
G.Corsi
E.Orlandelli

Free Quantified Epistemic
Logics

Final draft. Published version in Studia Logica 101: 1158–1183 (2013)
The final publication is available at link.springer.com,

http://link.springer.com/article/10.1007%2Fs11225-013-9528-x#page-1

Abstract. The paper presents an epistemic logic with quantification over
agents of knowledge and with a syntactical distinction between de re and de
dicto occurrences of terms. Knowledge de dicto is characterized as ‘knowledge
that’, and knowlegde de re as ‘knowledge of’. Transition semantics turns out to
be an adequate tool to account for the distinctions introduced.
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1. Introduction

Propositional epistemic logics are extensively used for representing agents’ knowl-
edge,1 the basic idea being to express the knowledge of agents 1, . . . , n by means
of a finite set of modalities, K1, . . . ,Kn, to be interpreted in a possible-world
semantics with the help of n accessibility relations. One of the advantages of
modeling knowledge by means of propositional epistemic logic consists in the
modularity of such approach inasmuch as one and the same semantic environ-
ment can serve to model different notions of knowledge or belief just by varying
the algebraic structure of the accessibility relation(s). So, after having estab-
lished the algebraic structure appropriate for the epistemic notion (knowledge,
belief, etc.) that one wants to model, an agent’s knowledge about the world and
about other agents’ knowledge can be expressed by formulas such as KiA and
KiKjB, respectively.

Although such an approach can be adequate in a number of cases, it encoun-
ters serious limitations because it doesn’t allow us to model agents’ knowledge
about possibly infinite sets of objects and their properties and for various ap-
plications the expressive power of quantified epistemic logics is necessary. In
his book Knowledge and Belief, 1962, Hintikka discusses at length the inter-
play between epistemic modalities and quantifiers. An immediate gain obtained
by merging the language of classical quantified logic with that of an n-modal
propositional epistemic logic is that we are able to express an agent’s knowledge
about particular objects, agent 1 knows that s is brave, K1Brave(s), as well as
about general objects, agent 1 knows that someone is brave, K1∃xBrave(x), or
Someone is known by agent 1 to be brave, ∃xK1Brave(x).

1See e.g. [6], [18] and [10].
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Still a fundamental limitation remains since we are dealing with a fixed set
of agents. Now, in order to represent a system in evolution, e.g. a network
where out-of-date elements (agents) are substituted by new ones, we need to
reason about the epistemic states of a dynamic set of agents. In general, we
want to deal with a variable, indefinite, and possibly infinite set of agents and
to reason about them from inside the system itself. So it is natural to assume
that the agents are members of the domain of objects we are talking about,
have names2 inside the system and are quantified over. All this is in tune with:
“To make epistemic logic pertinent to epistemology, computer science, artificial
intelligence and cognitive psychology the agent must be activated. The original
symbolic notation of a knowing agent also suggests this: an agent should be
inside the scope of the knowledge operator - not outside, as Hintikka notes in
[15]” ([13]: 7).

In conclusion, we may need to refer to generic agents, ‘someone knows that s
is brave’, as well as to groups of agents, ‘every friend of s knows that s is brave’.
Finally we want agents to reason about themselves as in ‘everyone knows if he
or she is in pain’. Almost all the situations described so far were noted as early
as 1951 when, in the final note to the section on epistemic logic of An Essay in
Modal Logic, G.H. von Wright claimed that

[w]e could develop an alternative system in which the epistemic
modalities are treated as ‘relative’ to persons. In this system we
should have to deal with expressions like ‘known to x’, ‘unknown
to x’, etc. Introducing quantifiers we should get a combined sys-
tem dealing with expressions like ‘known to somebody’, ‘unknown
to everybody’, etc. This combination of epistemic and existential
modalities will not be studied in the present essay. ([20]: 35.)

Von Wright’s insight has, to our knowledge, remained unnoticed until recent
times when term-modal logics have been proposed in [11], [3], and [9].3 In the
following with the expression ‘term-modal logics’ we denote not only the logics
described in the paper Term-Modal Logic, [9], but also the logics discussed in
[3] and [11]. The reason for this is that, despite the quite different points of
view, all of them are characterized by the fact that the epistemic operators are
indexed by terms of the language and quantifying over the agents is allowed. In
this new context we can express

• knowledge of a particular agent t, t knows that A, |t|A

• knowledge of a generic agent, someone knows that A, ∃x|x|A
2An implicit assumption usually made is a one-to-one correspondence between agents and

agents’ names: given that an agent is nothing more than an index to which an accessibility
relation is associated, we must assume that different indices (i.e. agents names) refer to
different agents (i.e. indices), and that one and the same index always refers to the same
agent. This implies, at least from a meta-theoretical point of view, that a formula like KaKbP∧
KaKcP implies that a knows of two different agents that they know that P .

3In [14], although this possibility is mentioned in at least two passages, the formation rules
for formulas don’t allow for it.
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• knowledge of groups of agents,

– some policeman knows that A, ∃x(P (x) ∧ |x|A)

– every policeman knows that A, ∀x(P (x)→ |x|A)

2. Towards a more general approach

Although term-modal languages constitute a major step in the development of
quantified epistemic logics we believe that they are a starting point rather then
the end of the story. A crucial peculiarity of the term-modal operator | t | is that
it is invariant with respect to the formula that follows it: | t |Pc is well formed
as well as | t |Px, see [9]. An immediate consequence is that it is impossible
to distinguish between ‘t knows that Pc’ and ‘t knows of c that it is Px ’. A
typical way out in this situation is to resort to the λ-abstraction operator so as
to distinguish between: | t |(λx(Px).c) and λx(| t |(Px)).c, respectively.4 We aim
at a language able to handle not only problems of scope, but also the interplay
between quantifiers and modalities and for this further issue the presence of the
λ-operator is of no help.5 Let us start by reviewing some of the questions much
discussed in the literature.

