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Abstract

The applicability of the discrete sources method and the null-field method with discrete sources to elec-
tromagnetic scattering by large axisymmetric particles with extreme geometries is analyzed. We present
the numerical and theoretical improvements of the methods and design the null-field method with multiple
spherical vector wave functions as an enhancement of the conventional null-field method for computing the
optical properties of large size parameter particles. The numerical performances of the methods with discrete
sources are illustrated through simulations in spheroidal and cylindrical particle cases.

1. Introduction

In atmospheric radiative transfer and remote sensing, accurate computations of electromagnetic scatter-
ing by large particles with extreme geometries are often required.

A first method which serves this purpose is the discrete sources method. The approximate solution to the
scattering problem is constructed as a finite linear combination of fields of elementary sources. The discrete
sources are placed on a certain support, and the unknown amplitudes of the discrete sources are determined
from the boundary conditions. As discrete sources localized, distributed and multiple spherical vector wave
functions, magnetic and electric dipoles, and systems of vector Mie potentials have been considered in
[1]. Distributed spherical vector wave functions (lowest-order multipoles) have been used by Eremin and
Sveshnikov [2] for analyzing the scattering by axisymmetric particles, while multiple spherical vector wave
functions (multiple multipoles) have been introduced by Hafner [3] in the framework of the multiple multipole
method. Eremin [4] has shown that for oblate axisymmetric particles, the use of lowest-order multipoles
with origins located in the complex plane still decouples the scattering problem over the azimuthal modes
and increases the stability of the computational scheme.

The null-field method (otherwise known as the extended boundary condition method) is also suitable for
analizing the electromagnetic scattering by large and highly aspherical particles. The method was initially
proposed by Watermann [5, 6] and later developed by Barber and Hill [7], and Mishchenko et al. [8]. In the
framework of the null-field method, the transition matrix relating the expansion coefficients of the scattered
and incident field is derived as

T = −Q11(Q31)−1,

where the matrix Q31 is obtained by imposing the null-field condition inside a spherical surface enclosed in
the particle, and the matrix Q11 is obtained from Huygens principle. The elements of the Q matrices are
expressed as integrals of products of spherical vector wave functions over the particle surface. Despite its
wide range of applicability, the method suffers from numerical problems regarding convergence and loss of
accuracy. The reason is that for large and/or strongly deformed particles, the matrix Q31 becomes severely
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ill conditioned, and the inversion process is negatively influenced by round-off errors. Essentially, small
numerical errors in the computed elements of the matrix Q31 are dramatically amplified in the elements of the
inverse matrix. A number of methods have been proposed to improve the numerical stability in computations
for large particles with extreme geometries. We distinguish the following categories of methods:

1. Methods dealing with the numerical stability of the inversion process. The orthogonalization approach
which exploits the unitarity property of the T matrix [6, 9], the Gauss elimination method with
backsubstitution [10], the block matrix inversion method [11], and the perturbation approach for the
Q-matrix inversion [12] fall into this category.

2. Methods dealing with an accurate computation of the Q-matrix elements. Somerville et al. [13] found
that in the case of spheroids, the numerical computation of the integrals of the Q31-matrix elements
may suffer a significant loss of precision due to exact cancellations of large parts of the integrand. The
sources of this problematic behaviour are some particular terms in the Laurent series expansion of the
integrand. Later on, Somerville et al. [14] reformulated the integrals such that these problematic terms
are removed, and designed a numerically stable implementation of the null-field method for T-matrix
calculation. In the framework of the null-field method, Petrov et al. [15] developed the so called shape
matrix (or Sh-matrix) approach to analyze different particle morphologies. The Q-matrix elements
are expressed through analytical relations in terms of the Sh-matrix elements, which depend only on
the particle shape. On the other hand, the Sh-matrix elements are determined analytically for many
types of particles [16–19], and the resulting analytical solutions speed up the calculations and make
them more stable.

