As far as we are concerned, a signal is function of time with values in \mathbb{C}. Time can be discrete or continuous and the signal can be nonperiodic or periodic:

Continuous Nonperiodic	Discrete Nonperiodic
Continuous Periodic	Discrete Periodicic

In the discrete time case, we assume that the time-interval between successive instants is a fixed time-unit. The case of discrete signals measured at irregularly distributed instants is interesting, but we will not cover it.

- Continuous nonperiodic. The signal is a function $f: \mathbb{R} \rightarrow \mathbb{C}$.
- Continuous periodic, with period $T>0$. The signal is a function $f: \mathbb{R} \rightarrow \mathbb{C}$ with the property that $f(t+T)=f(t) \forall t \in \mathbb{R}$. Since all that matters is knowledge of f on an interval of length T, we can as well assume that $f:[0, T) \rightarrow \mathbb{C}$. (Any other interval having length T would do).
- Discrete nonperiodic. The signal is a function $f: \mathbb{Z} \rightarrow \mathbb{C}$. We choose the time-unit in such a way the distance between successive instants is one unit.
- Discrete periodic. Fix a period $N \geqslant 1, N \in \mathbb{N}$. The signal is a function $f: \mathbb{Z} \rightarrow \mathbb{C}$ such that $f(n+N)=f(n) \forall n \in \mathbb{Z}$. We can identify f with a function $f:\{0,1, \ldots, N\} \rightarrow \mathbb{C}$, or with an array (a vector $)(f(j))_{j=0}^{N}=\left(\begin{array}{c}f(0) \\ f(1) \\ \ldots \\ f(N)\end{array}\right) \in \mathbb{C}^{N}$.

Discrete periodic

Linear algebra in \mathbb{C}^{N}

The case we consider first is that of discrete, periodic signals, which might be seen as a chapter in linear algebra. We start with a review of basic concepts. We only have to take into account that scalars are complex, rather than real.

- If $f, g \in \mathbb{C}^{N}$ and $\alpha \in \mathbb{C}$, then $(f+g)(j):=f(j)+g(j)$ and $(\alpha f)(j):=\alpha f(j)$ define the sum $f+g$ and the product αf. These operations make \mathbb{C}^{N} into a vector space. The sum $f+g$ might be seen as the superposition of the two signals and the product αf might be seen as the amplification of a signal f by a facor α.
- We want to measure the size of a signal. There are several ways to do that. The simplest one is using the standard inner product: $<g, f>=\sum_{j=0}^{N} \overline{g(j)} f(j)$. To measure the size, then, we use the standard norm: $\|f\|=\sqrt{<f, f>}=\sqrt{\sum_{j=0}^{N-1}|f(j)|^{2}}$.

Properties of the inner product on the vector space $\left(\mathbb{C}^{N},+, \cdot\right)$.

- $\forall f, g \in \mathbb{C}^{N} \Rightarrow<g, f>=\overline{<f, g>}$
- $\forall f, g, h \in \mathbb{C}^{N} \forall a, b \in \mathbb{C} \Rightarrow<h, a f+b g>=a<h, f>+b<h, g>$
- $\forall f, g, h \in \mathbb{C}^{N} \forall a, b \in \mathbb{C} \Rightarrow<a f+b g, h>=\bar{a}<f, h>+\bar{b}<g, h>$
- $\forall f \in \mathbb{C}^{N} \Rightarrow<f, f>\geqslant 0$ and $<f, f \geqslant 0$ if and only if $f=0$
- $\forall f, g \in \mathbb{C}^{N} \Rightarrow|<g, f>| \leqslant\|f\| \cdot\|g\|$ (Cauchy-Schwarz inequality)

We can use the norm to define a distance between $f, g \in \mathbb{C}^{N}$. We set it to be $\|g-f\|$.

The only property whose verification os not trivial is the Cauchy-Schwarz inequality. We start with an obvious inequality and do some algebra:

$$
\begin{aligned}
0 & \leqslant \sum_{j, k=0}^{N-1}|f(j) g(k)-g(j) f(k)|^{2} \\
& =\sum_{j, k=0}^{N-1}(f(j) g(k)-g(j) f(k)) \overline{(f(j) g(k)-g(j) f(k))} \\
& =\sum_{j, k=0}^{N-1}|f(j)|^{2}|g(k)|^{2}-\sum_{j, k=0}^{N-1} f(j) \overline{g(j)} \overline{f(k)} g(k)-\sum_{j, k=0}^{N-1} g(j) \overline{f(j)} \overline{g(k)} f(k)+\sum_{j, k=0}^{N-1}|g(j)|^{2}|f(k)| \\
& =2 \sum_{j=0}^{N-1}|f(j)|^{2} \cdot \sum_{k=0}^{N-1}|g(k)|^{2}-2 \sum_{j=0}^{N-1} f(j) \overline{g(j)} \cdot \sum_{k=0}^{N-1} g(k) \overline{f(k)} \\
& =2\left[\sum_{j=0}^{N-1}|f(j)|^{2} \sum_{k=0}^{N-1}|g(k)|^{2}-\left|\sum_{j=0}^{N-1} f(j) \overline{g(j)}\right|^{2}\right] \\
& =2\left[\|f\|^{2}\|g\|^{2}-|<g, f>|^{2}\right] .
\end{aligned}
$$

We have then $\left|<g, f>\left.\right|^{2} \leqslant\left|<g, f>\left.\right|^{2}+\frac{1}{2} \sum_{j, k=0}^{N-1}\right| f(j) g(k)-g(j) f(k)\right|^{2} \leqslant\|f\|^{2}\|g\|^{2}$, as wished.
We can also deduce the cases of equality.

