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In this paper the effects of the use of the dual-based hybrid Jacobian computation in
combination with the Pseudospectral Methods are thoroughly inspected. The dual-step dif-
ferentiation method is implemented in SPARTAN (SHEFEX-3 Pseudospectral Algorithm
for Re-entry Trajectory ANalysis), a tool based on the use of the global Flipped Radau
Pseudospectral method for the transcription of optimal control problems. The dual num-
ber theory is exploited to provide an exact computation of the Jacobian matrix associated
with the NonLinear Programming (NLP) problem to be solved. The dual-step differenti-
ation method is compared to standard differentiation schemes (the central difference and
the complex-step approximations) and applied in the solution of two examples of opti-
mal control problem using two different off-the-shelf NLP solvers (SNOPT and IPOPT).
Differentiation based on dual number theory is proved to be a valid alternative to the tradi-
tional, well-known, differentiation schemes as its use improves, for the problems analysed,
the accuracy of the results, especially in combination with SNOPT.

Nomenclature

B Boundary Conditions
C Path Constraint
D Drag Force, lb

D̃j,k (jth,kth) element of Discretization Matrix D̃j,k

D̃j,k Discretization Matrix
Dual Dual part
F Force, N
f Residual value vector
f Function representing the dynamics
g Gravity acceleration, ft/s2

g Function representing the constraints
h Altitude, ft
i Imaginary Unit
i Subscript
INS

NS ×NS

Im Imaginary part
J Jacobian Matrix
JacDu Dual jacobian
JacPs Pseudospectral jacobian
JacTh Theoretical jacobian
L Lift Force, lb
Li ith Lagrange
LU Canonical Length
m Mass, kg (Orbit Raising problem)
MU Canonical Mass
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n Number of collocations nodes
nc Number of controls
ng Number of constraints
ns Number of states
p Parameter
Pn Legendre Polynomial of order n
q Heat rate, BTU/ft2s
r Radius, ft (Space Shuttle entry problem)
r Radius, LU (Orbit Raising problem)
Re Real part
t Time, s
T Thrust magnitude, MU LU / TU2

tf Final time, s
TU Canonical Time
u Control
Uk kth discrete control vector
v Velocity modulus, ft/s
Vr Radial speed, LU/TU
Vt Tangential speed, LU/TU
x State
XNLP NLP state vector
Xk kth discrete state vector Polynomial
α Angle of attack, rad
β Bank angle, rad
γ Flight-path angle, rad
δ Thrust angle, rad
ε Dual Unit
εk kth Hyperdual Unit
η Discrepancy between numerical and analytical derivative
θ Longitude, rad
τ Pseudospectral time domain
φ Latitude, rad (Space Shuttle entry problem)
φ True anomaly, rad (Orbit Raising problem)
Φ Mayer term of cost function
ψ Velocity azimuth angle, rad
Ψ Lagrange term of cost function

Abbreviations

CD Central Difference
CDn Central Difference with n points
CS Complex Step
DS Dual Step
Du Dual
FRPM Flipped Radau Pseudospectral Method
GPM Gauss Pseudospectral Method
IPOPT Interior Point Optimizer
LPM Legendre Pseudospectral Method
NLP NonLinear Programming
OCP Optimal Control Problem
Ps Pseudospectral
RPM Radau Pseudospectral Method
SHEFEX SHarp Edge Flying EXperiment
SNOPT Sparse Nonlinear Optimizer
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SPARTAN SHEFEX-3 Pseudospectral Algorithm for Reenty Trajectory ANalysis
Th Theoretical
w.r.t. with respect to

I. Introduction

Nowadays the new, increased capabilities of CPUs have encouraged researchers and engineers towards the
investigation of numerical optimization as an analysis and synthesis tool to generate optimal trajectories
and the controls to track them. In particular, direct methods are gaining widespread acceptance for solving
optimization problems.
Direct methods use gradient-based techniques, and require the computation of the derivatives of the objec-
tive function and the constraints of the problem under analysis. The accuracy of these derivatives has a
direct impact on the computational accuracy of the solutions. Therefore, the quality of the results and the
computation time are strongly affected by the Jacobian matrix describing the discrete, transcribed Optimal-
Control Problem (OCP), that is, the resulting NonLinear Programming (NLP) problem.
From this perspective, in this paper we will combine the dual-step differentiation method which provides
exact (machine epsilon) first-order derivatives, with Pseudospectral Methods to provide exact Jacobian in
the frame of implementing a NLP problem. The work is organized as follows: the transcription process from
a generic OCP to the NLP using the Flipped Radau Pseudospectral Methd (FRPM) is described in Sec.II.
Section III briefly summarizes the dual number theory and, in particular, it thoroughly analyses the dual-step
differentiation method. Section IV focuses on SPARTAN (SHEFEX-3 Pseudospectral Algorithm for Reentry
Trajectory ANalysis) and on its hybrid computation of the Jacobian matrix associated with the NLP to be
solved. The dual-step differentiation method is integrated in the frame of the hybridization of the entire
jacobian matrix. In Sec.V two examples taken from literature1 are considered to show the results coming
from the use of the proposed technique. The optimal-control problems considered are the maximization of
the final crossrange of the space shuttle reentry trajectory, and the maximization of the final specific energy
in an orbit raising problem. The NLP generated by SPARTAN are solved using two different off-the-shelf
NLP solvers (SNOPT and IPOPT), and a comparison of the dual-step method with other differentiation
schemes is performed for each of the tools. The results of the simulations in terms of accuracy and CPU
time are reported to assess the effects of the use of the Pseudospectral methods in combination with the
dual numbers. Finally, in Sec.VI some conclusions and the future outlook are reported.