3. Methods dealing with an accurate computation and inversion of the matrix Q31 by using extended-
and the multiple-precision floating-point variables [13, 20].

4. Methods relying on formal modifications of the single spherical coordinate-based null-field method.
These methods leading to better conditioned systems of equations include the iterative version of the
null-field method [21, 22], and the application of sub-boundary bases for surface fields approximation
[23], the spheroidal coordinate formalism [24, 25], and discrete sources [1, 26].

In the null-field method with discrete sources, a set of integral equations for the surface current densities
is derived in a variety of discrete sources, while the surface current densities are approximated by fields of
discrete sources. The fundamentals of the method using various types of discrete sources (essentially the
same as in the discrete sources method) have been presented in [1]. In [26] and [27] only distributed spherical
vector wave functions with origins located on the axis of symmetry of the particle or in the complex plane
have been considered, and convergent results for prolate axisymmetric particles with a size parameter of
about 100, and oblate axisymmetric particles with a size parameter of about 30 have been reported. In the
present work we will pay attention to the system of multiple spherical vector wave functions with origins
located in the complex plane. Although multiple spherical vector wave functions have been theoretically
introduced in [1], they have not been used in [26]. By reconsidering this system of vector functions we will
be able to increase the range of applicability of the null-field method to oblate particles with size parameters
larger than 30.

Our paper is organized as follows. Section 2 briefly sketches the fundamentals of the discrete sources
method and the null-field method with discrete sources. As discrete sources localized, distributed and
multiples spherical vector wave functions are considered. Section 3 describes the numerical and theoretical
improvements of the methods for analyzing the electromagnetic scattering by large and strongly deformed
axisymmetric particles. A convergence analysis for spheroidal and cylindrical particles is the objective of
Section 4, while a short summary is given in Section 5.

2. Methods with discrete sources

We consider a homogeneous, isotropic particle occupying a domain Di with boundary S and exterior
Ds. The unit normal vector to S directed into Ds is denoted by n. The exterior domain Ds is assumed to
be homogeneous, isotropic and nonabsorbing. The wave number in domain Dt, t = s, i, is kt = k0

√
εtµt,
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where k0 is the wave number in the free space, and εt and µt are the relative permittivity and permeability
of the domain Dt, respectively. The transmission boundary-value problem for a homogeneous and isotropic
particle has the following formulation: Given E0 and H0 as an entire solution to the Maxwell equations
representing the incident field, find the vector fields Es, Hs and Ei, Hi satisfying the Maxwell equations

∇×Et = jk0µtHt, ∇×Ht = −jk0εtEt, (1)

in Dt, t = s, i, the two transmission conditions

n×Ei − n×Es = n×E0,

n×Hi − n×Hs = n×H0, (2)

on S, and the Silver-Müller radiation condition for the scattered field

r

r
×√µsHs +

√
εsEs = o

(
1

r

)
, as r →∞, (3)

uniformly for all directions r/r.
Let us consider the vector functions Φq

α(kr) and Ψq
α(kr), for q = 1, 3, with the properties (a) ∇×Φq

α =
kΨq

α and ∇×Ψq
α = kΦq

α, (b) Φ1
α and Ψ1

α are finite at the origin, and (c) Φ3
α and Ψ3

α satisfy the radiation
condition. In particular, Φq

α and Ψq
α stand for different types of spherical vector wave functions (SVWF),

i.e.,
1. localized SVWF (localized multipoles)

Φq
α(kr) = Mq

mn(kr) and Ψq
α(kr) = Nq

mn(kr),

where α = (m,n) for m ∈ Z and n ≥ max(1, |m|).
2. distributed SVWF (lowest-order multipoles)

Φq
α(kr) = Mq

m,|m|+l(k(r− znez)) and Ψq
α(kr) = Nq

m,|m|+l(k(r− znez)),

where {zn | n ≥ 1} is a dense set of points situated on the z-axis, ez is the unit vector in the direction
of the z-axis, l = 1 if m = 0 and l = 0 if m 6= 0, and α = (m,n) for m ∈ Z and n ≥ 1.

