
Interaction & Coordination in Distributed Systems
Distributed Systems

Sistemi Distribuiti

Andrea Omicini
andrea.omicini@unibo.it

Dipartimento di Informatica – Scienza e Ingegneria (DISI)
Alma Mater Studiorum – Università di Bologna a Cesena

Academic Year 2014/2015

Andrea Omicini (DISI, Univ. Bologna) 18 – Interaction & Coordination A.Y. 2014/2015 1 / 53

Outline

1 Distributed Systems Engineering & Interaction

2 Interaction & Coordination

3 Enabling vs. Governing Interaction

4 Classes of Coordination Models

Andrea Omicini (DISI, Univ. Bologna) 18 – Interaction & Coordination A.Y. 2014/2015 2 / 53

Distributed Systems Engineering & Interaction

Outline

1 Distributed Systems Engineering & Interaction

2 Interaction & Coordination

3 Enabling vs. Governing Interaction

4 Classes of Coordination Models

Andrea Omicini (DISI, Univ. Bologna) 18 – Interaction & Coordination A.Y. 2014/2015 3 / 53

Distributed Systems Engineering & Interaction

Scenarios for Concurrent / Distributed Systems

Issues

Concurrency / Parallelism

Multiple independent activities / loci of control
Active simultaneously
Processes, threads, actors, active objects, agents. . .

Distribution

Activities running on different and heterogeneous execution contexts
(machines, devices, . . .)

“Social” Interaction

Dependencies among activities
Collective goals involving activities coordination / cooperation

“Environmental” Interaction

Interaction with external resources
Interaction within the time-space fabric

Andrea Omicini (DISI, Univ. Bologna) 18 – Interaction & Coordination A.Y. 2014/2015 4 / 53

Distributed Systems Engineering & Interaction

Basic Engineering Principles

Principles

Abstraction

Problems should be faced / represented at the most suitable level of
abstraction
Resulting “abstractions” should be expressive enough to capture the
most relevant problems
Conceptual integrity

Locality & encapsulation

Design abstractions should embody the solutions corresponding to the
domain entities they represent

Run-time vs. design-time abstractions

Incremental change / evolution
On-line engineering [FG04]
(Cognitive) Self-organising systems [Omi12]

Andrea Omicini (DISI, Univ. Bologna) 18 – Interaction & Coordination A.Y. 2014/2015 5 / 53

Distributed Systems Engineering & Interaction

Which Components?

Open systems

No hypothesis on the component’s life & behaviour

Distributed systems

No hypothesis on the component’s location & motion

Heterogeneous systems

No hypothesis on the component’s nature & structure

Andrea Omicini (DISI, Univ. Bologna) 18 – Interaction & Coordination A.Y. 2014/2015 6 / 53

Distributed Systems Engineering & Interaction

The Space of Interaction

interaction
space

software
component

!"

!"

!"

!"

Andrea Omicini (DISI, Univ. Bologna) 18 – Interaction & Coordination A.Y. 2014/2015 7 / 53

Distributed Systems Engineering & Interaction

Components of an Interactive System

What is a component of an interactive system?

A computational abstraction characterised by

an independent computational activity
I/O capabilities

Two independent dimensions

elaboration / computation
interaction

Andrea Omicini (DISI, Univ. Bologna) 18 – Interaction & Coordination A.Y. 2014/2015 8 / 53

Distributed Systems Engineering & Interaction

(Non) Algorithmic Computation I

Elaboration / computation

Turing Machine (TM)

gets an input, elaborates it, throws an output
no interaction during computation

Black-box algorithms

Church’s Thesis and computable functions

in short, a function is algorithmically computable iff can be computed
by a TM
so, all computable functions are computable by a TM

Andrea Omicini (DISI, Univ. Bologna) 18 – Interaction & Coordination A.Y. 2014/2015 9 / 53

Distributed Systems Engineering & Interaction

(Non) Algorithmic Computation II

The power of interaction [WG03]

Real computational systems are not rational agents that take
inputs, compute logically, and produce outputs. . . It is hard to
draw the line at what is intelligence and what is environmental
interaction. In a sense, it does not really matter which is which,
as all intelligent systems must be situated in some world or other
if they are to be useful entities. [Bro91]