Corollary 1. $\forall f, g \in \mathbb{C}^{N}:|<g, f>|=\|f\| \cdot\|g\|$ if and only if $0=\sum_{j, k=0}^{N-1}|f(j) g(k)-g(j) f(k)|^{2}$, and the latter holds if and only if there are $a, b \in \mathbb{C}$, not both vanishing, such that $a f+b g=0$.

That is, equality holds if and only if f and g are linearly dependent. (Exercise: prove the last "if and only if" in the corollary).
A basis for \mathbb{C}^{N} is a family $\left\{f_{0}, \ldots, f_{N-1}\right\}$ of elements in \mathbb{C}^{N} with the property that any element f in \mathbb{C}^{N} can be written in a unique way as

$$
f=\sum_{j=0}^{N-1} \lambda_{j} f_{j},
$$

where $\lambda_{0}, \ldots, \lambda_{N-1} \in \mathbb{C}$ are scalars whose value depend on f and on the basis. The family $\left\{f_{0}, \ldots, f_{N-1}\right\}$ is a basis for \mathbb{C}^{N} if and only if, for all $\lambda_{0}, \ldots, \lambda_{N-1} \in \mathbb{C}$,

$$
\sum_{j=0}^{N-1} \lambda_{j} f_{j}=0 \text { if and only if } \lambda_{0}=\ldots=\lambda_{N-1}=0
$$

The basis $\left\{f_{0}, \ldots, f_{N-1}\right\}$ is orthonormal if $<f_{j}, f_{k}>=0$ whenever $j \neq k$, and $\left\|f_{j}\right\|=1$ for $j=0, \ldots, N-1$.
In this case,

$$
f=\sum_{j=0}^{N-1}<f_{j}, f>f_{j}
$$

A special ortonormal basis for \mathbb{C}^{N} consists of the functions $\delta_{j}(j=0, \ldots, N-1)$, defined by

$$
\delta_{j}(k)=\left\{\begin{array}{l}
0 \text { if } k \neq j \\
1 \text { if } k=j
\end{array}\right.
$$

The δ_{j} 's are called in different ways in different communities: Dirac's Deltas, Kroenecker's Delta, unit impulses.... They have a privilegde role if we have an interpretation fot the parameter $j \in\{0,1, \ldots, N-1\}$. Typically, we see j as "time". Any discrete, periodic signal can be written as linear combination of unit impulses:

$$
f=\sum_{j=0}^{N-1}<\delta_{j}, f>\delta_{j}=\sum_{j=0}^{N-1} f(j) \delta_{j}
$$

Linear applications

A linear application $A: \mathbb{C}^{N} \rightarrow \mathbb{C}^{M}$ is a map which satifies

$$
A(a f+b g)=a A f+b A g
$$

whenever $a, b \in \mathbb{C}$ and $f, g \in \mathbb{C}^{N}$.
A very common case is $M=1, \Lambda: \mathbb{C}^{N} \rightarrow \mathbb{C}$, which we might think as the (scalar) measurement $A f$ performed on the signal f. The requirement that Λ be linear much restricts the kind of measurements which are taken into account.

Another common case is $M=N$. We might think of this in terms of a system A performing a linear transformation on the input signals $f \in \mathbb{C}^{N}$, producing an output signal $A f$.

Theorem 2. (Riesz-Fisher: finite version, algebraic part) Let $\Lambda: \mathbb{C}^{N} \rightarrow \mathbb{C}$ be linear. Then there exists $g \in \mathbb{C}$ such that

$$
\Lambda(f)=<g, f>
$$

for $f \in \mathbb{C}^{N}$. Moreover, $g(j)=\overline{\Lambda\left(\delta_{j}\right)} j=0, \ldots, N-1$, provides a formula to recover g from Λ.

Proof.

$$
\begin{aligned}
\Lambda(f) & =\Lambda\left(\sum_{j=0}^{N-1} f(j) \delta_{j}\right) \\
& =\sum_{j=0}^{N-1} f(j) \Lambda\left(\delta_{j}\right) \\
& =\sum_{j=0}^{N-1} f(j) \overline{\overline{\Lambda\left(\delta_{j}\right)}} \\
& =<g, f>, \text { with } g=\sum_{j=0}^{N-1} g(j) \delta_{j}=\sum_{j=0}^{N-1} \overline{\Lambda\left(\delta_{j}\right)} \delta_{j} .
\end{aligned}
$$

An analogous representation holds in the general case. We only consider $N=M$.