3. multiple SVWF (multiple multipoles)

Φq
α(kr) = Mq

mn(k(r− zpez)) and Ψq
α(kr) = Nq

mn(k(r− zpez)),

where {zp | p = 1, 2, ..., Np} is a finite set of points (poles) situated on the z-axis, Np is the number of
poles, and α = (m,n) for m ∈ Z and n ≥ max(1, |m|).

The expressions of the spherical vector wave functions with an orgin shifted at ẑ along the z-axis are given
by [26]

M1,3
mn(k(r− ẑez)) = cnz

1,3
n (kR)

[
jmπ|m|n (θ̂)(sin(θ − θ̂)er

+ cos(θ − θ̂)eθ)− τ |m|n (θ̂)eϕ

]
ejmϕ (4)

and

N1,3
mn(k(r− ẑez)) = cn

{
n(n+ 1)

z1,3
n (kR)

kR
P |m|n (cos θ̂)

× (cos(θ − θ̂)er − sin(θ − θ̂)eθ) +
(kRz1,3

n (kR))′

kR

×
[
τ |m|n (θ̂)(sin(θ − θ̂)er + cos(θ − θ̂)eθ)

+jmπ|m|n (θ̂)eϕ

]}
ejmϕ, (5)
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where cn = 1/
√

2n(n+ 1), z1
n and z3

n denote the spherical Bessel functions jn and the spherical Hankel
functions of the first kind hn, respectively, P

|m|
n (cos θ) are the normalized associated Legendre functions,

τ
|m|
n (θ) = dP |m|n (cos θ)/dθ, π|m|n (θ) = P

|m|
n (cos θ)/ sin θ,

R2 = ρ2 + (z − ẑ)2, sin θ̂ =
ρ

R
, cos θ̂ =

z − ẑ
R

,

(er, eθ, eϕ) are the unit vectors in spherical coordinates, and (r, θ, ϕ) and (ρ, ϕ, z) are the spherical and the
cylindrical coordinates of the field point r, respectively. The localized SVWF correspond to ẑ = 0 in (4)
and (5), in which case, R = r and θ̂ = θ.

2.1. Discrete sources method
An important property of the systems of vector functions {Φq

α,Ψ
q
α} is that the sets of tangential vector

functions {(
n×Φqt

α (ktr)

−j
√

εt
µt

n×Ψqt
α (ktr)

)
,

(
n×Ψqt

α (ktr)

−j
√

εt
µt

n×Φqt
α (ktr)

)}
are complete on the surface S, i.e., for any tangential field (e0,h0) and any δ > 0, there exists N0 = N0(δ),
such that for all N > N0, ∥∥e0 + eNs − eNi

∥∥
2S

+
∥∥h0 + hNs − hNi

∥∥
2S
≤ δ, (6)

where e0 = n×E0, h0 = n×H0, and(
eNt (r)
hNt (r)

)
=

N∑
α=1

atα

(
n×Φqt

α (ktr)

−j
√

εt
µt

n×Ψqt
α (ktr)

)
+ btα

(
n×Ψqt

α (ktr)

−j
√

εt
µt

n×Φqt
α (ktr)

)
, (7)

with et = n × Et, ht = n ×Ht, t = s, i, qs = 3 and qi = 1. As a result, the amplitudes of the discrete
sources can be obtained by minimising the residual fields on the particle surface

x = arg min
(∥∥e0 + eNs − eNi

∥∥2

2S
+
∥∥h0 + hNs − hNi

∥∥2

2S

)
, (8)

where x = [aiα, biα, asα, bsα]
T is a 4N -dimensional vector. As this procedure leads to a normal system

of equations which is fundamentally unstable for amplitudes determination, the point matching method is
used to satisfy the boundary conditions. Choosing a set of matching points {rp}Pp=1, P > N , on the particle
surface, the unknown vector x is computed from (8) as the least squares solution x = argminy ‖Ay − b‖2,
where A is a 4P ×4N overdetermined matrix, while the entries of the 4P -dimensional vector b are specified
by the values of the incident field at the matching points.