. . . a theory of concurrency and interaction requires a new
conceptual framework, not just a refinement of what we find
natural for sequential [algorithmic] computing. [Mil93]

Andrea Omicini (DISI, Univ. Bologna) 18 – Interaction & Coordination A.Y. 2014/2015 10 / 53

Distributed Systems Engineering & Interaction

(Non) Algorithmic Computation III

Beyond Turing Machines

Turing’s choice machines and unorganised machines [WG03]

Wegner’s Interaction Machines [GSW06]

Examples: AGV, Chess oracle [Weg97]

Andrea Omicini (DISI, Univ. Bologna) 18 – Interaction & Coordination A.Y. 2014/2015 11 / 53

Distributed Systems Engineering & Interaction

Basics of Interaction

Component model

A simple component exhibits

Computation Inner behaviour of a component

Interaction Observable behaviour of a component as input and output

Coupling across component’s boundaries

Control?

Information

Time & Space – internal / computational vs. external / physical

Information-driven interaction

Output shows part of its state outside

Input bounds a portion of its own state to the outside

Andrea Omicini (DISI, Univ. Bologna) 18 – Interaction & Coordination A.Y. 2014/2015 12 / 53

Distributed Systems Engineering & Interaction

Compositionality vs. Non-compositionality

Compositionality

Sequential composition P1;P2

behaviour(P1;P2) = behaviour(P1) + behaviour(P2)

Non-compositionality

Interactive composition P1|P2

behaviour(P1|P2) =
behaviour(P1) + behaviour(P2) + interaction(P1,P2)

Interactive composition is more than the sum of its parts

Andrea Omicini (DISI, Univ. Bologna) 18 – Interaction & Coordination A.Y. 2014/2015 13 / 53

Distributed Systems Engineering & Interaction

Non-compositionality

Issues

Compositionality vs. formalisability

A notion of formal model is required for stating any compositional
property
However, formalisability does not require compositionality, and does
not imply predictability
Partial formalisability may allow for proof of properties, and for partial
predictability

Emergent behaviours

Fully-predictabile / formalisable systems do not allow by definition for
emergent behaviours

Formalisability vs. expressiveness

Less / more formalisable systems are (respectively) more / less
expressive in terms of potential behaviours

Andrea Omicini (DISI, Univ. Bologna) 18 – Interaction & Coordination A.Y. 2014/2015 14 / 53

Interaction & Coordination

Outline

1 Distributed Systems Engineering & Interaction

2 Interaction & Coordination

3 Enabling vs. Governing Interaction

4 Classes of Coordination Models

Andrea Omicini (DISI, Univ. Bologna) 18 – Interaction & Coordination A.Y. 2014/2015 15 / 53

Interaction & Coordination

Coordination in Distributed Programming

Coordination model as a glue

A coordination model is the glue that binds separate activities
into an ensemble [GC92]

Coordination model as an agent interaction framework

A coordination model provides a framework in which the
interaction of active and independent entities called agents can
be expressed [Cia96]

Issues for a coordination model

A coordination model should cover the issues of creation and
destruction of agents, communication among agents, and
spatial distribution of agents, as well as synchronization and
distribution of their actions over time [Cia96]

Andrea Omicini (DISI, Univ. Bologna) 18 – Interaction & Coordination A.Y. 2014/2015 16 / 53

Interaction & Coordination

What is Coordination?

Ruling the space of interaction

coordination

elaboration /
computation

!"

!"

!"

!"

Andrea Omicini (DISI, Univ. Bologna) 18 – Interaction & Coordination A.Y. 2014/2015 17 / 53

Interaction & Coordination

New Perspective on Computational Systems

Programming languages

Interaction as an orthogonal dimension

Languages for interaction / coordination

Software engineering

Interaction as an independent design dimension

Coordination patterns

Artificial intelligence

Interaction as a new source for intelligence

Social intelligence

Andrea Omicini (DISI, Univ. Bologna) 18 – Interaction & Coordination A.Y. 2014/2015 18 / 53

Interaction & Coordination

Coordination: Sketching a Meta-model

The medium of coordination

“fills” the interaction space

enables / promotes / governs
the admissible / desirable /
required interactions among the
interacting entities

according to some coordination
laws

enacted by the behaviour of
the medium
defining the semantics of
coordination coordinables

coordination

medium

Andrea Omicini (DISI, Univ. Bologna) 18 – Interaction & Coordination A.Y. 2014/2015 19 / 53

Interaction & Coordination

Coordination: A Meta-model [Cia96]

A constructive approach

Which are the components of a coordination system?