II. Pseudospectral Methods

In Optimal Control it is desired to determine the inputs to a dynamical system that optimize (i.e., minimize
or maximize) a specific performance index (the cost function) while satisfying any constraints on the system.
Numerical methods for solving OCPs are divided in two major classes1 : indirect methods and direct meth-
ods. Indirect methods are based on the Pontryagin Maximum Principle, which leads to a multiple-point
boundary-value problem. Direct methods, instead, consist in the discretization of the OCP, transcribing it
to a nonlinear optimization problem or NonLinear Programming Problem (NLP). It is seen2 that indirect
methods and direct methods emanate from two different philosophies. Indeed, the indirect approach solves
the problem indirectly by converting the OCP to a boundary-value problem and, as a result, the optimal
solution is found by solving a system of differential equations that satisfies endpoint and/or interior point
conditions. On the other hand, using a direct approach, the optimal solution is found by transcribing an
infinite-dimensional optimization problem to a finite-dimensional optimization problem.
PseudoSpectral Methods represent a particular area of interest in the frame of the wider class of direct
methods. The basic idea behind the pseudospectral methods is, as in the other direct methods, to collocate
the differential equations, the cost function and the constraints of the original OCP in a finite number of
points to treat them as a set of nonlinear algebraic equations. In detail, in the PS methods, the collocation
points are chosen as linear combinations of the roots of Legendre Polynomials and / or their derivatives.2 In
this way, the continuous (infinite-dimensional) OCP is transformed (i.e. transcribed) into a discrete (finite-
dimensional) NLP problem, which can be efficiently solved with one of the off-the-shelf, well-known software.
It is possible to distinguish between two subcategories of pseudospectral methods: the symmetrical methods,
like the Gauss Pseudospectral Method (GPM) and the Lobatto Pseudospectral Method (LPM), which use
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symmetrical distributions of nodes3–5 and the asymmetrical methods, represented by the Radau Pseudospec-
tral Method (RPM)6 in its direct and flipped form.
In this paper we focus on SPARTAN, an optimal-control package developed by the German Aerospace Cen-
ter, which has already been used in literature7–13 . SPARTAN uses the flipped version of the RPM: the
global Flipped Radau Pseudospectral Method (FRPM), based on the flipped distribution of points w.r.t.
the classical RPM. It has been shown that for the FRPM, as well as for all the PS methods, the following
properties are valid:

• “Spectral” convergence in the case of a smooth problem

• The Runge phenomenon is avoided

• Straightforward implementation

• Sparse structure of the associated NLP problem

• Mapping between the discrete costates of the associated NLP and the continuous costates of the Opti-
mal Control Problem (except for LPM) in virtue of the Pseudospectral Covector Mapping Theorem.14

In addition, the FRPM distinguishes itself from the other PS methods by the property of convergence of the
costates. Therefore, it is useful to have a look at the FRPM and how it can be conveniently employed to
solve OCPs, focusing on the transcription process which defines the corresponding NLP.

A. Discretization of the OCP

An optimal-control problem is posed formally as follows.1 Determine the state (equivalently, the trajectory
or path), x(t) ∈ Rn, the control u(t) ∈ Rm, the vector of static parameters p ∈ Rq, the initial time, t0 ∈ R,
and the terminal time, tf ∈ R (where t ∈ [t0, tf ] is the independent variable) that optimize the cost function

J [x(t),u(t), t; p] (1)

subject to the dynamic constraints (i.e., differential equation constraints),

ẋ(t) = f[x(t),u(t); p], (2)

the path constraints
Cmin ≤ C[x(t),u(t), t; p] ≤ Cmax, (3)

and the boundary conditions
Bmin ≤ B[x(t),u(t), t; p] ≤ Bmax. (4)

The objective function (1), in a Bolza formulation of the OCP, can be expressed as follows

J = Φ[x(t0), t0,x(tf ), tf ; p] +

∫ tf

t0

Ψ[x(t),u(t), t; p]dt (5)

where Φ and Ψ are the Mayer and the integrand of the Lagrange terms, respectively.
The differential equations (2) describe the dynamics of the system while the objective (1) is the performance
index, which can be considered as a measure of the “quality” of the trajectory. When it is desired to
minimize the performance index, a lower value of J is preferred; conversely, when it is desired to maximize
the performance index, a larger value of J is preferred. In the PS methods, and specifically, in the FRPM,
the transcription of the OCP as NLP is based on the choice of some “basis” functions to represent the
continuous variables. The states and the controls are discretized as follows.

x(ti) ∼= Xi, i ∈ [0, n] (6)

u(tj) ∼= Uj , j ∈ [1, n]. (7)

The continuous states and controls are therefore approximated with polynomials which interpolate the values
in the nodes Xi and Ui,

x(t) ∼=
n∑

i=0

XiLi(t) (8)

u(t) ∼=
n∑

i=1

UiLi(t) (9)
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where

Li(t) =

n∏
j=0,j 6=i

t− tj
ti − tj

(10)

and tj are the roots of linear combinations of Legendre Polynomials Pn(t) and Pn−1(t). Formal definitions
of the Legendre Polynomials can be found in15 , while an example of Legendre Polynomials of order 0− 5 is
plotted in Fig. 1.

Figure 1: Legendre Polynomials of order 0-5.

