il Controllo (Controllori Real Time) FINE Ing. Gianluca Palli DEI - Università di Bologna Tel. 051-2093186 E-mail: gianluca.palli@unibo.it http://www-lar.deis.unibo.it/people/gpalli/