Coordination entities Entities whose mutual interaction is ruled by the
model, also called the coordinables

Coordination media Abstractions enabling and ruling interaction among
coordinables

Coordination laws Laws ruling the observable behaviour of coordination
media and coordinables, and their interaction as well

Andrea Omicini (DISI, Univ. Bologna) 18 – Interaction & Coordination A.Y. 2014/2015 20 / 53

Interaction & Coordination

Coordinables

Original definition [Cia96]

These are the entity types that are coordinated. These could be
Unix-like processes, threads, concurrent objects and the like, and
even users.

examples Processes, threads, objects, human users, agents, . . .

focus Observable behaviour of the coordinables

question Are we anyhow concerned here with the internal machinery /
functioning of the coordinable, in principle?

→ This issue will be clear when comparing Linda & TuCSoN
agents

Andrea Omicini (DISI, Univ. Bologna) 18 – Interaction & Coordination A.Y. 2014/2015 21 / 53

Interaction & Coordination

Coordination Media

Original definition [Cia96]

These are the media making communication among the agents
possible. Moreover, a coordination medium can serve to
aggregate agents that should be manipulated as a whole.
Examples are classic media such as semaphores, monitors, or
channels, or more complex media such as tuple spaces,
blackboards, pipelines, and the like.

examples Semaphors, monitors, channels, tuple spaces, blackboards,
pipes, . . .

focus The core around which the components of the system are
organised

question Which are the possible computational models for
coordination media?

→ This issue will be clear when comparing Linda tuple spaces & ReSpecT tuple

centres

Andrea Omicini (DISI, Univ. Bologna) 18 – Interaction & Coordination A.Y. 2014/2015 22 / 53

Interaction & Coordination

Coordination Laws I

Original definition [Cia96]

A coordination model should dictate a number of laws to
describe how agents coordinate themselves through the given
coordination media and using a number of coordination
primitives. Examples are laws that enact either synchronous or
asynchronous behaviors or exploit explicit or implicit naming
schemes for coordination entities.

Andrea Omicini (DISI, Univ. Bologna) 18 – Interaction & Coordination A.Y. 2014/2015 23 / 53

Interaction & Coordination

Coordination Laws II

Coordination laws rule the observable behaviour of coordination
media and coordinables, as well as their interaction

a notion of (admissible interaction) event is required to define
coordination laws

The interaction events are (also) expressed in terms of
the communication language, as the syntax used to express and
exchange data structures

examples tuples, XML elements, FOL terms, (Java) objects, . . .

the coordination language, as the set of the asmissible interaction
primitives, along with their semantics

examples in/out/rd (Linda), send/receive (channels), push/pull (pipes), . . .

Andrea Omicini (DISI, Univ. Bologna) 18 – Interaction & Coordination A.Y. 2014/2015 24 / 53

Enabling vs. Governing Interaction

Outline

1 Distributed Systems Engineering & Interaction

2 Interaction & Coordination

3 Enabling vs. Governing Interaction

4 Classes of Coordination Models

Andrea Omicini (DISI, Univ. Bologna) 18 – Interaction & Coordination A.Y. 2014/2015 25 / 53

Enabling vs. Governing Interaction

Toward a Notion of Coordination Model

What do we ask to a coordination model?

to provide high-level abstractions and powerful mechanisms for
distributed system engineering

to enable and promote the construction of open, distributed,
heterogeneous systems

to intrinsically add properties to systems independently of
components

e.g. flexibility, control, intelligence, . . .