The difference in the indexing in the first and the second relationships in Eq. (9) is due to the distinctions
between discretization and collocation. While the discretization includes (in the FRPM) the initial point,
the collocation does not. Hence, the controls will be approximated with a polynomial having a lower order
and the NLP problem will not provide the initial values for the controls. These can be, in some cases,
part of the initial set of known inputs, otherwise they can be extrapolated from the generated polynomial
interpolating the N values of controls in the collocation nodes. The entire information related to the states
and the controls is enclosed in their nodal values. The boundaries defined in Eq. (4) are evaluated in the
same nodes used for the collocation of the differential equations, the cost function, and the constraints. The
transcribed NLP problem can therefore be defined.

B. Transcription as NLP

The resulting NLP can be summarized as follows. Minimize (maximize) the cost function J

J = Ψ [tf ,Xf ,Uf ] +
tf − t0

2

n∑
i=0

wiΦ [ti,Xi,Ui(τ)] (11)

subject to the nonlinear algebraic constraints,

Fi = D̃ ·X− tf − t0
2

f(ti,Xi,Ui) = 0 (12)

representing the differential equations, and to the boundary and path constraints Eqs. (13)-(15).

Cmin,i ≤ C (ti,Xi,Ui) ≤ Cmax,i (13)

Bmin,i ≤ B(Xi) ≤ Bmax,i (14)
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i = 1, . . . , n (15)

The elements wi which appear in the relationship Eq. (11) are the Gauss-Radau quadrature weights.15 The
matrix D̃ is the discrete differential operator, and will be described in Sec.IV, while the term

tf−t0
2 is a scale

factor related to the transformation between the physical time domain t, defined between t0 and tf , and the
pseudospectral time domain τ ∈ (−1, 1]. The use of this pseudospectral domain is connected to the property
of orthogonality of the Legendre polynomials, which allow to remove the Runge phenomenon.3–6 The affine
transformation between the time and pseudospectral time domains is given by

t =
tf − t0

2
τ +

tf + t0
2

(16)

τ =
2

tf − t0
t− tf + t0

tf − t0
(17)

The NLP is therefore completely characterized.

III. Dual Numbers

A. Definition

In linear algebra, the dual numbers extend the real numbers by adjoining one new element ε with the property
ε2 = 0 (ε is nilpotent). The collection of dual numbers forms a particular two-dimensional commutative
associative algebra over the real numbers16 . Every dual number has the form

z = a+ bε (18)

with a and b uniquely determined real numbers and, in particular,

a = real(z) Real Part

b = dual(z) Dual Part

Dual numbers extend the real numbers in a similar way to the complex numbers. Indeed, as the dual
numbers, the complex numbers adjoin a new element i, for which i2 = −1, and every complex number has
the form z = a+ bi where a and b are real numbers.
The definition given in Eq. (18) relies on the idea that ε2 = 0 with ε 6= 0. This may not be mathematically
possible; ε2 = 0 may require ε = 0. For this reason, these numbers were also called “fake numbers”17 with
reference to their similarity with imaginary numbers and to acknowledge that this type of number may not
formally exist.
Using matrices, dual numbers can be represented also in matrix form as

ε =

(
0 1

0 0

)
; z = a + bε =

(
a b

0 a

)
.

It is easy to see that the matrix form satisfies all the properties of the dual numbers.
In order to implement the dual numbers, algebraic operations on these numbers should be properly defined.
It is important to underline that the dual number algebra is a non-division algebra; given two dual numbers,
division is possible only if the real part of the divisor is different from zero.
The dual numbers have been implemented in MATLAB as a new class of numbers18,19 , using operator
overloading. The class includes definitions for standard algebraic operations, logical comparison operations,
and other more general functions such as the exponential or the trigonometric functions. This class definition
file allows a real-valued analysis code to be easily converted to operate on dual numbers by just changing the
variable type declarations, while the structure of the code remains unchanged. The use of the dual numbes
allow to compute exact first derivatives, as it will be explained in the next Sec.

B. Dual-Step Differentiation Method

The dual-step differentiation method uses the dual numbers to provide exact first order derivatives.
Consider the Taylor series of a function f(x) for x ∈ R for a given perturbation value a.

f(x+ a) = f(x) + af ′(x) +
1

2!
a2f ′′(x) +

a3f ′′′(x)

3!
+ . . . . (19)

6 of 23

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 T

E
C

H
N

IS
C

H
E

 U
N

IV
E

R
SI

T
E

IT
 D

E
L

FT
 o

n 
Ja

nu
ar

y 
27

, 2
01

6 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
6-

08
67

 



If we assume that the perturbation a is the dual number

a = a1ε with ε2 = 0 and ε 6= 0 (20)

so that a2 = 0, a3 = 0, . . . , the Taylor series in Eq. (19) truncates exactly at the first-derivative term,
yielding the properties of the approximation that we are seeking:

f(x+ a) = f(x) + a1f
′(x)ε. (21)

So, to get f ′(x) it is necessary to simply read off the ε component and divide by a1, yielding the dual-step
first derivative formula:

f ′(x) =
Dual[f(x+ a)]

a1
. (22)

This formula clearly shows the advantages of the use of the dual-step differentiation method over the central
difference and the complex-step approximations.20 Indeed, since the dual-step derivative approximation does
not involve a difference operation and no terms of the Taylor series are ignored, this formula is subject neither
to truncation error, nor to round-off error. There is no need to make the step size small and the simplest
choice is a1 = 1, which eliminates the need to divide by the step size. Therefore, using the dual-step method,
the error between numerical and analytical derivative (η = |f ′ − f ′ref |/|f ′ref |) is machine zero regardless of
the selected step size, as illustrated in Fig. 2.

Figure 2: Error in the first derivative, function f(x) = 1
x2 .

