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1. About This Document 

OBC-NG is the abbreviation for on-board-computer next generation – a project 
founded and made by the German Aerospace Center (DLR). The project goal is 
to provide the basis for future on-board computer (OBC) for space-missions. This 
document summarizes the conducted work, made in the DLR-project OBC-NG 
and its predecessor project “Software and Hardware Architecture for Re-
configurable Computers” (internally named SHARC).  
 
Document Overview 
The actual technical report begins with Chapter 2, informing the reader about 
the motivation, the goals and the general requirements of this project and 
therefore serves as an introduction to the project. Further, the state of the art is 
reflected by similar on-board computer projects. After the introduction, Chapter 
3 elaborates the design. The entire project is explained on the system, software 
and hardware level, to provide a deep understanding of the system and its 
concepts and solutions. For a deeper understanding, Chapter 4 states potential 
payload applications for the system. These applications have also been 
integrated in the project. Chapter 5 provides a compact overview of all software 
and hardware components, which have been integrated in the project. Insights, 
which have been gained while the project, are collected in Chapter 6. They are 
subdivided in hardware, software, implementation, application and evaluation 
issues. The review report closes with Chapter 7, providing a conclusion with a 
future outlook.  
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2. History – Assumptions, Studies, First Decisions 

The project OBC-NG started at the beginning of 2012, internally named as 
SHARC. In 2013 we renamed the project to OBC-NG. SHARC was meant to be 
as a pre-studying phase. We defined what we would need, investigated what 
the current state of the art is and how our concept should look like. Many 
fundamental decisions had been made in this first year. This chapter will cover 
the results mainly of SHARC and should also deliver the reasons for the OBC-NG 
system concept, described in the OBC-NG Concept Chapter. 
 

2.1. Motivation 

In the upcoming years, the demand of on-board computing power for 
spacecraft is expected to grow steadily. This plus in computing performance is 
requested due to the increasing amount of payload data, which needs to be 
processed. A special focus resides on sub-domains like earth observation and 
space robotics.  
 
On one side, the resolution of earth observation sensors is constantly increasing 
in all dimensions (spatial, temporal, spectral etc.). Due to a limitation in 
bandwidth, especially for low earth orbit satellites, certain pre-processing steps, 
like filtering, selection or compression of data, have to be conducted. 
 
On the other side, robotic systems become more and more autonomous. 
Communication latency issues demand a growing autonomy, especially on deep 
space probes or rovers. However, this autonomy requires more complex control 
algorithms, which request more sensor data as input to derive a decision.  
 
These two space exploration sub-domains reveal that the computing 
performance and the sensor advancement go hand in hand, making it necessary 
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to adjust them to each other. In contrast to the need of this plus in computing 
performance, strong general requirements of spacecraft can be identified. 
Requirements like reliability and durability have led to very conservative design 
decisions, mostly resulting insignificantly weaker computing performances than 
terrestrial technologies. Current redundancy concepts on subsystem level waste 
a lot of computing power. Many of the subsystems follow a cold or warm 
redundancy concept with a one to one mapping of identical hardware. This strict 
mapping forbids the usage of spare hardware of one subsystem in another one, 
binding an enormous amount of computing for no use. 
 
Also problematic is re-usage of computational power, which is requested in one 
mission phase, in another. In case of a lander mission, the autonomous 
navigation while landing requires a huge amount of computing performance. 
The re-usage of that existing performance after the touch down for other 
purposes still represents a big challenge [1]. 
 

2.2. Application Requirements 

The OBC-NG project targets computing intense domains with on-board 
evaluation of sensor data as one of the main challenges. This challenge ought to 
be mastered with commercial-off-the-shelf (COTS) components, in contrast to 
space domain common space-qualified parts. The inherent loss of dependability 
when using COTS components has to be compensated with new reliability 
concepts, mainly on software level.  
 
There are two main reasons for on-board processing of big sensor data. Either 
the result of the evaluation of the sensor data is requested for the space vehicle 
to determine its current state, enabling it to react on the environment (e.g. 
navigation). Or, the amount of sensor data is exceeding the available bandwidth 
of the downlink to ground station, making an on-board pre-processing of the 
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sensor data necessary. As examples, ATON and on-board image processing are 
presented to offer practical insight in the application requirements  [1]. 
 

2.2.1. ATON 

Within the scope of the project, it had been the task to determine the 
requirements for an OBC to execute the ATON project (Atonoumous Terrain-
based Optical Navigation). The ATON project addresses the autonomous landing 
on the moon by exploitation of optical navigation. Specifically optical navigation 
requires a huge amount of computing performance. The OBC-NG project targets 
the usage of COTS components with increased computing performance 
compared to space specific hardware. This plus in computing performance is 
required for the ATON project to succeed in a real space mission. Crucial for an 
optical navigation is the dependability of the system. ATON requires a hard real-
time behavior of the system to retain the results of the tracking per frame within 
a certain amount of time . 
 

2.2.2. On-board Image Processing 

On-board image processing faces two major challenges. On one side, the huge 
amount of high- resolution image data creates an acquisition bottleneck due to 
limited downlink bandwidth and on-board memory. On the other side, a certain 
processing delay of the gained image data might weaken the expressiveness of 
the to be derived verdict. This becomes obvious when we consider a satellite 
supported weather catastrophe forecast system. 
 
The only reasonable option is to process and evaluate the data where they have 
been sourced – on-board .Image processing requires moderate to high 
processing power. Therefore, OBC-NG seems to be a suitable platform for 
realization. To evaluate the capabilities of the OBC-NG project, the cloud 
detection application has been selected as an example of an earth observation 
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task. 
 
When comparing the two example applications, ATON and cloud detection, it 
becomes visible that they both process image sensor data, hence still have 
completely different requirements. In ATON the complexity of the algorithm to 
navigate the spacecraft is in foreground. Whereas, the cloud detection demands 
the computing power for the huge amount of the to be processed image data. 
Therefore, the OBC-NG system requires a certain flexibility to target them both.  
 

2.3. System Requirements 

One goal of OBC-NG is to use commercial hardware and software for space 
applications, but we also wanted to exploit new developments in high-
performance-systems. At the beginning of the project, we tried to get an 
overview about the current situation in hardware- and software development. 
We quickly realized that there is currently a paradigm shift toward massive 
parallel processing. With this situation in mind, we defined three main 
requirements for OBC-NG: 
 

1. Load-Balancing: The utilization of all computing nodes in the spacecraft 
should be optimized. Application should run on several nodes in parallel. 

2. Redundancy: Defective nodes should be replaced automatically in a 
running system. Working nodes should resume the applications of 
defective nodes. 

3. Re-Configuration: It should be possible to configure the computer 
system for different mission phases with different applications. 

 
From these main requirements, we derived requirements that are more specific. 
The requirements are partitioned into the categories application, operating 
system (OS), hardware, network and development environment. 
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We demand from the applications: 

• to run on multiple threads, 
• to run on different platforms, 
• to minimize the network traffic and 
• to export and import its state for backup and recovery. 

 
We demand from the OS: 

• to support multitasking, 
• to run on different platforms, 
• to support N-times redundancy, 
• to boot fast, 
• to encapsulate applications well, 
• to support moving of the applications, 
• to support load balancing, 
• to monitor itself and 
• to be controlled from the outside. 

 
We demand from the network and the hardware: 

• to be structured as a distributed system, 
• to support different network topologies, 
• to support quality-of-service, 
• to support software sandboxing, monitoring and re-configuration 

 
We demand from the development environment: 

• to have a fixed development-flow for applications, 
• to deliver a build- and simulation environment for applications, 
• to support planning of the application-allocation on the nodes. 

 



 

OBC-NG 

 

Titel: OBC-NG 
Version: 1.0 

Seite: 11  
Datum: 20.01.16 

 

2.4. State of the Art  

This chapter gives an overview about the available technologies on the market 
for OBCs for space. Furthermore, the rad-hard solutions will be compared to 
selected commercial solutions. 

2.4.1. Hardware 

The biggest gap between space-qualified and commercial parts can be found in 
the area of CPUs and microcontrollers. However, commercial electronic is 
sensitive to single-event-effects (SEE). Some of them, like SETs  or SEUs, are 
temporary and can cause bit-flips in the data or the processing chain. Some of 
SEEs, like SELs, can also cause permanent damage. On a SEL, a parasitic thyristor 
is triggered, followed by a high current to the substrate [2]. Radiation hardened 
electronics for space is immune against the most SEEs by using special silicon-
technology, special logic-cells or TMR. 
 