2.1. ‘Knowing of’ and ‘knowing that’ .

As is well known from [19], the sentence:

(1) Ralph knows that someone is a spy

may be read either as ‘Ralph knows that there are spies’ or as ‘Ralph knows
of someone that he is a spy’.6 As Quine says, “the difference is vast; indeed, if
Ralph is like most of us, [‘Ralph knows that there are spies’] is true and [‘Ralph
knows of someone that he is a spy’] is false” ([19]: 178).7 Furthermore, also
epistemic sentences apparently not involving quantifiers seem to be ambiguous
between two alternative readings, witness:

(2) Ralph knows that Ortcutt is a spy

which may be rephrased either as ‘Ralph knows that Ortcutt, whoever he is, is
a spy’ or as ‘Ralph knows of Ortcutt that he is a spy’.8

The distinction between the two readings of sentences such as (1) and (2)
is usually referred to in modal contexts as a distinction between two kinds of

4See, e.g., [7] or [8].
5See section 5.
6In [19] this reading is rendered by ‘there is someone whom ralph knows to be a spy’. We

take this rendering, as well as the passive one ‘someone is known by Ralph to be a spy’, as
equivalent to that in terms of ‘knowing of’.

7Quine’s original example is an attribution of belief, not of knowledge. But this difference
is inessential for the present purposes.

8Where ‘he’ is not a pronoun of laziness, see [1].
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modality, de dicto and de re. Roughly, in the epistemic contexts, we may want
to distinguish between expressing a relation between an agent and a sentence,9

and expressing a relation among an agent, an object, and an open formula,
respectively. This is not the place for a thorough philosophical discussion of
the nature of these two kinds of knowledge; suffice it to say that an epistemic
sentence seems to have at least two readings, de dicto and de re, that neither of
the two seems to involve quantifiers essentially, and that the syntactic difference
seems to boil down to that between formulas involving operators occurring be-
fore closed formulas and operators occurring before open ones. The term-modal
language of [9] is unable to express this distinction which is basically a distinc-
tion between ‘knowing something of some object’ and ‘knowing that such and
such a sentence (is true)’.10

To reach this goal, we introduce complex term-modal operators of the form
|t : cx| that allow for formulas such as:

|t : cx|P (x)

t knows of c that (s)he is P(x)
Here c is any term and it takes outer scope, so that that formula expresses of
the actual denotation of c that it is known by t to satisfy P (x). This formula
should be contrasted with:

|t : ? |P (c)

which expresses the fact that t knows that P (c). ? stands for the empty sequence
of variables.11 In order to grasp the notation above, think of
|t : cx|P (x) and |t : ? |P (c) as analogous to λx(| t |(Px)).c and | t |(λx(Px).c),
respectively.

Knowing of and agent-denoting terms. The issue of distinguishing knowing
of from knowing that becomes even more pressing when we have to account
for nested operators with agent-denoting terms. It may make a big difference
whether I know of t that he knows . . . or whether I know that t knows . . ..
To illustrate, we ask the reader to consider the following scenario proposed by
Grove:

Suppose there are two robotic agents, A and B, and A has just
broken down. He sends a cry for help over a public broadcast system.
B, who is the agent responsible for dealing with such matters, may or
may not have heard. So A’s subsequent action depends on whether

9Or its semantic content. We don’t want to take a stance on this question.
10The distinction we are proposing should not be conflated with that proposed in [14]

between ‘knowing who’ and ‘knowing that’. We believe that so-called wh-questions may fall
under any one of the two notions of knowledge we are dealing with. Suppose, for example,
that I’m asked who is Obama. While in some contexts, say at an exam at school, in order to
answer it I have to know that Obama is the president of the US, in some other context, say at
a party at the White House, what is needed is knowledge of someone in particular that he is
Obama. It is quite clear that in the two scenarios I’m asked for different kinds of knowledge,
but also that each is an example of wh-knowledge.

11Henceforth we will use ‘know that’ to express the de dicto reading.
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he can deduce that “I (A) know that B knows that I need help” (If
this is true he can just wait, but otherwise he should try something
else). So what is a good formalization of “I (A) know that B knows
that I need help”? ([11]: 314)

For a start let us observe that our formalism allows various renderings of the
sentence in question:

(3) outer scope for both a and b

|a : ay
b
x||x : y|Needhelp(y)

a knows of himself and of b that the latter knows of the former that he
needs help.

(4) outer scope for a and not for b

|a : ay ||b : y|Needhelp(y)

a knows of himself that b knows of a that he needs help.

(5) outer scope for b and not for a

|a : bx ||x : ?|Needhelp(a)

a knows of b that he knows that a needs help.

(6) outer scope for neither a nor b

|a : ?||b : ?|Needhelp(a)

a knows that b knows that a needs help.

The answer to Grove’s question depends on the specific epistemic context one
wants to describe. The crucial point is to have a semantical framework in which
the renderings (3)-(6) may have distinct semantic values.

Syntactic characterization of de re. We have introduced an overtly syntactic
distinction between de dicto and de re epistemic operators. Such a distinction
doesn’t amount to a distinction of scope between quantifiers and epistemic op-
erators as in the Russellian analysis. One advantage of our rendering is that
it allows to express both readings without having to introduce some quantifier
where there seem to be none - e.g. for the de re reading of (2).12 Still one may
wonder whether there is some independent motivation for our approach. We
believe that it may be seen as parallel to Quine’s multigrade treatment of verbs
of propositional attitudes. The general form of our operators - i.e. |t : t1x1

. . . tnxn
|

12Note that this is achievable also by introducing the operator λ.
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- is analogous to Quine’s predicate Bel(t,~t, A(~x)), where t stands for the subject
of the attitude, ~t for the n-ary vector of objects about which the attitude is, and
A(~x) for an n-ary propositional function/open formula. We agree that “[t]he
key to the de re/de dicto distinction, as we are representing it, is explicit in
these formulation. [|t : ?|] applies to what is expressed by a closed sentence;

[|t : ~t~x|] applies in part to what is expressed by an open sentence and in part to
a res” ([1]: 343).