Considering the central difference (CD) and the complex-step approximations, instead, Fig. 2 shows that, as
h decreases, the error decreases according to the order of the truncation error of the method. However, after
a certain value of h (below a value of about 10−2 for the 7-points CD, 10−4 for 5-points CD, 10−5 for 3-points
CD), the error for the central difference approximations tends to grow, while the error for the complex-step
approximation continuously decreases. This shows the effect of the round-off error, which affects the central
differences but not the first derivative complex-step approximation.
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From the inspection of Eq. (21) it is possible to observe that each function extended in the dual plane “hides”
its derivative in its dual part. Indeed, the mathematics of these numbers are such that, when operations are
carried out on the real part of the number, derivative information for those operations is formed and stored
in the non-real part of the number. The disadvantage is a larger computational cost and, in addition, the
need of working with analytical functions (e.g., no look-up tables).

C. Hyper-Dual Numbers for n-order exact derivatives

Hyper-dual numbers are a larger dimensional extension of dual numbers in a similar way that the quaternions
are a larger dimensional extension of ordinary complex numbers. They have been successfully used to solve
optimization problems in the domain of CFD computations21 . A hyper-dual number is of the form

x = x1 + x2ε1 + x3ε2 + x4ε1ε2. (23)

It has one real part and three non-real parts with the following properties

ε21 = ε22 = (ε1ε2)2 = 0, (24)

where
ε1 6= ε2 6= ε1ε2 6= 0 (25)

or in other words

ε1 =
√

0 6= 0 (26)

ε2 =
√

0 6= 0 (27)

ε1ε2 =
√

0 6= 0 (28)

Hyper-dual numbers can be used to compute exact first- and second-order derivatives to evaluate Gradients
and Hessians for optimization methods. Indeed, the Taylor series for a function with a hyper-dual step
truncates exactly at the second-derivative term, yielding

f(x+ h1ε1 + h2ε2 + 0ε1ε2) = f(x) + h1f
′(x)ε1 + h2f

′(x)ε2 + h1h2f
′′(x)ε1ε2. (29)

The larger order terms are all zero by the definition of ε21 = ε22 = (ε1ε2)2 = 0, so there is no truncation error.
The first and second derivatives are the leading terms of the non-real parts, meaning that if f ′(x) is desired
simply look at the ε1 or ε2 part and divide by the appropriate step and if f ′′(x) is desired look at the ε1ε2
part:

f ′(x) =
ε1part[f(x+ h1ε1 + h2ε2 + 0ε1ε2)]

h1
(30)

f ′(x) =
ε2part[f(x+ h1ε1 + h2ε2 + 0ε1ε2)]

h2
(31)

f ′′(x) =
ε1ε2part[f(x+ h1ε1 + h2ε2 + 0ε1ε2)]

h1h2
. (32)

The derivative calculations are not even subject to subtractive cancellation error so the use of hyper-dual
numbers results in first and second derivative calculations that are exact, regardless of the step size.
The real part returns the original function evaluated in the real argument Re(x), and it is mathematically
impossible for the derivative calculations to affect the real part. Indeed, the use of this new number system
to compute the first and second derivative involves converting a real-valued function evaluation to operate
on these alternative types of numbers. Then, the derivatives are computed by adding a perturbation to the
non-real parts and evaluating the modified function.
An example of use of hyperdual numbers is reported in Fig. 3, which shows the difficulty of computing
accurate second derivatives using traditional methods. To compute exact second derivatives it is necessary
to employ the hyper-dual numbers.
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Figure 3: Error in the second derivative, function f(x) = 1
x2 .

Methods for computing exact larger derivatives can be created by using more non-real parts. For instance, to
produce nth derivatives, nth order hyper-dual numbers would be used. These nth order hyper-dual numbers
have n components ε1, ε2, . . . , εn and all of their combinations. If only the first derivatives are needed, first
order hyper-dual numbers would be used: the dual numbers.

IV. Hybridization of Jacobian

Let us now consider the general structure of the Jacobian associated with the NLP problem deriving from
the application of FRPM. The hybridization described in7 can be now merged with the framework provided
by the Dual Number Theory to compute exact jacobian matrices.
In the most general case, considering ns states, nc controls, ng constraints, n collocation points and unknown
final time tf , the Jacobian associated with the transcription of an autonomous system of equations (as in
the examples here treated) will be expressed as a matrix having the following dimensions

dim(J) = [n · (ns + ng) + 1]× [(n+ 1) · ns + n · nc + 1] . (33)

In order to maintain a consistence between the states and the controls associated with each node, the
following order for the NLP variable is proposed:

XNLP =
{

X0 X1 U1 X2 U2 .. .. Xn Un tf

}T

(34)

We can observe how the initial control U0 does not appear in Eq. (34). This is due to the choice of the FRPM
as transcription method instead of the traditional RPM. The initial control indeed can be extrapolated once
the NLP is solved. Since the Jacobian is by definition the matrix representing the partial derivatives of a
given set of functions (i.e. our NLP constraints) w.r.t. their variables, this set and its order must be defined.
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For the NLP, they are all the constraints defined during the transcription of the problem, that is, the cost
function J , the dynamics F = {f1, f2, ..., fn}, and, when defined, the constraints G = {g1,g2, ...,gn}.

C(XNLP ) =
{
J f1 f2 ... fn g1 g2 ... gn

}T

(35)

The Jacobian deriving from these definitions is reported in Eq. (36):

J =

[
∂C

∂XNLP

]
=



∂J
∂X0

∂J
∂X1

∂J
∂U1

∂J
∂X2

∂J
∂U2

.. .. ∂J
∂Xn

∂J
∂Un

∂J
∂tf

∂f1
∂X0

∂f1
∂X1

∂f1
∂U1

∂f1
∂X2

∂f1
∂U2

.. .. ∂f1
∂Xn

∂f1
∂Un

∂f1
∂tf

∂f2
∂X0

∂f2
∂X1

∂f2
∂U1

∂f2
∂X2

∂f2
∂U2

.. .. ∂f2
∂Xn

∂f2
∂Un

∂f2
∂tf

.. .. .. .. .. .. .. .. .. ..

