
Programming Intentional Agents
in AgentSpeak(L) & Jason

Autonomous Systems
Sistemi Autonomi

Michele Piunti & Andrea Omicini
andrea.omicini@unibo.it

Dipartimento di Informatica – Scienza e Ingegneria (DISI)
Alma Mater Studiorum – Università di Bologna

Academic Year 2015/2016

Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 1 / 57

Outline

1 Implementing BDI Architectures

2 AgentSpeak(L)

3 Jason

4 Conclusions

Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 2 / 57

Implementing BDI Architectures

Outline

1 Implementing BDI Architectures

2 AgentSpeak(L)

3 Jason

4 Conclusions

Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 3 / 57

Implementing BDI Architectures

BDI Abstract Control Loop

[RG95]
1. initialize-state();

2. while true do

3. options := option-generator(event-queue);

4. selected-options := deliberate(options);

5. update-intentions(selected-options);

6. execute();

7. get-new-external-events();

8. drop-successful-attitudes();

9. drop-impossible-attitudes();

10. end-while

Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 4 / 57

Implementing BDI Architectures

Structure of BDI Systems

BDI architectures are based on the following constructs

1 a set of beliefs

2 a set of desires (or goals)
3 a set of intentions

or better, a subset of the goals with an associated stack of plans for
achieving them; these are the intended actions

4 a set of internal events

elicited by a belief change (i.e., updates, addition, deletion) or by goal
events (i.e. a goal achievement, or a new goal adoption)

5 a set of external events

perceptive events coming form the interaction with external entities
(i.e. message arrival, signals, etc.)

6 a plan library (repertoire of actions) as a further (static) component

Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 5 / 57

Implementing BDI Architectures

Basic Architecture of a BDI Agent [Woo02]

BRF

Effectors

Action

Filter

Beliefs

Desires

Intentions

Agent

Generate
Options

Sensors

Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 6 / 57

Implementing BDI Architectures

Procedural Reasoning System (PRS)

PRS is one of the first BDI architectures [GL87]

PRS is a goal-directed and reactive planning system

goal-directedness allows reasoning about / performing complex tasks
reactiveness allows handling real-time behaviour in dynamic
environments

PRS is applied for high-level reasoning of robot, airport traffic control
systems etc.

Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 7 / 57

Implementing BDI Architectures

PRS Architecture

Data
Input Monitor

Sensors

Effectors

Command
Generator

Data
Output

System
Interface Environment

Data Base
(Beliefs)

KAS
(Plans)

Goals
(Desires)

Stack
(Intentions)

Interpreter
(Reasoner)

Agent

Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 8 / 57

AgentSpeak(L)

Outline

1 Implementing BDI Architectures

2 AgentSpeak(L)

3 Jason

4 Conclusions

Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 9 / 57

AgentSpeak(L)

AgentSpeak(L)

AgentSpeak(L). . .

is an abstract language used for describing and programming BDI
agents

inspired by PRS, dMARS [dKLW98], and BDI Logics [RG95]

originally proposed by Anand S. Rao [Rao96]

extended so as to make it a practical agent programming language
[BH06]

programs can be executed by the Jason platform [BHW07]

has an operational semantics for extensions of AgentSpeak(L)
providing a computational semantics for BDI concepts

Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 10 / 57

AgentSpeak(L) Syntax

Outline

1 Implementing BDI Architectures

2 AgentSpeak(L)
Syntax
Semantics

3 Jason
Reasoning Cycle
Jason Programming Language
Advanced BDI aspects

4 Conclusions

Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 11 / 57

AgentSpeak(L) Syntax

Syntax of AgentSpeak(L)

The main language constructs of AgentSpeak are

Beliefs — current state of the agent, information about
environment, and other agents

Goals — state the agent desire to achieve and about which he
brings about (Practical Reasoning) based on internal
and external stimuli

Plans — recipes of procedural means the agent has to change
the world and achieve his goals

The architecture of an AgentSpeak agent has four main components
1 Belief Base
2 Plan Library
3 Set of Events
4 Set of Intentions

Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 12 / 57

AgentSpeak(L) Syntax

Beliefs and Goals

Beliefs

Beliefs If b is a predicate symbol, and t1, ..., tn are (first-order)
terms, b(t1, ..., tn) is a belief atom

ground belief atoms are base beliefs
if Φ is a belief atom, Φ and ¬Φ are belief literals

Goals

Goals If g is a predicate symbol, and t1, ..., tn are terms,
!g(t1, ..., tn) and ?g(t1, ..., tn) are goals

1 ‘!’ means Achievement Goals (Goal to do)
2 ‘?’ means Test Goals (Goal to know)

Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 13 / 57

AgentSpeak(L) Syntax

Events I

Events occur as a consequence of changes in the agent’s belief base
or goal states

Events may signal to the agent that some situation is requiring
servicing (triggering events)

The agent indeed is supposed to react to such events by finding a
suitable plan(s)

Due to events and goal processing, AgentSpeak(L) architectures are
both

reactive
proactive

Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 14 / 57

AgentSpeak(L) Syntax

Events II

Events

Events If b(t) is a belief atom, !g(t) and ?g(t) are goals, then
+b(t),−b(t),+!g(t),+?g(t),−!g(t), and −?g(t) are
triggering events

Let Φ be a literal, then the AgentSpeak triggering events are the
following

+Φ Belief addition
−Φ Belief deletion

+!Φ Achievement-goal addition
−!Φ Achievement-goal deletion
+?Φ Test-goal addition
−?Φ Test-goal deletion

Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 15 / 57

AgentSpeak(L) Syntax

Plans I

Plans are recipes for achieving goals

Plans declaratively define a workflow of actions

Plans come along with the triggering and the context conditions that
must hold in order to initiate the execution

Plans represent agent’s means to achieve goals (their know-how)

Plans

Plans If e is a triggering event, b1, ..., bn are belief literals (plan
context), and h1, ..., hn are goals or actions (plan body), then
e : b1 ∧ ... ∧ bn← h1; ...; hn
is a plan (where e : c is called the plan’s head)

Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 16 / 57

AgentSpeak(L) Syntax

Plans II

PlanBody

Let Φ be a literal, then the PlanBody (i.e., intentions in AgentSpeak) can
include the following elements:

!Φ Achievement goals

?Φ Test goals

+Φ Belief addition

−Φ Belief deletion

Φ Actions

.Φ Internal Actions (not actually here, this is Jason. . .)

Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 17 / 57

AgentSpeak(L) Syntax

Plans III

General structure of an AgentSpeak plan

triggering_event: context <- body.

the triggering event denotes the events that the plan is meant to
handle

the context represents the circumstances in which the plan can be
used

logical expression, typically a conjunction of literals to be checked
whether they follow from the current state of the belief base (Belief
Formulae)

the body is the course of action to be used to handle the event if the
context is believed true at the time a plan is being chosen to handle
the event

a sequence of actions and (sub) goals to achieve that goal

Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 18 / 57

AgentSpeak(L) Syntax

AgentSpeak(L) Examples

/* Initial Beliefs */

likes(radiohead).

phone_number(covo,"05112345")

/* Belief addition */

+concert(Artist, Date, Venue)

: likes(Artist)

<- !book_tickets(Artist, Date, Venue).

/* Plan to book tickets */

+!book_tickets(A,D,V)

: not busy(phone)

<- ?phone_number(V,N); /* Test Goal to Retrieve a Belief */

!call(N);

. . .;

!choose seats(A,D,V).

Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 19 / 57

AgentSpeak(L) Semantics

Outline

1 Implementing BDI Architectures

2 AgentSpeak(L)
Syntax
Semantics

3 Jason
Reasoning Cycle
Jason Programming Language
Advanced BDI aspects

4 Conclusions

Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 20 / 57

AgentSpeak(L) Semantics

AgentSpeak(L) Semantics I

AgentSpeak(L) has an operational semantics defined in terms of agent
configuration 〈B,P,E ,A, I ,Se , So ,SI 〉, where

B is a set of beliefs

P is a set of plans

E is a set of events (external and internal)

A is a set of actions that can be performed in the environment

I is a set of intentions each of which is a stack of partially
instantiated plans