2.2. Null-field method with discrete sources
In the null-field method with discrete sources, the internal surface fields ei and hi are approximated by

(7), and the expansion coefficients aiα and biα are determined from the null-field equations

jk2
s

π

ˆ
S

[
(eNi (r)− e0(r)) ·

(
Ψ3
ᾱ(ksr)

Φ3
ᾱ(ksr)

)
+j
√
µs
εs

(hNi (r)− h0(r)) ·
(

Φ3
ᾱ(ksr)

Ψ3
ᾱ(ksr)

)]
dS(r) = 0, (9)

for ᾱ = (−m,n) and ᾱ = 1, 2, ..., N . Using the vector spherical wave expansion of the incident field,

E0(r) =

N∑
α=1

a0αM1
α(ksr) + b0αN1

α(ksr), (10)
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yields

Q31(ks, ki)

[
aiβ
biβ

]
= −Q31

0 (ks, ks)

[
a0β

b0β

]
, (11)

where the entries of the matrix Q31(ks, ki),

Q31(ks, ki) =

[
(Q31)11

αβ (Q31)12
αβ

(Q31)21
αβ (Q31)22

αβ

]
(12)

are given by

(Q31)11
αβ =

jk2
s

π

ˆ
S

[
(n×Φ1

β(kir)) ·Ψ3
ᾱ(ksr)

+jmr(n×Ψ1
β(kir)) ·Φ3

ᾱ(ksr)
]
dS(r)

(Q31)12
αβ =

jk2
s

π

ˆ
S

[
(n×Ψ1

β(kir)) ·Ψ3
ᾱ(ksr)

+jmr(n×Φ1
β(kir)) ·Φ3

ᾱ(ksr)
]
dS(r)

(Q31)21
αβ =

jk2
s

π

ˆ
S

[
(n×Φ1

β(kir)) ·Φ3
ᾱ(ksr)

+jmr(n×Ψ1
β(kir)) ·Ψ3

ᾱ(ksr)
]
dS(r)

(Q31)22
αβ =

jk2
s

π

ˆ
S

[
(n×Ψ1

β(kir)) ·Φ3
ᾱ(ksr)

+jmr(n×Φ1
β(kir)) ·Ψ3

ᾱ(ksr)
]
dS(r), (13)

with mr =
√
εi/εs being the relative refractive index of the particle. The matrix Q31

0 has the same
structure as the matrix Q31, but it contains as columns the vectors M1

β(ksr) and N1
β(ksr) in place of the

vectors Φ1
β(kir) and Ψ1

β(kir), respectively. The expansion coefficients of the scattered field

Es(r) =

N∑
α=1

asαM3
α(ksr) + bsαN3

α(ksr), (14)

are obtained from Huygens principle (or Stratton-Chu representation theorem) by using approximation (7)
for the internal surface fields ei and hi. We obtain[

asα
bsα

]
= Q11(ks, ki)

[
aiβ
biβ

]
, (15)

where the matrix Q11 has the same structure as the matrix Q31, but it contains as rows the vectors M1
ᾱ(ksr)

and N1
ᾱ(ksr) in place of the vectors Φ3

ᾱ(ksr) and Ψ3
ᾱ(ksr), respectively. Combining (11) and (15) we find

that the transition matrix T, relating the scattered field coefficients to the incident field coefficients, is given
by

T = −Q11(ks, ki)(Q
31(ks, ki))

−1Q31
0 (ks, ks). (16)

For localized SVWF, we have Q31
0 = I, and we are led to the standard representation of the transition

matrix.