2.2. De dicto and de re knowledge

Some semantic desiderata. We have thus far enriched the term-modal operators
to distinguish between knowing that and knowing of. Now we have to supple-
ment our syntactic distinction with a semantics that captures it.13 One basic
desiderata is to have a semantics where a formula such as |t : ~s~x|A(~x) expresses
a relation between the agent denoted by t, the objects denoted by members of
~s, and the formula A(~x). Given that we want the de dicto and the de re read-
ings of a sentence such as (2) to differ, the semantic value of |r : ?|S(o) should
differ from that of |r : ox|S(x). |r : ?|S(o) should express a relation between an
agent and a sentence, whereas |r : ox|S(x) between an agent, an object, and an
open formula. Furthermore, if we want to retain Quine’s distinction between
opaque and transparent occurrences of a term in an epistemic formula, only the
occurrence of o in |r : ox|S(x) is substitutable, but not that in |r : ?|S(o).

Compatibility relation. If possible world semantics is to be capable of mod-
eling epistemic attitudes, it is natural to think of possible worlds as states of
affairs compatible with the epistemic state of some agent and guided by this
idea we are led to replace the usual accessibility relation between worlds by a
compatibility relation between agents and worlds. To this aim we introduce a
binary relation of compatibility, a ≺ v, meaning that world v is compatible with
the epistemic state of agent a. Similarly in [9], a ternary relation is introduced

between a world w1, an agent of that world and another world w2, w1
a−→ w2,

meaning that w2 is a-reachable from w1. We refrain from explicitly indicating
which world a inhabits without fear of confusion, as we shall see.

Rigidity of terms. As is well known, in possible world semantics a term
is said to be rigid if and only if it denotes the same object in every acces-
sible/compatible world. With rigid terms we cannot express any interesting
notion of knowledge related to identities, in fact every agent knows every true
identity statement, thus depriving identity statements of their relevance. Just
to cite a well known example, if h stands for Hesperus and p stands for Phospho-
rus at w, we can have that h = p is satisfied at w. Why should this entail that
each agent knows, at w, that Hesperus and Phosphorus are identical? To avoid
this undesirable consequence, we need a semantics with non-rigid designators,
that is a semantics where two individual constants, say h and p, that denote
the same object in w can denote two different objects in some world w1 that is

13In taking the possiblity of de re knowledge at face value, we diverge from the term-modal
logic presented in [11] where all knowledge is de dicto.
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compatible with the epistemic state of some agent a in w. In this way an agent
may not know that Hesperus and Phosophorus are identical.

The semantics of de dicto knowledge. Now that we have introduced the
compatibility relation, and the need for non-rigid designators, we are able to
give our semantics for a de dicto formula such as |r : ?|S(o): this formula is true
at a world w if and only if the embedded sentence S(o) is true at every world
wi that is compatible with the epistemic state of the agent denoted by r in w.
So, for example, if the formula |r : ?|S(o) represents ‘Ralph knows that Ortcutt,
whoever he is, is a spy’, our semantics says that that sentence is true if and only
if at every Ralph-compatible world, the denotation of ‘Ortcutt’ in that world is
a spy. Note that the denotation of o has to be determined locally in the worlds
wi that are compatible, and not once and for all in w. If names were to be
interpreted as rigid designators, this qualification would have been irrelevant,
but this interpretation is unreasonable in an epistemic context particularly when
confronted with nested operators, as already mentioned. Take ‘x believes that
C.L.Dodgson believes that Alice is nice’, the denotation of ‘C.L.Dodgson’ might
depend on how x represents to himself C.L.Dodgson: is he a writer of children’s
stories or is he a mathematician?14

Transition relation. By having non-rigid designators we have ensured that
the identity of Hesperus and Phosphorus doesn’t entail that each agent knows
that Hesperus and Phosphorus are identical, but what in the case of de re
knowledge? Does the identity of Hesperus and Phosphorus entails that each
agent knows of Hesperus and Phosphorus that they are identical? If we were
to formalize the distinction between the two readings of a sentence such as (2)
simply as being a consequence of nonrigid terms,15 as is customary in possible-
world semantics, then the answer to this question would be yes. But we believe
that it should be no.

In fact we depart from possible world semantics and arrive at transition
semantics. Generally speaking, the main feature of transition semantics (or
counterpart semantics) consists in the existence of a relation between elements
of different domains (objects inhabiting different worlds) so that in order to
establish if ‘c is necessarily A’ one has to take into account all the transi-
tions/counterparts of c in all accessible worlds. When we deal with alethic
modalities, the counterpart relation is absolute, given from the outset, see [4].
Now transition semantics seems to adapt very well to epistemic contexts as long
as the transition relations are made agent-dependent. To this end we introduce

for each agent a a transition relation b
a
� c between objects inhabiting differ-

ent worlds, meaning that c is an a-transition of b. We think of the transition

relation b
a
� c as a relation between a representative and a representee: for all

a knows of b, c may be/represent b in the a-compatible world that he inhabits.
And, led by this idea, we propose the following semantics for a de re formula
such as |r : ox|S(x): this formula is true at a world w if and only if at every

14Example taken from [3].
15So that in a de re formula some term has wider scope than the operator, whereas in a de

dicto one it’s the operator that has wider scope.
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r-compatible world, the open formula A(x) is true of every local representative

of b —i.e. of every c such that b
r
� c.