Table 2-1 shows the most powerful rad-hard processors and on-board 
computers on the market in comparison to a commercial CPU for embedded 
systems. 
 
Brand, Type Performance Description 

Aeroflex UT700 233 DMIPS @ 166 MHz Rad-hard, single-core, LEON3FT 
based microcontroller with 
SDRAM memory controller, 
Spacewire, Ethernet and MIL-
1553 interface 

Aeroflex GR712 140 DMIPS / 200 MFLOPS 

@ 100 MHz 

Rad-hard, dual-core, LEON3FT 
based microcontroller with 
SDRAM memory controller, 
Spacewire, Ethernet interface 
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Atmel AT697F 86 DMIPS / 23 MFLOPS 

@ 100 MHz 

Rad-hard, single-core, LEON2 
based microcontroller with 
SDRAM memory controller and 
PCI 

Maxwell SCS750 1800 MIPS @ 800 MHz The Maxwell board is a 
complete computer solutions 
consisting of three PowerPC 
CPUs. The CPU-outputs are 
connected to a Microsemi FPGA 
which makes majority logic on 
the inputs. Additionally SDRAM, 
EEPROM and a second 
Microsemi FPGA are placed on 
the board. 

Space Micro Proton 400k 5760 MIPS @ 1,2 GHz Board computer solution 
consisting of two PowerPC 
e500 CPUs. The error-correction 
is done by the patented method 
“time-triple-modular 
redundancy”: Both CPUs 
running in parallel. When the 
CPUs deliver different results, 
the processing will be repeated. 

Space Micro CHRCE Space 
Processor 

5000 DMIPS for both CPUs 
@ 1GHz 

 

Radiation tolerant 
microcontroller board equipped 
with a Xilinx Zynq-7000 SoC, 
containing a dual-core ARM 
Cortex A-9, which is runnable 
with up to 1 GHz frequency.  

Freescale i.MX6 ca. 4.000 DMIPS / 2 GFLOP 

@ 1GHz 

+ 4 GFLOP for the NEON-
co-processor 

Commercial microcontroller 
family based on a dual core 
ARM Cortex A9 CPU. 

Table 2-1 List of rad-hard processing / computer solutions 

 
The commercial processor (i.MX6) is more than ten times faster, compared to 
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the fastest rad-hard processor (UT700). The complete computer-solutions come 
close to the performance of the commercial processor, but are less flexible. 
 
For performance critical applications, CPUs are mostly to slow. Here DSPs, GPUs 
and FPGAs deliver more performance and a better performance to power ratio. 
Table 2-2 shows an overview over the best performer in this area for space and 
for commercial applications. The power consumption of the FPGA strongly 
depends on the application. In general, the performance to power ratio of 
FPGAs is better than of GPUs, because algorithms can be efficiently pipelined. So 
the access to external memory can be minimized. 
 

Brand, Type Performance Description 

Microsemi RTAX4000D 5 GFLOPS @ 125 MHz antifuse, rad-hard FPGA 

Xilinx Virtex 5Q 40 GFLOPS @ 400 MHz rad-hard FPGA, SRAM based 
with single event upset (SEU) 
immune memory-cells for 
configuration 

Xilinx Ultrascale Kintex 
KU115 

ca. 1.4 TFLOPS @ 500 MHz commercial FPGA, SRAM based, 
20nm silicon process 

Nvidia GeForce GTX 980 ca. 5 TFLOPS @ 1.1 GHz commercial GPU, power 
consumption is around 150 W 

Texas Instruments 
TMS320C6670 

ca. 80 GFLOPS @ 1.2 GHz commercial DSP with 4 cores 

Table 2-2 Selection of FPGAs, GPUs and DSPs, available on the market 

 
The GFLOP-performance of Table 2-2 is only a weak indication for the real-world 
performance. Memory bandwidth is also an important factor. Though, it 
depends on the application and the implementation how much of the 
theoretical computing power can be exploited. 
 
Asano [3] did evaluate the performance for three image processing algorithms 
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(2D filter, stereo-vision and K-means-clustering) on CPU (Intel quad-core Q6850), 
GPU (Nvidia GTX 280) and FPGA (Xilinx Virtex 4 XC4VLX160). For the 2D filter, 
the GPU was the fastest, up to 5 times faster than the FPGA and up to 10 times 
faster than a CPU depending on the filter depth. For the more complex 
algorithms, the FPGA was the winner, with up to 10 times more speed than GPU 
or CPU, which are on a similar level. 
 
Jones [4] came to different results. He presented a benchmark test for FPGA and 
GPU with focus on high performance computing (HPC). Aside from the random 
pattern generation, the GPU was always much faster than the FPGA. 
 
Not so long ago, the usage of GPUs for embedded systems was unattractive, 
because of the high power consumption and the need for active cooling. 
However, recent developments, mainly driven by mobile media-solutions, 
brought some interesting devices on the market. Nevertheless, FPGAs will stay 
the first choice for space applications because of the unbeatable flexibility and 
the best performance to power ratio. 
 

2.4.2. Network Technology 

There exist a wide range of network technologies and protocols for different 
applications. Use cases might be industry automation, entertainment devices or 
high-performance computing. For OBC-NG, we investigate network protocols 
suitable for space applications. We especially elaborated the automotive and 
avionics sector, because of the similar requirements regarding security and 
reliability. Mass and required space had been also criteria. Table 2-3 shows the 
result of the investigation. 
 

Network Data 
Rate 

Topology Access 
Manageme
nt 

Field Tested Redundancy 
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Network Data 
Rate 

Topology Access 
Manageme
nt 

Field Tested Redundancy 

TTEthern
et 

>1 Gbit/s switched and 
point-to-
point 

TDMA NASA Orion, 
several space 
projects 

by redundant 
connections and 
switches 

AFDX 100 
Mbit/s 

switched event based 
with 
bandwidth 
limit 

Airbus A380, 
Airbus A400M 

by redundant 
connections and 
switches 

Flexray 10 Mbit/s bus, Star, 
combination 
of both 

TDMA automotive dual redundant 
connections / 
channels 

TTCAN 1 Mbit/s bus exclusive or 
prioritized 
time slices 

automotive no redundancy 

SpaceWir
e 

400 
Mbit/s 

switched and 
point-to-
point 

event based multiple space 
projects 

no redundancy 

TTP/C 25 Mbit/s bus, Star, 
combination 
of both 

TDMA Boeing B787, 
Airbus A380 and 
other aircrafts 

dual redundant 
connections 

MIL-STD-
1553B 

1 Mbit/s bus event based multiple space 
and avionic 
projects 

redundant bus-
structure 

Firewire 
1394b 

800 
Mbit/s 

chain, tree bandwidth 
lime 
(isochronous, 
asynchronous
) 

in several military 
projects 

no redundancy 

Fibre 
Chan-nel 

10 Gbit/s switched event base 
(QoS 
possible) 

Boeing F/A-18, 
Lock-heed 
Martin JSF 

no redundancy 

Table 2-3 Network technologies suitable for space 
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The available data rates show a wide range from 1 Mbit/s to 10 Gbit/s. The 
search for a high performance network demands a minimum bandwidth of 100 
Mbit/s for our purposes. So Flexray, TTCAN and MIL-1553B do not need to be 
considered. Another requirement is the robustness of the system. If the network 
architecture already contains any kind of redundancy, it will not be necessary to 
compensate already covered failures on system level. In addition, switches and 
end-points must be adapted to fulfill the space requirements in reliability. 
Robustness can also be obtained by a reasonable network topology. In networks 
with multiple ways to an end-point, disconnects could be easily compensated by 
changing the routing. FireWire has no redundancy included, nor a topology that 
allows re-routing in a case of disconnection. Therefore, the FireWire does not fit 
to our needs. 
 
If real-time is a requirement, the choice would be TTEthernet, AFDX or TTP/C. All 
these networks have been used in space or avionics in the past. Nevertheless, 
TTP/C is limited in bandwidth and supports only bus or star topology. That is 
why the Ethernet-based networks seem to be the most promising technologies. 
If quality of service is not a hard requirement, SpaceWire is still a good choice. 
Compared to other networks the protocol is fast and simple. It has a long 
heritage in the space community and the robustness of SpaceWire had been 
proven in several space projects. 
 

2.4.3. Operating System 

An evaluation regarding OSes for on-board computers had been conducted 
within the SHARC project. The outcome of this evaluation had been taken as 
basis for the decision making regarding the OS for OBC-NG project. 
 
