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One of the most powerful analysis tools to deal with entry-guidance problems is the
possibility to formulate them as optimal control problems. Environmental constraints, ac-
tuator limits, and strict requirements on the final conditions can be efficiently transcribed,
resulting in a discrete, finite-dimension nonlinear programming (NLP) problem. However,
NLP problems require a computational power, which often exceeds the vehicle’s onboard
capabilities. Moreover, it is important to ensure that the solution can be adapted to the
actual flight conditions, which can differ from the nominal scenario. This paper proposes
an approach based on an efficient use of multivariate pseudospectral interpolation scheme
to generate real-time capable entry guidance solutions. The proposed onboard trajectory
generation algorithm is able to deal with wide dispersions at the entry interface, and can im-
prove the lateral performance in cases where the classic bank-reversal logic is not sufficient.
The interpolation is applied to subspaces of a database of pre-computed trajectories, which
can be efficiently stored onboard. The method is here proposed for initial-conditions varia-
tions, but can be applied to every mission parameter, which allows to find a corresponding
optimal solution. Results have been generated for SHEFEX-3, an entry demonstrator ve-
hicle, which was planned by the German Aerospace Center. Monte-Carlo simulations show
how this approach is applicable, and yields significant improvements both in longitudinal
and lateral guidance performance, with an improvement of the dispersion area of about
96%.
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Roman

C Matrix of coefficients

Cp Drag coefficient

Cr Lift coefficient

D Drag acceleration (m/s?)

g Gravity acceleration (m/s?)

h Altitude (m)

h; i*® index of selected reference subspace
Jo zonal harmonic

kq Heat flux coefficient (kg'/?/m?)
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Lift acceleration (m/s?)
n*? Legendre polynomial

Mass (kg)
Mach number

Number of controls
number of elements of the selected subspace

Number of states

Vertical load factor

Number of sampled points
High-density number of nodes
Low-density number of nodes

parameter

discretized parameter space

parameter space
i*" interpolant

Low-density / High-density conversion matrix

Dynamic pressure

Heat flux (W/m?)

(N/m?)

Radial position (m)

Earth’s equatorial

radius (m)

ith set of real numbers

Generic spline
Area (m?)

Time (s)
High-density discr

ete time vector (s)

Low-density discrete time vector (s)

ith knot vector

Temperature (K)
Temperature grad
High-density discr

ient (K/m)
ete solution

Low-density discrete solution
Bank angular velocity (rad/s)

Vector with eleme
High-density discr

nts equal to 1
ete controls

Low-density discrete controls

Velocity modulus
Domain point
High-density discr

(m/s)

ete states

Low-density discrete states

Angle of attack (rad)

Flight-path angle

(rad)

Earth’s gravitational parameter (m?/s?)

Latitude (rad)

Velocity-azimuth angle (rad)
Atmospheric density (kg/m?)
Pseudospectral domain

Longitude (rad)

Latitude weight (1/rad)

Longitude weight

(1/rad)

Altitude weight (1/m)
Velocity weight (s/m)
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Operators

0 first time derivative (()/s)
0 second time derivative (()/s?)
O cur Current value
Oy Final value
Ores Reference value
Ou Maximum value
Abbreviations
AMPI Adaptive Multivariate Pseudospectral Interpolation
CPU Central Processing Unit
DLR Deutsches Zentrum fiir Luft- und Raumfahrt
FRP Flipped Radau Pseudospectral
HD High Density
LD Low Density
NLP Nonlinear Programming
OCP Optimal Control Problem
SHEFEX  SHarp Edge Flying EXperiment
MPI Multivariate Pseudospectral Interpolation
PS Pseudospectral
TAEM Terminal Area for Energy Management
US76 U.S. Standard Atmosphere 1976

WGS84 World Geodetic System 1984

I. Introduction

Since the beginning of the Apollo space flight program, entry guidance has been widely treated by
engineers and researchers. The first, successful approach, used for several programs (Apollo, Space Trans-
portation System!™®), was based on the planning of an entry trajectory in terms of the drag-velocity plane.
The rationale for this choice resides in the fact that the typical environmental constraints (dynamic pressure,
heat flux and load factor), as well as the range-to-go, can be efficiently represented in this drag-velocity plane.
The longitudinal guidance can then be derived in several ways. For instance, assuming the equilibrium-glide
approximation,* extracting the longitudinal states (altitude, speed, flight-path angle) from the drag acceler-
ation and its derivatives,® or implementing constraints-tracking guidance schemes.®? Similar results can be
obtained if the drag-velocity plane is replaced by the drag-energy plane.® ' In any case, approximations,
disturbances and modeling errors make the use of a feedback controller necessary to track the scheduled nom-
inal drag profile. In addition, a bank-reversal logic is usually implemented to keep the heading error within
prescribed limits, chosen to steer the vehicle towards the terminal area for energy management (TAEM).
In parallel to these approaches, the use of techniques based on optimal control'' '3 has achieved significant
improvements. The increased CPU capabilities, together with the development of dedicated algorithms, have
led to the possibility to transcribe the problem into a discrete, finite-dimensions problem (i.e. a nonlinear
programming problem), which can be efficiently solved with one of the available well-known NLP solvers.!4 16
The drawback of this approach is that the computed solution is optimal within the limits of the accuracy
of the models, and the closeness of the inflight conditions to the nominal ones used to compute it. Even in
the presence of tracking controllers, significant off-nominal conditions can deteriorate the performance of the
system, or in the worst case, threaten the mission success.

In this paper an approach to generate onboard a trajectory corresponding to the off-nominal initial condi-
tions, and the controls to track it, is proposed. This is done on an efficient use of a database of pre-computed
trajectories. Significant steps in this direction have already been performed. Saraf!” uses interpolation
schemes applied to extremal drag-energy profiles for generating landing footprints for entry missions. Lock-
ner'® developed a more extensive approach based on Tensor Product Splines,'® which perform excellent
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for the Lunar Landing problem. Arslantas?®?2! used a similar technique for reachibility-set computations.

