MacroEconomia Avanzata Esercitazione 6 Tobin.

Erica Medeossi

16 aprile 2015

1 Question 1.

- 1. Derive the Tobin's q, and draw the phase diagram.
- 2. Define q and enumerate three interpretations of such a variable. Which of these is the Tobin's q?
- 3. Discuss the empirical evidence.
- 4. Discuss the consequences of including financial-market imperfections to the model (**Optional analytical passages**).

2 Question 2.

Corporations in the Us are allowed to subtract depreciation allowances from their taxable income. The depreciation allowances are based on the purchase price of the capital: a corporation that buys a new capital good at time t can deduct fraction D(s) of the purchase price from its taxable income at time t + s. Depreciation allowances often take the for of *straight-line depreciation*: D(s) = 1/T for $s \in [0, T]$, and D(s) = 0 for s > T, where T is the *tax life* of the capital good.

- 1. Assume straight-line depreciation. If the marginal corporate income tax rate is constant at τ and the interest rate is constant at *i*, by how much does purchasing a unit of capital at price of P_K reduce the present value of the firm's corporate tax liabilities as a function of T, τ , *i* and P_K ? Thus, what is the after-tax price of the capital good to the firm?
- 2. Suppose that $i = r + \pi$ and that π increases with no change in r. How does this affect the after-tax price of the capital good to the firm?

3 Question 3.

Consider the model of investment in Question 1. Describe the effects of each of the following changes, assuming that K, q are initially at their long-run equilibrium value.

1. A war destroys half of the capital stock (unanticipated, permanent);

- 2. The government taxes returns from owning firms at rate τ (so that a firm's profit per unit of capital for a given K is $(1-\tau)\pi(K(t))$ rather than $\pi(K(t))$) (unanticipated, permanent);
- 3. The government taxes investment. Specifically, firms pay the government γ for each unit of capital they acquire, and receive a subsidy of γ for each unit of disinvestment (anticipated, permanent);
- 4. The government will impose a one-time capital levy. Specifically, capital holders will be taxed an amount equal to fraction f of the value of their capital holdings at some time t_1 (anticipated, temporary).

4 Question 4.

Let H denote the stock of housing, I the rate of investment, p_H the real price of housing, and R the rent. Assume that I is increasing in p_H , so that $I = I(p_H)$, with $I'(\cdot) > 0$, and that $\dot{H} = I - \delta H$. Assume also that the rent is a decreasing function of H: R = R(H), $R'(\cdot) < 0$. Finally, assume also that the rental income plus capital gains must equal the exogenous required rate of return, r: $(R + \dot{p}_H)/p_H = r$.

- 1. Sketch the set of points in (H, p_H) space such that $\dot{H} = 0$, and the set of points such that $\dot{p}_H = 0$;
- 2. What are the dynamics of H, p_H in each region of the resulting diagram? Sketch the saddle path;
- 3. Suppose the market is initially in long-run equilibrium, and that there is an unexpected permanent increase in r. What happens to H and p_H ?
- 4. Suppose the market is initially in long-run equilibrium, and that it becomes known that there will be a permanent increase in r at some time t_1 . What happens to H and p_H ?
- 5. Are adjustment costs internal or external in this model?
- 6. Why is the $\dot{H} = 0$ locus not horizontal in this model?

5 Question 5 (Optional).

Consider a firm that is contemplating undertaking an investment with a cost of I. There are two periods. The investment will pay off π_1 in period 1 and π_2 in period 2. π_1 is certain, but π_2 is uncertain. The firm maximises expected profits. Assume the interest rate is zero.

- 1. Suppose the firm's only choices are to undertake the investment in period 1 or not to undertake it at all. Under what condition will the firm undertake the investment?
- 2. Suppose the firm also has the possibility of undertaking the investment in period 2, after the value of π_2 is known; in this case the investment pays off only π_2 . Is it possible for the condition in (a) to be satisfied but for the firm's expected profits to be higher if it does not invest in period 1 than if it does invest?
- 3. Define the cost of waiting as π_1 , and define the benefit of waiting as $\Pr(\pi_2 < I)E[I-\pi_2|\pi_2 < I]$. Explain why these represent the cost and the benefit of waiting. Show that the difference in the firm's expected profits between not investing in period 1 and investing in period 1 equals the benefit of waiting minus the cost.