Interpreting the results reveals that none of the OSes can convince in all criteria. 
The recommended OS of the SHARC evaluation is RODOS (Real-time Onboard 
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Dependable Operating System). Two aspects influenced this decision. On one 
side, the results of the most important criteria ranked RODOS as the leading 
operating system. On the other side, RODOS is a partly in-house developed 
operating system. There is free access to the source code and a RODOS co-
developer is available in the department.  
 

2.4.4. Similar On-Board-Computer Projects 

Other space agencies and companies run similar projects in search for more 
processing power. We will introduce three of them in this chapter. Each project 
has its own approach for more flexibility and performance compared to classic 
on-board computers. 
 

Singapore’s X-Sat Satellite 
A high performance-processing cluster with COTS components had been built 
for the Singapor X-Sat project [5]. Because of redundancy reasons, the system 
consists of two identical halves. Each half contains 10 high-speed processing 
nodes (PNs). The heart of each node is Strong-ARM CPU made by Intel. Each 
CPU has its own 64 Mbyte SDRAM memory (see Figure 2-1). The PNs are 
grouped around an Actel-FPGA. Defect or unused PN can be disabled by the 
FPGA. 
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Figure 2-1 Processing cluster structure of the Singapor X-Sat [5] 
 
The FPGAs provides the network-interface, monitors the PNs and provides the 
boot-software for the PNs. For this purpose, the FPGA is visible inside the PN 
memory space. The network inside the FPGA is built as a ring. Each PN gets a 
fixed time-slice for communication. Data can be sent as broadcast or as point-to-
point transmission. The two FPGAs work in master-slave configuration. 
 
Embedded LINUX runs as operating system on the PNs. Dedicated drivers had 
been developed for the network. Because of the use COTS components for the 
PNs the software is responsible for error-detection-and-correction (EDAC) of the 
PN memory. The software generates error-codes for selected memory-areas and 
checks them periodically. 
 
The start-command for the application comes from the CAN-bus. Thereupon the 
FPGA appoints a PN as master. The master will activate additional PNs and 
assigns tasks to them. The data handling of application is managed by the 
master. 
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Processing Architecture on Iridium NEXT 
For the Iridium NEXT satellite system, now announced for 2017, the company 
SEAKR got the contract to build a flexible and powerful on-board-computer for 
handling the communication [6]. For Iridium NEXT a fleet of 66 satellites are 
planned. This high number of satellites and components are made in almost 
series production. Therefore, SEAKR decides to use a mix of rad-hard and 
commercial components. 
 

 

Figure 2-2 Computer architecture of Iridium NEXT satellite [6] 

 
The Iridium NEXT board-computer consists of three CPU-boards with commercial 
PowerPC CPUs, which are called “Medusa” (see Figure 2-2). Four FPGA boards 
work as modem for modulation, demodulation, routing and CODECs. Each 
FPGA boards consist of three rad-hard Xilinx Virtex 5Q FPGAs. Each FPGA-board 
is directly connected to each CPU board via Spacewire. The CPU-boards manage 
the processing on the FPGA-boards. A dedicated middleware is responsible for 
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the dynamic assignment of the tasks. 
 
FPGA configuration and software can be updated in space. Therefore, the 
operation of the satellite can be adapted to future requirements. The 
redundancy concept for the on-board-computer relies on the high number of 
connections between the sub-systems. So the computer can still work, after 
multiple components failed. Only the performance will drop. 
 

High Performance Dependable Multiprocessor 
Honeywell developed an on-board-computer for the NASA millennium program 
called “dependable multiprocessor” [7] [8]. The project was started in 2004. The 
performance should be increased by the use of high-performance COTS 
processors, so the project-goal was the same as OBC-NG. A technology 
readiness level of 6 was reached in 2009. An in-flight verification, planned for 
2007, was canceled. 
 
Figure 2-3 shows the hardware structure of the dependable multiprocessor. Two 
redundant rad-hard system-controllers manage and monitor the data processors. 
The system-controllers also communicate with the spacecraft. Over a redundant 
high speed network, the COTS based data-processors can be accessed. Central 
element of the data processor is a PowerPC-CPU of the type 7447 and an 
AltiVec coprocessor. 
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Figure 2-3 Hardware structure of dependable multiprocessor [8] 

 
A middleware, running on system-controller and data processors, handles the 
jobs and failure detection. The middleware also provides a platform independent 
application interface (API). On the data processors, Linux was chosen as 
operating system. 
 

 

Figure 2-4 Middleware structure of dependable multiprocessor  [8] 



 

OBC-NG 

 

Titel: OBC-NG 
Version: 1.0 

Seite: 22  
Datum: 20.01.16 

 

The investigation of the dependable-multiprocessor project shown, that SEU and 
SET sensitivity is the only major drawback of COTS components. With the use 
SOI technology single-event latch-up (SEL) issues can be avoided. 
 
Failure management is done in a complex approach on several levels of 
hardware and software.  
 

2.4.5. Trends in High-Performance Computing 

During our investigation about the state of the art, it turned out, that SHARC / 
OBC-NG touches well known problems of the HPC and cloud-computing 
domain. Therefore, we took a deeper look into approaches and solutions of 
these two domains. 
 
The physical limits of the silicon technology got obvious in the last years. Over 
decades with every silicon technology step the transistor size has been reduced 
and the frequency has been increased. This exponential increase in performance 
is well known as Moore’s law. However, since approximately 10 years the 
maximum frequency seems to have limit of 3-4 GHz, observable on desktop x86-
CPUs. To keep up with Moore’s law the processor-makers have to integrate 
more CPUs on chip. But to exploit the number CPUs, the application software 
has to be divided into multiple parallel running threads. Classic software 
engineering methods struggle at this point. Scalability is often a problem. Not 
optimized software may run slower on many CPU cores than on a few cores. 
 
Multi-processor systems usually have a common main memory. Information 
between software threads can be shared by using the same memory. 
Synchronization mechanisms have to be used to assure the consistency of the 
information. In multi-processor systems without shared memory, software 
threads can messages to other threads. 
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In high-performance computing, a paradigm shift to massively parallel software 
has already taken place. High-performance applications are optimized for 
parallel processing since years. Sequential programming became less important. 
In embedded systems and desktop programming, this paradigm shift started 
recently. The way to massive parallel processing does not touch only the 
application, but also the operating system. One example of a cloud-based 
operating system is Parallax [9] [10]. Parallax did influence the OBC-NG concept. 
 
In current cloud-based computer systems, the applications are handled by the 
middleware, often structured into several levels seating on the top of the 
operating system. In Parallax the application management was reduced to the 
minimum and was integrated into a network-centric operation-system. Crucial 
functions of the operating system are encapsulated in self-managed units. These 
units are called DIME (Distributed Intelligent Management Element). They are 
responsible for the failure, configuration and performance management. 
 

 

Figure 2-5 DIME structure in Parallax [9] 
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A central orchestrator organizes the DIMEs. This orchestrator assigns the DIMEs 
to the available computing-nodes. When a node has free resources, the 
orchestrator takes a new DIME out of the pool and gives it to the node. On the 
other side new DIMEs are put into the pool. Several DIMEs can be active on one 
computing node. The DIMEs control the requested performance by themselves. 
 
The DIMEs can interact via messages. Every DIME has special input and output 
threads for this purpose. The messages are addressed to the unique ID of a 
DIME. The message routing is part of the OS. 
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3. OBC-NG Concept 

The OBC-NG concept relies on the exploitation of high-performance COTS parts 
and targets shortcomings like reliability with new concepts on the software level. 
The system itself is a reconfigurable heterogeneous cluster with various tasks, 
like data processing, system management and interface operations. Within this 
chapter, the entire OBC-NG system is elaborated in detail. The content is mainly 
based on the paper: OBC-NG: Towards a Reconfigurable On-board Computing 
Architecture for Spacecraft [1], which can be used as a supplement. 
 

3.1. System 

Within this subsection, the high level system design is elaborated. Included are 
the top-level requirements, the system approach and the system design. An 
additional focus is set on the reconfiguration of the entire system, as it 
represents a novelty. 
 

3.1.1. Top-level Requirements 

The OBC-NG system is mission-independent but targets potential future space-
mission requirements. Among such requirements is the increasing demand 
regarding more computational on-board resources of the spacecraft. This 
request cannot be solved with the current space-qualified components and their 
waste of computational resources because of one-to-one mapped warm and 
cold redundancy. Additionally, computational intense tasks can have different 
requirements. Control tasks often need to be finished within a certain time 
interval, the more computational performance is available, the more advanced 
control algorithms can be designed. On the other side, pure payload processing, 
for example filtering sensor data, can challenge the on-board computer, also if 
there is no strict deadline. An example for an application, which offers both 
scenarios, is a navigation and guidance system. Those systems are mostly based 
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on complex computer algorithms and heavy image data processing [1]. 
 