3. Algorithm details

For axisymmetric particles, the scattering problem decouples over the azimuthal modes m, and for each
m, the truncated system of SVWF {Φq

mn(kr),Ψq
mn(kr)} reads as
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Figure 1: Ilustration of the complex plane. Σ is the generatrix of an oblate spheroid, z is the axis of symmetry, ρ is the
equatorial axis, and Σ̂ is the image of Σ in the complex plane. Three poles are chosen along the imaginary axis at positions
O1, O2, and O3. The dotted circles represent the area of influence of each pole.

1. localized SVWF:
{Mq

mn(kr), Nq
mn(kr) | n = max(1, |m|), ..., Nrank},

where Nrank is the order of the localized pole,
2. distributed SVWF:

{Mq
m,|m|+l(k(r− znez)), Nq

m,|m|+l(k(r− znez)) | n = 1, ..., Nrank},

where Nrank is number of lowest-order multipoles (discrete sources),
3. multiple SVWF:

{Mq
mn(k(r− zpez)), Nq

mn(k(r− zpez)) | p = 1, ..., Np,

n = max(1, |m|), ..., Nrankp},

where Nrankp is the order of the pole p, and Nrank =
∑
pNrankp is the total expansion order.

In the case of prolate particles, the distribution of the poles on the z-axis (axis of symmetry) adequately
describes the particle geometry. However, this arrangement is not suitable for oblate particles, in which
case, the procedure of analytic continuation of the spherical vector wave functions onto the complex plane
along the source coordinate ẑ must be considered. The complex plane (Reẑ, Imẑ) with Reẑ, Imẑ ∈ R, is the
dual of the azimuthal plane ϕ = const, i.e., (ρ, z) with ρ ≥ 0 and z ∈ R, and is defined by taking the real
axis Reẑ along the z-axis. In Fig. 1 we illustrate the complex plane and the curve Σ̂, which is the image
of the generatrix Σ in the complex plane. The programming effort for computing the spherical vector wave
functions with an origin located in the complex plane is not very high, because the recurrence relations for
the angular functions of complex argument are the same as the recurrence relations for the angular functions
of real argument.

For spheroids and cylinders, with which we will deal in our numerical simulations, the poles are chosen
as follows:
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1. In the discrete sources method, only lowest-order multipoles are considered, and the poles for scattered
and internal field representations have different positions. For oblate particles, the internal poles
are distributed on the imaginary axis in the interior and exterior of Σ̂, while the external poles are
distributed on both the real and imaginary axis in the interior of Σ̂. The positions of the poles are
generated automatically by using a selection criterion based on the size parameter, particle eccentricity
and refractive index.

2. In the null-field method, the poles are placed in the interior of Σ̂. The positions of the poles specifying
the radiating {Φ3

ᾱ(ksr),Ψ3
ᾱ(ksr)} and the regular {Φ1

β(kir),Ψ1
β(kir)} system of vector functions in

(13) are the same. The number of lowest-order multipoles is chosen as an odd number, and the poles are
distributed uniformly and symmetrically with respect to the origin. The same rule apply to multiple
SVWF excepting the uniform distribution of the poles. In this case, the pole placed at the origin has
the largest order, and it is called the dominant pole. The arrangement of other poles is specified by
the user. For prolate particles, the poles are distributed along the real axis, while for oblate particles,
the poles are distributed along the imaginary axis.

The numerical stability of the methods for solving the underlying system of equations strongly depends on
the structure of the matrix to be inverted.

1. In the discrete sources method, the least squares problem

x = argminy ‖Ay − b‖2

is regularized by means of Tikhonov regularization, i.e.,

xα = argminy(‖Ay − b‖2 + α ‖y‖2),

and solved by using the QR factorization. The regularization parameter α is chosen according to an
a priori selection rule based on the size parameter and particle eccentricity.

2. In the null-field method, (1) the Gauss elimination method with backsubstitution [10], and (2) the block
matrix inversion method [11] are used. In addition, for large oblate particles, the Gauss elimination
routine has been modified to work in multiple-precision arithmetic with the Multiprecision System
(MPFUN90) package written by Bailey [28], and parallelized with OpenMP API.