Se ,So , SI are selection functions for events, options, and intentions

Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 21 / 57

AgentSpeak(L) Semantics

AgentSpeak(L) Semantics II

The selection functions

Se selects an event from E . The set of events is generated either by
requests from users, from observing the environment, or by executing
an intention

So selects an option from P for a given event. An option is an applicable
plan for an event, i.e. a plan whose triggering event is unifiable with
event and whose condition is derivable from the belief base

SI selects an intention from I to execute

Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 22 / 57

AgentSpeak(L) Semantics

Semantics of Intention Execution

Semantics of intention execution
tr : ct ← +ϕ; ...⇒ generates event +ϕ and updates beliefs. If there is no applicable plan
for +ϕ, discard the event.

tr : ct ← −ϕ; ...⇒ generates event −ϕ and updates beliefs. If there is no applicable plan
for −ϕ, discard the event.

tr : ct ← !ϕ; ...⇒ generates event +!ϕ. If there is no applicable plan for +!ϕ, remove
plan and generate −!ψ if tr = +!ψ (or −?ψ if tr = +?ψ).

tr : ct ← ?ϕ; ...⇒ generates event +?ϕ If there is no applicable plan for +?ϕ, remove
plan and generate −!ψ if tr = +!ψ (or −?ψ if tr = +?ψ).

tr : ct ← ϕ; ...⇒ if the action fails, remove plan and generate −!ψ if tr = +!ψ (or −?ψ
if tr = +?ψ).

tr : ct ← .ϕ; ...⇒ if the internal action fails, remove plan and generate −!ψ if tr = +!ψ
(or −?ψ if tr = +?ψ).

If no plan is applicable for a generated −!ψ or −?ψ, then the whole
intention is disregarded and an error message is printed

Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 23 / 57

AgentSpeak(L) Semantics

Agent Configuration

Configuration of an AgentSpeak agent

〈ag ,C ,M,T , s〉

ag is an AgentSpeak program consisting of a set of beliefs and plans

C = 〈I ,E ,A〉 is the agent circumstance

M = 〈In,Out,SI 〉 is the communication component

T = 〈R,Ap, ι, ε, ρ〉 is the temporary information component

s is the current step within an agent’s reasoning cycle

Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 24 / 57

AgentSpeak(L) Semantics

Circumstance Component

〈ag ,C ,M,T , s〉

Agent’s circumstance

C = 〈I ,E ,A〉

I is a set of intentions {i , i ′, ...}; each intention i is a stack of partially
instantiated plans

E is a set of events {(tr , i), (tr ′, i ′), ...}; each event is a pair (tr , i),
where tr is a triggering event and i is an intention (a stack of plans in
case of an internal event or T representing an external event)

A is a set of actions to be performed in the environment; an action
expression included in this set tells other architecture components to
actually perform the respective action on the environment, thus
changing it.

Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 25 / 57

AgentSpeak(L) Semantics

Communication Component

〈ag ,C ,M,T , s〉

Agent’s communication

M = 〈In,Out,SI 〉

In is the mail inbox: the system includes all messages addressed to
this agent in this set

Out is where the agent posts all messages it wishes to send to other
agents

SI is used to keep track of intentions that were suspended due to the
processing of communication messages

Message

〈messageid , agentid , ilf , content〉

Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 26 / 57

AgentSpeak(L) Semantics

Communication Component

〈ag ,C ,M,T , s〉

Agent’s communication

M = 〈In,Out,SI 〉

In is the mail inbox: the system includes all messages addressed to
this agent in this set

Out is where the agent posts all messages it wishes to send to other
agents

SI is used to keep track of intentions that were suspended due to the
processing of communication messages

Message

〈messageid , agentid , ilf , content〉
Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 26 / 57

AgentSpeak(L) Semantics

Temporary Information Component

〈ag ,C ,M,T , s〉

Temporary information

T = 〈R,Ap, ι, ε, ρ〉

R for the set of relevant plans (for the event being handled)

Ap for the set of applicable plans (the relevant plans whose context
are true)

ι, ε and ρ keep record of a particular intention, event and applicable
plan (respectively) being considered along the execution of an agent

Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 27 / 57

AgentSpeak(L) Semantics

Deliberation Steps

The current step s within an agent’s reasoning cycle is one of the following
elements:

ProcMsg processing a message from the agent’s mail inbox

SelEv selecting an event from the set of events

RelPl retrieving all relevant plans

ApplPl checking which of those are applicable

SelAppl selecting one particular applicable plan (the intended means)

AddIM adding the new intended means to the set of intentions

SelInt selecting an intention

ExecInt executing the select intention

ClrInt clearing an intention or intended means that may have
finished in the previous step

Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 28 / 57

Jason

Outline

1 Implementing BDI Architectures

2 AgentSpeak(L)

3 Jason

4 Conclusions

Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 29 / 57

Jason Reasoning Cycle

Outline

1 Implementing BDI Architectures

2 AgentSpeak(L)
Syntax
Semantics

3 Jason
Reasoning Cycle
Jason Programming Language
Advanced BDI aspects

4 Conclusions

Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 30 / 57

Jason Reasoning Cycle

Jason [BHW07]

Developed by Jomi F. Hübner and Rafael H. Bordini

Jason implements the operational semantics of a variant of
AgentSpeak [BH06]

Extends AgentSpeak, which is meant to be the language for defining
agents

Adds a set of powerful mechanism to improve agent abilities

Extensions aimed at a more practical programming language

High level language to define agents (goal oriented) behaviour
Java as low level language to realise mechanisms (i.e. agent internal
functions) and customise the architecture

Comes with a framework for developing multi-agent systems 1

1http://jason.sourceforge.net/
Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 31 / 57

http://jason.sourceforge.net/

Jason Reasoning Cycle

Jason Architecture

SI

Events
External

Event
Selected

SE

Beliefs to
Add and

Delete

Relevant
Plans

New Plan
Push

Intention
Updated

OS

Applicable

Plans

Means

Intended

Events
External

Plan
Library

Events

Internal
Events

3

checkMail

Intentions

Execute
Intention

...New
New

9

Belief
Base

New
Intention

Percepts

act

Selected
Intention

Intentions

Action

Percepts
1 2

BUF

10

Events

Context

Check

Event

Unify

BRF

Beliefs

Agent

sendMsg

Beliefs

8

Messages

Plans

perceive

7

5

6

Actions

Beliefs

Suspended Intentions
(Actions and Msgs)

...

.send

SocAcc

4

Messages Messages
SM

Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 32 / 57

Jason Reasoning Cycle

Jason Reasoning Cycle

1 perceiving the environment

2 updating the belief base

3 receiving communication from other agents

4 selecting ‘socially acceptable’ messages

5 selecting an event

6 retrieving all relevant plans

7 determining the applicable plans

8 selecting one applicable plan

9 selecting an intention for further execution

10 executing one step of an intention

Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 33 / 57

Jason Reasoning Cycle

jason.asSemantics.TransitionSystem

public void reasoningCycle() {

try {

C.reset(); //C is actual Circumstance

if (nrcslbr >= setts.nrcbp()) {

nrcslbr = 0;

ag.buf(agArch.perceive());

agArch.checkMail();

}

nrcslbr++; // counting number of cycles

if (canSleep()) {

if (ag.pl.getIdlePlans() != null) {

logger.fine("generating idle event");

C.addExternalEv(PlanLibrary.TE_IDLE);

} else {

agArch.sleep();

return;

} }

step = State.StartRC;

do {

if (!agArch.isRunning()) return;

applySemanticRule();

} while (step != State.StartRC);

ActionExec action = C.getAction();

if (action != null) {

C.getPendingActions().put(action.getIntention().getId(), action);

agArch.act(action, C.getFeedbackActions());

}

} catch (Exception e) {

conf.C.create(); //ERROR in the transition system, creating a new C

}

}
Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 34 / 57

Jason Jason Programming Language

Outline

1 Implementing BDI Architectures

2 AgentSpeak(L)
Syntax
Semantics

3 Jason
Reasoning Cycle
Jason Programming Language
Advanced BDI aspects

4 Conclusions

Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 35 / 57

Jason Jason Programming Language

Jason as an Agent Programming Language

Jason include all the syntax and the semantics already defined for
AgentSpeak

boolean operators

==, <, <=, >, >=, &, |, \==, not

arithmetic

+, -, /, *, **, mod, div

then, Jason includes several extesions

e.g.: let Φ be a literal, then a Jason PlanBody can include the
following additional elements:

!!Φ to launch a given plan Φ as a new intention (the new intention will
not be related to the current one, its execution will be as if it is in a
new thread)
−+ Φ to update a Belief Φ in an atomic fashion (atomic deletion and
update)

Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 36 / 57

Jason Jason Programming Language

Belief Annotations

Jason introduces the notion of annotated predicates:

ps(t1, ..., tn)[a1, ..., am]

where ai are first order terms

All predicates in the belief base have a special annotation source(si)
where si ∈ {self , percept} ∪ AgId

myLocation(6,5)[source(self)].

red(box1)[source(percept)].

blue(box1)[source(ag1)].

Agent developer can define customised predicates (i.e. grade of
certainty on that belief)

colourblind(ag1)[source(self),doc(0.7)].

lier(ag1)[source(self),doc(0.2)].

Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 37 / 57

Jason Jason Programming Language

Strong Negation

Strong negation (operator ∼) is another Jason extension to
AgentSpeak
To allow both closed-world and open-world assumptions
+!pit_stop(fuel(T), tires(_))

: not raining & not ~raining /* Lack of knowledge:

there is no belief indicating raining

neither belief indicating ~raining */

<- -+tires(intermediate); /* Atomic Belief Update */

!fuel(T+2);

...

+!pit_stop(fuel(T), tires(_))

: raining /* There is a belief indicating raining */

<- -+tires(rain); /* Atomic Belief Update */

!fuel(T+5);

...

+!pit_stop(fuel(T), tires(_))

: ~raining /* There is a belief indicating ~raining */

<- -+tires(slick); /* Atomic Belief Update */

!fuel(T);

...

Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 38 / 57

Jason Jason Programming Language

Belief Rules

In Jason, beliefs (and their annotations) can be pre-processed with
Prolog-like rules:

likely_color(Obj,C)

:- colour(Obj,C)[degOfCert(D1)]

& not (

colour(Obj,_)[degOfCert(D2)]

& D2 > D1)

& not ~colour(Obj,B).

Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 39 / 57

Jason Jason Programming Language

Handling Plan Failures

Handling plan failures is very important when agents are situated in
dynamic and non-deterministic environments

Goal-deletion events are another Jason extension to AgentSpeak

-!g

To create an agent that is blindly committed to goal g:
+!g(X) : goalstate

<- true.

+!g(X) : not goalstate

<- ...

?g.

...

-!g : true /* Goal deletion event */

<- !g.

Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 40 / 57

Jason Jason Programming Language

Plan Annotations

Plan can have annotations too (e.g., to specify meta-leval information)

Selection functions (Java) can use such information in plan/intention
selection

Possible to change those annotations dynamically (e.g., to update
priorities)

Annotations go in the plan label

@aPlan[chance_of_success(0.3), usual_payoff(0.9),

any_other_property]

+!g(X) : c(t)

<- a(X).

(chanche of success * usual payoff) is the expected utility for
that plan

Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 41 / 57

Jason Jason Programming Language

Internal Actions

In Jason plans can contain an additional structure: internal action .Φ

Self-Contained actions which code is packed and atomically executed
as part of the agent reasoning cycle

Internal actions can be used for special purpose activities

to interact with Java objects
to invoke legacy systems elegantly
as we will see in the rest of the course, to use artifacts in A&A systems

Example of user defined internal action:

userLibrary.userAction(X,Y,R)

can be used to manipulate parameters X ,Y and unify the result of
that manipulation in R

Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 42 / 57

Jason Jason Programming Language

Defining New Internal Actions

Internal action: myLib.randomInt(M, N) unifies N with a random int
between 0 and M.

package myLib;

import jason.JasonException;

import jason.asSemantics.*;

import jason.asSyntax.*;

public class randomInt extends DefaultInternalAction {

private java.util.Random random = new java.util.Random();

@Override

public Object execute(TransitionSystem ts, Unifier un, Term[] args) throws Exception {

if (!args[0].isNumeric() || !args[1].isVar())

throw new JasonException("check arguments");

try {

int R = random.nextInt(((numberTerm)args[0]).solve());

return

un.unifies(args[1], new NumberTermImpl(R));