3.2. System Approach 
The system is comparable to a heterogeneous embedded cluster. Different 
computing devices, like CPUs and FPGAs, act as nodes, which are 
interconnected via a switched network with each other. For the future, it is 
planned to integrate also embedded GPUs or DSPs. Data and task parallelism 
can be exploited to distribute and re-distribute the computational payload evenly 
on the system. Whereas, task parallelism takes place on system level and data 
parallelism on node level. A re-distribution is a reconfiguration of the system and 
the reaction on special incidences, like a malfunction of a node. Focused is also 
the usage of COTS components as nodes of the system to improve the overall 
computing performance. However, new techniques are necessary to generate 
the required reliability of the entire system, without applying the common one-
to-one mapping of computational devices.  
 
The distribute nature of a cluster demands a reliable and efficient 
interconnection among the different nodes of a system. Therefore, the network 
of OBC-NG can be planned up to a fully meshed network, interconnecting each 
node with all others, to avoid single points of failure. To increase the efficiency 
of the entire system, the specification of the interconnection of the nodes needs 
to match the nodes performance capabilities. Therefore, a network has to be 
preferred instead of a bus-architecture, as the bandwidth of networks is higher 
than comparable bus topologies [1]. 
 

3.3. System Design 
 
Nodes 

Figure 3-1 reveals an exemplary structure of the OBC-NG system. The amount of 
nodes and their class is variable, offering great potential regarding scalability. 
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There are two main classes of nodes, when investigating the functional level. 
Nodes can be either Processing Nodes (PNs) or Interface Nodes (INs). INs are in 
charge of the connection of peripherals, like sensors or memories, to the system. 
PNs take care of the processing of data and  additionally manage the system.  
 
A PN class node holds a Router (R) and a Main Processing Unit (MPU). The 
Router represents the gateway to the network and is hosted by an extra FPGA. 
The MPU can be supported in its task by a co-processor. This co-processor might 
be an FPGA, an embedded GPU, an DSP or any other computing device. Within 
the current prototype the co-processor is limited to an FPGA.  
 
The IN class node hosts a Router and a less powerful micro-controller, compared 
to the MPU of the PNs. Its main task is to expose the peripherals to the system 
[1]. 

PN

IN

PN

PN

PN PN

PN

IN

Sensors Actuators

Mass-
MemorySensors

 

Figure 3-1: Simple example of an OBC-NG system [1] 
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Roles of Nodes 
The possible role of a node is depending on its class and the functional task. Due 
to the re-configurable nature of the OBC-NG concept, roles can change within 
runtime of the system. We investigate the different roles, depending on the class 
of the node. 
 
A PN class node can be Master (M), Observer (O) or Worker (W). The distribution 
of the roles over all PNs of the system is dynamic and depends on the current 
configuration. This also counts for the Master of the system, which has to 
control and monitor the system. The Master is an application, which monitors 
the entire system to be able to react accordingly. A reaction of the Master is 
necessary if a failing node is not able to resolve the issue on its own. A 
reconfiguration of the system is most likely the result. Currently, the 
reconfigured system lacks a node after this, but it is planned to integrated 
methods to reset and revive faulty nodes to integrate them back into the system 
in case this is possible. If the Master node is not fully utilized with its Master role, 
it can additionally process data and therefore serve as Worker, too. 
 
To increase the reliability of the entire system the Observer role is given to two 
more PNs. The primary Observer investigates the behavior of the Master, 
whereas the Master checks on the Observers (in addition to the IN roles and 
Workers). The secondary Observer investigates the primary Observer and the 
Master. In case the secondary Observer detects an irregular behavior of the 
primary Observer, it informs the Master to let it decide on the consequences. 
However, in case one of the Observers realizes an irregular behavior of the 
Master, a reconfiguration of the entire system is triggered via a broadcast 
message. 
 
The last role of a PN class node can be the Worker. There is no management 
task involved with this role, only the conduction of demanded tasks. The 
Workers are often organized in a client-server fashion, with multiple client 
workers and one server worker that gathers the information. Nevertheless, this is 
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depending on the type of parallelism, if it is task- or data-based, and resides in 
the hands of the application developer. 
 
An IN class node can have the role of a Storage (S) or an Interface (I). In case of a 
Storage node, the IN is connected to a mass memory. A mass memory is 
required for housekeeping and scientific data. However, specialties arise in this 
case, like checkpointing services, which are in focus in a subsequent section. On 
the other side, the IN offers the connection of sensors to the network and 
therefore establishes the connection among the sensors and the Workers on the 
PNs [1]. 
 

3.3.1. Reconfiguration 

Within the current and common spacecraft development, reliability issues are 
often solved by warm or cold redundancy. Additionally, subsystems are designed 
and implemented as independent units within the overall spacecraft system. 
Therefore, the redundant parts of each subsystem are one-to-one mapped to 
each other. In case of an issue, the redundant part takes over and continues the 
job. But it is not possible for one subsystem to take over a job of another 
subsystem. Therefore, a lot of potential computing power is wasted and loads of 
redundant parts are carried into space, which might never create any benefit for 
the space mission. 
 
The OBC-NG concept breaks with this strict one-to-one mapping and introduces 
the one-to-many mapping. Spare nodes can be used to take over the jobs of 
faulty ones, which get separated of the system. Additionally, it is planned to 
determine their status, when possible fix them and re-integrate them into the 
system. 
 
Addressing the stiffness of current approaches, another problem is targeted by 
the reconfiguration mechanism of the OBC-NG concept. Some space missions 
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have huge requirement differences when a mission phases changes. This 
becomes very drastic in autonomous lander missions. The spacecraft needs a 
huge amount on computing power to elaborate the sensor data it receives while 
landing, to instruct the control mechanism of the entire spacecraft. When the 
lander reached the surface, different tasks await it. There, the available 
computing power could come in very handy too. The OBC-NG concept would 
trigger a reconfiguration of the system from landing to exploration 
configuration, exploiting its potential computing performance. 
 
Considering these two scenarios, a mission phase change and a failure event, 
the reconfiguration mechanism conducts planned and unplanned autonomous 
reconfigurations. The planned reconfiguration is performed on mission phase 
changes to allocate existing computation performance for new task. The 
unplanned autonomous reconfiguration takes place whenever the Master node 
realizes a severe failure in the system or an Observer realizes that the Master is 
not reachable.  
 
In both cases, a decision graph is used to determine the next applicable 
configuration of the entire system. A simple example graph is displayed in Figure 
3-2. The nodes of the graph represent configuration states and the edges are 
transitions from one configuration state to another, protected by guards. A 
guard is a specific error that occurs or a mission phase change event. The current 
prototype can detect errors only on node level and initiates the state transition 
regarding the specific node error. Reconfigurations can be conducted until a 
state is reached in which no valuable configuration can be reached anymore. 
Then the system takes the edge to a safe-mode, which is reachable from any 
state in the graph. The graph itself is cycle-free and its size can grow fast with 
the amount of nodes in the system as well as with the failure detection 
granularity (Currently the prototype detect failures only on node level, but the 
detection on sub-node and task level would increase the size of the graph by 
magnitudes) [1]. 
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The OBC-NG concept considers a heterogeneous cluster as underlying hardware. 
The usage of FPGA technology is common in the space domain, but other 
technologies might be possible soon, like embedded GPUs. Currently, if an FPGA 
is faulty another FPGA has to take over and continue the job of the faulty one. 
OBC-NG wants to break this barrier by enabling the potential of task morphing 
to other technologies. It is of course of interest for the fulfillment of the mission 
goals to utilize a spare FPGA, in case another fails. But if no FPGA resources are 
left, a morphing of the task to a spare CPU to continue the mission can be an 
acceptable solution. This morphing is currently under investigation, whereas 
high-level synthesis tools, hardware/software co-design approaches or 
translators might be useful.    
 
In the current prototype, a heartbeat monitoring mechanism is integrated to 
determine the healthiness of a node. This mechanism is a pull request with the 
Master as the initiator against all nodes and the Observers against the Master. It 
is planned that nodes check their current states regarding errors. If a node 
realizes that it is in an erroneous state of which it cannot leave, it informs the 
master via a message about its state. The Master then triggers a reconfiguration 
of the entire system. Additionally considered is, that nodes expect a certain 
communication of other nodes and if they do not receive the same, they inform 
the Master.  
 