The computations are performed using extended- instead of double-precision floating-point variables. As
shown in [20] this is an effective approach for suppressing the numerical instability in computations for large
axisymmetric particles with extreme geometries.

For a further improvement of the numerical stability of the null-field method with localized SVWF,
the computation of the T matrix including inversion is performed with multiple-precision arithmetic. The
working precision level of the MPFUN90 package is setted to 250 digits.

4. Convergence analysis

The convergence procedure of the null-field method checks whether the (total) expansion order, the
number of quadrature points, and the number of azimuthal modes are sufficiently large that the scattering
characteristics are computed with the desired accuracy. Because the convergence over the azimuthal modes
and the number of quadrature points are not problematic, we focus on the convergence over the expansion
order, and assume that the incident direction is along the axis of symmetry of the particle. Essentially, the
convergence procedure solves the scattering problem for a reference and a lower-order system of SVWF, and
checks the convergence of the differential scattering cross-sections at a number of scattering angles [7]. If the
calculated results converge within a prescribed tolerance at 80% of the scattering angles, then convergence
is achieved. The choice of the two systems of SVWF is not at all obvious. The method with localized SVWF
uses a well ordered set of functions, and in this case, the two systems of SVWF are characterized by Nrank

and Nrank − 1, where is Nrank is the order of the localized pole. For several poles, this choice is not unique
because we may change both the position and the expansion order of the poles. In our analysis we use the
following selection rules:
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1. For distributed SVWF, the lower-order system is the reference system in which the pole placed at the
origin is omitted.

2. For multiple SVWF, the lower-order system is the reference system in which the order of the dominant
pole is reduced from Nrank1 to Nrank1 − 1.

In contrast to the above convergence criterion, which requires the solution of two scattering problems, the
discrete sources method uses an “internal convergence criterion”, which consists in the estimation of the
residual field at the particle surface for a given configuration of poles. Note that close to an edge, where
the field can have a singularity, high errors and poor convergence can be obtained. Therefore, it is often
preferable to smoothen the edges, for example, with small arcs or with spline approximations of the boundary.
Also note that in the framework of the null-field method, a possible method for testing the accuracy of the
results for a given configuration of poles is to check the reciprocity condition as discussed by Rother and
Wauer [29].

The particles considered in our analysis are spheroids and cylinders. For spheroids, we denote by a the
polar radius and by b the equatorial radius, while for cylinders, we denote by a the half-length and by b the
radius. The aspect ratio is defined as a/b. The discrete sources method has been applied only for spheroids,
because the method mainly deals with smooth particle surfaces.

In Fig. 2 we plot the normalized differential scattering cross-sections for a prolate spheroid and a prolate
cylinder with a size parameter of ksa = 80 and an aspect ratio of 8/1. In these simulations, the null-field
method with multiple SVWF is run with Np = 31, Nrank = 101, Nrank1 = 11 and Nrankp = 3 for p 6= 1
in the case of the prolate spheroid, and Np = 31, Nrank = 131, Nrank1 = 11 and Nrankp = 4 for p 6= 1 in
the case of the prolate cylinder. The null-field method with distributed SVWF is run with Nrank = 101
in the case of the prolate spheroid, and Nrank = 131 in the case of the prolate cylinder. Here, and in the
following simulations, the number of integration points is 1000. As demonstrated in Fig. 2, the discrete
sources method and the null-field method with discrete sources give the same results. In fact, both methods
work excellently for large and highly aspherical prolate particles when the discrete sources are distributed
on the axis of symmetry of the particle.

For oblate spheroids, a refractive index of mr = 1.5 + 0.02j, and an aspect ratio of a/b = 1/4, the
extended-precision version of the null-field method with localized SVWF fails to converge for size parameters
ksb larger than 34 [20]. The same happens with the null-field method with distributed SVWF, but not with
the null-field method with multiple SVWF. The reason is that the last method yields a matrix Q31 with
the smallest condition number. For example, in the case ksb = 40 and Nrank = 80, the condition number of
the matrix Q31 is 4.3 · 1018 for localized SVWF, 2.5 · 1010 for distributed SVWF, and 1.3 · 109 for multiple
SVWF.