Sagliano?? merged this approach with pseudospectral methods to provide a real-time capable method able
to deal with off-nominal, but limited initial conditions. In this last work a database of trajectories is stored
onboard and combined to obtain an onboard-generated solution (i.e., the trajectory and the reference con-
trols) able to deal with the six off-nominal initial conditions. However, this approach does no longer provide
good performance when the initial dispersion increases. This is due to the fact that the optimal-solutions’
behavior may significantly differ over the considered range, and therefore the multivariate approximation
does not approximate the behavior of the system well.

In the current work, the multivariate pseudospectral interpolation (MPI) technique is extended to deal
with larger initial conditions by dynamically selecting a subspace of the stored database, leading to the
proposed adaptive multivariate pseudospectral interpolation (AMPI) approach. A larger database of optimal
trajectories is generated, but the MPI approach is applied only to a part of it, which is properly selected by
the onboard software according to the navigation solution provided at the entry interface. The result is a
highly-adaptive onboard trajectory-generator, which satisfies the tough requirements of memory and power
of the onboard computers even in presence of larger entry-interface dispersions.

A strong advantage of this method is also associated with the capability to deal with asymmetric entry
scenarios, which is outside the capabilities of the classic bank-reversal logic. Moreover, in case important
modifications to the scenario are required (e.g., a different landing site or different conditions at the entry
interface) a complete, updated guidance scheme can be easily computed, by performing a new computation
of the database with no modifications of the flight software.

The verification of the method is performed by coupling the method with a feedback controller,?® and
comparing the results with those obtained by the tracking of the nominal solution with the same feedback
controller. The paper is organized as follows: In Sec. II the reference scenario based on the SHEFEX-
3 mission is given, while the framework for the generation of the optimal trajectories is reported in Sec.
III. In Sec. IV the adaptive multivariate pseudospectral interpolation method, and the algorithms for
its implementation are explained in detail. In Sec. V the simulation campaign results are reported and
discussed. Section VI, finally, concludes this paper with final remarks and a brief outlook on future work.

II. Reference Mission Description - SHEFEX-3

The reference scenario is one of the proposed mission profiles for SHEFEX-3. SHEFEX (SHarp Edge
Flying EXperiment) is a DLR-led series of missions for scientific experiments and development of European
technologies for atmospheric reentry. The considered launch site is Andgya Rocket Range, on the western
coast of Norway, while the terminal area is located in Greenland. An alternative scenario with the terminal
point in the Svalbard Archipelago has already been analyzed.?” After the stages separation and the coast
phase, the unpowered descent phase follows. A scheme of the SHEFEX-3 mission profile is depicted in Fig.
1.

Once an altitude of 100 km is reached, the nominal entry phase begins. The entry interface is characterized
by a steeper flight-path angle and a lower Mach number w.r.t. other entry missions, like those of the Space
Shuttle or the X-33.%312 The mission, from the point of view of the guidance system, terminates at the
TAEM, for this mission associated with a Mach number equal to = 2. This requires good accuracy in terms
of final altitude and final speed. The nominal entry and terminal conditions are shown in Table 1.

Table 1: Nominal entry and terminal conditions for SHEFEX-3 guided flight.

State Initial Value Terminal Value

b (km) 100.10 23.50 £ 2.5

0 (deg) -11.60 —45.75

é (deg) 71.89 66.40

V (m)/s) 4712.26 595.00 £ 25

v (deg) -10.31 free

¥ (deg) -85.92 free
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Figure 1: SHEFEX-3 Mission Profile.

III. Optimal Trajectory Generation

Once the interfaces are defined, it is possible to formulate the related optimal-control problem (OCP).
The requirements of the mission include a minimization of the dispersions around the terminal point, at the
prescribed ranges of altitude and velocity. The solution to this problem will provide us the reference trajectory
and the reference controls, which satisfy all our requirements. Constraints, such as dynamic pressure, heat
flux and vertical load factor, are also taken into account, since they are limited by the vehicle’s structure.

In this specific case the cost function will be formulated to reduce the final dispersion, therefore, it is
computed as the difference between the current and the desired final states, specifically the longitude and
the latitude. The final altitude and velocity are included in the cost function as well albeit with smaller
weights, to include the condition M = 2 in the database computation. For what regards the mathematical
models used, the gravity acceleration is derived from the World Geodetic System 1984 (WGS84) model®® as
central field with only the Js term. The atmosphere is modeled with the U.S. Standard Atmosphere 1976
(US76) model.2¢

The aerodynamics model has been derived by the DLR Institute of Aerodynamics and Flow Technology.
It takes friction into account, and has been validated by using Navier-Stokes equations. To make the analysis
more realistic, the equations of motion take the Earth’s rotation into account as well. For the controls, the
angle of attack is scheduled as a function of time, and more specifically, it is modeled as two constant values
connected by a linear transition at a fixed time. This profile generates large heat flux during the first phase
of the entry, and allows to test the thermal protection system deveped for SHEFEX. The bank angle and the
bank-angle rate limits are explicitly introduced in the transcription process, while bank-angle accelerations
have been verified a-posteriori. It is worth mentioning that in case bank-angle accelerations exceed the limits,
they can be introduced in the transcription as well, but for the current mission scenario this step was not
necessary. Reference values for the controls are shown in Table 2.

A. Cost Function
The objective of the optimal-control problem is to minimize the quadratic cost function J:
J = wﬁ’(ef - 9T€f)2 + W¢(¢)f - qbref)2 + wh(hf - href)Q + wV(Vf - Vref)2 (1)

The terminal conditions in terms of altitude and velocity have been included as soft constraints (through
Eq. (1)) in the transcription to relax the trajectory-database computation. The weights are assumed to be
equal to 1 for the longitude and the latitude, and equal to 10°* for the altitude and the velocity.
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Table 2: Flight control system constraints.