The reconfiguration itself is triggered by a broadcast message of the highest 
priority. While the reconfiguration process, nodes have to stop the transmission 
of messages via the network until the system is reconfigured. All binaries and bit 
stream files reside on each nodes internal storage to keep the payload on the 
network as low as possible and the reconfiguration time short. Each node just 
gets the information about the new configuration ID via the broadcast and 
searches the decision graph for the state to configure itself accordingly. In 
addition to that, the routing tables of the routers are also updated to match the 
new configuration.  
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Problematic can be when tasks that are migrated from one node to another 
require a specific start state. This can be achieved with the checkpointing service, 
which stores such states on a regular basis and forwards it to the current node 
with the task running after reconfiguration. That mechanism represents the 
warm redundancy concept in OBC-NG [1]. 
 

 

Figure 3-2: Simple example of a decision graph to mitigate node failure. Cx denotes the 

configurations and Nx the failing nodes. 

 

3.4. Software Requirements 
The important functional requirements that influence the software architecture 
are listed below. 
 

• The OBC-NG software system shall be able to execute all necessary 
software on-board of a spacecraft. This includes avionic systems, 
command and data handling, payload control, on-board data processing 
etc. 

• Since OBC-NG is a distributed system, the software must support 
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distributed systems and the required communication services as well as 
parallelized applications. 

• The system architecture provides special purpose co-processors like 
FPGAs that are connected to the MPU of the Processing Nodes. These 
co-processors need to be accessed by the software system on the 
attached MPU. 

• One of the basic concepts of OBC-NG is the use of reconfiguration to 
change the system for different mission phases and to mitigate errors. 
Hence, the software needs to support reconfiguration of hardware and 
software. 

• The software system needs to provide an environment in which 
applications can be executed. 

• Services to control and monitor the system, i.e. master node 
functionality, shall be implemented in software. 
 

The primary architecture and quality goals of the software of OBC-NG are: 
 

• Performance: The system shall achieve >10 GFLOPS. The 
reconfiguration shall be completed within 5 seconds. Real-time tasks that 
are not migrated during reconfiguration should not be interrupted for 
more than. 

• Reliability: The system shall be able to recover from consecutive node 
failures by migrating important tasks to functioning nodes. Two 
consecutive node errors will be demonstrated. During the project OBC-
NG, only complete node failures are considered. Single event upsets 
(SEU), which can be caused by ionized or electromagnetic radiation, are 
not considered in this phase of the project. 

• Availability: The system shall always be responsive to commands from 
ground control as long as at least one node, which is able to perform the 
master functionalities, is operable. 

• Security: Since the system is later deployed to a spacecraft, the only 
interface to the outside will be the Telecommand/Telemetry Interface. 
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Thus, no special security measures need to be taken within the system. 
The prototype will only be operated in local laboratory networks. Again, 
no security requirements exist to prevent unauthorized access. 

• Testability: To ensure a high quality of the software systems for further 
development, all software components explicitly developed in this project 
that are not considered as prototypes shall have a high test coverage of 
at least 60 % (line coverage).  
 

3.5. Software Architecture 
The software architecture is a layered structure as depicted in Figure 3-3.  
 

Hardware

Operating System

Middleware

Application

 

Figure 3-3: Basic software architecture of OBC-NG [1] 

3.5.1. Operating System 

The OBC-NG concept offers a very high scalability, especially in the amount of 
attachable nodes.  
 
When a certain number of nodes is exceeded, the transition from cluster to grid 
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computing is conducted. It is not expected that this will happen in the near 
future, especially not in the embedded space domain. But the general trend in 
this direction has an influence on the development of operating systems. They 
become more light weight per node and offer greater possibilities for node 
specific configuration. This comes in handy when we investigate the I/O 
functionalities of a Linux OS as example, which are never used on a OBC-NG 
system, as the communication takes place via network [1]. 
 
An evaluation of commercial and academic operating systems revealed that 
there is no suitable operating system on the market, which covers all major 
requirements of OBC-NG. Especially the multi-core support for operating 
systems in the embedded systems domain is broadly neglected. Additional 
requirements, like stability, real-time capabilities and synchronization can only be 
reached by severe changes in the operating system.  
 
Additionally, some envisioned applications with high demands to already 
available libraries, cannot be easily ported to a newly developed or modified 
minimal real-time operating system. 
 
Therefore, two operating systems have been selected for OBC-NG. PetaLinux, a 
Linux variant, will be used for complex applications, to utilize the large set of 
available (3rd party) libraries. For time-critical applications, the minimal real-time 
operating system RODOS has been selected and adapted to Zynq multi-core 
board [1]. The RODOS is not multi-core ready, as the priority for a re-design of 
the network protocol was higher, and no specific drawbacks expected when 
RODOS runs on a single core with shared memory. 
 

3.5.2. Middleware 

The OBC-NG middleware is designed as a layered architecture. It consists of 
network protocol, Tasking framework and management layer to offer 
communication services, application task services and management as well as 



 

OBC-NG 

 

Titel: OBC-NG 
Version: 1.0 

Seite: 36  
Datum: 20.01.16 

 

monitoring services (see Figure 3-4). The OBC-NG middleware uses message-
triggered and event-triggered mechanisms for task execution and management. 
The middleware supports the PetaLinux and the real-time operating system 
RODOS for the consideration of two aspects, i.e., some applications rely on 
third-party Linux libraries and some applications require hard real-time abilities of 
RODOS. The aforementioned features including management, monitoring, 
reconfiguration and model-based development are implemented in the OBC-NG 
middleware [1]. 
 
 

Middleware

Network Protocol
Tasking Framework

Management
API

 
Figure 3-4: Structure of the middleware of OBC-NG 

 

3.5.3. Network Protocol 

The network layer is responsible for the message communication among nodes 
in the distributed on-board system. The network layer, which is shown in Figure 
3-5, incorporates network protocol, network connector, underlying protocol, 
event handler and timer service. The network protocol is the core part of 
network layer, which transmits and receives messages of different transmission 
types to/of the network. The network connector is an abstract layer for the 
network protocol to transmit and receive messages through the underlying 
protocol. The event handler handles the received data and is triggered by the 
network protocol. The timer service is to offer timer functionality from hardware.  
 
Currently, the underlying protocol supports Ethernet with UDP/IP. The next step 
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is to integrate the SpaceWire Protocol since it is widely used in the space 
domain. SpaceWire is a network connection that is low-cost, low-latency, full 
duplex and it is based on point-to-point serial links and uses the packet 
switching wormhole routing. The OBC-NG network protocol does not only 
support the transmission of unreliable and reliable messages but also large-size 
messages. Moreover, the subscription and broadcast mechanisms can be 
realized by using the network protocol. Furthermore, it is also designed to 
support monitoring, error detection and reconfiguration on higher layers.  
 
With the STUP (Serial Transfer Universal Protocol), efforts have already been 
conducted to define and integrate a light-weight protocol on top of the 
SpaceWire protocol. This protocol describes the format of simple read- and 
write-commands and their message structure.  
 
The OBC-NG network protocol is a more advanced approach compared to STUP. 
Packets that exceed a certain maximum payload size per packet are split-up in 
multiple packets. An acknowledgement mechanism is integrated to take care 
about the transmission, with additional resend notifications. In addition, error 
notifications are covered. It is possible to use push as well as pull transmissions 
mechanisms. We want to present the OBC-NG protocol at the SpaceWire 
Conference 2016.  
 
 

Network Protocol
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Figure 3-5: Network layer structure 
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3.5.4. Tasking Framework 

The Tasking framework offers applications task services. The Tasking concept 
comes from RODOS of DLR. It provides communication and scheduling for task-
based applications. To use the Tasking framework, application developers need 
to divide their algorithms into smaller chunks. These tasks can then be 
distributed on several nodes or cores on a multi-core CPU. In the Tasking 
framework, a task has three actions, i.e., consuming information, performing 
computations and producing information that can be used as input message by 
other tasks. Computations are atomic which means that through the atomic 
computation, the state of the system will be updated or a value will return as an 
output. The task computation is triggered either by an event or by the fact that 
all required input data had been collected. The results of computations are 
information, which can be used by other subsystems or modules. The Tasking 
framework can be used for distributed and shared-memory system architectures. 
The communication media are messages and events. The workload partitioning 
and task mapping need to be realized explicitly. The Tasking framework offers 
thread management and synchronization. It has been used in the onboard 
software for several space missions at DLR. Currently, the Tasking framework 
can run on both OS, Linux and the real-time operating system RODOS [1]. 
 

