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Abstract The identification of various substances by multivariate data analysis of terahertz
transmittance spectra is demonstrated. Transmittance spectra were obtained by the use of a
Fourier transform infrared spectrometer. By means of principal component analysis and partial
least squares regression, the spectral data were analyzed in order to identify substances and
mixtures of several substances. With only three principal components, detection and identifi-
cation of substances are possible with high accuracy. Using these methods, concentration ratios
of substances in mixtures of two substances can be determined with an accuracy of 10 %. It is
shown that the method is robust against disturbances in the spectra such as standing waves.
This is particularly important for practical applications.

Keywords Substance identification . Spectroscopy.Multivariate data analysis . Principal
component analysis . Partial least squares regression . Terahertz

1 Introduction

Terahertz (THZ) radiation has much promise for security applications in terms of sensing and
imaging. For example, the detection of hidden threats or harmful substances can prevent
terrorist attacks at places where a large number of people congregate, such as airports. Due to
many chemical compounds that have characteristic absorptions in the THz frequency range
and the fact that common packaging materials are transparent throughout a large portion of the
THz frequency range, various studies were made regarding the applicability of THz radiation
to security. In addition, THz radiation is supposed to be not harmful for human beings due to
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its low photon energy. This means photons cannot break chemical bonds or ionize atoms or
molecules [1, 2]. The potential offered by THz radiation is examined for example by imaging
through packaging materials [3, 4], standoff detection of explosives [4–11], chemical sensing
of drugs [4, 9, 12], substance identification [13, 14], or textile identification [15]. Moreover, it
leads to medical applications like the detection of cancerous tissue caused by a locally higher
water content [16].

In recent years, multivariate analysis (MVA) techniques such as principal components analysis
(PCA) or partial least squares regression (PLS) have been applied to THz spectra of a variety of
substances. These spectra were obtained with time-domain spectrometers (TDS). Burnett et al.
employed PCA in order to investigate the feasibility of automatic spectral recognition of illicit
materials by THz TDS [14]. Bardon et al. applied PCA to differentiate between different
historically informed black inks [17]. Ermolina et al. used PLS for estimating the degree of
crystallinity in sucrose [18], and El Haddad et al. applied PCA to the quantitative analysis of
ternary mixtures of citric acid, fructose, and lactose [19]. Neumaier et al. appliedMVA techniques
for the first time to THz spectra of non-solid samples, namely, to pure gasses and gas mixtures.
Instead of TDS, they used a THz spectrometer with coherent transmitter and receiver [20].

In the study presented in this paper, we focus on the analysis of THz transmittance spectra
using PCA and PLS. In total, nine substances and three mixtures were measured with a Fourier
transform infrared (FTIR) spectrometer. In particular, we investigate the robustness of the
methods against disturbances such as standing waves in the spectrum.

2 Experimental

2.1 Sample Preparation and Experimental Setup

In this study, nine substances (KCl, NaCl, NH4CO3, K2CO3, sugar, fertilizer, acetylsalicylic
acid, chocolate, fruit chew) and three mixtures of acetylsalicylic acid and sugar with ratios of
1:1, 1:3, and 3:1 were investigated. The samples were chosen in order to represent explosives
as well as food products, which are commonly carried along by persons. All substances were
ground to fine powders except chocolate and fruit chew, which were prepared as thin layers.
For each spectrum, a new sample was prepared. The mixtures were prepared in a large amount
from which the samples for the measurements were prepared.

The transmittance spectra were measured using a BrukerVertex 80v FTIR spectrometer.
During the experiment, the FTIR spectrometer was evacuated to a residual pressure below
2 hPa. Awater-cooled mercury arc lamp was used as radiation source along with a broadband
Mylar multilayer beam splitter of 6 μm thickness. The interferograms were recorded with a
sensitive liquid helium-cooled silicon bolometer from Infrared Laboratories, Inc. The frequen-
cy resolution in the experiments was 1 cm−1 or approximately 30 GHz. As acquisition mode,
we used double-sided, forward-backward scanning that creates a full interferogram in the
forward scanning direction and a second mirrored interferogram for the backward direction.
The scanning mirror frequency was set to 40 kHz. One hundred twenty-eight scans were
averaged to one single interferogram resulting in a measurement time of around 100 s. Spectra
were obtained in the range from 0.45 to 3 THz (15 to 100 cm−1) in order to cover the most
common frequency range for spectral fingerprints [8, 9, 12, 15] and to be able to penetrate
clothing and packaging materials. A 100 cm−1 optical lowpass filter inside the detector cryostat
was used to block higher frequencies. The spectra were obtained by Fourier transformation
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with a Blackman-Harris 3-term apodization function and by using the power spectrum. During
the measurement, the samples were fixed in a dedicated sample holder between two high-
density polyethylene (HDPE) plates with a thickness of 1 mm. The amount of material used
for the measurement of one substance was approximately 0.1 g. Thus, a sample thickness of
approximately 0.05 mm across the area of the window of the sample holder (30×40 mm2) was
given. The holder was positioned in the center of the sample compartment of the spectrometer
with a tilt angle of 30° to the incident radiation. The sample holder was tilted with respect to
the optical axis in order to reduce standing waves.