∂fn
∂X0

∂fn
∂X1

∂fn
∂U1

∂fn
∂X2

∂fn
∂U2

.. .. ∂fn
∂Xn

∂fn
∂Un

∂fn
∂tf

∂g1

∂X0

∂g1

∂X1

∂g1

∂U1

∂g1

∂X2

∂g1

∂U2
.. .. ∂g1

∂Xn

∂g1

∂Un

∂g1

∂tf

.. .. .. .. .. .. .. .. .. ..

∂gn

∂X0

∂gn

∂X1

∂gn

∂U1

∂gn

∂X2

∂gn

∂U2
.. .. ∂gn

∂Xn

∂gn

∂Un

∂gn

∂tf



(36)

This Jacobian matrix can be computed numerically in different ways (e.g. with the classical finite-differences
schemes, or using the complex-step derivative technique). This is not the best approach since it does not
consider the theoretical knowledge contained in the definition of the discrete operator D, nor does it take
full advantage from the intrinsic sparsity associated with the use of Pseudospectral methods. Instead, the
approach followed in7 is here considered. The results will be extended to the use of the dual numbers. On
this purpose, let us then express the Jacobian as sum of three different contributions.

J = JacPs + JacDu + JacTh (37)

We can now analyze each of these terms and how to compute them.

A. PseudoSpectral Jacobian

This part of the Jacobian matrix is intrinsically related to the use of the FRPM. More specifically, it can be
seen as the contribution to the Jacobian and to the constraints represented in Eq. (36) given by the use of
the discrete differential matrix D̃. In the frame of the discretization of the dynamics, it represents the term

D̃ ·X (38)

From a pure algebraic point of view, the differential operator can be seen as a set of linear combinations of
the nodal values of each of the states. The PseudoSpectral Jacobian is entirely defined once the matrix D̃ is
computed. More explicitly, the Pseudospectral Jacobian Matrix can be defined as follows

JacPs =


O1×[(n+1)·ns+n·nc+1]

D̃1,0 .. .. D̃1,n

.. .. .. .. O[n·(ns+ng)+1×1]

D̃n,0 .. .. D̃n,n

Ong×[(n+1)·ns+n·nc+1]

 (39)

where

D̃i,j = D̃i,j · INS
, j ∈ [0, n] (40)

and INS
is the identity matrix of dimension NS . The elements D̃i,j are the time derivative of the polynomials

P defined in Eq. (10), evaluated in the collocation nodes. The Pseudospectral Jacobian can then be entirely
computed just once, before the beginning of the real optimization process. Moreover, the accuracy of its
computation is a consequence of how good the estimate of the roots of the Legendre-Radau Polynomials is,
and not of the errors given by the approximation due to the use of numerical differentiation techniques.
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B. Dual Jacobian

The Dual Jacobian refers to the cost functions, the differential equations and the path constraints which
appear in the NLP problem defined in Eqs. (1)-(3). While Central Differences and Complex Step provide
approximated derivatives for these terms, the use of Dual Number Theory permits to compute zero-epsilon
derivatives. The only limit for the use of this technique is the same associated with the use of the complex-
step, that is, the need to have analytical functions, i.e. no look-up tables are allowed. In case we are dealing
with analytical functions, it is possible to compute their contribution to the Jacobian (i.e. considering the
matrix D equal to 0), excluding the last column,

JacDu =

[
∂C

∂XNLP

]
D=0

= −kt



∂J
∂X1

∂J
∂U1

∂J
∂X2

∂J
∂U2

.. .. ∂J
∂Xn

∂J
∂Un

∂f1
∂X1

∂f1
∂U1

∂f1
∂X2

∂f1
∂U2

.. ..
∂f1
∂Xn

∂f1
∂Un

∂f2
∂X1

∂f2
∂U1

∂f2
∂X2

∂f2
∂U2

.. ..
∂f2
∂Xn

∂f2
∂Un

O[n·(ns+ng)+1×ns] .. .. .. .. .. .. .. .. O[n·(ns+ng)+1×1]

∂fn
∂X1

∂fn
∂U1

∂fn
∂X2

∂fn
∂U2

.. ..
∂fn
∂Xn

∂fn
∂Un

∂g1
∂X1

∂g1
∂U1

∂g1
∂X2

∂g1
∂U2

.. ..
∂g1
∂Xn

∂g1
∂Un

.. .. .. .. .. .. .. .. ..

∂gn
∂X1

∂gn
∂U1

∂gn
∂X2

∂gn
∂U2

.. ..
∂gn
∂Xn

∂gn
∂Un



(41)

where kt is the time mapping factor defined as
tf−t0

2 for the elements related to the functions f , and 1 for all
the other terms of JacDu. Each of the element of JacDu can be rewritten in dual form. We can therefore
write

JacDu = −ktDual [C(XNLP + ε)]D=0 (42)

The differentiation operation becomes then an evaluation of the single elements of C(XNLP ) in dual sense,
and the extraction of the dual part.

C. Theoretical Jacobian

Finally, a third contribution, the Theoretical Jacobian, arises in case we deal with problems having an
unknown final time. The NLP state vector will then have a further variable, that is tf . In this case, the
Jacobian associated with this term is proportional to the output of the continuous functions in virtue of the
time mapping reported in the relationships (16), (17).