3.5.5. Management Layer 

The management layer offers management, monitoring and reconfiguration 
services for nodes in coarse granularity and tasks in fine granularity. The 
management layer has five management tasks: monitoring, reconfiguration 
manager, reconfiguration service and checkpointing service. For the project 
OBC-NG, nodes can be either of the type PN or IN. Computation and 
management tasks run on the PN. Thus, the role of PN can be Master (M), 
Observer (O) or Worker (W). As the onboard system includes various peripheries 
such as sensors, actuators, instruments and mass storage, the IN is the 
connection part between the network and peripheries. Therefore the role of IN 
can be Storage (S) or Interface (I). The IN is also responsible for the management 
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of data subscription lists, i.e., the periphery sensor will send acquired data to the 
tasks, which are registered in the subscription list of this periphery sensor [1].  
 

3.5.6. API Layer 

The Application Programming Interface (API) is provided in the OBC-NG project 
with communication as its core service. The message passing is handled by the 
Tasking framework, which is accessible via the API. Application developers are 
requested to decrease the granularity of their tasks, to allow a better load 
distribution over the entire system and its nodes. Important is to define the 
interface and the internal state of each task. The interface, input and output, is 
important for the communication and the internal state is necessary for the 
checkpointing. Tasks can then be triggered by a timer event or an input event.  
The application developers are free to decide on the level of parallelism. The task 
level parallelism can be tuned by the size of the tasks. But the communication 
overhead and the amount of available multithreading capability of the entire 
system has to be considered. The data level parallelism can be exploited on node 
level. OpenMP is a commonly used framework in that context, but future 
approaches could also use a direct memory access from the FPGA to the CPU 
RAM to let the FPGA process on data in parallel with the CPU. Therefore, a next 
step within the development of the API would be an interface to specific co-
processors, like FPGAs [1]. 
 

3.6. Hardware 

In principle, the OBC-NG is not bound to any specific hardware. We only defined 
a rough hardware structure for the processing nodes and for the network. We 
further looked for the most promising hardware-platform, where we could verify 
the first implementation of the OBC-NG software. 
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3.6.1. Processing Node Hardware 

Each processing node in principle consists of a CPU, memory, router and an 
optional coprocessor, as shown in Figure 3-6. FPGAs, DSPs or GPUs can be used 
as coprocessors. New embedded GPUs that are capable of GPGPU (General-
Purpose computing on Graphics Processing Units) with lower power 
consumptions seem to be an option for the future utilization on a Spacecraft, 
but currently out of bounds of the project [1]. The hardware components are 
mainly COTS. The main components will be complemented by: 

• voltage regulators, 
• voltage monitors, 
• current limiters, 
• latch-up detection circuits and 
• a watch-dog timer. 

 

 

Figure 3-6: Processing Node of OBC-NG [1] 

 

3.6.2. CPU Selection 

For our test setup, we investigated the available CPU architectures, to find out 
which fits best to our requirements. We took a deeper look at four common 
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architectures available on the market: ARM, PowerPC, SPARC V8 and X86. 
 
ARM 
The ARM architecture has the highest market share in the embedded systems 
domain, resulting in a huge variety of microcontrollers, tools and software 
development kits. An ARM processor focuses on performance per watt and is 
often integrated in high–frequency microcontrollers nowadays. The widespread 
integration of ARM processors in smartphones and other embedded devices 
(e.g. Xilinx switched from PowerPC to ARM) reveals the general trust in ARM 
processors by the embedded industry. 
 
PowerPC 
The PowerPC architecture is well known for decades in the embedded world, 
being applied also in other domains, like servers. The PowerPC architecture 
focuses on high computing performance by moderate energy consumption. Only 
two vendors contribute to the further development of the architecture: IBM and 
Freescale. IBM concentrates its effort on server applications, whereas Freescale 
remains as the only provider for the embedded market. Over the last years, it 
was recognizable that the PowerPC architecture lost more and more of its 
importance in the embedded world. 
 
X86 
This architecture provides the highest single-threaded computing performance 
of all architectures, with the drawback of being very energy consuming. The 
plain high energy consumption is in severe contrast to the deficits of power on 
spacecraft. Nevertheless, positive is that this architecture enjoys the biggest 
support, regarding operating systems, programming languages, libraries and 
tools, compared to all other architectures. However, the amount of specific ICs 
of that architecture for the embedded sector is rather low. 
 
SPARC V8 
SPARC is a RISC architecture developed by SUN Microsystems. The SPARC V8 
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specification [15] was used by ESA to develop the LEON2 CPU. Later Gaisler 
continued the development and released the LEON3 and LEON4 processers yet. 
The LEON CPUs are widely used in the European space projects. LEON CPUs are 
available as soft-cores for FPGA designs or as microcontroller from Airbus D+S, 
Atmel and Aeroflex-Gaisler. Because of the older silicon-technology used for the 
ASICs, the maximum frequency is around 100 MHz. 
 
Based on this evaluation on different architectures, the OBC-NG team decided to 
use ARM architecture. One of reasons was, that are the future perspectives and 
support by Xilinx. With the Zynq product group, Xilinx offers SoCs with an ARM 
CPU, standardized interfaces to peripherals and an FPGA. This facilitates the 
board-design of a node enormous. Additionally to that, Space Micro announced 
in September 2015 that they have delivered their CubeSat Space Processor (CSP) 
to NASA Goddard Space Flight Center. The CSP is radiation tolerant space 
processor, based on Xilinx Zynq 7000 SoC [11].   
 
Atmel is an important space-qualified FPGA, ASIC, memory and microcontroller. 
Already today, the company offers a huge variety of ARM-based MCUs within 
their SMART product line. Some of them are adapted to meet low rad hard 
requirements, like the ARM32-SAM3X8 with an ARM Cortex-M3 processor. 
Atmel plans to increase their product portfolio on ARM-based aerospace 
processors by targeting more powerful architectures like the ARM Cortex-M7. 
 

3.6.3. FPGA Selection 

Based on the experience with Xilinx products of all project participants and the 
existence of powerful and space-qualified FPGAs within the portfolio of Xilinx, 
the decision was taken to use an FPGA product of this vendor.  
 

3.6.4. Network Interface 

SpaceWire has been selected as communication network technology, which is 
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widely in use within the aerospace sector, capable to establish a serial, 
bidirectional, full-duplex point to point connection with a maximum transmission 
speed of 400 Mbit/s. To establish a connection between two links to transfer 
data, the transmitter also has to receive control characters, which indicate that 
the buffer on the receiver side is sufficiently freed. This buffer is needed to store 
the incoming message. In case there is not enough buffer freed, the control 
characters indicate this and an overflow is prevented. 
 
A crossbar implementation allows a fully meshed network, with each router of 
each node interconnected with each other. In OBC-NG, the router resides in an 
dedicated FPGA. The router contains an arbiter, which is in charge of the further 
distribution of the packets, based on the port they arrive. To reduce the latency 
of a message transmission, wormhole routing is used. 
 
Targeting the real-time capabilities of the system, Spacewire is able to distribute 
time, which is of need to synchronize the real-time clocks of all nodes where 
necessary. This is conducted by an integrated immediate time code transmission. 
The still remaining latency is depending on the amount of interconnected links 
but predictable towards a maximum value [1]. 
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4. Example Applications 

Within this Chapter, the applications that have been ported to the OBC-NG 
system are introduced. 
 

4.1. ATON 

The ATON project studies an autonomous soft landing scenario for the moon. 
ATON (Autonomous Terrain-based Optical Navigation) focuses on the navigation 
part of such a mission, which is highly depending on optical navigation 
algorithms. The ATON software framework was already tested on common 
commercial computers but running the software on space-qualified hardware 
seems infeasible. 
 
The software framework of ATON is separated into multiple modules that run 
mostly independent from each other but they are synchronized with respect to 
the input, e. g. when a camera image is captured the respective modules are 
triggered. Because the navigation filter (also a module) collects the results of the 
modules, the outputs of each module are under specific real-time requirement. 
Figure 4-1 shows the data flow between the modules of the framework. 
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Figure 4-1: Block diagram of the data flow of the ATON software framework 

 
The blue boxes are the sensors, and the green ones are the main software 
modules. The feature tracker observes the optical flow within consecutive 
images with respect to significant features. The crater navigation identifies 
craters on the moon surface and compares them to a catalog to estimate the 
absolute position of the spacecraft with respect to the craters found in the 
image. 
 
Two camera images taken at different locations during the ascent are processed 
via the epipolar geometry module and the stereo matching module to acquire a 
3-dimensional surface representation that is used to localize the spacecraft 
within a stored map. A second imaging technology (LIDAR) is used to directly 
acquire a 3-dimensional surface via range measurement for each sensor pixel. 
This is also used to match the images against a stored map. Lastly, the terrain 
evaluation analyzes the landing zone for hazardous objects and general 
constraints for a safe landing.  
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4.2. Cloud-Detection Application 

Cloud detection is an important application on modern earth observation 
satellites. To save valuable download capacity useless image data with high 
cloud coverage should be excluded from a transmission. The detection of clouds 
in images is also often needed for further remote sensing applications. In figure 
4-2 the typical input and output of the cloud detection algorithm is shown.  
 