Acquaintance. According to our proposal the notion of de re knowledge
should express some relation between an agent, some object, and some open
formula. One of the main tenets of the Quine-Kaplan-Lewis analysis of de
re knowledge16 is that an agent’s de re knowledge of an object depends on
there being a relation of acquaintance between the agent and the object, where
the relation of acquaintance is some epistemological relation occurring between
a and b that enables a’s piece of knowledge to be about/caused by b. If we

think of the set of all c such that b
a
� c as being dependent on the relation of

acquaintance, then we are proposing a semantics for de re knowledge that follows
to some extent the Quine-Kaplan-Lewis analysis: whether a knows something
of b depends on an acquaintance relation between a and b.17

Agent-dependency. One central feature of the epistemic transition relation
is that it is agent-dependent: suppose that w1 is compatible with the epistemic
states of two agents both inhabiting w; whether some c inhabiting w1 is a
representative of some object inhabiting w is a question that depends on which
of the two agents we are considering. Consider the case of the twins a1 and
a2, both inhabiting w, that are equivalent w.r.t. de dicto knowledge: every
a1-compatible world is also a2-compatible, and vice versa. If their respective de
re knowledge depends on some agent-independent relation, such as trans-world
identity, then we must conclude that they have the same de re knowledge. The
problem is that if de re knowledge depends solely on the compatibility relation,
a1 knows something of some object if and only if a2 knows it. So they can’t be
differentiated by their respective de re knowledge.18 With the help of transitions
we block this unwanted conclusion because de re knowledge depends both on
the compatibility and on the transition relations, but nothing in our example

entails that b
a1
� c iff b

a2
� c.

Transitions and identity. The use of transitions, instead of trans-world iden-
tities, allows also to deal successfully with the following scenario presented by
Carlson:

Let’s consider

(29) There is someone who might be two different people as far as
the police know.

16The label is borrowed from [12].
17Where we diverge, especially from Kaplan’s proposal in [16], is in neglecting that a may

know of b both A(x) and ¬A(x). In our terminology Kaplan takes the relation of aquaintance
as existential quantification over representatives, whereas we take it as universal quantifica-
tion. One way of reducing the divergence is by claiming that we have “replace[d] existential
quantification over aquaintance relations by reference to a contextually salient particular ac-
quaintance relation” ([12]: 210).

18This example is somehow analogous to Lewis’ ‘two gods case’, see [17]. The main difference
is that Lewis point was meant to distinguish de dicto from de se, whereas we are distinguishing
de dicto from de re.
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The someone in (29) could be a person who leads a double life, like
Arthur Brownjohn alias Major Elsonby Mellon in Julian Symon’s
novel The Man who killed himself. Arthur Brownjohn deceives the
police about his double identity so successfully that he ends up ac-
cused of the murder of his alter ego. Here, apparently, an individual
who is being traced in an the actual situation according to the epis-
temic alternatives of the police does in fact split into two imaginary
individuals: what the police know does not rule out the possibility
that Arthur Brownjohn should have killed Major Elsonby Mellon
and walked away from it, in which case the two individuals cannot
very well be one and the same. On the other hand, the identification
of each of them separately with Arthur is justified by the fact that
the police have been intentionally misled to construe one real world
person as two people. ([2]: 238)

(29) can be formalized as

∃x∃y(x = y ∧ ∀z(Policeman(z)→ 〈z : xy〉x 6= y))

Given that the story presented by Carlson appears to be a real possibility, such
a formula should be satisfiable. In transition semantics this is accomplished by
allowing an object to have none, one or many transitions w.r.t. an agent in one
and the same compatible world. Thus even if the objects denoted by x and y
coincide in the actual world, they can diverge in some world that is compatible
with what the police know in the actual world.

De re vs de dicto again. Suppose we say19 that a world v is compatible with
the epistemic state of agent a (inhabiting w) if all the sentences that a believes
are true in v (in other terms if the de dicto knowledge of a is verified in v), then
it may well be that the same worlds are compatible with the epistemic state
of two different agents a and b: they share the same de dicto knowledge. Still
their de re knowledge may differ because the truth conditions of de re sentences
make use of the transition relations which are agent-dependent. This is a point
that needs some clarification. In general, one of the ways in which agents relate
themselves to the world is by identifying objects, and often they make mistake
in doing so. Transitions can be seen as ways of identification. A possible world
compatible with an agent a is just a way in which the world could be as far as a
knows. If in the actual world the agent a identifies Venus in two different ways,
then in worlds compatible with what a knows of the actual world there will be
two different objects that represent the two different identifications of Venus.
Notice that agents associate objects to other objects without any recourse either
to linguistically triggered ways of presentation or to the names of the objects in
question. Knowledge de re is knowledge under every representative of the object
about which the attitude is. In conclusion, an agent a knows an (open) formula
A(x) of some b just in case in every a-compatible world, every a-transition of
b - every way that b may be that is compatible with a’s knowledge - satisfies

19As in fact we say when building canonical models, see [5].
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A(x). As to de dicto knowledge, our approach is parallel to that of possible-
world semantics with non-rigid terms: to evaluate an epistemic sentence, we
must first move to a-compatible worlds, and then determine the denotation of
the terms.

2.3. Agents, domains, worlds, and rigidity.

Agents and domains. Given that the compatibility relation is between agents
and worlds, we should be able to partition the objects of a domain between
those which are agents and those which are not. A way out would be to have
two sorts of objects: agent and non-agents. The fact is that by doing so we
encounter a plethora of problems which are more pertinent to the possible par-
ticular applications than to the general framework we are trying to build. In [3]
this distinction is maintained, and it leads to a truth-value-gap semantics. In
the present context we could operate this distinction by saying that an element
d of a domain is said to be an agent if there is a v such that relation d ≺ v holds.
Thus a non-agent is an object whose epistemic state is not compatible with any
world and therefore is an object that believes everything, also contradictions. In
our language however we do not introduce any partition among the individual
constants which refer to agents and those which don’t, so any term can take the
place of an agent inside an epistemic operator. This has the advantage that no
special restrictions on the formation of formulas are needed.

