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Abstract We report the zenith angle dependence of the radiation environment at Gale Crater on Mars.
This is the first determination of this dependence on another planet than Earth and is important for future
human exploration of Mars and understanding radiation effects in the Martian regolith. Within the narrow
range of tilt angles (0 ≤ 𝜃0 ≤ 15∘) experienced by Curiosity on Mars, we find a dependence J ∝ cos𝛾

′ (𝜃) with
𝛾 ′=1.18 ± 0.07, which is not too different from an isotropic radiation field and quite different from that at
sea level on Earth where 𝛾 ′ ≈ 2.0.

1. Introduction

The galactic cosmic rays (GCR) outside the Martian atmosphere are approximately isotropic with small (<1%)
anisotropies, mainly related to the movement of the Sun and observer through the interstellar and interplan-
etary medium [e.g., Ahluwahlia and Dessler, 1962; Jacklyn, 1966; Nagashima et al., 1989]. The interaction of
the GCR with a planetary atmosphere leads to a change of the isotropic nature of the radiation field which,
on Earth, results in a larger directional flux of particles from the zenith than from the horizon. Intuitively,
this can be understood as due to shielding by the atmosphere which has a much smaller column density
in the zenith direction than toward the horizon. In this work we report the first determination of this zenith
angle dependence on the surface of Mars using data from the Radiation Assessment Detector (RAD) [Hassler
et al., 2012] which is part of the Mars Science Laboratory (MSL) payload [Grotzinger et al., 2012]. Initial surface
measurements are summarized and reported in Hassler et al. [2014] and are not discussed further here.

An isotropic distribution as present in interplanetary space is described by equation (1). In such a distribu-
tion the number of particles incident on a spherical detector is the same from every infinitesimal solid angle,
dΩ = sin(𝜃)d𝜃d𝜙. Here 𝜃 is the angle measured from the zenith, and 𝜙 is the azimuthal angle. Including the
projection onto a zenith-pointing plane detector of unit area, the thus normalized counts are given by

dn = dΩ cos(𝜃) dA = cos(𝜃) sin(𝜃) d𝜃 d𝜙 dA, (1)

where dA is the differential area of the detector and cos(𝜃) accounts for the projection effect [Sullivan, 1971].

The angular dependence of the directional flux on Earth [Grieder, 2001] is often given as

J(𝜃, 𝜙) ∝ cos𝛾
′
𝜃, where 𝛾 ′ ≈ 2. (2)

This way of presenting the zenith angle dependence is somewhat misleading because it implicitly contains
the geometric projection effect by assuming that the detector is zenith pointing, i.e., its detection plane is
horizontal. Because the RAD on Curiosity does not always point exactly toward zenith, the effect of atmo-
spheric shielding and geometric projection are better treated separately. Therefore, we state the zenith angle
dependence of radiation as

J(𝜃) ∝ cos(𝜃′) ⋅ cos𝛾 (𝜃), (3)
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where the projection effect is explicitly split out as a separate cos 𝜃′ term and 𝜃′ only equals 𝜃 for a
zenith-pointing detector. Here 𝛾 = 0 would correspond to an isotropic radiation field (equation (1)) and 𝛾 = 1
to that observed at sea level on Earth, equation (2).

As primary GCR particles enter the atmosphere they interact with its nuclei via multiple processes [Grieder,
2001], many of which ionize the atmosphere or produce secondary particles which in turn also lead to ioniza-
tion. Pfotzer [1936a, 1936b] found that the ionization of the Earth’s atmosphere reached a maximum (today
called the Pfotzer maximum) at an altitude of about 20 km, corresponding to a column density often cited as
∼100 g/cm2 [e.g., Grieder, 2001], not too different from recent measurements in a high-altitude balloon which
showed a maximum of the count rate in Si at 64±3 g/cm2 [Möller et al., 2013]. The thin Martian atmosphere at
Gale crater only provides approximately 21 g/cm2 shielding [Rafkin et al., 2014]. Consequently, on the Earth’s
surface, we are below, and at Gale crater on Mars, Curiosity is above the Pfotzer maximum. This underlines how
different the Martian surface radiation environment is from that on the Earth’s surface [Hassler et al., 2014],
and the need for an accurate characterization thereof. We expect the zenith angle dependence of the Mars
surface radiation to be quite different from that measured on Earth but possibly close to isotropic due to the
only very light shielding provided by the Martian atmosphere. We also note that, different from Earth, Mars
has no global magnetic field [Smith et al., 1965; Acuna et al., 1998] which would provide further shielding from
the GCR. As discussed in section 2, we have essentially only one model variable to adjust to our measurements
and therefore only one parameter with which to parametrize a radiation model. Therefore, generalizing obser-
vations on Earth [Grieder, 2001], we model it as the power law dependence given in equation (3), where the
exponent, 𝛾 , is unknown but of obvious importance for understanding the radiation environment on Mars.