For the project OBC-NG the standard ACCA-cloud detection algorithm was 
implemented on top of the OBC-NG software framework, to test the system 
architecture, especially the processing power and network capability, with a real 
application. Experience should be gained in implementing an application in the 
system, particularly in the context of using the multi-node processing capability 
and the safety functionality of the OBC-NG system.  Furthermore, the user 
friendliness of the implementation process should be examined. It should be 
evaluated, if there is any useful functionality that is worth being added or if 
there are some glitches that have to be fixed. 

4.2.1. System design 

The cloud detection application is unitized in three parts to fit the OBC-NG 

Figure 4-2 Left: cloudy Landsat satellite image; Right: cloud mask; 
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multitask/node architecture: 
• Sensor task (data input) 
• ACCA task (cloud mask processing) 
• Display task (displaying, saving resulting cloud mask) 

 
Every task can be run on a different node. The OBC-NG middleware message 
protocol is used for the controlling and the communication of the tasks. More 
than one ACCA task can be used on different nodes to speed up processing 
performance. Below the schema of the demo application is shown, using three 
OBC-NG nodes for processing.  
 

Sensor task (node 1)

ACCA Task (node 3) ACCA Task (node 4) ACCA Task (node 5)

Display Task (node 6)

 

Figure 4-3: Schema of the ACCA cloud detection application on OBC-NG 

 
Description of the tasks: 
 

• Sensor Task: The sensor task simulates a sensor by reading image data 
from a database and sending the data to the ACCA tasks as a file. One 
message file consists of four 2048*2048 pixel sized 8-Bit grey value 
images (16 MByte), and the meta data, which is around 1 KB. 

• ACCA Task: An ACCA task receives the big data message from the 
sensor task, extracts the data, processes the data, and sends the result 
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encoded in a message to the display task. For the processing step, an 
adapted version of the ACCA cloud detection algorithm [18] has been 
chosen using four channels (green, red, nir, swir) for creating the cloud 
mask. 
 

• Display Task: When the display task receives an input message from 
one of the ACCA tasks, the result image is extracted and displayed or 
saved on the node, where the display task is running. 
 

The core application behind the sensor, ACCA and Display tasks has been 
implemented as C++ classes on the Linux version of the OBC-NG runtime 
system. These classes are independent of the OBC-NG software framework. The 
OpenCV [12] and boost libraries [13] have been utilized. Nevertheless new 
(interface) class member functions had to be created to cope with the OBC-NG 
message protocol. After the classes have been extended to fit to the OBC-NG 
protocol, the implementation in the framework is relative straightforward using 
the OBC-NG middleware message API. 
 

4.2.2. Conclusion 

An implementation of the ACCA cloud detection algorithm could be integrated 
in the OBC-NG runtime system and tested on the OBC-NG prototype system 
successfully. The application core code is strictly written in the C++11 standard, 
with heavy usage of the C++11 standard data container classes and member 
functions. It was successfully built and executed on the OBC-NG prototype 
system, after updating the building environment (compiler, libraries). The 
OpenCV and Boost libraries could also be successfully built for the OBC-NG 
prototype system from source. Therefore, using a modern software development 
environment is possible to create applications for the OBC-NG Linux runtime 
system. 
 



 

OBC-NG 

 

Titel: OBC-NG 
Version: 1.0 

Seite: 49  
Datum: 20.01.16 

 

5. Implementation Status 

This Chapter targets the current implementation status. All software and 
hardware implementations are listed below to provide an overview of all tasks 
that have been conducted.  
 

5.1. Software Implementations 

The software implementation is subdivided in layers, as they are described in the 
software architecture. The structure of the subsequent subsections follows that 
architecture in a top-down approach, from application, over middleware, down 
to operating system layer. 
 

5.1.1. Application Development Toolchain 

To facilitate the development of applications, a toolchain framework has been 
integrated: one for PetaLinux and another for RODOS.  
 

5.1.2. Applications 

On the application level, three major applications have been ported to OBC-NG. 
Two of them have been explained in this document. All three are: the ATON 
project, the Cloud detection application and the Far Range Navigation project. 
 
The ATON project is able to run on the nodes of the OBC-NG, with PetaLinux 
as OS. The performance evaluation of the integration can be found in Chapter 
4.1. 
 
Additionally, the Cloud detection Application is ported to the OBC-NG, also 
running on PetaLinux nodes. An explanation of this application can be found in 
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Chapter 4.2. 
 
In addition, several applications have been developed to demonstrate different 
aspects of the system software stack of OBC-NG. For instance, a setup to 
demonstrate the failure and reconfiguration for an ATON-like scenario is shown 
in Figure 5-1. The demo shows that the failure of an interface node with a 
navigation camera attached, leads to an automatic reconfiguration to the 
secondary camera. Additional failures of nodes show the capability to survive the 
loss of the master node. Nodes can be disabled until the last remaining node 
enters the safe mode.  
 

 

Figure 5-1 OBC-NG navigation camera setup 

 

5.1.3. Middleware 

All three subsequent following layers of the middleware have been integrated in 
both operating systems (RODOS and PetaLinux). As basis of the layering model, 
the high-level network layer (OBC-NG Network Protocol) has been installed. On 
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top of that, the Tasking Framework is used, concluded with the Management 
layer. A special emphasis has to be set on the Reconfiguration module within the 
Management layer. To access the Tasking Framework and the Management 
layer an API is provided, necessary for the application developers to access the 
system. 
 

5.1.4. Operating Systems 

As non-real-time operating system, PetaLinux has been integrated. It is 
integrated as multi-core operating system. RODOS comes with multi-core 
support by a shared memory system to enable communication between cores 
within a single node. The RODOS is the real-time operating system for OBC-NG. 
 

5.2. Hardware Implementations 

5.2.1. Zynq breadboard 

For the evaluation of the OBC-NG system, we developed and made a 
breadboard. The OBC-NG breadboard consists of a baseboard, which holds 
three mini-modules with a Zynq-System. We bought the mini-modules of the 
type TE0720 from the company Trenz. Every Zynq module has the following 
features [14]: 

• Xilinx XC7Z020 system-on-chip with programmable logic 
• 1 Gbyte DDR3-SDRAM 
• Gigabit Ethernet transceiver 
• 32 Mbyte QSPI flash memory 
• 4 Gbyte e-NAND flash memory 
• power converter for core voltages 
• system controller CPLD 

 
The Xilinx Zynq is divided into two parts: 



 

OBC-NG 

 

Titel: OBC-NG 
Version: 1.0 

Seite: 52  
Datum: 20.01.16 

 

• The processing system (PS), consisting of the two ARM CPU cores and 
several peripherals like memory controller, Ethernet interface, GPIO, etc. 

• The programmable logic (PL), which is connected to the PS by a central 
interconnect module. 

  
The base board provides the following features: 

• Ethernet connector for every node, 
• COM to USB converter of the type Cypress CY7C64225 and a mini-USB 

socket for every node, 
• LVDS driver and two mini-Sub-D sockets per node for SpaceWire, 
• two interlink connections per node providing 11 differential signal lines 

to the two other nodes, 
• 4 Mbyte synchronous SRAM for the PL, 
• 10 LEDs - 2 on PS and 8 on PL, 
• 8 pin IO strip connected to the PL, 
• 1 button connected to the PS, 
• CAN transceiver for every node connected to the CAN-bus on the board, 
• Current and voltage monitor IC (Texas Instruments INA230) connected to 

a common I²C-bus. 
 



 

OBC-NG 

 

Titel: OBC-NG 
Version: 1.0 

Seite: 53  
Datum: 20.01.16 

 

 

Figure 5-2 Top view of the OBC-NG bread-board 

 

5.2.2. SpaceWire router 

Because SpaceWire was chosen as the network technology a router was 
implemented by use of VHDL. Main attributes of the router are: 

• Two types of interfaces are selectable. At one hand SpaceWire with its 
Data / Strobe signals. On the other hand a FIFO interface. The FIFO 
interface is useful in case the router shall be connected directly inside the 
SoC as it is planned for the AXI Interface. 

• Non-blocking crossbar to enable arbitrary connections between inputs 
and outputs. 

• Priority of addresses. The priority is applied during arbitration. This means 
in case multiple inputs are trying to get access to the same output, the 
input with a prioritized address will get precedence. 