Worlds and Domains. For the sake of generality we make a further as-
sumption, that any world w is endowed with two domains, an inner domain
Dw and an outer domain Uw such that Dw ⊆ Uw and Uw 6= ∅. The reason
for this choice is basically due to an analogy with quantified modal logics with
actualist quantification. It is not immediately obvious what the traditional dis-
tinction between existing (Dw) and possible (Uw) objects could corresponds in
an epistemic context, nevertheless we want to keep the domain of variation of
the quantifiers, Dw, separate from the domain of interpretation of the variables
and of the descriptive symbols of the language, Uw. This allows us to admit of
empty domains (Dw may be empty) and so to get quantified epistemic logics
based on free logic instead of classical logic. Furthermore, we try to build up a
semantics that doesn’t imply the validity of any controversial modal principle
and the double domain enables us to falsify the so-called converse of the Barcan
formula: I may believe that ‘all the basket players are taller than myself’ simply
because I am not aware of all of them, for example I am not aware of Muggsy
Bogues, so why should I be compelled by the logic to conclude that ‘I believe
of each basket player that he is taller than myself’? As usual in quantified
modal logics, a choice has to be made as to the inner domains: should they be
constant, increasing, decreasing, varying? We opt for varying domains and we
leave to the different applications to determine the appropriate constraints. For
the sake of simplicity we assume that domains are pairwise disjoint. In any case
this is not a real limitation because we can always label an object by the world
it inhabits.

a-rigidity and a-stability. In our semantics every term denotes in every state
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of affairs (world), and it can denote different objects in different worlds. Let us
agree that the name c denotes d1 in w1 and d2 in w2. For simplicity’s sake let us
assume that w2 is the only world compatible to w1 according to the epistemic
state of an agent a which inhabits w1. Every element d1 of the domain of w1

can have, in general, multiple a-transitions in the domain of w2. What can
a-rigidity mean in this context? We borrow the analogous notion from modal
logics, see [4], and we say that c is a-rigid if the interpretation of c in w2, i.e.
d2, is one of the a-transitions of d1 in w2. We are quite far from the traditional
notion of rigidity, according to which c is rigid only if d1 = d2. We can try
to approximate it by imposing that the set of a-transitions of d1 is either the
empty set or a singleton. Under this proviso, an a-transition of d1 coincides
with the interpretation of c in w2. When this happens we say that c is a-stable.
We can envisage a situation in which certain names are rigid with respect to
certain agents and not rigid with respect to others. What it is worth noticing at
this point is that the notions of a-rigidity and of a-stability correspond to the
validity of particular formulas, see section 4.0.1, so we can have formal systems
that include at the same time rigid and non-rigid terms.

3. Language

Consider a first-order signature with identity, individual constants as well as
predicate and function symbols. Terms are defined as usual. The primitive
logical symbols are ⊥,→,∀, and, for n ≥ 0, |t : t1x1

. . . tnxn
|, where x1, . . . , xn are

pairwise distinct variables and t, t1, . . . , tn are terms. When n = 0, we write
|t : ?|. The other connectives and the existential quantifier are defined as usual.
|t : x1 . . . xn| stands for |t : x1

x1
. . . xn

xn
|, and < t : t1x1

. . . tnxn
> for ¬|t : t1x1

. . . tnxn
|¬.

We will also use ~x and ~t for arrays of variables and terms, respectively.
The definitions of formula and of free variable are the usual ones for first-

order language augmented by the following:

• If A(x1, . . . , xn) is a formula whose free variable are among x1, . . . , xn,
then |t : t1x1

. . . tnxn
|A is a formula, where t, t1, . . . , tn are terms. The free

variables of |t : t1x1
. . . tnxn

|A are all (and only) the variables occurring in
t, t1, . . . , tn.

The proviso that all the free variables occurring in the scope of an epistemic
operator must occur inside the operator implies that the free variables always
take outer scope.

Substitution The approach we propose inherits many features from the coun-
terpart semantics for quantified modal logics introduced in [4]. In particular it
inherits the point of view that the focus of many problems and of their solu-
tions resides in the principle of substitution. This principle in term-modal logic
is formulated as:

(|t|A)[s/y]↔ |t|(A[s/y])

11



It can be seen as saying that the scope is immaterial: the term s in (|t|A)[s/y]
has outer scope and in |t|(A[s/y]) has inner scope, still the two formulas are
equivalent. We give a definition of substitution that differs from the standard
one just for the modal case for which it holds that:20

(|t : t1x1
...tkxk
|B)[~s/~y] =df |t[~s/~y] : t1[~s/~y]x1

. . . tk[~s/~y]xk
|B

where ~y contains all the free variables occurring in t, t1, . . . , tk.
Notice that substitutions are performed inside the modal operator and not inside
the formula that follows it. This makes the whole difference: we do not allow
substitutions to commute with epistemic operators by virtue of the definition
of substitution. Instances of the commutativity of substitutions correspond to
precise semantical conditions that can be assumed or not assumed as the case
may be.

4. Semantics

Definition 4.1. An epistemic transition structure21 is a quintuple
F = 〈W,U ,D,≺,�〉, where:

• W 6= ∅ is the set of possible worlds.

• U = {Uw : w ∈ W} is a family of non-empty [and pairwise disjoint ] sets,
we will refer to Uw as the outer domain of w. Each Uw is the (world-
relative) domain of interpretation of the signature of L. If a ∈ Uw, we say
that a inhabits w.

• D = {Dw : w ∈ W} is a family of (possibly empty) sets such that Dw ⊆
Uw, we will refer to Dw as the inner domain of w. Each Dw is the (world-
relative) domain of quantification. If a ∈ Dw, we say that a exists in w.

• ≺⊆ (U ×W) is the compatibility relation between agents and worlds. A
world v is a-compatible whenever 〈a, v〉 ∈≺.

• �=
⋃
a∈U{

a
�}, where for all a ∈ U ,

a
�⊆ {a×Uw×Uv : a ∈ Uw & a ≺ v}

is the agent-dependent transition relation. If 〈a, b, c〉 ∈
a
�, c is said to be

an a-transition of b and we usually write b
a
� c.