Controls  Values / Ranges

Upper angle of attack oy (deg) 42

Lower angle of attack o (deg) 17.5

Begin of o manoeuver to 7 (s) 58

End of @ manoeuver ¢, 1, (s) 88

Bank angle o (deg) [-60, 60]

Angle of attack rate & (deg/s) [-5, 5]

Bank angle rate o (deg/s) [-5, 5]

Angle of attack acceleration ¢ (deg/s?) [-4, 4]
Bank angle acceleration & (deg/s?) [-4, 4]

B. Dynamics

During entry, the vehicle’s motion is described by the following set of differential equations?®
h= Vsiny
b V cosysiny
 rcosd

. Vcosvycosv
¢:7
r
V = —D — gsiny + w?r cos ¢ (siny cos ¢ — cosysin ¢ cos )
. Lcosa+ V g n
= — — =] cos
TV rov) (2)
. w?r o
+20JCOS¢SID’(/)+7COS¢(COS’YCOS¢+Sln’ySln¢COSZ/))

. Lsi V
P = Sma+—cosvsinwtangbf2w(tan7cos¢coswfsin¢)+
Vecosy r
2
sin ¢ cos ¢ sin Y
V cosy
0 = Uy

where h and r are the altitude and the radial position, respectively, § and ¢ are the longitude and the
latitude, V is the velocity modulus, v and 9 are the flight-path angle and the velocity azimuth angle, the
latter equal to zero when the vehicle flies towards the local north. D and L are the drag and lift accelerations,
while g is the gravity acceleration, and m is the mass of the vehicle, equal to 500 kg. Finally, w is the Earth’s
rotation rate, equal to 7.2921 - 1075 rad/s. As one can see from the last relationship shown in Eqs. (2), the
state has been augmented by adding the bank angle. This allows to limit the bank-angle rate, which is the
effective control input to the system.

C. State Boundaries

As for the controls, the states are bounded too. Since the problem is not affected by the boundaries, full
ranges are taken, i.e.,

0 km h 120 km
—180° 0 180°
AT R SR N S (3)
10 m/s 14 7000 m/s
—90° ~y 90°
—180° " 180
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D. Constraints

Three constraints are included in the transcription, that is, the dynamic pressure, g, the stagnation heat
flux, @ (computed by using the cold-wall model for a laminar boundary layer), and the vertical load factor,
N,.

These three constraints included in the analysis can be computed according to

=_ 1 V2

q QP

Q = kq/pV? (4)
_ |Lcosa+ Dsinaf

z
90
where p is the atmospheric density, expressed in kg/m?, kq is a constant depending on the material and
the geometry of the thermal protection system, for SHEFEX-3 equal to 1.2444 - 1073 kg1/2/m3, and gg is
the gravity acceleration at sea level, (go = 9.782 m/s?). The structural limits of the vehicle and the active
thermal protection system imply a boundary for the constraints previously mentioned. These boundaries are
equal to 10* N/m?, 6.5 MW /m?, and 10 g, respectively. With these definitions, the optimal-control problem
to be solved is completely characterized.

IV. Adaptive Multivariate Pseudospectral Interpolation

In this section the AMPT algorithm is explained. The trajectory computation via AMPI is composed of
five phases. The first two operations are performed offline, while the last three are online operations, which
can be performed according to the limits of the flight hardware. The working scheme is depicted in Fig.
2. We can distinguish two subparts in the scheme: an offline part, and an online part. The offline part
involves the proper discretization of the parameters which can be off-nominal, and determined during the
flight (e.g., the states at the entry interface, provided by the navigation subsystem), and the computation
of the corresponding trajectory database. It is then possible to apply the second part of the AMPI, which
will run online. A specific range for each of the parameters needs to be determined and sampled, resulting
in a series of discrete parameters p;. Accordingly to these parameters, a corresponding series of parametric
optimal-control problems is solved. This will result in the trajectory database to be stored online. A further
output of the trajectory-database generation is the LD-HD conversion matrix, used, as the name suggests,
to convert the low-density (LD) trajectory (less stringent in terms of on-board memory requirements) into a
more meaningful high-density (HD) solution, with a process of loss-less conversion, as we will see. During the
mission, the inflight parameters, pg, different from the nominal ones, will be analyzed to select the reference
subspace from the entire trajectory database. The selected subspace will provide the basis to perform a
multivariate interpolation process to compute the low-density representation of the trajectory. Finally, the
previously computed LD-HD conversion matrix is used to transform the LD into the HD solution, that is,
the onboard trajectory, and the reference controls. All these aspects will be explained in detail in the next
subsections.

A. Definition and discretization of the parameter space

The first step is the proper definition of the parameter space. In this context we will consider as parameters
the entry-interface conditions, provided by the navigation solution. This is not the only choice, since every
parameter that can be estimated on-board and that allows to compute a corresponding optimal solution can
be potentially treated with this method. In this case, we consider six different off-nominal initial conditions
(three components for the position, and three components for the velocity), but to keep the method general,
let us refer to d parameters as p', ..., p%. Each of the parameters is defined on a compact subset of the real
numbers R; C R,i =1,...,d, such that the Cartesian product

d
R? D Pe=[[Ri =Ry x -+ x Ry, (5)
=1

defines the parameter space P.. In this context a solution of the OCP can be interpreted not only as
a function of time, but also as function of a d-dimensional parameter vector. In the following each one-
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AMPI Scheme

OFFLINE
Parameter Space
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\ 4
Onboard-generated
Trajectory

Figure 2: Scheme of Adaptive Multivariate Pseudospectral Interpolation.

A

A

dimensional domain of a single reference parameter is discretized using a finite number of discrete points.
Therefore, let

p'={pl,....0L,} (6)

define a strictly monotonically increasing set for each ¢ = 1,...,d. The Cartesian product of the sets given
by Eq. (6) defines a d-dimensional n; X --- X ng-rectangular grid

P:Hpi:plx---xpd (7)

which can be seen as a discretization of the parameter space P, defined by Eq. (5). The set P consists of
d
ng = |] n; elements and can equivalently be represented as a combination of all the grid points p;, where
i=1
pi = (pf,...,pl) € R% such that

PP = b}, ®

i1=1,...,iq=1"
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The parameter space is therefore completely defined. For each parameter, the related OCP can be redefined
and solved. The result will be a set of parameters, which cover the entire d-dimensional space P.. Indeed,
for a complex mission, such as the atmospheric entry, several inflight conditions can differ from the nominal
ones, and this aspect directly affects the database size, too.

