
As far as we are concerned, a signal is function of time with values in C. Time can be discrete or continuous
and the signal can be nonperiodic or periodic:

Continuous Nonperiodic Discrete Nonperiodic

Continuous Periodic Discrete Periodicic

In the discrete time case, we assume that the time-interval between successive instants is a fixed time-unit.
The case of discrete signals measured at irregularly distributed instants is interesting, but we will not cover it.

• Continuous nonperiodic. The signal is a function f :R→C.

• Continuous periodic, with period T > 0. The signal is a function f :R→C with the property that
f(t+T )= f(t)∀t∈R. Since all that matters is knowledge of f on an interval of length T , we can as
well assume that f : [0, T )→C. (Any other interval having length T would do).

• Discrete nonperiodic. The signal is a function f :Z→C. We choose the time-unit in such a way
the distance between successive instants is one unit.

• Discrete periodic. Fix a period N > 1, N ∈ N. The signal is a function f : Z → C such that
f(n+N) = f(n) ∀n∈Z. We can identify f with a function f : {0, 1,
 , N }→C, or with an array (a

vector ) (f(j))j=0
N =









f(0)
f(1)



f(N)









∈CN.

Discrete periodic

Linear algebra in C
N

The case we consider first is that of discrete, periodic signals, which might be seen as a chapter in linear
algebra. We start with a review of basic concepts. We only have to take into account that scalars are complex,
rather than real.

• If f , g∈CN and α∈C, then (f + g)(j):=f(j)+ g(j) and (αf) (j):=αf(j) define the sum f + g and

the product αf . These operations make CN into a vector space. The sum f + g might be seen as the
superposition of the two signals and the product αf might be seen as the amplification of a signal f
by a facor α.

• We want to measure the size of a signal. There are several ways to do that. The simplest one is using

the standard inner product : <g, f >=
∑

j=0
N

g(j)f(j). To measure the size, then, we use the standard

norm : ‖f ‖= <f , f >
√

=
∑

j=0
N−1 |f(j)|2

√

.

Properties of the inner product on the vector space (CN ,+, ·).

• ∀f , g ∈CN⇒<g, f >=<f , g >

• ∀f , g, h∈CN∀a, b∈C⇒<h, af + bg >=a<h, f >+b <h, g >

• ∀f , g, h∈CN∀a, b∈C⇒<af + bg, h>=ā < f , h>+b̄ < g, h>

• ∀f ∈CN ⇒<f , f >>0 and <f , f > 0 if and only if f =0

• ∀f , g ∈CN⇒|<g, f > |6 ‖f ‖ · ‖g‖ (Cauchy-Schwarz inequality)

We can use the norm to define a distance between f , g ∈CN. We set it to be ‖g− f ‖.
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The only property whose verification os not trivial is the Cauchy-Schwarz inequality. We start with an
obvious inequality and do some algebra:

0 6
∑

j,k=0

N−1

|f(j)g(k)− g(j)f(k)|2

=
∑

j,k=0

N−1

(f(j)g(k)− g(j)f(k))(f(j)g(k)− g(j)f(k))

=
∑

j,k=0

N−1

|f(j)|2|g(k)|2−
∑

j,k=0

N−1

f(j)g(j) f(k) g(k)−
∑

j,k=0

N−1

g(j)f(j) g(k) f(k)+
∑

j,k=0

N−1

|g(j)|2|f(k)|

= 2
∑

j=0

N−1

|f(j)|2 ·
∑

k=0

N−1

|g(k)|2− 2
∑

j=0

N−1

f(j)g(j) ·
∑

k=0

N−1

g(k)f(k)

= 2





∑

j=0

N−1

|f(j)|2
∑

k=0

N−1

|g(k)|2−

∣

∣

∣

∣

∣

∣

∑

j=0

N−1

f(j)g(j)

∣

∣

∣

∣

∣

∣

2




= 2[‖f ‖2‖g‖2− |<g, f > |2 ].

We have then |<g, f > |26 |<g, f > |2+ 1

2

∑

j,k=0
N−1 |f(j)g(k)− g(j)f(k)|26 ‖f ‖2‖g‖2, as wished.

We can also deduce the cases of equality.

Corollary 1. ∀f , g ∈CN: |<g, f > |= ‖f ‖ · ‖g‖ if and only if 0=
∑

j,k=0
N−1 |f(j)g(k)− g(j)f(k)|2, and the

latter holds if and only if there are a, b∈C, not both vanishing, such that af + bg=0.

That is, equality holds if and only if f and g are linearly dependent. (Exercise: prove the last “if and only
if” in the corollary).

A basis for CN is a family {f0, 
 , fN−1} of elements in CN with the property that any element f in CN

can be written in a unique way as

f =
∑

j=0

N−1

λjfj ,

where λ0,
 , λN−1∈C are scalars whose value depend on f and on the basis. The family {f0,
 , fN−1} is

a basis for CN if and only if, for all λ0,
 , λN−1∈C,

∑

j=0

N−1

λjfj=0 if and only if λ0=
 =λN−1=0.