• Maximum packet size. The maximum packet size can be determined to 
prevent faulty nodes from blocking data paths for an indefinite time. In 



 

OBC-NG 

 

Titel: OBC-NG 
Version: 1.0 

Seite: 54  
Datum: 20.01.16 

 

case the allowed byte amount is exceeded, the packet is closed by EEP 
automatically and the rest of the packet inside the input buffer is 
removed. 

• Transfer timeout. The timeout is another mechanism to prevent data 
paths are blocked for an indefinite time. This blocking would happen in 
case a packet transfer was started but stopped before EOP. In case the 
packet was not transferred in a predefined amount of time, the error 
handling will be the same as for the maximum packet size violation (EOP 
plus packet removal). 

• Timecode distribution. Timecodes initiated at the inputs are immediately 
transferred to all outputs. But with the constraint that the actual 
timecode value is incremented by 1 compared to the previous timecode 
transfer. Without this constraint it would be possible to create loops 
inside the network. 

• Configuration by RMAP protocol (ECSS-E-ST-50-52C). Configuration is 
accessible by every input port. 
 

 

Figure 5-3 Block diagram of SpaceWire router 
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6. Remaining Issues 

Systems, including the OBC-NG project, are always a careful combination of 
holistic and specific approaches. Some parts of the system might be very 
generically designed to be able to target general purposes and other parts are 
specifically designed to fulfill a special scenario in an optimal fashion. Such a 
combination can lead to unexpected bottlenecks and shortcomings, which 
become visible when the project is actually carried out. A reason for this is that 
the gained knowledge, by running the project, might has changed the pre-
project perception of requirements and conditions. 
 
Within the following subsections these discovered bottlenecks and shortcomings 
are denoted, offering solutions to overcome the same. In focus is the design, the 
implementation, the application as well as the evaluation.  
 

6.1. Hardware Design Issues 

Regarding the SpaceWire router, the integration into the node is still missing. 
The remaining tasks are: 

• The router must be connected to the internal AXI bus of the Zynq. An IP 
core with the already existing AXI interface must be generated and 
verified.  

• A Linux driver must be developed. Maybe the router interface to the 
software hast to be changed, if problems with driver data handling 
occur. 

• The performance of router and driver must be evaluated. 
 

6.2. Software Design Issues 

The OBC-NG Network Protocol waits for a specific time to be sure, that the 
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system has finished the reconfiguration. The section in the document states: 
  
“After a certain timeout, which has to be configured mission-specifically, the 
node will delete all of its pending messages, switch into the new state and go 
back into the normal running state. It is recommended to wait again a short 
time before sending new messages so that the probability that all nodes in the 
network are now synchronized to the new state is sufficient.” 
 
The shorter the waiting time, the higher is the threat of not receiving all 
“finished reconfiguration” messages of all nodes. Moreover, the longer the 
waiting time, the higher the threat that the 5 seconds reconfiguration time goal 
is out of bounds. Besides, only the Master is informed about which nodes have 
finished the reconfiguration successfully. 
 
New mechanism should be developed to reduce the preparation time for 
reconfiguration and the waiting time after reconfiguration for all nodes. The 
monitoring service should be refined. The characteristics monitored should be 
chosen. The suitable frequencies of monitoring including observation should be 
figured out. 
 

At the beginning of OBC-NG we expected, that we have to change the OS 
significantly, especially in the field of scheduling. Having a deep understanding 
of the OS and a direct access to the source code was very important to us. That 
is why we choose RODOS as real-time OS. It turned out, that we could handle 
everything in the middleware. Not touching the OS, make us more independent 
regarding OS and hardware-platform. The shift of other DLR projects away from 
RODOS towards RTEMS (Real-Time Operating System for Multiprocessor 
Systems) leads to the conclusion, that follow-up projects should also consider 
the switch to RTEMS. 
 
We addressed SEU issues sparsely in the OBC-NG project yet. Because we cannot 
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rely on perfectly working hardware, the software must compensate most of the 
SEU errors. In the future, we must define and implement monitoring and 
mitigation techniques on several levels of the software stack. The FPGA must be 
protected against SEU errors as well. 
 

6.3. Implementation Issues 
For application programmers, the system configuration settings are not easy to 
understand and manage. Therefore, a Graphical User Interface (GUI) to give an 
overview of the components of the system would be supportive. This model of 
the system could be used to facilitate the configuration of the entire system, for 
example by enabling the mapping of application tasks to specific nodes.  
 
Also of interest would be a concrete integration of a network simulation tool 
within the development process, to evaluate the network protocol 
implementation. Network simulation tools allow a sealed investigation of the 
network protocol implementation, to verify its correctness at an early stage of 
the development. OMNett++ (https://omnetpp.org/) had been used for that 
purpose, but it was just loosely connected to the development process. A tight 
bootstrapping of such a tool would be beneficial. Additionally, this setup could 
be used to define test-cases for the later evaluation of the entire communication 
network. 
 

6.4. Application Issues 
The API of the middleware needs to be further improved to accelerate and 
facilitate the application development. In addition to that, it would be helpful to 
have faster access to a running system. This could be staged, with initial access 
to the software and subsequent access to the entire system. Jenkins  
(http://jenkins-ci.org/) can be used to allow continuous integration. At first stage, 
software tests could be carried out on a remote Jenkins server. At second stage, 
the actual hardware could be attached to the remote Jenkins server, enabling 

https://omnetpp.org/
http://jenkins-ci.org/
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hardware in the loop testing. 
 

 

Figure 6-1  OBC-NG bread board and two interface nodes. 

 

6.5. Evaluation Issues 

Reliability is an important aspect in space missions, and it is even more in focus 
when a new concept with a different approach to reach the required reliability is 
used for the first time. The OBC-NG project, with its dynamic reconfiguration 
concept, is in such a position. Therefore, a validation of the reliability of the 
entire system should be considered. An appropriate mean for this would be the 
creation of a Timed Failure Propagation Graph (TFPG) on system level. For the 
OBC-NG project, a TFPG could be generated of a loosely timed system model 
with a linked reconfiguration model and potential failure model (Failure Mode 
and Effects Analysis Table). A model checker can then process this TFPG. In case 
the probabilities are also desired, the expected likelihood of a failure has to be 
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integrated in the linked failure model. 
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7. Conclusions 

This document gave an overview of the goals and the achievements of the DLR 
project OBC-NG. It was established to develop an on-board computer 
architecture for future space missions with high demands for computational 
power. After an initial study phase of one year, a three-year project was carried 
out to reach the Technology Readiness Level 4 (component and/or breadboard 
functional verification in laboratory environment). The project goals will be 
reached at the end of this, as this document has shown. A breadboard 
computer, based on COTS components, was designed and manufactured and a 
software stack developed to implement the envisioned system architecture. In 
parallel, several studies to investigate the state-of-the-art in relevant areas and 
representative applications have been developed and ported to the target 
system. These applications show, which kind of missions could benefit from 
OBC-NG-based computing architecture.  
 
Besides the breadboard demonstrator, the main contribution of this project is 
the scalable architecture of a reconfigurable, distributed on-board computer 
system. This architecture is independent of the underlying hardware and 
operating system. The developed middleware can be easily ported to other 
processor architectures and operating systems. It is possible to combine different 
types of processors, FPGA and other coprocessors to build a flexible, 
heterogeneous on-board computer, which can be tailored for a specific mission. 
Even if the selected COTS Zynq platform performs poorly under space 
conditions, the established software and FPGA implementations can be ported 
to different hardware with reasonable effort. 
 
We think that the results of this project are promising, considering the available 
resources. They build a good foundation for further developments. The 
hardware is not yet flight-ready; however, the current design is a good start to 
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build a flight model in the future. The software stack is quite complex, it spans 
from the low level operating system over a new middleware to the high level 
application programming interface. All this areas need further improvements 
and some refactoring, especially in the area of error detection and recovery 
below the node level, and a more user-friendly API. However, no fundamental 
reimplementation seems to be necessary. 
 
Besides the mentioned improvements to the system, we want to combine the 
OBC-NG high performance COTS nodes with “classical” radiation-tolerant 
LEON3 processor nodes in a follow-up project. These nodes will be integrated by 
the OBC-NG middleware to the OBC-NG network and could act as master nodes 
to improve the reliability of the overall system. It would then be possible to build 
a cluster of radiation-tolerant processors for deep space missions, where the 
COTS components may not suitable to withstand the increased radiation. 
We are confident that the OBC-NG architecture provides the means to support a 
large variety of future space missions with the necessary computational power. 
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