How can we set the parameters space for the atmospheric entry guidance? We can characterize the
uncertainty on the initial states from a purely geometrical point of view. Indeed, a 1-D region of interest X
can be represented as a straight line connecting two nodes representing the extreme values that this particular
variable can assume, see Fig. 3(a). The extension of this region to two dimensions X,Y is geometrically
represented by a rectangle (or in an easier way, by a square if the variables are properly normalized), where
the vertices are the 22 possible combinations of extreme values that the variables X and Y can assume (Fig.
3(b)).

In three dimensions X, Y, Z, we will have a cube, which vertices represent the 23 possible combinations of
parameters (Fig. 3(c)). Since the initial state of the vehicle at the entry interface is represented by the three
components of position and the three components of speed, we will have a six-dimensional region of interest,
which can be different from their corresponding nominal values. We can describe this multidimensional
uncertainty as a hezeract (Fig. 3(d)), which is a member of the hypercube family, characterized by having
a dimension equal to six.

XLYu e e XU,Yu

XLe ® Xu X Y

XLYL® o Xu,YL

(a) Example of 1-D Uncertainty. (b) Example of 2-D Uncertainty.

XL, Yu,ZL Xu,Yu,ZL

‘?“‘“«
RNV B

xS
Y

XL, Yu,Zu Xu,Yu,Zu

2
7

7
""‘ A“"'
R '§VA'

o
S
N

X4
X1\
s
N

XL, YL, ZL

7 AR
A

XL, YL, Zu Xu,YL,Zu

(c¢) Example of 3-D Uncertainty. (d) Example of 6-D Uncertainty.

Figure 3: Uncertainties in 1-D, 2-D, 3-D, and 6-D.

A practical example of d-dimensional parameter space, with d = 6, is shown in Eq. (9). The hypervertices
of the hexeract represent the extreme initial conditions that the vehicle can experience at the entry interface,
while its hypervolume encloses all the possible initial states. The nominal conditions for SHEFEX-3 will
represent then the hypercenter of our hexeract. According to the information provided by the responsible
DLR team for the Launch and Ascent trajectory, the following parameter space for the entry interface has
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been defined.
p1 = 6h = [—250,0,4250] m

p2 = 06 = [-0.5,0,40.5] deg
ps = 0¢p = [—0.5,0,40.5] deg
ps =0V =[-70,0,+70] m/s
ps = 0y = [—0.5,0,+0.5] deg
ps = oY = [-0.5,0,+0.5] deg

B. Generation of Trajectory-Database

With the definitions given in the previous section, it is now possible to modify and solve the parametric
optimal-control problem defined in Sec. II. Specifically, we can now use the values obtained from the
discretization of the parameter space. In this context, this means that we need to modify the initial state as

oh;
50;
Yo
%
0Ym
0n,

X(t0> :X*(tO) + ) ivjakvlam7n: [17253] (10)

where x*(t() is the nominal entry interface, reported in Table 1. In total, 3% trajectories have been computed.
Each of the computed 35 trajectories has been formulated according to the OCP defined in Egs. (1)-(4),
together with Eq. (10).

The states and the controls evolution for the entire database are depicted in Figs. 4 and 5, while the
envelope of the trajectories is shown in Fig. 6. Finally, the constraints are illustrated in Fig. 7.

In Fig. 6 one can see that all the trajectories terminate in the proximity of the TAEM. The circles show
the parametrized dispersions for the latitude and longitude. In 3-D also the altitude parametrization would
be seen, while the other three uncertainties cannot be visualized, but are taken into account, as one can
see from the analysis of the single states. Small variations in the latitude and longitude were observed, but
always within the limits defined by the requirements. From Figs. 4 and 5 one can see that all the states
and the controls are smooth, as expected. Specifically, the vehicle follows an oscillating entry, as it is visible
from the altitude and the flight-path angles in Fig. 4, as a result of the combination of the flight-path
angle at the entry interface and the limitations on the bank angle. Initially the entry is dominated by the
gravity, as the atmospheric density is too small to counteract it. Therefore, during the first 70 s the vehicle
decreases its altitude to less than 40 km. The velocity slightly increases during the first seconds of the entry,
because of the combination of the small value of D in comparison with g. Only when the drag and the lift
increase, the flight-path angle tends to become smaller in magnitude; the velocity vector changes direction,
and decreases in magnitude. From 70 s to 480 s the oscillating behavior is clearly visible from the evolution
of the flight-path angle. After this phase the velocity is not large enough to generate a lift acceleration able
to counteract the gravity, and the flight-path angle tends to become steeper. The quasi-skip entry allows to
achieve the nominal range of about 1400 km.

Neither the control (Fig. 5), nor the constraints (Fig. 7) exceed the limits. Moreover, it is possible to
observe that the terminal area can be reached with a good accuracy in terms of final latitude and longitude
(Fig. 6). With the trajectory-database computed, it is now possible to introduce the algorithms for the
onboard generation of the trajectory. Indeed, among these 36 trajectories, 26 trajectories, which define the
hexeract enclosing the off-nominal initial conditions, will be used for the trajectory computation. How this
is done will be clarified in the next subsection.

C. Selection of reference subspace

The d-dimensional space, P, previously defined represents all the possible parameters that can differ from
their nominal values, and can be estimated (i.e., with the navigation subsystem). In the basic MPI ap-
proach,?? for each parameter an upper and a lower value are considered, and a corresponding optimal
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Figure 4: Trajectory database - states.

trajectory is generated. In that case, the database is made of 2% extremal trajectories, which are taken and
combined to provide an approximated solution corresponding to the inflight initial conditions via MPI.