JacTh = −1

2



0

f1

f2

O[n·(ns+ng)+1]×[(n+1)·ns+n·nc+1] ..

fn

On·ng×1


(43)

The hybridization of the Jacobian matrix makes the computation of the NLP problems solution more ac-
curate, as no approximations are taken, except those associated with the transcription process. Hence,
significant CPU time is saved when solving the NLP problem. To see the results, let us consider two signifi-
cant examples, already used as examples in literature. The solutions have been generated using a number of
nodes between 100 and 300. Cases with 100 nodes were solved with a cold start (e.g., no meaningful initial
guess was provided to the solver). This solution was used as initial guess for the cases with 200 and 300
nodes to reduce the CPU time.

V. Numerical Examples

A. Space Shuttle Reentry Problem

The problem of the construction of the reentry trajectory for the Space Shuttle is a classic example of an
optimal-control problem and it is of significant practical interest. The motion of the vehicle is defined by
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the following set of differential algebraic equations1 :

ḣ = v sin(γ), (44)

φ̇ =
v sin(ψ) cos(γ)

r cos(θ)
, (45)

θ̇ =
v

r
cos(γ) cos(ψ), (46)

v̇ = −D
m
− g sin(γ), (47)

γ̇ =
L

mv
cos(β) + cos(γ)

(
v

r
− g

v

)
, (48)

ψ̇ =
L

mv cos(γ)
sin(β) +

v

r cos(θ)
cos(γ) sin(ψ) sin(θ), (49)

The state variables are x = (h, φ, θ, v, γ, ψ)T where h is the altitude (ft), φ is the longitude (rad), θ is the
latitude (rad), v is the velocity (ft/sec), γ is the flight path angle (rad) and ψ is the azimuth (rad), and the
control variables are u = (α, β)T where α is the angle of attack (rad) and β is the bank angle (rad).
The reentry trajectory begins at an altitude where the aerodynamic forces are quite small with the following
initial conditions:

h0 = 260000ft, v0=25600ft/s,

φ0 = 0◦, γ0 = −1◦

θ0 = 0◦, ψ0 = 90◦.

The final point on the reentry trajectory occurs at the unknown final time tf . The goal is to choose the
control variables α(t) and β(t) so that the final cross-range is maximized, which is equivalent to maximizing
the final latitude θ(tf ). So, the cost function can be defined as follows:

J = θ(tf ). (50)

Furthermore, an upper bound on the aerodynamic heating of 70 BTU/ft2/s is imposed. The aerodynamic
heating has been calculated as q = qaqr where In this case the Jacobian has all the three contributions. The

qa = c0 + c1α̂+ c2α̂
2 + c3α̂

3, qr = 1770
√
ρ(0.0001v)3.07,

c0 = 1.0672181, ρ = ρ0exp[−h/hr],

c1 = −0.19213774× 10−1, ρ0 = 0.002378

c2 = 0.21286289× 10−3 hr = 23800,

c3 = −0.10117249× 10−5, α̂ = 180α/π.

OCP has been implemented and solved with SPARTAN using different differentiation schemes: the 3-points
stencil central difference scheme, the 5-points stencil central difference scheme, the 7-points stencil central
difference scheme, the complex-step derivative approach and the dual-step derivative method.
Figures 4 and 5 illustrate the time histories of the states and the controls which are associated with the
solution obtained using the dual-step derivative method and a number of nodes equal to 100. The red
points are the discrete states and controls obtained with SPARTAN, and the blue lines are the interpolating
functions approximating the continuous variables. The states and the controls are fully consistent with the
solution obtained by Betts.1 Figure 6 shows the discrepancy between the optimized states obtained with
SPARTAN and the states obtained by propagating control inputs obtained with SPARTAN according to
Runge-Kutta 45 scheme. The maximum discrepancy is about 60 ft in terms of altitude h, and 1 ft/s in terms
of velocity, with a maximum percentage difference of about 0.3%. The groundtrack of the optimal trajectory
and the optimal value for the final latitude are reported in Fig. 7. The crossrange is maximized as expected,
with a final value equal to 30.71 deg.
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Figure 4: States Evolution for the Space Shuttle Reentry Problem.
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Figure 5: Controls Evolution for the Space Shuttle Reentry Problem.
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Figure 6: Discrepancy between optimized and propagated solutions for the Space Shuttle Reentry Problem.

Figure 7: Space Shuttle Reentry Problem - Groundtrack of Trajectory Optimizing Final Crossrange.
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Figures 8 and 9 illustrate the trend of the altitude mean error (in logarithmic scale) between optimized and
propagated solutions as a function of the number of the nodes. When the dual-step differentiation method is
integrated within the FRPM, the “spectral” convergence of the solution, typical of the pseudospectral meth-
ods, is verified, and shows a smoother behavior w.r.t. to the convergence obtained when other approximated
techniques for numerical differentiation are used (in the example reported here the Complex-Step is used as
comparison). As expected, an increase in the number of nodes brings the mean error asymptotically to zero.
Tables 1 and 2 summarize the results obtained with SPARTAN using five different differentiation schemes:
the 3-points central difference scheme, the 5-points central difference scheme, the 7-points central difference
scheme, the complex-step derivative approach and the dual-step differentiation method. In the first table
SNOPT (Sparse Nonlinear OPTimizer) is used to solve the NLP problem, while in the second table IPOPT
(Interior Point OPTimizer) is used. The results in terms of accuracy and CPU time show that the effects
of the use of the dual-step derivative method, as well as of the other schemes, in combination with the PS
methods are strongly influenced by the number of the nodes used to discretized the problem under analysis,
and by the NLP solver which has been selected. It is interesting to observe that for this specific problem
and when SNOPT is used, only for solutions associated with 200 and 300 nodes a better accuracy is paid in
terms of CPU time, while when solutions associated with 100 nodes are computed, the Dual-step approach
provides slightly improved results and a smaller CPU time required to solve the problem. When IPOPT
is used, results obtained with the dual-step are similar to those obtained with the Complex-step for the
case associated with 100 nodes, but there is a significant increase in the CPU time required to solve the
problem (about 65% more). When the number of nodes is increased, there are no significant differences in
terms of accuracy when several differentiation schemes are implemented in SPARTAN, but different burden,
expressed in terms of CPU time.