We describe RAD and the geometry of the measurements in section 2 and our data analysis in section 3.
Results are presented in section 4 and discussed in section 5.

2. The Radiation Assessment Detector

The Radiation Assessment Detector (RAD) is a very compact and versatile instrument which was optimized
for operation on Mars [Hassler et al., 2012] to asses the charged and neutral particle radiation environment. A
simplified cross section of RAD is shown in Figure 1. The A Si solid-state detector has two segments, A1 and
A2, which together with the B detector form two fields of view (FoV) indicated by short and long dashed lines
in Figure 1. Because segment A1 is larger, the FoV spanned by it has a larger geometric factor, ∼0.73 cm2 sr,
than that spanned by A2, ∼0.17 cm2 sr, for an isotropic radiation field. The opening angles are 𝛼1=32.4∘and
𝛼2 = 19.9∘.

RAD is mounted inside Curiosity such that its FoV points along the normal to the rover deck. Thus, the incli-
nation of RAD is the same as that of the rover. Its inclination angle, 𝜃0, was obtained from the Mars Science
Laboratory SPICE kernel using spiceminer (http://github.com/et-uni-kiel/spiceminer/). The azimuthal rotation
angle, 𝜃0, is irrelevant for our purposes.

RAD generates a large number of data products [Hassler et al., 2012] including so-called Pulse-Height-Analysis
(PHA) words in which the full information of a measurement is recorded. A subset of these PHA words is sent
to Earth via telemetry together with a number of counters which allow us to reconstruct the observations on
Mars, albeit with larger statistical uncertainties. In this work we used all PHA words which recorded a coinci-
dence between B and A1 or B and A2. Using PHA words allowed us to use cuts in the data to minimize possible
background, e.g., from scattered electrons mainly due to Curiosity’s radiothermal generator (RTG), or also due
to electronic cross talk. A minimally ionizing particle deposits approximately 100 keV in the A or B detectors.
We required the energy deposition in A1 or A2 to be larger than 30 keV and larger than half the signal seen in
B and less than twice the signal seen in B. To avoid possible cross talk, we also required that the signal in A2 be
less than 10 keV to ensure that a particle passed through A1, and vice versa for particles passing through A2.

The geometric factors, gA1 ≈ 0.73 cm2 sr and gA2 ≈ 0.17 cm2 sr given in Hassler et al. [2012] were calcu-
lated for an isotropic radiation field and using the approximation of circular detectors of the same area. The
ratio of counts in A1 and A2 depends on the ratio of the respective geometry factors and on the exact zenith
angle distribution and thus differs for different values of the cos𝛾 𝜃 index, 𝛾 . We calculated the count ratios for
A1⋅B and A2⋅B coincidences for cos 𝜃 indices 𝛾 ∈ {−1.5,−1.4,… , 0.0,… , 2.0} and for inclination angles 𝜃0 ∈
{0, 1,… , 24, 25} degrees. The integration was performed by triangulating the hexagonal RAD detectors with
384 equilateral triangles, yielding gA1=71.535 ± 9.5 ⋅ 10−3 mm2 sr and gA2=17.025 ± 1.4 ⋅ 10−3 mm2 sr,
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Figure 1. RAD consists of three solid-state detectors (A, B, and C)
forming a particle telescope, a Tl-doped CsI scintillator crystal
functioning as a calorimeter, and a (tissue-equivalent) plastic scintillator
(E). D and E are enclosed in an efficient anti coincidence (F1 and F2)
which is closed by detector C in the upward direction. Detector A has
two concentric segments, A1 (outer) and A2 (inner), as can be seen in
the photographic insert and is indicated by vertical lines in the sketch.

respectively, for the isotropic case (𝛾 = 0).
These values for the A1 and A2 geome-
try factors differ slightly from the values
given in Hassler et al. [2012] for the afore-
mentioned reason. The errors given are
the difference between this calculation
using 384 triangles and a finer triangula-
tion using 3750 triangles.