In the AMPI, these 26 trajectories are selected from a larger database. For each of the initial six conditions
we are considering three boundary values instead of two values. Therefore the needed trajectories become 3°
instead of 26. From this larger database, 26 neighbor-trajectories, enclosing the off-nominal initial conditions
are selected, and combined to compute the corresponding trajectory. The selected trajectories will be closer
to the initial conditions, leading to a better accuracy of the interpolated trajectory. We can observe how
this approach works by reducing it to a 2-D example.

Suppose we have the function (in the most generic case this is a vector function) of two variables
F (X1, X3), which is known in the points (X¥, X£), (XV, X1), (Xf, x¥), (xXV, XY).

We are interested to find an approximation of F(X}, X3) for every couple X!, X4 such that X! €
[(XE, XV, Xi € [X£,XY]. The four extremal pairs defined above represent our trajectory database. The
domain appears as plotted in Fig. 8(a).

It is possible to build an approximation of F(X}, X3) with a multivariate interpolation process (in this
case bivariate). This multivariate interpolation is described in Algorithm 2. In this context let us consider it
as a black box operator called MPI. It is possible to build an approximation of F(X{, X3) with a multivariate
interpolation process (in this case bivariate). This multivariate interpolation is described in Algorithm 2. In
this context let us consider it as a black box operator called MPI.

F(X{,X}) = MPI [F(X{, X3), F(X{, X3), F(X{, x9), F(x{, x{)] (11)

The solution is then a function of the information stored in these four points, as shown in Fig. 8(a).

The closer the boundary points are, the more accurate the approximation F(X{, X3) is. For large
dispersions this approach may not be accurate enough. In the AMPI the parameter space is organized
into a finer grid; then, for each case, the subspace enclosing the point we are interested in is detected, as
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Figure 5: Trajectory database - controls.

shown in Fig. 8(b). The approximation will then be built as
F(X{,X;) = MPI |F(X], X5), F(X{", X5), F(X{, X3™) F(x] ™, x5 (12)

The objective of this phase is therefore the detection of the indices representing the subspace to use for the
computation of the onboard trajectory. The selection of the reference subspace can be done with Algorithm
1, which can be applied to the parameter space p’, and to the initial conditions x;, representing the six-
dimensional off-nominal initial conditions. The result will be the six couples of the indices, which detect the
subspace to be used for the computation of the adaptive trajectory.

With the application of Algorithm 1, the subspace of the database can be easily determined, and it is
possible to compute the guidance solution via MPI. The drawback of the classic interpolation schemes in d
dimensions is the rapid increase of memory requirements, since the database suffers the so-called curse of
dimensionality. This drawback is balanced by the use of the MPI scheme, which allows to strongly reduce the
amount of data needed without losing accuracy. How this is done will be explained in the next subsections.
In the parametric six-dimensional space, each subspace selected for the synthesis of the guidance solution is
made of 26 neighboring trajectories, combined to provide an approximation of the functions F, which in our
case include the states, as well as the bank angle and the final time. This interpolated solution will be the
low-density representation of the trajectory and the controls, which can be adapted to any initial condition
compatible with the extension of the database. Once the subspace, represented by the closest 2¢ trajectories
to the off-nominal initial conditions, is determined, it is possible to apply the MPI as explained in the next
sections.

D. Low-density multivariate interpolation

As stated in the previous subsection, a solution of the OCP previously defined depends not only on the specific
choice of a parameter vector p € P., but also on time. Within this work the computation of a solution of an
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Figure 6: Trajectory database - groundtracks.

Table 3: Selection of reference subspace.

Data: Given: parameter-space elements p’, and initial conditions z;, i = 1,...,6
fori=1:d
eP’ — sign(p' — Ux;)
forj=1:n;—1
Ap§ = eP;—ePé_l, j=2...n
it Y0 ePl——n,
[;Li,ili + 1] = [nz - 1,7’LZ‘};
elseif Y, ePj==n;
(A, h? 4+ 1] = [1,2];
else
ide = find(Ap} # 0)
[hi, h? + 1] = lidzidz + 1];
end
end
Result: 27 indeces [hi, hi +1],i=1....d

OCP is based on the solution of a corresponding NLP. The interpolation approach described in this section
shows how to compute a given point of an interpolated trajectory by using the corresponding values of the
trajectory-database. Since we are using a transcription based on the flipped Radau pseudospectral (FRP)
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Figure 8: Examples of domains for the application of the MPI and AMPI techniques.

d,22:27

metho we propose to perform this interpolation at each of the collocation nodes defined by the roots
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of the flipped Radau polynomials. Let us consider the definition of Legendre polynomials of order N:2°

1 4N

In(T) = oy grw

(72 = D)V] (13)
The variable 7 is defined over the domain [—1,1]. In the FRP method, the collocation points are selected as
the roots of the polynomial Ry, computed as a linear combination of the Legendre polynomials of order NV
and N — 1 with coefficients 1 and —1, respectively.

Rn(7) = Ly(7) — Ln_1(7) (14)

The roots of the polynomial Ry (7) give us the FRP nodes where the MPI is applied. This set of collocation
nodes can be seen as the domain of the low-density discrete solution. In the most general case, we have 2¢
trajectories for a d—dimensional parameter p. This means that at each timestep, defined by the FRP roots,
2¢ values for each of the states and controls will be used for the multivariate interpolation process.