Andrea Omicini (DISI, Univ. Bologna) 18 – Interaction & Coordination A.Y. 2014/2015 26 / 53

Enabling vs. Governing Interaction

Examples of Coordination Mechanisms I

Message passing

communication among peers

no abstractions apart from message

no limitations

the notion of protocol could be added as a coordination abstraction

no intrinsic model of coordination

any pattern of coordination can be superimposed – again, protocols

Andrea Omicini (DISI, Univ. Bologna) 18 – Interaction & Coordination A.Y. 2014/2015 27 / 53

Enabling vs. Governing Interaction

Examples of Coordination Mechanisms II

Agent Communication Languages

Goal: promote information exchange

Examples: Arcol, KQML

Standard: FIPA ACL

Semantics: ontologies

Enabling communication

ACLs create the space of inter-agent communication
they do not allow to constrain it

No “real” coordination, again, if not with protocols

Andrea Omicini (DISI, Univ. Bologna) 18 – Interaction & Coordination A.Y. 2014/2015 28 / 53

Enabling vs. Governing Interaction

Examples of Coordination Mechanisms III

Service-Oriented Architectures

Basic abstraction: service

Basic pattern: Service request / response

Several standards

Very simple pattern of coordination

Andrea Omicini (DISI, Univ. Bologna) 18 – Interaction & Coordination A.Y. 2014/2015 29 / 53

Enabling vs. Governing Interaction

Examples of Coordination Mechanisms IV

Web Server

Basic abstraction: resource (REST/ROA)

Basic pattern: Resource request / representation / response

Several standards

Again, a very simple pattern of coordination

Generally speaking, objects, HTTP, applets, JavaScript with AJAX,
user interface

a multi-coordinated systems
“spaghetti-coordination”, no value added from composition

How can we “fill” the space of interaction to add value to systems?

so, how do we get value from coordination?

Andrea Omicini (DISI, Univ. Bologna) 18 – Interaction & Coordination A.Y. 2014/2015 30 / 53

Enabling vs. Governing Interaction

Examples of Coordination Mechanisms V

Middleware

Goal: to provide global properties across distributed systems

Idea: fill the space of interaction with abstractions and shared
features

interoperability, security, transactionality, . . .

Middleware can contain coordination abstractions

but, it can contain anything, so we need to look at specific middleware

Andrea Omicini (DISI, Univ. Bologna) 18 – Interaction & Coordination A.Y. 2014/2015 31 / 53

Enabling vs. Governing Interaction

Examples of Coordination Mechanisms VI

CORBA

Goal: managing object interaction across a distributed systems in a
transparent way

Key features: ORB, IDL, CORBAServices. . .

However, no model for coordination

just the client-servant pattern

However, it can provide a shared support for any coordination
abstraction or pattern

Andrea Omicini (DISI, Univ. Bologna) 18 – Interaction & Coordination A.Y. 2014/2015 32 / 53

Enabling vs. Governing Interaction

Enabling vs. Governing Interaction I

Enabling interaction

ACL, middleware, mediators. . .

enabling communication

enabling components interoperation

no models for coordination of components

no rules on what components should (not) say and do at any given
moment, depending on what other components say and do, and on
what happens inside and outside the system

Andrea Omicini (DISI, Univ. Bologna) 18 – Interaction & Coordination A.Y. 2014/2015 33 / 53

Enabling vs. Governing Interaction

Enabling vs. Governing Interaction II

Governing interaction

ruling communication

providing concepts, abstractions, models, mechanisms for meaningful
component integration

governing mutual component interaction, and
environment-component interaction

in general, a model that does

rule what components should (not) say and do at any given moment
depending on what other components say and do, and on what
happens inside and outside the system

Andrea Omicini (DISI, Univ. Bologna) 18 – Interaction & Coordination A.Y. 2014/2015 34 / 53

Classes of Coordination Models

Outline

1 Distributed Systems Engineering & Interaction

2 Interaction & Coordination

3 Enabling vs. Governing Interaction

4 Classes of Coordination Models

Andrea Omicini (DISI, Univ. Bologna) 18 – Interaction & Coordination A.Y. 2014/2015 35 / 53

Classes of Coordination Models

Two Classes for Coordination Models

Control-oriented vs. Data-oriented Models

— Control-driven vs. Data-driven Models [PA98]

Control-oriented Focus on the acts of communication

Data-oriented Focus on the information exchanged during communication

— Several surveys, no time enough here

— Are these really classes?

– actually, better to take this as a criterion to observe
coordination models, rather than to separate them

Andrea Omicini (DISI, Univ. Bologna) 18 – Interaction & Coordination A.Y. 2014/2015 36 / 53

Classes of Coordination Models

Control-oriented Models I

Processes as black boxes

I/O ports

events & signals on state

Coordinators. . .