Figure 8: Altitude mean error - “Spectral” Convergence of the solution obtained with Dual-step approach.
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Figure 9: Altitude mean error - “Spectral” Convergence of the solution obtained with Complex-step approach.

SNOPT

100 Nodes 200 Nodes 300 Nodes

Mean
Error

Max
Error

Iter.
CPU
(sec)

Mean
Error

Max
Error

Iter.
CPU
(sec)

Mean
Error

Max
Error

Iter.
CPU
(sec)

CD3
8.647 60.47 13 21.38 1.367 13.23 2 62.18 0.4963 4.378 3 248.29

CD5
8.558 60.35 13 16.21 1.363 13.44 10 83.79 0.5106 4.380 3 267.60

CD7
8.571 60.45 13 17.39 1.357 13.28 10 82.27 0.5171 4.408 3 268.38

CS
8.612 60.44 13 15.20 1.383 13.15 3 63.40 0.5337 4.441 3 249.23

DS
8.533 60.45 13 15.37 1.348 13.05 10 80.87 0.4902 4.350 3 270.06

Table 1: Accuracy and CPU Time comparison for the Space Shuttle Problem (SNOPT).
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IPOPT

100 Nodes 200 Nodes 300 Nodes

Mean
Error

Max
Error

Iter.
CPU
(sec)

Mean
Error

Max
Error

Iter.
CPU
(sec)

Mean
Error

Max
Error

Iter.
CPU
(sec)

CD3
6.287 62.78 483 472.1 7.402 26.52 3094 1.2 · 104 13.917 48.33 1706 2.8 · 104

CD5
6.306 62.80 767 675.8 7.547 27.01 6635 2.7 · 104 13.911 48.32 1168 1.9 · 104

CD7
6.280 62.87 687 628.85 6.867 24.63 1971 8.1 · 103 13.920 48.31 1448 2.5 · 104

CS
6.526 62.84 439 313.6 6.983 25.24 3044 1.2 · 104 13.910 48.33 4177 7.2 · 104

DS
6.285 62.76 574 518.7 6.932 21.93 3493 1.3 · 104 13.857 47.14 2425 4.1 · 104

Table 2: Accuracy and CPU Time comparison for the Space Shuttle Problem (IPOPT).

B. Orbit Raising Problem

This problem has been proposed more than once in literature22 and deals with the maximization of the specific
energy of a low-thrust spacecraft orbit transfer, in a given fixed time. It can be expressed considering an
orbit subject to the following dynamics (expressed in canonical units)7 ,

dr

dt
= Vr (51)

dφ

dt
=

Vt
r

(52)

dVr
t

=
V 2
t

r
− µ

r2
+ Tsin(δ) (53)

dVt
dt

= −VrVt
r

+ Tcos(δ) (54)

where Vr and Vt are the radial and the tangential speed, respectively. r is the radius, φ is the true anomaly,
δ is the thrust angle, T is the specific force, assumed to be constant and equal to 0.01. µ is the normalized
gravitational parameter and δ is the angle between the direction of the thrust and the tangential velocity.
The state variables are x = (r, φ, Vr, Vt)

T whereas, the control variable is u = δ.
The goal is to maximize the total specific energy at the final time, considering that the rocket engine provides
a constant thrust acceleration to the spacecraft. Thus, the cost function can be defined as follows:

J =
1

r(tf )
−
{

1

2

[
V 2
r (tf ) + V 2

t (tf )
]}
. (55)

Since the final time is known, the Jacobian here will only consist of the pseudospectral and dual contributions.
Figures 10, 11 and 13 illustrate states, controls and the discrepancy between optimized and propagated
solutions. These results are obtained using the dual-step derivative approach, with a number of nodes equal
to 100, and are fully consistent with those proposed in literature. The cost function is identical to the value
obtained by Herman and Conway22 . In this case the maximum percentage discrepancy is about 0.0014%.
Figure 12 shows the trajectory optimizing the final orbit energy. As it can been seen, the optimal trajectory
is a multi-revolution spiral away from attracting body22 which has its center of mass located at the origin.
As done in the previous example, Figs. 14 and 15 illustrate the trend of the altitude mean error (in logarithmic
scale) between optimized and propagated solutions as a function of the number of the nodes. Also in this case
the spectral convergence has been numerically verified, but no particular differences between the methods
have been observed.
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Figure 10: States Evolution for the Orbit Raising Problem.
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Figure 11: Control Evolution for the Orbit Raising Problem.
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Figure 12: Orbit Raising Problem - Trajectory Optimizing Final Orbit Energy (LU=Unitary Length).
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Figure 13: Discrepancy between optimized and propagated solutions for the Orbit Raising Problem.
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Figure 14: Altitude mean error - “Spectral” Convergence of the solution obtained with Dual-step approach.