Let us consider a generic variable f (i.e., a state or a control) of the optimal-trajectories set, associated
with the 2% values of p determined by the reference subspace algorithm. To make the notation simple, let
us suppose that the reference subspace identifies the indices 1 and 2 for each of the d components of p. For
a d-dimensional off-nominal value of x;, ¢ = 1,--- ,d, we have

w € py, pylsi=1,--- d (15)

At each timestep 74, and for each of the variables included in the trajectories we have 27 values of f(7%, p;),
belonging to the database, which need to be interpolated to provide an intermediate value f;:(7x, ;) consis-
tent with the d off-nominal initial conditions x;. We can indicate the 2¢ values of f(74,p;) as F(7x,p;). The
grid points p; are called supporting points while the F (74, p;) are called supporting values. To perform the
multivariate interpolation we will use a simplified version of the tensor product spline.'® A tensor product
spline s € S, ¢, @ -+ Q) Sk, .t, on a grid P at a grid point x € P is in general defined by

mq mq
s(x) = Z T Z Ciryeenyia Bin hy (1) -+ Big kg (Ta)- (16)
=1 ig=1

In Eq. (16) B; x denotes the i*! B-spline of order k for a given non-decreasing knot vector t = (tl)zzgk The
coefficients

C= (cihm,ﬁd) T (17)

i1=1,...,ig=1
are computed, such that the resulting tensor product spline fulfills the interpolation condition, that is
s(pi) = f(mh,pi)Vi€l---d, k=1,--- ,Nrp (18)

In our case, the interpolated variable fin¢ (7%, ;) will be

mi md
fint(TkaXi) = S(Xi) = Z to Z ci17---aidBi17k1 (.731) s Bidakd(xd)' (19)
=1 ig=1

Since each B-spline in Eq. (16) depends only on a single variable, the d-variate interpolation problem can be
divided into d univariate problems. Each univariate spline interpolation is solved via the numerical stable
and efficient algorithm of De Boor.3Y

Depending on the choice of k and a suitable knot vector, t, the tensor product spline interpolation in
Eq. (16) corresponds to an interpolation method such as piecewise-constant, piecewise-linear or piecewise-
cubic Hermite interpolation. In general, the tensor-product spline interpolation allows the use of different
interpolation methods for each of the d dimensions. It is now necessary to determine the knot vectors t; and
the coefficient matrices C. Within this work the grid P consists of two supporting points for each direction,
such that n; =2,9=1,...,d and

P={pt,ps} x - x{pl,p3}. (20)
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The choice of the order of the splines k; = 2,9 =1,...,d and the corresponding choice of the knot vectors
i4 VR R .
ti: (t_])jzl = (plaplap2ap2)a Zzla"'ad (21)

defines a piecewise-linear interpolation in each direction on the given d-dimensional grid. For C = F (7, p;)
the piecewise linear interpolation method fulfills the interpolation condition given by Eq. (18) and there
is no additional computational effort required to determine the coefficients C. With these simplifications,
the evaluation of the tensor-product spline interpolation at a given point of the parameter space p € P, is
described by the pseudo code according to Algorithm 2. The EvalUnivSpline(t, c, ;) function in Algorithm 2

Table 4: Tensor product spline interpolation.

Data: Given: knot vector t, coefficients C, spline s € Sa ¢, Q- -- @) Sa4,, evaluation point x; € P,
AO = C,
fori=1:d
A, = EvalUnivSpline(t;, A;_1,z;);
end
s(p) = Au;
Result: interpolated values s(x;) = f(7x, X;)

denotes the evaluation of a univariate spline with coefficients C at a point x; while the operator (-)" performs
a cyclic rotation, such that A € R"t"2:-md = A/ € R"2:»ndm1,

The interpolation scheme based on Algorithms 1 and 2 allows to generate onboard trajectories for the
states and the control inputs of the assumed system for each element of the parameter space p € P.. It is
important to emphasize that interpolated trajectories in general are not formally solutions of the equations
of motion that are used within the underlying OCP. However, they represent a good, real-time capable,
approximation of the optimal solutions without the computational burden needed to generate them.

E. LD-HD Pseudospectral conversion

The previous algorithm provides the interpolated values in a small number of nodes, having the so-called
low-density discrete solution. The objective of this section is to convert the LD discrete solution into a HD
discrete solution, able to represent the trajectory with no need to store large amount of data onboard. With
reference to Egs. (13) and (14), for a given order, it is possible to extract the roots of the associated flipped
Radau polynomial. This set of collocation nodes can then be used to approximate polynomial approximations
of the original continuous functions. Given a function F(7) sampled in N + 1 points, one can build this
approximating function as

N
F(r) =Y FiP(r) (22)
=0
with P;(7) defined as
N
T — Tk
p(r) =] =™
() = [ =2 (23)
k=0
ki

An example of Radau collocation points is reported in Fig. 9(b), where 11 nodes are considered, together
with the uniform distribution having the same number of nodes. Once again, the considered interval is [-1, 1],
which represents the natural domain of definition for the Legendre Polynomials. Note that the point 7 = —1
is still part of the discretization, even if it is not a collocation point.3! At first glance, the polynomials
can be built using every criterion for the choice of the nodes, for instance a uniform distribution. So why
choosing the roots of the Legendre polynomials instead? The answer resides in the following property: the
distribution of points derived from the roots of this particular family of functions is not affected by the Runge
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phenomenon. Runge phenomenon is a problem of oscillation at the edges of an interval that occurs when
interpolating with polynomials of high degree over a set of equispaced interpolation points. This oscillatory
behavior does not permit a good approximation of the interpolant in the extremes of the interval considered.
The phenomenon can be well understood if one looks at the example function

1

FO =15

(24)
and samples the function with 11 and 25 uniformly distributed nodes. In this example, F(7), defined in the
interval [—1, 1], represents the function we want to rebuild via interpolation using a discrete set of values
F(r;),i=0,1..,10 and i = 0,1..,24. As anticipated, with the chosen distribution of points, the interpolating
polynomial will show a poor approximation, in the extremes of the interval considered, as we can see in
Fig. 9 (a). The intuition would suggest then to simply increase the number of nodes; as a consequence, the

truth
—interpolated solution
© sample points

F(7)

0 o ° = o ° ° o—ef <
50 |
-100 -
E
e
-150 -
truth
-200 interpolated solution
© sample points
-250 1
-300 1 1 1 1 1 1 1 1 1 1
-1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1
T
(b) Interpolation scheme based on uniform distribution (25 nodes).
Figure 9: Runge Phenomenon: interpolation of the function F/(1) = 17557 using (a) 11 and (b) 25 uniformly

distributed nodes.

amplitude of the Runge oscillations even becomes larger, and thus the approximation worse, as depicted in
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Fig. 9 (b). Figures 10 (a) and 10 (b) show how this phenomenon is completely avoided using the roots of
the Legendre polynomials instead. The reason for this behavior stems from the fact that the chosen linear

1 —
truth
—interpolated solution
© sample points
0.8} Pep

F(7)

1r
truth
—interpolated solution
© sample points
0.8 reb

F(7)

(b) Interpolation scheme based on Legendre-Radau polynomials roots (25 nodes).