. . . create coordinated processes as well as communication channels

. . . determine and change the topology of communication

Hierarchies of coordinables / coordinators are possible

Andrea Omicini (DISI, Univ. Bologna) 18 – Interaction & Coordination A.Y. 2014/2015 37 / 53

Classes of Coordination Models

Control-oriented Models II

Coordinators as meta-level communication components

coordinator

Andrea Omicini (DISI, Univ. Bologna) 18 – Interaction & Coordination A.Y. 2014/2015 38 / 53

Classes of Coordination Models

Control-oriented Models III

General features

High flexibility, high control

Separation between communication / coordination and computation /
elaboration

Examples

RAPIDE [LKA+95]
Manifold [AHS93]
ConCoord [Hol96]
Reo [Arb04, DAdB05]

Andrea Omicini (DISI, Univ. Bologna) 18 – Interaction & Coordination A.Y. 2014/2015 39 / 53

Classes of Coordination Models

A Classical Example: Manifold [AHS93]

Main features

coordinators

control-driven evolution

events without parameters

stateful communication

coordination via topology

fine-grained coordination

typical example: sort-merge

Andrea Omicini (DISI, Univ. Bologna) 18 – Interaction & Coordination A.Y. 2014/2015 40 / 53

Classes of Coordination Models

Control-oriented Models: Impact on Design

Which abstractions?

Producer-consumer pattern

Point-to-point communication

Coordinator

Coordination as configuration of topology

Which systems?

Fine-grained granularity

Fine-tuned control

Good for small-scale, closed systems

Andrea Omicini (DISI, Univ. Bologna) 18 – Interaction & Coordination A.Y. 2014/2015 41 / 53

Classes of Coordination Models

An Evolutionary Pattern?

Paradigms of sequential programming

Imperative programming with “goto”

Structured programming (procedure-oriented)

Object-oriented programming (data-oriented)

Paradigms of coordination programming

Message-passing coordination

Control-oriented coordination

Data-oriented coordination

Andrea Omicini (DISI, Univ. Bologna) 18 – Interaction & Coordination A.Y. 2014/2015 42 / 53

Classes of Coordination Models

Data-oriented Models I

Communication channel

Shared memory abstraction

Stateful channel

Processes

Emitting / receiving data / information

Coordination

Access / change / synchronise on shared data

Andrea Omicini (DISI, Univ. Bologna) 18 – Interaction & Coordination A.Y. 2014/2015 43 / 53

Classes of Coordination Models

Data-oriented Models II

Shared dataspace: constraint on communication

shared
dataspace

Andrea Omicini (DISI, Univ. Bologna) 18 – Interaction & Coordination A.Y. 2014/2015 44 / 53

Classes of Coordination Models

Data-oriented Models

General features

Expressive communication abstraction

→ information-based design

Possible spatio-temporal uncoupling

No control means no flexibility??

Examples

Gamma / Chemical coordination
Linda & friends / tuple-based coordination

Andrea Omicini (DISI, Univ. Bologna) 18 – Interaction & Coordination A.Y. 2014/2015 45 / 53

Conclusions

Summing Up

Coordination for distributed system engineering

Engineering the space of interaction among components

Coordination as governing interaction

Enabling vs. governing

Classes and features of coordination models

Control-oriented vs. data-oriented models

Andrea Omicini (DISI, Univ. Bologna) 18 – Interaction & Coordination A.Y. 2014/2015 46 / 53

References

References I

Farhad Arbab, Ivan Herman, and Per Spilling.
An overview of Manifold and its implementation.
Concurrency: Practice and Experience, 5(1):23–70, February 1993.

Farhad Arbab.
Reo: A channel-based coordination model for component composition.

Mathematical Structures in Computer Science, 14:329–366, 2004.

Rodney A. Brooks.
Intelligence without reason.
In John Mylopoulos and Ray Reiter, editors, 12th International Joint
Conference on Artificial Intelligence (IJCAI 1991), volume 1, pages
569–595, San Francisco, CA, USA, 1991. Morgan Kaufmann
Publishers Inc.