Definition 4.2. Let F = 〈W,U ,D,≺,�〉. An epistemic transition model
based on F is a pair M = 〈F , I〉, where I is a function associating to any
w ∈ W an interpretation Iw such that:

• for any constant c, Iw(c) ∈ Uw,

20The full definition is spelled out in [5].
21We generalize the semantics introduced in [5] in that we introduce double-domains. In [4]

transition semantics was given for a mono-modal language with indexed operators.
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• for any function fn, Iw(fn) : (Uw)n → Uw,

• for any relation Pn, Iw(Pn) ⊆ (Uw)n,

• Iw(=) =df {〈a, a, 〉 : a ∈ Uw}.

Definition 4.3. For any w ∈ W, a w-assignment is a world-relative function
σ : V ar → Uw. Given a w-assignement σ, by σx.d we denote the w-assignment
that behaves exactly as σ save for the variable x that is mapped to d ∈ Uw.

Definition 4.4. Given an interpretation I of L over F = 〈W,U ,D,≺,�〉 and
a w-assignment σ, the interpretation of t in w under σ, Iσw(t), is defined as:

• Iσw(x) =df σ(x)

• Iσw(c) =df Iw(c)

• Iσw(f(t1, . . . , tn) =df Iw(f)(Iσw(t1), . . . , Iσw(tn))

When no ambiguity arises, we will write σ(t) as a shorthand for Iσw(t).

Definition 4.5. We inductively define satisfaction of a formula A at w under
σ in M, σ |=M

w A, as follows:

σ 6|=M
w ⊥

σ |=M
w s = t ⇐⇒ σ(s) = σ(t)

σ |=M
w P k(t1, ..., tk) ⇐⇒ 〈σ(t1), ..., σ(tk)〉 ∈ Iw(P k)

σ |=M
w B → C ⇐⇒ σ 6|=M

w B or σ |=M
w C

σ |=M
w ∀xB ⇐⇒ for every d ∈ Dw, σx.d |=M

w B

σ |=M
w |t : t1x1

...tnxn
|B ⇐⇒ for all v such that σ(t) ≺ v,

for all v-assignment τ , if

σ(t1)
σ(t)
� τ(x1) & . . .& σ(tn)

σ(t)
� τ(xn),

then τ |=M
v B

• A is true at w in M, |=M
w A, iff for all w-assignment σ, σ |=M

w A.

• A is true in M, |=M A, iff for all w ∈ W, |=M
w A.

• A is valid on F , F |= A, iff for all models M based on F , |=M A.

13



4.0.1. Rigidity again

An interpretation function I is said to satisfy the rigidity condition if

if d ∈ Uw and d ≺ v then Iw(c)
d
� Iv(c), and for all

a1, . . . , an ∈ Uw and all b1, . . . , bn ∈ Uv,
if a1

d
� b1 and . . . and an

d
� bn, then

(Iw(fn))(a1, ..., an)
d
� (Iv(f

n))(b1, ..., bn).

• When the interpretation function satisfies the rigidity condition the fol-
lowing formula is valid for all terms t, t1 . . . tn

RGe |t : t1x1
. . . tnxn

|A(x1 . . . xn)→ |t : v1 . . . vk|A[t1/x1 . . . tn/xn]

where v1 . . . vk are the variables occurring in t1 . . . tn

• When the rigidity condition is limited to some individual constant c and
agent a ∈ Uw, then the following formula holds:

RGc,a
e |t : x1 . . . xn,

c
x|A(x1 . . . xn, x)→ |t : x1 . . . xn|A(x1 . . . xn, c/x)

where Iw(t) = a.

Consider now the particular case of RGe in which t1 . . . tn are variables and t is
any term. Then we get

RGv
e |t : y1x1

. . . ynxn
|A(x1 . . . xn)→ |t : v1 . . . vk|A[y1/x1 . . . yn/xn]

where v1 . . . vk are the variables y1 . . . yn without repetitions.

RGv
e is valid, no matter if the interpretation function satisfies the rigidity con-

dition or not. This is the reason why variables are said to be rigid designators.
This terminology doesn’t want to suggest any reference to the notion of rigidity
in general.

• Let a ∈ Uw and a ≺ v. An individual constant c is said to be a-stable iff

for all e ∈ Uv, (Iw(c)
a
� e iff e = Iv(c))

When c is a-stable, the following formula holds:

STc,ae |t : x1 . . . xn,
c
x|A(x1 . . . xn, x)↔ |t : x1 . . . xn|A(x1 . . . xn, c/x)

where Iw(t) = a.

5. Correspondence

We said from the outset that we were looking for a general setting in which to
envisage many different options by adding or removing some constraint. Here
we show which principles correspond to which constraints on the structures, so
according to the different applications one can choose the appropriate class of
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structures. First of all we consider constraints that capture some properties of
knowledge that are relevant also at the propositional level. Then we consider
constraints that capture properties that are specific of quantified epistemic log-
ics.

Let an epistemic transition structure F = 〈W,U ,D,≺,�〉 be given.

• Te : |x : ~y|A→ A

• F is reflexive iff (1) ∀a ∈ Uw(a ≺ w) and (2) ∀a, d ∈ Uw(d
a
� d)

Theorem 5.1. (Veridicity) Te is valid on F if and only if F is reflexive.

Proof. ⇐) By reductio. Let’s assume there is a reflexive F s.t.:

(1) σ 6|=w |x : y|A→ A
(2) σ |=w |x : y|A
(3) σ 6|=w A

(4) ∀v∀τ(σ(x) ≺ v&σ(y)
σ(x)
� τ(y)⇒ τ |=v A)

Given that F is reflexive, σ(x) ≺ w and σ(y)
σ(x)
� σ(y), hence σ |=w A, in

contradiction with (3).