Figure 10: Runge Phenomenon: interpolation of the function F(7) = +—2— using (a) 11 and (b) 25 nodes

1+2572
derived from Flipped Radau-Legendre Polynomials.

combinations of Legendre polynomials are orthogonal in the domain 7 € (—1,1]. We will refer to this domain
as pseudospectral time. Since our problems are defined over a domain represented by the physical time, a
mapping between the pseudospectral time 7 € [—1, 1] and physical time t € [to,ts] is needed. It is easy to
demonstrate that this mapping can be built using two affine functions:

ty —to ty +to
t= 25
5 T+ 2 (25)

2 t t
¢ttt (26)

T =
ty —to ty —1to

The following properties justify the choice of using pseudospectral methods for the characterization of the
discrete domain.
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Spectral convergence in the case of a smooth problem.

Straightforward implementation.

Sparse structure of the associated NLP problem.

Mapping between the costates of the NLP discrete solution and the costates of the optimal continuous
solution in virtue of the Pseudospectral Covector Mapping Theorem.??

e Removal of the Runge phenomenon.?3:34

The removal of the Runge phenomenon has an important implication: since all the polynomials generated
using the FRP nodes do not have undesired oscillations, the interpolated solutions computed in these points
will be smooth as well. Therefore, a database storing accurate trajectories can be reduced to storing the
nodal values, which can be converted into a high-density discrete solution with no need to evaluate splines,
as we will see in the next section. This approach significantly reduces the onboard memory requirements, as
well as the onboard CPU burden.

How can this be used for the conversion of the HD discrete solutions? Let us suppose to have computed
the values representing the LD discrete solutions in the Nyp + 1 FRP nodes (that is, the N, p FRP nodes
plus the node at -1. The solution is formed by the time vector typ, the states Xpp, and by the controls
Uprp. The matrices X p and Uy p have dimensions ng x (Npp +1) and n. X (Np + 1), respectively, where
ns and n. are the number of states and controls associated with the problem under analysis. We can group
the states and the controls in a matrix Ty p, having dimensions (ns + n.) X (Npp + 1).

T, = XLp _ X0, X1, s XNLp (27)
Urp Uy, Uy, ...,Un,
Our objective is to efficiently convert the matrix Tpp into a matrix Tup representing the HD discrete
solution,
Top = )EHD _ {(0,{(1, ey )ENHD (28)
Unp Uo, Uy, ..., Unyp

where Ny p +1 is the number of points representing the HD discrete solution. Moreover, the HD time vector
tzp must be computed. If we apply Egs. (22) and (23) to F(7), we can write

Nrp Nrp

T — Tk
F _
=> K] — rel-1,1] (29)
1=0 k=0
k#1

where F; represents a low-density variable. It can be replaced with the p'* row of T1p as they are sampled
in the same way. Moreover, the continuous variable 7 € [—1,1] can be sampled in the Ngp + 1 high-density
discrete nodes. The result will be the high-density representation of our variables

N T — T
T (in) ZTEMH T p=1ne+ ), m =0, (Nup) (30)
k;éz

Equation (30) can be extended to all the rows of the matrix Ty D, and rewritten in matrix form as
Tup =TrLpPrre (31)
where the matrix Pprp has dimensions (Npp + 1) x (Ngp + 1), and is given by

NiLp -~

ﬁD To—Tk H "Nup Tk
S T0T Tk Prake] To—Tk
Prrp = (32)
Nrpp—1 Nrp—1 -
k=0 NEDTTH k=0 ~NLDTTE
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The elements 7, represent the high-density discrete pseudotime vector, defined between -1 and 1. Since
both the nodes 7, where the solutions are computed, and the nodes 7,,, where the solutions are effectively
evaluated, are part of the process of the database generation (as they are part of the transcription), the
matrix Pprp can be computed offline and stored, with a significant saving in CPU time, and the trajectory
synthesis is reduced to a multivariate linear interpolation process and to the matrix multiplication defined in
Eq. (31). To complete the generation of the HD solution, we still need the HD discrete physical time vector
associated with the interpolated solution. It can be computed by using the following expression:

T tr +1
P O~+f+07

m B) Tm 9 sz,...,NHD (33)

The initial time #; is given by the initial time 5. The final time ¢ ¢ is computed by applying the multivariate
interpolation approach described in Algorithms 1 and 2 to the final times stored in the trajectory database.
The trajectory representing the feedforward guidance solution is completely generated with the application
of the Algorithms 1 and 2, and Egs. (31) and (33).

V. Numerical Results

A. Simulation Campaign

For the validation of the method, a Monte Carlo campaign of 1000 cases has been simulated. For each case,
the following random dispersions (30) have been generated.

0h € [—250, +250] m
00 € [-0.5,40.5] deg
d¢ € [—0.5,40.5] deg
0V € [=70,+70] m/s
0y € [-0.5,40.5] deg
01 € [—0.5,40.5] deg

(34)

The type of dispersion assumed implies that in some cases the boundaries defined here are exceeded. In those
cases, no extrapolation is performed, but the boundary-trajectories in the database are used to generate the
trajectories, and the initial error is not nulled, but reduced to the difference between the initial conditions,
and the closest initial conditions that the database contain. For instance, if an initial error of +80 m/s in
terms of velocity is experienced, and the database is limited to 470 m/s, the generated trajectory will show
an error of only 10 m/s instead of 80 m/s. In all the other cases the initial error that the generated trajectories
will have is 0 m/s, and this applied to all of the six states. This choice prevents the use of the algorithm in
regions where the behavior of the system has not been directly observed (i.e., during the trajectory-database
generation). The solutions have been generated according to the initial conditions by using the proposed
AMPI approach. A tracking controller?® has been added to the guidance scheme. Results are compared with
the classical approach based on the tracking of the nominal reference solution. The states, the state errors,
the controls, the groundtracks, and the constraints are then compared and reported in Figs. 11-19, together
with some histograms, which show the difference in terms of final altitude, velocity and range-to-go.