3. Data Analysis

RAD instrument settings were optimized
multiple times after landing. For this
study we used hourly data from sol 525 to
sol 806 when no changes were made to
the RAD configuration. Sols are Martian
days after landing on Mars on 6 August
2012. In the time period investigated,
RAD observed one solar energetic
particle (SEP) event on sol 737. Count
rates increased by less than 25%, and
it only lasted approximately half a sol,
so we did not exclude it from our anal-
ysis. However, we disregarded all RAD
observations which could have been
contaminated by active Dynamic Albedo
of Neutrons (DAN) measurements using
the corresponding time tags. DAN, the
Dynamic Albedo of Neutrons instrument
[Mitrofanov et al., 2012] uses intense
pulses of 14.1 MeV neutrons to detect
subsurface water. These neutrons inter-
act with the various RAD detectors and
are clearly seen in RAD data if not filtered
out. Because count rates depend on the
temperature in the detector front-end
electronics (an instrumental effect), RAD
adjusts its thresholds according to tem-

perature. RAD operates autonomously and alternates between a “SLEEP” mode and “SCIENCE” observations.
When booting, RAD measures the temperature and chooses the appropriate temperature table. Tempera-
tures ranged from ∼10∘C to nearly 40∘C, the temperature tables were carefully adjusted to ensure that the
temperature-dependent noise peak does not contribute to science counts. Four different temperature tables
were in use during the time period investigated here.

The path traveled by Curiosity during this time period resulted in the distribution of inclination angles, 𝜃0,
shown in Figure 2 (bottom). They varied between 0 and 15∘, the most probable value was 6.5∘, the mean
and median were 5.8 and 6∘, respectively. The small variation in 𝜃0 together with the much larger RAD field
of view results in a very small change in the count rate which is completely masked by other effects such as
pressure-dependent shielding, secondary production, and heliospheric modulation.

Mars atmospheric pressure is measured by the Rover Environmental Monitoring Station (REMS) instrument
[Gómez-Elvira et al., 2012]. REMS pressure measurements for the time period investigated here are shown in
Figure 2 (top). Pressure varied between approximately 680 Pa to about 930 Pa over the period chosen for this
study. The wideband in Figure 2 shows the magnitude of the diurnal pressure variations. The pressure and RAD
observations often take place at different times; we therefore interpolated the actual pressure measurements
for every single RAD observation. These pressure values are the ones shown in Figure 2. Rafkin et al. [2014]
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Figure 2. (top) Pressure and (bottom) inclination angle versus time between sols 525 and 806.

reported diurnal variations in dose rate measured by RAD which are due to pressure variations and which
completely mask the minute 𝜃0 dependence of the count rate.

We explain the data analysis using the A1⋅B coincidence measurements as an example. The same steps were
performed for A2⋅B and other needed data. Since we cannot send to Earth every single PHA word, the number
of (e.g., priority-1, see Hassler et al. [2012]) PHA words has to be scaled using the appropriate (i.e., priority-1)
counters. For every observation we know not only the number of A1⋅B coincidence PHA words but also
the number of priority 1 PHA words and can scale them accordingly (see Hassler et al. [2012] for details). As
mentioned above, we have three quantities which can potentially affect our measurements: temperature,
inclination angle, and pressure.

In order not to mask possible dependences, we binned all measurements into a four-dimensional space (pres-
sure, p, inclination angle, 𝜃0, temperature, and temperature table). We then divided the accumulated and
priority-corrected A1⋅B counts by the A2⋅B counts for every point in 𝜃0 − p space. This count ratio is deter-
mined by the ratio of the A1 and A2 geometry and the zenith angle dependence of the radiation as discussed
in section 2. The result is shown in Figure 3. Figure 3 (top right) shows the count ratio plotted versus inclination
angle, 𝜃0, (y axis) and pressure, p, (x axis). The data were accumulated over all temperatures and temperature
tables for this plot. It is obvious that we do not have a complete coverage in the 𝜃0 − p space. This is the result
of variations in the attitude of the rover and the diurnal and seasonal pressure variations. This panel shows
no clear trend, some bins show higher and some show lower count rates, but this is expected and compatible
with the error estimates for each individual bin. Figure 3 (top left) shows the pressure-averaged ratio versus
inclination angle; Figure 3 (bottom) the inclination-angle-averaged data versus pressure. No significant trend
can be seen in the averaged data (Figure 3, top left and bottom), an observation that was borne out by fitting
a plane to the data in Figure 3 (top right). The shaded area in Figure 3 (top left and bottom) gives the 95%
confidence level for the expectation value given by this fit; error bars are standard deviations for individual
data point and reflect the uneven counting statistics for each point.

