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As far as we are concerned, a signal is function of time with values in C. Time can be discrete or continuous
and the signal can be nonperiodic or periodic:

Continuous Nonperiodic | Discrete Nonperiodic
Continuous Periodic Discrete Periodicic

In the discrete time case, we assume that the time-interval between successive instants is a fixed time-unit.
The case of discrete signals measured at irregularly distributed instants is interesting, but we will not cover it.

e Continuous nonperiodic. The signal is a function f:R — C.

e Continuous periodic, with period 7' > 0. The signal is a function f:IR — C with the property that
f(t+T)= f(t) vt € R. Since all that matters is knowledge of f on an interval of length T', we can as
well assume that f:[0,7)— C. (Any other interval having length 7" would do).

e Discrete nonperiodic. The signal is a function f:7Z — C. We choose the time-unit in such a way
the distance between successive instants is one unit.

e Discrete periodic. Fix a period N > 1, N € N. The signal is a function f: Z — C such that
f(n+N)= f(n)V¥n € Z. We can identify f with a function f:{0,1,..., N} — C, or with an array (a
£(0)
vector) (f(j))Neo=| I |eCN.
J(N)
Discrete periodic

Linear algebra in CV

The case we consider first is that of discrete, periodic signals, which might be seen as a chapter in linear
algebra. We start with a review of basic concepts. We only have to take into account that scalars are complex,
rather than real.

o If f,gecCN and a €C, then (f+g)(4):=f(j)+g(j) and (af) (j): =af(j) define the sum f+ g and
the product a.f. These operations make C* into a vector space. The sum f + g might be seen as the
superposition of the two signals and the product o f might be seen as the amplification of a signal f
by a facor a.

e We want to measure the size of a signal. There are several ways to do that. The simplest one is using

the standard inner product: <g, f > :ij:O (7)f(j). To measure the size, then, we use the standard
norm: || fll=v<T, T>= /S0 £
Properties of the inner product on the vector space (CV, 4+, ).

o Vf,geCN=<yg,f>=<f,9>

o Vf g heCNVa,becC=<h,af+bg>=a<h,f>+b<h,g>

o Vf,g,heC™Wa,beC=<af+bg,h>=a<f,h>+b <g,h>

o VfcCN=<f,f>>0and <f, f>0if and only if f=0

o Vf,9eCV=|<g, f>[<]|fll|gl (Cauchy-Schwarz inequality)

We can use the norm to define a distance between f, g€ CN. We set it to be ||g — f].
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The only property whose verification os not trivial is the Cauchy-Schwarz inequality. We start with an
obvious inequality and do some algebra:

N-1
0 < [f(1)g(k) — 9(5) f (k)2
3§, k=0
N-—1
= Z (f()g(k) = g(3) f(R)(f(G)g(k) = 9(5) f(K))
J])Vk—zlo N-—-1 - N-1 - N-—-1
= Z LF()Plg(k)? = Z f()g(d) f(k) g(k) — Z 9 f(G) (k) f(k) + Z lg()IP1f (k)]
J}/\jiol 7,k=0 N1 - N_l_],k:O_ 7,k=0
= 23 [f()I* Z lg(R)1Z=2)  f(i)g(i)- ) g(k)f(k)
JZO = J=0 k=0
—1 - N-1 2
=2/ Y |f( |2Z lg(k)|* - F(5)g(5) ]
j=0 k=0 =0

= 2lfIPIgl?—1<g, f> ]
We have then [<g, f > < |<g, [ >[*+5%7 2o |F()g(k) = 9() fR)P< [ F[Plg )%, as wished.
We can also deduce the cases of equality.

Corollary 1. Vf, g€ CV: |<g, f > | = £ |- lg]l if and only if 0= 1£(7)g(k) — () FU)2, and the
latter holds if and only if there are a,be C, not both vanishing, such that af+bg=0.

That is, equality holds if and only if f and g are linearly dependent. (Exercise: prove the last “if and only
if” in the corollary).