Figure 15: Altitude mean error - “Spectral” Convergence of the solution obtained with Complex-step approach.
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Tables 3 and 4 summarize the results obtained with SPARTAN using five different differentiation schemes:
the 3-points, the 5-points and the 7-points central difference scheme, the complex-step derivative approach
and the dual-step differentiation method. In the first table SNOPT is used to solve the NLP problem, instead
in the second table IPOPT is employed in SPARTAN.

SNOPT

100 Nodes 200 Nodes 300 Nodes

Mean
Error
(·10−5)

Max
Error
(·10−4)

Iter.
CPU
(sec)

Mean
Error
(·10−5)

Max
Error
(·10−4)

Iter.
CPU
(sec)

Mean
Error
(·10−5)

Max
Error
(·10−4)

Iter.
CPU
(sec)

CD3
1.028 3.392 35 12.94 5.081 3.233 28 71.54 3.283 3.621 10 18.88

CD5
1.481 3.333 35 12.11 1.791 1.131 28 64.99 1.306 3.401 10 16.15

CD7
1.481 3.334 35 12.16 1.791 1.314 28 64.71 1.307 3.406 10 16.36

CS
1.482 3.333 35 12.19 1.792 1.132 28 62.70 1.307 3.406 10 15.76

DS
1.480 3.333 35 15.37 1.791 1.132 28 67.29 1.021 3.422 10 21.65

Table 3: Accuracy and CPU Time comparison for the Orbit Raising Problem (SNOPT).

IPOPT

100 Nodes 200 Nodes 300 Nodes

Mean
Error

Max
Error

Iter.
CPU
(sec)

Mean
Error

Max
Error

Iter.
CPU
(sec)

Mean
Error

Max
Error

Iter.
CPU
(sec)

CD3
0.0019 0.0118 87 47.83 0.0037 0.0225 90 333.5 0.0054 0.0330 184 1.61 · 103

CD5
0.0019 0.0118 72 40.65 0.0037 0.0225 87 317.7 0.0054 0.0330 103 934.9

CD7
0.0019 0.0118 86 46.99 0.0037 0.0225 108 388.8 0.0054 0.0330 126 1.09 · 103

CS
0.0019 0.0118 110 58.13 0.0037 0.0225 101 360.8 0.0054 0.0330 125 1.13 · 103

DS
0.0019 0.0118 75 42.0 0.0037 0.0225 114 394.4 0.0054 0.0330 175 1.56 · 103

Table 4: Accuracy and CPU Time comparison for the Orbit Raising Problem (IPOPT).

In the case related to the use of SNOPT, when the number of nodes is larger (e.g. equal to 200), the
Dual-step approach provides accuracy equal or better than the other methods, despite a slightly larger value
of the CPU w.r.t. the case of the complex-step. The difference becomes larger when 300 nodes are used.
For instance, when compared w.r.t. the complex-step, an increase of 30% in accuracy (relative to the mean
error of radius) is paid with a larger CPU time ( ∼= +20%). No significant differences in accuracy (with an
increase in CPU time for the cases n = 200, 300) are observed when IPOPT is used.

VI. Conclusions and Future Works

In this paper a thorough analysis on the dual-step differentiation method has been performed; in particu-
lar the effects of the combination of the Dual-based hybrid Jacobian computation with the Flipped Radau
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Pseudospectral Method have been analysed for two reference examples.
The rationale resides in the fact that the Dual-step differentiation method provides exact first-order deriva-
tives; indeed, the Dual-step formula is subject neither to truncation error, nor to round-off error. Further-
more, methods for computing exact larger derivatives can be created by using hyper-dual numbers which are
a larger dimensional extension of dual numbers. This is useful to compute exact Hessians for optimization
problems.
The application of the proposed technique to two classical optimal-control problems shows that the use of
the Dual-step sligthly improves the accuracy of the results for larger number of nodes, especially in combi-
nation with SNOPT, for the problems here considered. In some cases, this is paid in terms of CPU time, as
operations with dual numbers are required. For the orbit raising problem, no particular improvements were
observed when the dual-step approximation is used in combination with IPOPT, while the combination of
SPARTAN and SNOPT provides marginal improvements paid in terms of CPU time when a larger set of
nodes is used. The numerical proof of the spectral convergence for the cases analyzed here shows that the
Dual-step method generates smoother profiles of error w.r.t. the number of nodes, as predicted by the theory.
This would suggest that the results may be improved by using the Dual-step method. In conclusion, even if
it may be not possible to define a-priori the most convenient differentiation method to be implemented, the
general tendency suggests to take the priorities associated with the problem to be analyzed into account;
a trade-off between the desired quality of the results, and the CPU time can be found according to the
specific number of nodes, to the NLP solver used, and to the nonlinear behavior of the equations which
describe the problem under analysis. For instance, in case very accurate solutions are required, Dual-step
based computations may provide better results, while in case the CPU time is a priority, (e.g. in case a
trajectory database, made of thousands of solutions, needs to be computed), the Complex-step may still be
the best option. However, the Dual-step method has been demonstrated to be a valid alternative to the
other traditional, well-known differentiation schemes, and it is well worth being considered as useful method
to solve OCPs, especially in combination with SNOPT.
Future research will extend the use of Dual-step method to other OCPs to assess the behavior of the method
over a larger set of examples (e.g., “hypersensitive” problems1). Moreover, the use of Hyper-Dual numbers
for the computation of the Hessian in combination with SPARTAN will be explored, to verify the impact on
the performance of IPOPT, which can use this information to improve the results, while for SNOPT this is
not possible. In parallel to this research topic, an extension of the developed work to the Dual-Quaternion
class23 can provide a stable and efficient representation of the 6-DOF motion to improve the computational
accuracy of several dynamical models.
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