4. Results and Interpretation

The ratio of counts shown in Figure 3 is independent of pressure and inclination angle, 𝜃0, as just stated and as
expected. While the dose rate in B does depend on pressure [Rafkin et al., 2014], the fact that we use a ratio of
counts cancels out this dependence. The average value obtained by fitting a plane to the data was 4.18±0.05.
To assess the statistical robustness of this result, we computed additional estimates for the “central” value
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Figure 3. (top right) Grey shade coded ratio of A1⋅B/A2⋅B counts as a function of inclination angle, 𝜃0 (y axis) and
pressure p (x axis). (top left) Projected (summed over all pressure bins) count ratio versus inclination angle, 𝜃0. (bottom)
Projected (summed over all pressure bins) count ratio versus pressure, p. No systematic trend can be seen in the data.

of this quantity. We plot a histogram of the values for the count ratio in Figure 4. The solid curves show fits

of a Gaussian and a Lorentzian (as indicated by arrows) to the well-peaked histogram. Obviously, it is better

represented by a Lorentzian than a Gaussian. The dashed line gives the cumulative sum of the data, the dotted

and dash-dotted line those of the Gaussian and Lorentzian fits. The results are summarized in Table 1.

Taking the unweighted average of the values given in Table 1, we find our final value for the count ratio

A1⋅B / A2⋅B, i.e., A1∕A2Mars=4.173 ± 0.012. This needs to be compared to the value obtained for an isotropic

radiation field, A1∕A2iso=4.202 ± 6.6 × 10−4. Thus, A1∕A2Mars differs from the isotropic case, A1∕A2iso, by

2.4 times the estimated error. Where not stated differently, error estimates were obtained using the standard

Gaussian error propagation throughout this work. Assuming underlying Gaussian errors, the chance that we

are truly observing an isotropic distribution is 1.6%. As one sees in Figure 4, an underlying Lorentzian error

distribution more closely resembles the data. Using this assumption and the corresponding fitted width of

the distribution given in Table 1, we obtain a probability of∼10% for an isotropic distribution “masquerading”

as nonisotropic. Given these uncertainties, we may state that the radiation field coming from within zenith

angles of up to ∼15∘ at Gale crater is very close to isotropic and tends to show added shielding from larger

zenith angles.

The results presented in Table 1 can be used to estimate the cos 𝜃 index, 𝛾 . Taking the values for the modeled

ratio for A1⋅B and A2⋅B coincidences (described in section 2), we can interpolate in them to find the index, 𝛾 ,
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Figure 4. Histogram of the values of the count ratio (grey bars) and fits of a Gaussian and Lorentzian centroid estimator
(indicated by arrows). The cumulative sum of the data is given as a dashed line, the dotted and (barely visible)
dash-dotted lines give the cumulative sums of the Gaussian and Lorentzian, respectively.

corresponding to A1∕A2Mars = 4.173±0.012. We thus found 𝛾Mars = 0.18±0.07. As expected from the discus-
sion in the previous paragraph, this is not too different from the isotropic value 𝛾iso

.
= 0 and indicates that the

very thin Martian atmosphere provides only a small amount of shielding or that the shielding effect is partially
compensated by the generation of secondary particles from the interaction of the GCR with the atmosphere.
Indeed, our model described in section 2 shows that we must not expect a measurable dependence of the
A1/A2 ratio on the inclination angle, 𝜃0, for this value of 𝛾 , which is consistent with our observation that it
indeed does not vary with 𝜃0.