A basis for CV is a family { fo, ..., fxv—1} of elements in CV with the property that any element f in CV
can be written in a unique way as

N-1
=3 Nif
7=0

where Ao, ..., An—1 € C are scalars whose value depend on f and on the basis. The family { fo,..., fn—1} is
a basis for C¥ if and only if, for all \g,...,Anv—_1 € C,

T

)\jszoifandonlyif)\oz :)\N_lzo.
0

J
The basis { fo, ..., fn—1} is orthonormal if <f; fi >=0 whenever j#k, and || f;||=1 for j=0,...,N —1.

In this case,

N-—1

f= Z <fj7f>fj'
§=0

A special ortonormal basis for CV consists of the functions d; (j =0, ..., N — 1), defined by

0if k#j
5j(k)_{ 1;fki;‘



The §;’s are called in different ways in different communities: Dirac’s Deltas, Kroenecker’s Delta, unit
impulses.... They have a privilegde role if we have an interpretation fot the parameter j € {0,1,..., N —1}.
Typically, we see j as “time”. Any discrete, periodic signal can be written as linear combination of unit
impulses:

N-—1 N-—-1
F=Y" <05, f>6;=>_ f(j)é;
=0 =0

Linear applications

A linear application A: CN — CM is a map which satifies

Alaf+bg)=aAf+bAg
whenever a,b€ C and f,g€c C".

A very common case is M =1, A: C¥ — C, which we might think as the (scalar) measurement A f performed
on the signal f. The requirement that A be linear much restricts the kind of measurements which are taken
into account.

Another common case is M = N. We might think of this in terms of a system A performing a linear
transformation on the input signals f € C¥, producing an output signal A f.

Theorem 2. (Riesz-Fisher: finite version, algebraic part) Let A: CN — C be linear. Then there exists g € C
such that

A(f)=<g,f>

for f € CN. Moreover, g(j)=A(8;)j=0,..., N — 1, provides a formula to recover g from A.

Proof.

An analogous representation holds in the general case. We only consider N = M.

Theorem 3. (Representation of linear operators on CV: the algebraic part) Let A: CV — CV be a linear
application from C¥ to itself. Then, there exists an N x N matriz A = [a(k, j)|k=0,.. .N—1.j=0,.. N—1 such
that

A(f)=Af,

where on the right we perform row-times-column multiplication, as usual. Moreover, a(k, j) = <dx, A(d;) > .



Proof. We can write

as wished.
From now on we identify 4 = A.

Assuming that || f|| is a good way to measure the size of the signal f € CV, a linear measurement A or a
linear transformation A will be relatively stable if for || f|| small, the size |A(f)| of the measured quantity or
the size || A(f)|| of the transformed signal are small as well. Observe that we have scalar homogeneity w.r.t. f:

[Aaf)l=lal [A(f)]and [|A(a f)]| = [a] |ACS)]]

We can then rescale everything and just consider || f|| =1, if we wish so.

The norm of A and A will vbe defined accordingly.

and
A = Maxufn:lnA(f)n:Maxm_”ﬁ%)”_

The equality between the expressions on the right in both formulas follows from homogeneity.
Next questions is: is there any reasonable way to compute, or just estimate, the norm of A, or of A?

It turns out that the case of A (M =1) is easy, that of A (M = N) much less so.
Theorem 4. Let A:CN = C, A(f)=<g, f>. Then, ||Al|=]g]

Proof. By the Cauchy-Schwarz inequality,

A _ <. f>]
IFil 171

gl -1 _
S T lgll,

then [|A]l| <lg|l- In the other direction, let f=gif g#0 (if g=0 then A=0 and |||0]|| =0 trivially). Then,

/

) > 8@ Kol ol
Tol ~ gl gl

=llgll
This finishes the proof.



When the operator A maps CV to C¥, there is no such simple formula, and we have to consider specific
classes of operators. The simplest case is that of the diagonal operators.

Let Ao, A1, ..., Any € C and form the matrix

A000...00
Diag(Ao,..., Ay) = | 01000
000...0 AN _1

The effect on a unit impulse at time j is Diag(Ao, ..., An)d; = A;0;: the numbers \; are the eigenvalues, and
the unit impulses the eigenvectors, of the matrix Diag(Ao, ..., An).

Proposition 5. ||Diag(\o, ..., An)|[| =Max{| Aol .-, [An—1]}

Proof. Exercise.