} catch (Exception e) {

throw new JasonException("Error in internal action ’randomInt’", e);

}

}

}

Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 43 / 57

Jason Jason Programming Language

Predefined Internal Actions

Many internal actions are available for: printing, sorting, list/string
operations, manipulating the beliefs/annotations/plan library,
waiting/generating events, etc. (see jason.stdlib)

Predefined internal actions have an empty library name
.print(1,X,“bla”) prints out to the console the concatenation of the string representations

of the number 1, of the value of variable X , and the string “bla”
.union(S1,S2,S3) S3 is the union of the sets S1 and S2 (represented by lists). The result

set is sorted
.desire(D) checks whether D is a desire: D is a desire either if there is an event with

+!D as triggering event or it is a goal in one of the agent’s intentions
.intend(I) checks if I is an intention: I is an intention if there is a triggering event

+!I in any plan within an intention; just note that intentions can be
suspended and appear in E, PA, and PI as well

.drop desire(I) removes events that are goal additions with a literal that unifies with the
one given as parameter

.drop intention(I) drops all intentions which would make .intend true

Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 44 / 57

Jason Jason Programming Language

Internal Actions used for Message Passing

Sender Agent A sends a message to agent B using a special internal
action:

.send(B, ilf, m(X))

.broadcast(ilf, m(X))

B is the unique name of the agent that will receive the
message (or a list of names)
ilf ∈ {tell , untell , achieve, unachieve,
askOne, askAll , askHow , tellHow , untellHow}
m(X) the content of the message

Receiver Agent B receives the message from A as a triggering event

Handles it by customizing a reaction:

+m(X)[source(A)] : true

<- dosomething;...

Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 45 / 57

Jason Jason Programming Language

Environments

To build and deploy a MAS you need to rely on some sort of
environment where the agents are situated

The environment has to be designed (and implemented as well)

There are two ways to do this:
1 defining perceptions and actions so to operate on specific environments

this is done defining in Java lower-level mechanisms, and by specialising
the Agent Architecture and Agent classes (see later)

2 creating a ‘simulated’ environment

this is done in Java by extending Jason’s Environment class and using
methods such as addPercept(String Agent, Literal Percept)

Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 46 / 57

Jason Jason Programming Language

Example of an Environment Class

import jason.*;

import ...;

public class myEnv extends Environment{

....

public myEnv() {

Literal loc = Literal.parseLiteral("location(3,5)");

addPercept(pos1);

}

public boolean executeAction(String ag, Term action) {

if (action.equals(...)) {

addPercept(ag,

Literal.parseLiteral("location(souffle,c(3,4))");

}

...

return true;

}

}

Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 47 / 57

Jason Advanced BDI aspects

Outline

1 Implementing BDI Architectures

2 AgentSpeak(L)
Syntax
Semantics

3 Jason
Reasoning Cycle
Jason Programming Language
Advanced BDI aspects

4 Conclusions

Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 48 / 57

Jason Advanced BDI aspects

Hierarchical Planning I

hierarchical abstraction is a well-known principle

exhibits a great effectiveness in planning

used to reduce a composite intention – or a given task – to a greater
number of independent sub-intentions – or sub-tasks – placed at a
lower level of abstraction

an agent can manage at runtime an alternating hierarchy of
(meta)goals and plans, which emerge from top-level goals over plans
to subgoals and so forth

this highly simplifies the structure of plans
allow the plans to be conceived around self-contained actions (the leafs
of the goal hierarchy) which can be reused with different purposes too

defined having in mind the problem domain (the goal to be achieved)
and trying to immagine those fine grained actions which in turn are
supposed to accomplish the required activities

Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 49 / 57

Jason Advanced BDI aspects

Hierarchical Planning II

differently from traditional planning systems, which mainly make an
offline planning, Intentional Systems need to plan in dynamic
environments and need to cope changing contexts and situations
[SdSP06]

Planning Systems is offline — can create plans to achieve goals by
composing actions in repertoire

BDI planning hybrid approach — the plans are defined at design time and
at the language level but their execution is ruled by the
architecture (means ends reasoning) according to context
conditions (i.e., Jason, Jadex) or planning rules (i.e., 2APL).

Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 50 / 57

Conclusions

Outline

1 Implementing BDI Architectures

2 AgentSpeak(L)

3 Jason

4 Conclusions

Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 51 / 57

Conclusions

Conclusions

AgentSpeak goal-oriented notion of agency
mentalistic notions as building blocks
agent programming
logic + BDI
operational semantics

Jason AgentSpeak interpreter
implements the operational semantics
support for Agent Comunication Language
highly customisable, open source

Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 52 / 57

Bibliography

Bibliography I

Rafael H. Bordini and Jomi F. Hübner.
BDI agent programming in AgentSpeak using Jason (tutorial paper).
In Francesca Toni and Paolo Torroni, editors, Computational Logic in
Multi-Agent Systems, volume 3900 of Lecture Notes in Computer
Science, pages 143–164. Springer, April 2006.
6th International Workshop, CLIMA VI, London, UK, June 27-29,
2005. Revised Selected and Invited Papers.

Rafael H. Bordini, Jomi F. Hübner, and Michael J. Wooldridge.
Programming Multi-Agent Systems in AgentSpeak using Jason.
John Wiley & Sons, Ltd, October 2007.
Hardcover.

Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 53 / 57

Bibliography

Bibliography II

Mark d’Inverno, David Kinny, Michael Luck, and Michael Wooldridge.
A formal specification of dMARS.
In Intelligent Agents IV Agent Theories, Architectures, and
Languages, volume 1365 of Lecture Notes in Computer Science, pages
155–176. Springer Berlin Heidelberg, 1998.
4th International Workshop, ATAL’97 Providence, Rhode Island, USA,
July 24–26, 1997 Proceedings.

Michael P. Georgeff and Amy L. Lansky.
Reactive reasoning and planning.
In Kenneth Forbus and Howard Shrobe, editors, 6th National
Conference on Artificial Intelligence (AAAI-87), volume 2, pages
677–682, Seattle, WA, USA, 13-17 July 1987. AAAI Press.
Proceedings.

Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 54 / 57

Bibliography

Bibliography III

Anand S. Rao.
AgentSpeak(L): BDI agents speak out in a logical computable
language.
In Walter Van de Velde and John W. Perram, editors, Agents
Breaking Away, volume 1038 of LNCS, pages 42–55. Springer, 1996.
7th European Workshop on Modelling Autonomous Agents in a
Multi-Agent World (MAAMAW’96), Eindhoven, The Netherlands,
22-25 January 1996, Proceedings.

Anand S. Rao and Michael P. Georgeff.
BDI agents: From theory to practice.
In Victor R. Lesser and Les Gasser, editors, 1st International
Conference on Multi Agent Systems (ICMAS 1995), pages 312–319,
San Francisco, CA, USA, 12-14 June 1995. The MIT Press.

Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 55 / 57

Bibliography

Bibliography IV

Sebastian Sardina, Lavindra de Silva, and Lin Padgham.
Hierarchical planning in BDI agent programming languages: A formal
approach.
In Peter Stone and Gerhard Weiss, editors, 5th International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS
’06), pages 1001–1008, Hakodate, Japan, 8-12 May 2006. ACM.

Michael J. Wooldridge.
An Introduction to MultiAgent Systems.
John Wiley & Sons Ltd., Chichester, UK, March 2002.

Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 56 / 57

Programming Intentional Agents
in AgentSpeak(L) & Jason

Autonomous Systems
Sistemi Autonomi

Michele Piunti & Andrea Omicini
andrea.omicini@unibo.it

Dipartimento di Informatica – Scienza e Ingegneria (DISI)
Alma Mater Studiorum – Università di Bologna

Academic Year 2015/2016

Piunti & Omicini (DISI, Univ. Bologna) 5 – AgentSpeak(L) & Jason A.Y. 2015/2016 57 / 57

	Implementing BDI Architectures
	AgentSpeak(L)
	Syntax
	Semantics

	Jason
	Reasoning Cycle
	Jason Programming Language
	Advanced BDI aspects

	Conclusions