In Fig. 3 we plot the normalized differential scattering cross-sections for an oblate spheroid and an oblate
cylinder with a size parameter of ksb = 50 and an aspect ratio of 1/5. The results are computed with the
discrete sources method, the null-field method with multiple SVWF, and the multiple-precision version of the
null-field method with localized SVWF. The parameters of calculation of the null-field method with multiple
SVWF are Np = 3, Nrank = 96, Nrank1 = 60, Nrank2 = Nrank3 = 18, ksImz1 = 0.0, and ksImz2,3 = ±42
for the oblate spheroid, and Np = 3, Nrank = 130, Nrank1 = 90, Nrank2 = Nrank3 = 20, ksImz1 = 0.0,
and ksImz2,3 = ±45 for the oblate cylinder. The reasons for which the discrete sources method still yields
convergent results are an appropriate distribution of external poles on the real and imaginary axis, and an
ingenious method for smoothing the singularities of the discrete sources. In Table 1 we list the computational
time for these simulations. The fastest method is the null-field method with multiple SVWF equipped with
the block matrix inversion routine working in extended precision. From Table 1 it is also obvious that the
use of the multiple-precison Gauss elimination routine increases the computational time by a factor of 2,
and that the multiple-precision version of the null-field method with localized SVWF is extremely inefficient
in terms of computational speed.

The results in Fig. 4 correspond to an oblate spheroid with a size parameter of ksb = 80 and an aspect
ratio of 1/8, and to an oblate cylinder with a size parameter of ksb = 70 and an aspect ratio of 1/7. For
these simulations only the null-field method with multiple SVWF converges. Note that our multiple-precision
implementation of the null-field method with localized SVWF diverges for aspect ratios smaller than 1/4.
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Figure 2: Normalized differential scattering cross-sections for a prolate spheroid (top panels) and a prolate cylinder (bottom
panels) with mr = 1.5 + 0.02j, ksa = 80 and ksb = 10. The plots correspond to the discrete sources method (DSM), and to the
null-field method with multiple SVWF (MSVWF), and distributed SVWF (DSVWF). For a clear illustration, only the third
points on the DSM and DSVWF curves are shown.
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Figure 3: Normalized differential scattering cross-sections for an oblate spheroid (top panels) and an oblate cylinder (bottom
panels) with mr = 1.5 + 0.02j, ksa = 10 and ksb = 50. The plots correspond to the discrete sources method (DSM), and to
the null-field method with multiple SVWF (MSVWF), and localized SVWF (LSVWF). For a clear illustration, only the third
points on the DSM and LSVWF curves are shown.
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Time (min:sec)
Method Oblate Spheroid Oblate Cylinder
NFM-MSVWF 3:42 - 3:16 - 5:24 6:20 - 5:27 - 12:43
NFM-LSVWF 58:33 106:15
DSM 7:51 -

Table 1: The computational time for the results in Fig.3. In the case of the null-field method with multiple SVWF, the
three values in each column are the computational times corresponding to the Gauss elimination routine working in extended
precision, the block matrix inversion routine working in extended precision, and the Gauss elimination routine working in
multiple precision.