Andrea Omicini (DISI, Univ. Bologna) 18 – Interaction & Coordination A.Y. 2014/2015 47 / 53

References

References II

Paolo Ciancarini.
Coordination models and languages as software integrators.
ACM Computing Surveys, 28(2):300–302, June 1996.

Mehdi Dastani, Farhad Arbab, and Frank S. de Boer.
Coordination and composition in multi-agent systems.
In Frank Dignum, Virginia Dignum, Sven Koenig, Sarit Kraus,
Munindar P. Singh, and Michael J. Wooldridge, editors, 4rd
International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2005), pages 439–446, Utrecht, The Netherlands,
25–29 July 2005. ACM.

Andrea Omicini (DISI, Univ. Bologna) 18 – Interaction & Coordination A.Y. 2014/2015 48 / 53

References

References III

Martin Fredriksson and Rune Gustavsson.
Online engineering and open computational systems.
In Federico Bergenti, Marie-Pierre Gleizes, and Franco Zambonelli,
editors, Methodologies and Software Engineering for Agent Systems:
The Agent-Oriented Software Engineering Handbook, volume 11 of
Multiagent Systems, Artificial Societies, and Simulated Organization,
pages 377–388. Kluwer Academic Publishers, 2004.

David Gelernter and Nicholas Carriero.
Coordination languages and their significance.
Communications of the ACM, 35(2):97–107, February 1992.

Dina Q. Goldin, Scott A. Smolka, and Peter Wegner, editors.
Interactive Computation: The New Paradigm.
Springer, September 2006.

Andrea Omicini (DISI, Univ. Bologna) 18 – Interaction & Coordination A.Y. 2014/2015 49 / 53

References

References IV

Anne-Alexandra Holzbacher.
A software environment for concurrent coordinated programming.
In Paolo Ciancarini and Chris Hankin, editors, Coordination Languages
and Models, volume 1061 of LNCS, pages 249–266. Springer-Verlag,
1996.
1st International Conference (COORDINATION ’96) Cesena, Italy,
April 15–17, 1996.

David C. Luckham, John J. Kenney, Larry M. Augustin, James Vera,
Doug Bryan, and Walter Mann.
Specification and analysis of system architecture using Rapide.
IEEE Transactions on Software Engineering, 21(4):336–354, April
1995.

Andrea Omicini (DISI, Univ. Bologna) 18 – Interaction & Coordination A.Y. 2014/2015 50 / 53

References

References V

Robin Milner.
Elements of interaction: Turing award lecture.
Communications of the ACM, 36(1):78–89, January 1993.

Andrea Omicini.
Agents writing on walls: Cognitive stigmergy and beyond.
In Fabio Paglieri, Luca Tummolini, Rino Falcone, and Maria Miceli,
editors, The Goals of Cognition. Essays in Honor of Cristiano
Castelfranchi, volume 20 of Tributes, chapter 29, pages 543–556.
College Publications, London, December 2012.

Andrea Omicini (DISI, Univ. Bologna) 18 – Interaction & Coordination A.Y. 2014/2015 51 / 53

References

References VI

George A. Papadopoulos and Farhad Arbab.
Coordination models and languages.
In Marvin V. Zelkowitz, editor, The Engineering of Large Systems,
volume 46 of Advances in Computers, pages 329–400. Academic
Press, 1998.

Peter Wegner.
Why interaction is more powerful than algorithms.
Communications of the ACM, 40(5):80–91, May 1997.

Peter Wegner and Dina Goldin.
Computation beyond Turing machines.
Communications of the ACM, 46(4):100–102, April 2003.

Andrea Omicini (DISI, Univ. Bologna) 18 – Interaction & Coordination A.Y. 2014/2015 52 / 53

Interaction & Coordination in Distributed Systems
Distributed Systems

Sistemi Distribuiti

Andrea Omicini
andrea.omicini@unibo.it

Dipartimento di Informatica – Scienza e Ingegneria (DISI)
Alma Mater Studiorum – Università di Bologna a Cesena

Academic Year 2014/2015

Andrea Omicini (DISI, Univ. Bologna) 18 – Interaction & Coordination A.Y. 2014/2015 53 / 53

	Distributed Systems Engineering & Interaction
	Interaction & Coordination
	Enabling vs. Governing Interaction
	Classes of Coordination Models