⇒) By contrapposition. Let F be non reflexive, so that (i) ∃a ∈ Uw not (a ≺
w) or (ii) ∃a, d ∈ Uw not (d

a
� d). Let I be such that

for all v ∈ W, Iv(P ) = {b ∈ Uv : b 6= d}

If not (a ≺ w), we have that σx.a |=w |x : ?|∀yP (y), and σx.a 6|=w ∀yP (y).

If not (d
a
� d), then σx.a, y.d |=w |x : y|P (y), and σx.a, y.d 6|=w P (y).

Either way there is a counterexample to Te.
22

• De : |x : ~y|A→< x : ~y > A

• F is serial iff (1) ∀a ∈ Uw∃v(a ≺ v) and (2)∀a, b ∈ Uw∃c ∈ Uv(b
a
� c)

Theorem 5.2. (Consistency) De is valid on F if and only if F is serial.

• 4e : |x : ~y|A→ |x : x~y| |x : ~y|A

22Note that if we impose on F only the condition (1), but not (2), we have a structure where
are valid only the instances of Te where A is a closed formula, thus validating Te for de dicto
knowledge, but not for de re knowledge. The same point holds for the other propositional
properties of knowledge.
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• F is transitive iff
(1) ∀a ∈ Uw, d ∈ Uv(a

a
� d& d ≺ z ⇒ a ≺ z)

and

(2) ∀a, b ∈ Uw, c, d ∈ Uv, e ∈ Uz(a
a
� d& b

a
� c& c

d
� e⇒ a

a
� e)

Theorem 5.3. (Positive introspection) 4e is valid on F if and only if F is
transitive.

• 5e : ¬|x : ~y|A→ |x : x~y| ¬|x : ~y|A

• F is Euclidean iff
(1) ∀a ∈ Uw, b ∈ Uv(a ≺ v& a ≺ z& a

a
� b⇒ b ≺ z)

and

(2) ∀a, d ∈ Uw, c, b ∈ Uv, e ∈ Uz (d
a
� c& d

a
� e& a

a
� b⇒ c

b
� e)

Theorem 5.4. (Negative introspection) 5e is valid on F if and only if F is
Euclidean.

• GF : ∃y|t : x1...xn y|A→ |t : x1...xn|∃yA

• F is D-totally defined iff ∀k ∈ Uw(k ≺ v ⇒ ∀a ∈ Dw∃b ∈ Dv(a
k
� b))

Theorem 5.5. GF is valid on F if and only if F is D-totally defined.

Proof. F not D-totally defined implies F 6|= GF

w

v

k c

σx.c |=w |k : x|P (x)

σx.c 6|=w |k : ?|∃xP (x)

σ 6|=w ∃x|k : x|P (x) → |k : ?|∃xP (x)

Iv(P ) ∩Dv = ∅

• CBF : |t : x1...xn|∀yA→ ∀y|t : x1...xn y|A

• F is D-preservative iff ∀k ∈ Uw(k ≺ v ⇒ ∀a ∈ Dw∀b ∈ Uv(a
k
� b ⇒ b ∈

Dv))

Theorem 5.6. CBF is valid on F if and only if F is D-preservative.

16



w

v

ak

b

σx.a |=w |k : ?|∀xP (x)

σx.a 6|=w |k : x|P (x)

σx.a 6|=w |k : ?|∀xP (x) → ∀x|k : x|P (x)

Iv(P ) = Dv

Proof. F not D-preservative implies F 6|= CBF .

• BF : ∀y|t : x1...xn y|A→ |t : x1...xn|∀yA

• F is D-surjective iff ∀k ∈ Uw(k ≺ v ⇒ ∀b ∈ Dv∃a ∈ Dw(a
k
� b))

Theorem 5.7. BF is valid on F if and only if F is D-surjective.

Proof. F not D-surjective implies F 6|= BF .

w

v

ak

bc

σ |=w ∀x|k : x|P (x)

τ 6|=v ∀xP (x)

σ 6|=w ∀x|k : x|P (x) → |k : ?|∀xP (x)

Dw = {a} b ∈ Iv(P ) c 6∈ Iv(P )

• SHRT : |t : x1...xn y|A→ |t : x1...xn|A

• F is U-totally defined iff ∀k ∈ Uw(k ≺ v ⇒ ∀a ∈ Uw∃b ∈ Uv(a
k
� b))

Theorem 5.8. SHRT is valid on F if and only if F is U-totally defined.

Proof. F not U-totally defined implies F 6|= SHRT .
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w

v

ak

b

c

σx.c,y.a |=w |k : x y|P (y)

σx.c,y.a 6|=v |k : y|P (y)

σx.c,y.a 6|=w |k : x y|P (y) → |k : y|P (y)

b 6∈ Iv(P )

• NI : x = y → |t : x y|x = y

• F is U-functional iff ∀k ∈ Uw(k ≺ v ⇒ ∀a ∈ Uw∀b, c ∈ Uv(a
k
� b ∧ a

k
�

c⇒ b = c))

Theorem 5.9. NI is valid on F if and only if F is U-functional.

Proof. F not U-functional implies F 6|= NI.

w

v

ak

b c

σx.a,y.a |=w x = y

τx.c,y.b 6|=w x = y

σx.a,y.a 6|=w x = y → |k : x y|x = y

c 6= b

• ND : x 6= y → |t : x y|x 6= y

• F is U-not-convergent iff ∀k ∈ Uw(k ≺ v ⇒ ∀a, b ∈ Uw∀c ∈ Uv(a
k
�

c ∧ b
k
� c⇒ a = b))

Theorem 5.10. ND is valid on F if and only if F is U-not-convergent.

Proof. F not U-not-convergent implies F 6|= ND.
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w

v

ak

b

c

σx.a,y.c |=w x 6= y

τx.b,y.b 6|=w x 6= y

σx.a,y.c 6|=w x 6= y → |k : x y|x 6= y

b = b

6. Axiomatic system

In [5] is given a sound and complete axiomatization for the logic Q.Ke of the
class of all structures such that, for all w ∈ W, Uw = Dw.