The multivariate approach generates meaningful trajectories, as can be seen in Fig. 11, and the same can
be observed in terms of the constraints: the results are comparable to the classic tracking approach (Fig.
19), and the maximum values are counsistent with the ones expected from the nominal scenario. Figure 12
shows the error of the singular states. The generated trajectories significantly reduce the error that has to
be handled by the feedback controller, leading to a significant decrease of the dispersions. This is well visible
from Figs. 14 and 15, where the trajectories and the final footprints (represented in crossrange and range-
to-go) are plotted. The figures show a large improvement of performance when the AMPI is used, w.r.t. the
nominal tracking. To quantify the results, three dispersion circles, having radii equal to 25, 50 and 75 km,
have been defined. The dispersion area of the cases associated with the use of the AMPI technique is about
4.2% of the area obtained by using the same feedback controller to track the nominal solution. Another
consequence is that the online adaptation of the trajectory simplifies the work of the feedback controller
(Figs. 13(a) and 13(b)). Indeed, the proposed technique allows to have smooth AoA and bank angle profiles,
and in general a reduced control activity w.r.t. the nominal tracking, as the feedback control needed for
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Figure 11: MC campaign (N = 1000): Multivariate interpolated trajectory vs nominal tracked trajectory:
states.
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Figure 12: MC campaign (N = 1000): Multivariate interpolated trajectory vs nominal tracked trajectory:
state errors.
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Figure 13: MC campaign (N = 1000): Multivariate interpolated trajectory vs nominal tracked trajectory:
angle of attack and bank angle.
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Figure 14: MC campaign (N = 1000): Multivariate interpolated trajectory vs nominal tracked trajectory:
trajectories.
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Figure 15: MC campaign (N = 1000): Multivariate interpolated trajectory vs nominal tracked trajectory:
footprints.

the compensation of the errors is significantly reduced. In terms of final altitude, velocity, and range-to-go,
results are reported in Figs. 16-18. In terms of altitude a reduced dispersion associated with the use of the
AMPI is visible from Fig. 16. In the worst cases, there is a difference of 200 m w.r.t. the reference value when
the AMPI is used, while this value goes up to 1.5 km for the nominal tracking. In terms of final velocities,
both the systems achieve good performance, and also in this case the AMPI is slightly better (a maximum
error of 2 m/s versus 3 m/s). Completely different are the results in terms of range-to-go, as shown in the
histogram of Fig. 18. Indeed, 740 cases fall within a distance of less than 6.5 km w.r.t. the nominal target
point when the AMPI is used, despite the large initial dispersions, against 163 cases corresponding to the
nominal tracking. The cases associated with the AMPI method go up to 985 cases against 400 if a radius of
13 km is considered. No cases fall outside a radius of 25 km when the proposed technique is applied, against
254 cases obtained outside these boundaries in case the traditional tracking approach is used. Table 5 lists
the results of the Monte Carlo campaign.

Table 5: Dispersion Analysis - 1000 MC runs.

Ellipse / Controller  [25 x 25]  [50 x 50] [75 x 75] Outside
AMPI 1000 0 0 0
Nominal Tracking 746 242 12 0

It is possible to see that 100% of the cases fall into the finest circle, i.e., within a radius of 25 km versus
74.2% of the cases associated with the use of the nominal tracking. Indeed, in the former case the dispersion
area is = 214 km? while in the case of nominal tracking the resulting area is = 5,032 km?. The two areas
are depicted in Fig.15. Finally, for both the methods, the constraints are always satisfied, as one can see in
the constraints’ profiles depicted in Fig.19.
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Figure 16: MC campaign (N = 1000): Multivariate interpolated trajectory vs nominal tracked trajectory:
Final altitudes.
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Figure 17: MC campaign (N = 1000): Multivariate interpolated trajectory vs nominal tracked trajectory:
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Figure 19: MC campaign (N = 1000): Multivariate interpolated trajectory: constraints.
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VI. Conclusions and Future work

In this work the multivariate pseudospectral interpolation approach has been coupled with an algorithm
of subspace selection to be able to generate online nearly-optimal real time trajectories for entry scenarios in
presence of wide dispersions at the entry interface. Taking advantage from the pseudospectral transcription,
the synthesis can be efficiently performed by processing information stored in subspaces of trajectories’
database, in this specific case "hexeracts" of trajectories. The Monte Carlo campaign has demonstrated
the feasibility of this approach, having as further advantage a significant improvement in the guidance
performances, analyzed both in terms of longitudinal error, and in terms of footprint dispersion. For instance,
for what regards the lateral guidance, the percentage of cases which fall into the finest circle rises from 74.6%
to 100%, and the overall dispersion area is reduced to 4.25% of the size obtained with the tracking of the
nominal solution. This is significant when we consider that, for the current scenario, the lateral bank-
reversal logic cannot guarantee good performance, because of the large initial heading-error. Instead, the
AMPI technique allows to drastically improve the lateral performances.

A further advantage coming from the use of this technique is the lossless reduction of the database size.
Since the LD-HD conversion is based on the properties of the transcription method, high-density discrete
trajectories can be obtained by storing a significantly smaller number of values, as a consequence of the
choice of FRP nodes as domain. To give an example, for the case analysed in this work, the database is
reduced to = 3% of the size of a database stored in traditional way. This aspect can reduce the requirements
for the memory of the onboard CPU. The good performance obtained suggest that the proposed method can
be a good choice for scenarios having large dispersions at entry. Moreover, the method is of general validity,
and can be also applied to other off-nominal parameters, which can be estimated onboard. Future work
includes the analysis of the proposed method in terms of CPU burden, and the impact on the performance
of alternative schemes to discretize the parameter space.
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