For the 𝛾Mars derived in this work, the average incidence angle for a zenith-pointing RAD is 10.1∘ for A2 and 18.9
degrees for A1. In other words, the two fields of view see a different average column density, which is easily
computed. As one may readily convince oneself, the column density, 𝜌c, in a barometric atmosphere varies
with pressure as 𝜌c = p∕g, where p is pressure and g is the (Martian) gravitational acceleration at Mars surface.
As can be seen in Figure 2, pressure varied between 680 Pa and 940 Pa during the time period investigated
here. The average value was 793 Pa, the median 784 Pa, and the most probable value 770 Pa. Inserting p =
780 Pa as a typical value and using g = 3.711 m/s2, we obtain an average column density of 𝜌c ≈ 21 g/cm2.
Thus, the average column densities for A1 and A2 are approximately 22.2 g/cm2 and 21.3 g/cm2, respectively.
In other words, the shielding by the atmosphere is about 4% larger for A1 than for A2 but so is the atmospheric
target for secondary particle generation.

That the shielding effect is small can be understood with the following simple considerations. Taking typi-
cal bounding values for the pressure variations of plo≈700 Pa and phi ≈900 Pa, we get 𝜌c lo ≈19 g/cm2 and
𝜌c hi ≈ 24 g/cm2, both values lie well above the Pfotzer maximum which lies at 𝜌c Pf ≈ 64 g/cm2 [Möller et al.,
2013]. The primary energy needed by a proton to penetrate 19 g/cm2 of carbon dioxide (a good approxima-
tion for the Martian atmosphere) is about 155 MeV (see http://physics.nist.gov/PhysRefData/Star/). For the
most probable value of 21 g/cm2 it is about 165 MeV, and for the typical upper limit, 𝜌c hi ≈24 g/cm2, it is
about 178 MeV. The spectrum of GCR protons is broad and peaks at several hundred MeV [Grieder, 2001] and
the fraction of GCR protons affected by this shielding is minute. We estimated the removal of incident pro-
tons due to this variable shielding to be less than 1% using the Planetocosmics [Desorgher et al., 2006] input
spectrum.
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Table 1. Best Estimates for the Values of the A1/A2 Count Ratio

Quantity Value Error

Meana 4.186 0.009

Weighted averageb 4.171 0.006

Median 4.169 –

Most probable value 4.175 –

Gaussian centroid 4.173 0.018

Lorentzian centroid 4.162 0.010
aEqual weights for every value.
bWith inverse errors as weights.

The generation of secondary particles is also not
strongly affected by the 4% increase in atmo-
spheric column density. The mean free path
for high-energy protons (Ekin > 1 GeV, i.e., the
majority of GCR protons) is given by

𝜆 = 1
n𝜎

; 𝜎 ≈ 4×10−26A2∕3cm2; n = 𝜌 ⋅NA∕A,

(4)

where NA is Avogadro’s number, 𝜌 density, and
A the atomic mass number. This evaluates
to 𝜆≈ A1∕341.5 g/cm2∕𝜌 or approximately
100 g/cm2∕𝜌. Thus, Gale Crater at typically
21 g/cm2 lies at a height where only few reac-

tions have had a chance to take place. The difference of 4% in column density then results in a difference of
less than 1% in the number of reactions which could produce secondary charged particles.

Together, the shielding and secondary particle production nearly cancel, with shielding apparently being
slightly more important, to result in the 𝛾Mars = 0.18 ± 0.07 given above.

5. Discussion and Conclusions

We have shown that the radiation coming from within some 15∘ from the zenith direction at Gale Crater
on Mars is nearly isotropic and that shielding plays only a minor role in this range of zenith angles. Sea-
sonal and diurnal pressure variations do not influence the A1/A2 count ratio. While limited to a rather narrow
range of zenith angles, this finding has implications for future human exploration of Mars and for investiga-
tions of the interaction of radiation with the Martian soil. We have not yet compared our observations with
model results, but we expect that they will serve as an important observational constraint on the modeling
of charged-particle transport through the Martian and other planetary atmospheres.

It is important to note that these observations were only made in a rather narrow range of zenith angles and
our finding of a nearly isotropic radiation field should not be extrapolated to larger zenith angles. In future
work, we will attempt to extend this range by adding newer data from RAD when Curiosity began climb-
ing Mount Sharp and experienced somewhat higher inclination angles. This will require careful calibration of
temperature effects and other possible configurations changes to RAD.

Despite these restrictions our results can be generalized to other locations at Mars, at least for altitudes
corresponding to the pressure range seen during this investigation.
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