In this section we present a sound and complete axiomatization for the logic
Q0.Ke of the class of all transition frames. For the sake of simplicity, we intro-
duce the existence predicate E(x) with the usual definition E(x) =df ∃y(x = y).
The logic Q0.Ke is so axiomatized:

• Axioms

PC A basis for propositional tautologies.

PRMe |x : x1 . . . xn|A↔ |x : xi1 . . . xin |A
for any permutation xi1 . . . xin of x1 . . . xn

Ke |x : ~y|(A→ B)→ (|x : ~y|A→ |x : ~y|B)

LNGTe |x : x1 . . . xn|A→ |x : x1 . . . xn, xn+1|A

RGv
e |x : ~y~z |A→ |x : y1 . . . yk|(A[~y/~z])

where y1 . . . yk are all the different variables in ~y

ID x = x

LBZ s = t→ (A[s/x]→ A[t/x])

EI ∀xA→ (E(t)→ A[t/x])

• Rules

MP
A A→ B

B

N
A

provided fv(A) ⊆ {x1, . . . , xn}
|x : x1 . . . xn|A
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SFV
A

provided t is free for x in A
A[t/x]

EG
A→ (E(t)→ B[t/x])

x not free in A
A→ ∀xB

Basically the axiomatization of Q0.Ke is the axiomatization for Q.Ke presented
in [5] where UI and UG are substituted by their restricted version EI and EG.
Soundness and completeness can be proved along the lines of the proof in [5].

7. Why index-modalities are better than λ-operator

One may wonder whether the fine-grained analysis of the interplay between
modalities and quantifiers due, in our opinion, to the language with indexed
modalities and shown in the correspondence theorems, could be achieved by
adding the λ-operator to a term-modal language. The answer is in the nega-
tive, since, by so doing, there are formulas that become provable whereas they
should not; the presence of the λ-operator doesn’t make any difference. As a
paradigmatic case consider the formula ∃x|t|Px→ |t|∃xPx and its proof in the
sequent calculus for K as presented in [9]: 144.

ax
P (p),¬P (p),∀x¬P (x)

∀
P (p),∀x¬P (x)

〈t〉
|t|P (p), 〈t〉∀x¬P (x)

∃
∃x|t|P (x), 〈t〉∀x¬P (x)

∧
∃x|t|P (x) ∧ 〈t〉∀x¬P (x)

The validity of ∃x|t|Px → |t|∃xPx is rather questionable and yet its proof
seems to use unquestionable inference rules. Not only that, but that proof
would remain untouched by the presence in the language of the λ-operator.
Instead, if we rephrase the formula ∃x|t|Px → |t|∃xPx in our language with
indexed modalities we get ∃x|t : x|Px → |t : ?|∃xPx, i.e. an instance of the
schema GF . As shown in theorem 5.5, GF corresponds to a specific condition on
the transition relations and it should not be provable in the minimal quantified
extension of K.

Let us redo the above proof in our language, starting from below:
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????
???

|t : px|P (x), 〈t : ?〉∀x¬P (x)
∃

∃x|t : x|P (x), 〈t : ?〉∀x¬P (x)
∧

∃x|t : x|P (x) ∧ 〈t : ?〉∀x¬P (x)

The modal operators of the formulas of the top sequent differ as far as the
indices are concerned and so a rule analogous to the rule 〈t〉 cannot be applied
and the sequent P (x),∀x¬P (x) cannot be obtained. What is needed is a new
rule, RSHRT , corresponding to the principle of shortening, SHRT, according to
which indices not occurring in the formula that follows the box-operator can be
deleted:

SHRT: |t : x1 . . . xn, z|A→ |t : x1 . . . xn|A

RSHRT can be formulated as follows in analogy with the rules of [9]: 144.

S, 〈t : ~s~x
p
y〉A

RSHRT
S, 〈t : ~s~x〉A

Now the proof can go through:

ax
P (x),¬P (x),∀x¬P (x)

∀
P (x),∀x¬P (x)

〈t : px〉|t : px|P (x), 〈t : px〉∀x¬P (x)
RSHRT

|t : px|P (x), 〈t : ?〉∀x¬P (x)
∃

∃x|t : x|P (x), 〈t : ?〉∀x¬P (x)
∧

∃x|t : x|P (x) ∧ 〈t : ?〉∀x¬P (x)

Where the problem lies is now clear: the proof of ∃x|t : x|Px → |t : ?|∃xPx
involves one step (RSHRT ) that goes unnoticed in the proof of [9] just because
of the language used. This step is valid only by assuming that every object can
be ”retraced” in any accessible world; in our terminology, RSHRT is valid if the
transition relation is everywhere defined on the outer domains.

We conclude by noticing that GF and SHRT are provably equivalent in a
quantified epistemic logic based on classical logic, see [4] and [5]. Here is a proof
of an instance of SHRT, |t : x, y|P (x) → |t : x|P (x), by the help of RGF and
the cut rule.
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ax
|t : x y|P (x), ¬|t : x y|P (x)

∀
|t : x y|P (x), ∀y¬|t : x y|P (x)

ax
P (x), ¬P (x)

vacuous quant.
∃yP (x), ¬P (x)

〈t : x〉
|t : x|∃yP (x), 〈t : x〉¬P (x)

RGF
∃y|t : x y|P (x), 〈t : x〉¬P (x)

cut rule
|t : x y|P (x), 〈t : x〉¬P (x)

∧
|t : x y|P (x) ∧ 〈t : x〉¬P (x)

A proof of |t : x, y|P (x) → |t : x|P (x) enjoying the subformula property
seems hard to obtain, and consequently a cut free sequent calculus of the clas-
sically quantified epistemic logic Qe.K + GF , see [5]. A further motivation in
favour of a free quantified epistemic logic can be retraced in the fact that the
schemata GF and SHRT are not provably equivalent.
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