Theorem 3. (Representation of linear operators on \mathbb{C}^{N} : the algebraic part) Let A : $\mathbb{C}^{N} \rightarrow \mathbb{C}^{N}$ be a linear application from \mathbb{C}^{N} to itself. Then, there exists an $N \times N$ matrix $\tilde{A}=[a(k, j)]_{k=0, \ldots, N-1 ; j=0, \ldots, N-1}$ such that

$$
A(f)=\tilde{A} f
$$

where on the right we perform row-times-column multiplication, as usual. Moreover, $a(k, j)=<\delta_{k}, A\left(\delta_{j}\right)>$.

Proof. We can write

$$
\begin{aligned}
& A(f)=A\left(\sum_{j=0}^{N-1} f(j) \delta_{j}\right) \\
&=\sum_{j=0}^{N-1} f(j) A\left(\delta_{j}\right) \\
& \text { hence, } \\
&<\delta_{k}, A(f)>=\sum_{j=0}^{N-1} f(j)<\delta_{k}, A\left(\delta_{j}\right)> \\
&=\sum_{j=0}^{N-1} a(k, j) f(j),
\end{aligned}
$$

as wished.
From now on we identify $\tilde{A}=A$.
Assuming that $\|f\|$ is a good way to measure the size of the signal $f \in \mathbb{C}^{N}$, a linear measurement Λ or a linear transformation A will be relatively stable if for $\|f\|$ small, the size $|\Lambda(f)|$ of the measured quantity or the size $\|A(f)\|$ of the transformed signal are small as well. Observe that we have scalar homogeneity w.r.t. f :

$$
|\Lambda(a f)|=|a||\Lambda(f)| \text { and }\|A(a f)\|=|a|\|A(f)\| .
$$

We can then rescale everything and just consider $\|f\|=1$, if we wish so.
The norm of Λ and A will vbe defined accordingly.

$$
\begin{aligned}
\|\|\Lambda\| & =\operatorname{Max}_{\|f\|=1}|\Lambda(f)|=\operatorname{Max}_{f \neq 0} \frac{|\Lambda(f)|}{\|f\|} \\
& \text { and } \\
\|A A\| & =\operatorname{Max}_{\|f\|=1}\|A(f)\|=\operatorname{Max}_{f \neq 0} \frac{\|A(f)\|}{\|f\|} .
\end{aligned}
$$

The equality between the expressions on the right in both formulas follows from homogeneity.
Next questions is: is there any reasonable way to compute, or just estimate, the norm of Λ, or of A ?
It turns out that the case of $\Lambda(M=1)$ is easy, that of $A(M=N)$ much less so.

Theorem 4. Let $\Lambda: \mathbb{C}^{N} \rightarrow \mathbb{C}, \Lambda(f)=<g, f>$. Then, $\|\|\Lambda\|=\| g \|$.

Proof. By the Cauchy-Schwarz inequality,

$$
\begin{aligned}
\frac{|\Lambda(f)|}{\|f\|} & =\frac{|<g, f>|}{\|f\|} \\
& \leqslant \frac{\|g\| \cdot\|f\|}{\|f\|}=\|g\|
\end{aligned}
$$

then $\mid\|\Lambda\|\|\leqslant g\|$. In the other direction, let $f=g$ if $g \neq 0$ (if $g=0$ then $\Lambda=0$ and $\|0\| \|=0$ trivially). Then,

$$
\|\Lambda\|\left\|\geqslant \frac{|\Lambda(g)|}{\|g\|}=\frac{|\langle g, g\rangle|}{\|g\|}=\frac{\|g\|^{2}}{\|g\|}=\right\| g \| .
$$

This finishes the proof.

When the operator A maps \mathbb{C}^{N} to \mathbb{C}^{N}, there is no such simple formula, and we have to consider specific classes of operators. The simplest case is that of the diagonal operators.

Let $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{N} \in \mathbb{C}$ and form the matrix

$$
\operatorname{Diag}\left(\lambda_{0}, \ldots, \lambda_{N}\right)=\left(\begin{array}{c}
\lambda_{0} 00 \ldots 00 \\
0 \lambda_{1} 0 \ldots 00 \\
\ldots \\
000 \ldots 0 \lambda_{N-1}
\end{array}\right)
$$

The effect on a unit impulse at time j is $\operatorname{Diag}\left(\lambda_{0}, \ldots, \lambda_{N}\right) \delta_{j}=\lambda_{j} \delta_{j}$: the numbers λ_{j} are the eigenvalues, and the unit impulses the eigenvectors, of the matrix $\operatorname{Diag}\left(\lambda_{0}, \ldots, \lambda_{N}\right)$.

Proposition 5. $\left|\left|\left|\operatorname{Diag}\left(\lambda_{0}, \ldots, \lambda_{N}\right) \|\right|=\operatorname{Max}\left\{\left|\lambda_{0}\right|, \ldots,\left|\lambda_{N-1}\right|\right\}\right.\right.$.

Proof. Exercise.