The basis {f0,
 , fN−1} is orthonormal if <fj,fk>=0 whenever j � k, and ‖fj‖=1 for j=0,
 , N − 1.

In this case,

f =
∑

j=0

N−1

<fj , f > fj.

A special ortonormal basis for CN consists of the functions δj (j=0,
 , N − 1), defined by

δj(k) =

{

0 if k � j

1 if k= j
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The δj’s are called in different ways in different communities: Dirac’s Deltas, Kroenecker’s Delta, unit
impulses.... They have a privilegde role if we have an interpretation fot the parameter j ∈ {0, 1,
 , N − 1}.
Typically, we see j as “time”. Any discrete, periodic signal can be written as linear combination of unit
impulses:

f =
∑

j=0

N−1

<δj , f > δj=
∑

j=0

N−1

f(j)δj.

Linear applications

A linear application A:CN→CM is a map which satifies

A(af + bg)= aAf + bAg

whenever a, b∈C and f , g ∈CN.

A very common case is M =1, Λ:CN→C, which we might think as the (scalar) measurement Af performed
on the signal f . The requirement that Λ be linear much restricts the kind of measurements which are taken
into account.

Another common case is M = N . We might think of this in terms of a system A performing a linear

transformation on the input signals f ∈CN, producing an output signal Af .

Theorem 2. (Riesz-Fisher: finite version, algebraic part) Let Λ:CN→C be linear. Then there exists g∈C

such that

Λ(f)=<g, f >

for f ∈CN. Moreover, g(j)=Λ(δj) j=0,
 , N − 1, provides a formula to recover g from Λ.

Proof.

Λ(f) = Λ





∑

j=0

N−1

f(j)δj





=
∑

j=0

N−1

f(j)Λ(δj)

=
∑

j=0

N−1

f(j)Λ(δj)

= <g, f >,with g=
∑

j=0

N−1

g(j)δj=
∑

j=0

N−1

Λ(δj)δj.

An analogous representation holds in the general case. We only consider N =M .

Theorem 3. (Representation of linear operators on CN: the algebraic part) Let A: CN → CN be a linear

application from CN to itself. Then, there exists an N ×N matrix Ã = [a(k, j)]k=0,
 ,N−1;j=0,
 ,N−1 such
that

A (f)= Ãf ,

where on the right we perform row-times-column multiplication, as usual. Moreover, a(k, j)=<δk, A(δj)>.
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Proof. We can write

A(f) = A





∑

j=0

N−1

f(j)δj





=
∑

j=0

N−1

f(j)A(δj)

hence,

<δk, A(f)> =
∑

j=0

N−1

f(j)<δk, A(δj)>

=
∑

j=0

N−1

a(k, j)f(j),

as wished.

From now on we identify Ã=A.

Assuming that ‖f ‖ is a good way to measure the size of the signal f ∈ CN, a linear measurement Λ or a
linear transformation A will be relatively stable if for ‖f ‖ small, the size |Λ(f)| of the measured quantity or
the size ‖A(f)‖ of the transformed signal are small as well. Observe that we have scalar homogeneity w.r.t. f :

|Λ(af)|= |a| |Λ(f)| and ‖A(af)‖= |a| ‖A(f)‖.

We can then rescale everything and just consider ‖f ‖=1, if we wish so.

The norm of Λ and A will vbe defined accordingly.

9Λ9 = Max‖f‖=1|Λ(f)|=Maxf� 0
|Λ(f)|
‖f ‖

and

9A9 = Max‖f‖=1‖A(f)‖=Maxf� 0
‖A(f)‖
‖f ‖ .

The equality between the expressions on the right in both formulas follows from homogeneity.

Next questions is: is there any reasonable way to compute, or just estimate, the norm of Λ, or of A?

It turns out that the case of Λ (M =1) is easy, that of A (M =N) much less so.

Theorem 4. Let Λ:CN→C, Λ(f) =<g, f > . Then, 9Λ9= ‖g‖.

Proof. By the Cauchy-Schwarz inequality,

|Λ(f)|
‖f ‖ =

|<g, f > |
‖f ‖

6
‖g‖ · ‖f ‖

‖f ‖ = ‖g‖,

then 9Λ96 ‖g‖. In the other direction, let f = g if g� 0 (if g=0 then Λ=0 and 909=0 trivially). Then,

9Λ9>
|Λ(g)|
‖g‖ =

|〈g, g〉|
‖g‖ =

‖g‖2
‖g‖ = ‖g‖.

This finishes the proof.
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When the operator A maps CN to CN, there is no such simple formula, and we have to consider specific
classes of operators. The simplest case is that of the diagonal operators .

Let λ0, λ1,
 , λN ∈C and form the matrix

Diag(λ0,
 , λN)=









λ0 00
 00
0λ1 0
 00




000
 0λN−1









The effect on a unit impulse at time j is Diag(λ0,
 , λN)δj=λjδj: the numbers λj are the eigenvalues , and
the unit impulses the eigenvectors, of the matrix Diag(λ0,
 , λN).

Proposition 5. 9Diag(λ0,
 , λN)9=Max{|λ0|,
 , |λN−1|}.

Proof. Exercise.
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