Nrankp

ksImzp
ksa Np Nrank 0.0 55 60 65 70 75
40 1 120 120 - - - - -
35 3 152 112 - - - - 20
30 3 164 112 - - - - 26
25 3 176 112 - - - - 32
20 3 196 112 - - - 42 -
15 5 220 112 - 42 - - 12
10 7 264 112 40 - 20 - 16

Nrankp

ksImzp
ksa Np Nrank 0.0 45 50 55 60 65
35 1 114 114 - - - - -
30 3 138 108 - - - - 15
25 3 168 108 - - - 30 -
20 5 198 108 - - 30 - 15
15 5 228 108 - 40 - - 20
10 7 268 108 40 - 20 - 20

Table 2: The number of poles Np, the total expansion order Nrank =
∑

pNrankp, and the expansion order Nrankp of each pole
p situated at (0.0, ksImzp) with ksImzp ≥ 0, in the complex plane. The poles are placed symmetrically with respect to the
origin, while Np is an odd number. The top table corresponds to oblate spheroids with mr = 1.5 + 0.02j and ksb = 80, while
the bottom table correspond to oblate cylinders with mr = 1.311 and ksb = 70.

Because the matrix inversion routines working in extended precision introduce major loss of precision, the
Gauss elimination routine working in multiple precision has been used. As a result, the computational times
are relatively high: 86 min for the oblate spheroid and 93 min for the oblate cylinder. To explain how the
null-field method with multiple SVWF works we list in Table 2 the number, expansion order and position
of the poles for oblate spheroids of size parameter ksb = 80 and oblate cylinders of size parameter ksb = 70.
In these simulations, the largest dimension b is fixed and the smallest dimension a is decreased, so that the
aspect ratio decreases from 1/2 to 1/8 in the case of oblate spheroids, and from 1/2 to 1/7 in the case of
oblate cylinders. The case a/b = 1/2 can be handled with a single pole, i.e., by the extended-precision version
of the null-field method with localized SVWF. As the aspect ratio a/b is decreased, the total expansion Nrank

order is increased by keeping the expansion order of the dominant pole Nrank1 constant and by gradually
adding new poles. The poles are introduced by starting from the boundary and by shifting their position
toward the origin.

In conclusion, the null-field method with multiple SVWF is superior to the null-field method with dis-
tributed SVWF considered so far in [26]. The method can be regarded as an enhancement of the conventional
null-field method, because the use of several multipoles leads to better conditioned systems of equations and
confers a larger flexibility to the method.
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Figure 4: Normalized differential scattering cross-sections for an oblate spheroid with mr = 1.5 + 0.02j, ksa = 10 and ksb = 80
(top panels) and an oblate cylinder with mr = 1.311, ksa = 10 and ksb = 70 (bottom panels). The plots correspond to the
null-field method with multiple SVWF.
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5. Conclusions

The applicability of the discrete sources method with distributed SVWF and the null-field method with
localized, distributed and multiple SVWF to electromagnetic scattering by large axisymmetric particles with
extreme geometries has been analyzed. The conclusions of our analysis can be summarized as follows:

1. For prolate particles, a distribution of the discrete sources on the axis of symmetry of the particle
guarantees the convergence of the computational schemes.

2. For oblate particles, the procedure of analytic continuation of the spherical vector wave functions onto
the complex plane has to be considered. In the case of the discrete sources method, convergence is
achieved by an appropriate selection of the poles: the external poles are distributed on both the real
and imaginary axis, while the internal poles are distributed on the imaginary axis in the interior and
exterior of the image of the particle generatrix in the complex plane. In the case of the null-field
method, the use of multiple SVWF with poles located on the imaginary axis preserves the decoupling
of the scattering problem over the azimuthal modes, and increases the stability of the computational
scheme.

For large particles with extreme geometries, the null-field method with multiple SVWF is superior to the
null-field method with distributed SVWF and the conventional null-field method. The reason for this en-
hancement is that the method leads to better conditioned systems of equations. The method is even superior
to the conventional null-field method working fully in multiple precision. Unfortunately, an inconvenience
of the null-field method with multiple SVWF is the multiple-precision implementation of the inversion al-
gorithm, which increases the computational time by a factor of 2 as compared to an extended-precision
implementation. The applicability of matrix inversion algorithms using floating-point format and multi-
plicative corrections [30] and of the (regularized) total least squares method [31] dealing with errors in the
matrix Q31 will be analyzed in the future.
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