2.2 Spectra and Fundamental Characteristics

The measurements resulted in transmittance spectra like the example shown in Fig. 1. As
reference, a spectrum of the empty sample holder was collected separately. The transmittance
spectra were obtained from the sample spectra divided by the reference spectra. Figure 1 shows
the transmittance of sugar in the range from 15 to 100 cm−1. Despite the tilt of the sample holder,
the transmittance spectrum suffers from strong interference fringes, which partially mask the
absorption features of the sugar. However, they are much less pronounced as if the sample holder
was perpendicular to the incident radiation. The fringes are caused by the thin HDPE windows,
where the radiation exhibits multiple internal reflections. It should be noted that calculating a
spectral ratio against an empty absorption cell did not remove the fringes satisfactorily. In Fig. 2,
the corresponding interferogram is shown. It has two pronounced sidebursts, left and right to the
centerburst. To remove the fringes in the spectrum, the corresponding sidebursts were substituted
by their mean values, which is usually close to zero [21]. The cut-out window was selected for
only one side of the interferogram while the other side was cut symmetrically. By monitoring the
resultant spectra as a function of size and position, the cut-out window was chosen as the best
trade-off between maximum fringe elimination and minimum data removal. The whole cut-out
procedure was then repeated automatically for all spectra via a self-programmed algorithm in
LabVIEW. The sideburst removal goes along with a slight reduction of the spectral resolution,
because some information from the centerburst is lost as well. However, the fringes can be
almost completely removed by this technique (Fig. 1) and only some fringes remain below

Fig. 1 Comparison of the
transmission spectra derived from
the original and the corrected data
using the sugar sample
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30 cm−1. In the further analysis, all data were treated by this method, i.e., exactly the same part of
the interferogram was replaced by its average. This ensures that the procedure has no influence
on the multivariate data analysis. No further data manipulation was done. In the following,
datasets with removed fringes are referred to as Bcorrected data^. It is worth noting that although
this study was done under laboratory conditions, this technique should also lead to good results
in field studies with standing waves of unknown origin. Other methods of fringe removal are the
grafting procedure, modeling the interference fringe and subtract from the spectral data, or by
using a polarized beam source and mount the sample at the Brewster angle [22]. Modeling the
interference by a sinusoidal function was tested, but could not provide as good results as the
sideburst-removal did.

In Fig. 3, a comparison between the transmittance spectra of sugar, acetylsalicylic acid, and
its three mixtures (1:3, 1:1, 3:1) is shown. The spectrum of sugar has clearly visible features at
48, 60, 85, and 95 cm−1 whereas the spectrum of acetylsalicylic acid has only two represen-
tative features at 56 and 68 cm−1. Within the three different mixtures, the features are
combined according to the amount of the pure sugar and acetylsalicylic acid. This is due to
the absence of chemical reactions between the two substances. For substances that would
cause some kind of chemical reaction, the obtained spectral data would not contain informa-
tion about the reactants but about the reaction product.

In order to provide information about the reproducibility of the spectra of a specific
substance, the averaged spectrum is shown in black with a two-sided 95 % Student’s t
confidence band (gray) for the 10measured samples. Transmittance spectra of the other samples
are shown in Fig. 4. With the exception of chocolate and NH4CO3, there are no distinct
absorption features in the spectra of these samples. One feature, which all samples have in
common, is that the transmittance decreases with increasing frequency. This is caused by
increasing absorption and increasing scattering losses of the transmitted THz wave [8, 23, 24].

3 Multivariate Analysis

The data analysis was done by using the multivariate analysis (MVA) tool The Unscrambler X
(Camo Software AS) [25, 26]. Prior to any analysis, all measured spectral data were merged
into a single data file, which contains all information in a form of a matrix. A spectrum resulted

Fig. 2 The interferogram of sugar
is shown. By removing the
sidebursts, the interference fringes
in the transmittance spectra are
eliminated
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in 155 data points in the range of 15 to 100 cm−1. Each of the 12 samples was measured 10
times. Hence, the resulting data matrix has 120 rows and 155 columns. The transmission
spectra were used in raw format without any pre-processing except for eliminating the
sidebursts in the interferograms as described above. This ensures minimal influence on the
forthcoming MVA. By using one or more pre-processing steps, the inherent apparatus function
would be distorted and therefore a misinterpretation of the data is possible. The data were
analyzed by PCA [27] and PLS. PCA is an MVA method, which contains only the spectral
information of the measurements. It represents the solution of an eigenvalue problem. The
approach is a projection of the input data to a new orthogonal basis by determining new basis
vectors (principal components, PCs) in correlation to the maximum variance in the data.
Mathematically, it is an algorithm for orthogonal linear transformation of data according to
their variance (see for example reference [25]). The transformation is defined as X=TPT+R,
with X the data matrix, T the scores matrix, PT the transposed loadings matrix, and R the
residual matrix. The transformation itself does not produce a data reduction but a subspace of
the new coordinate system contains the relevant information, which is necessary to separate

Fig. 3 Averaged transmittance
spectra (corrected, black line) of
pure sugar (top), three mixtures of
acetylsalicylic acid and sugar
(1:3, 1:1, 3:1) and pure
acetylsalicylic acid (bottom) within
the two-sided 95 % Student’s t
confidence band. The appearance
of absorption features from both
substances in the mixtures is
clearly visible
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between the samples. Higher-order PCs contain the remaining information. The second
method is the PLS, which is a supervised regression technique that links spectral data X (a
matrix containing the spectra) with associated dependent variables Y (a matrix containing for
example class membership or the percentage composition of samples) for classification. PLS
utilizes the information in the Y data to find latent variables (LVs) in the X data that will best
predict the Y data. Therefore, the data matrix Y contains the sample class membership in binary
form for non-members (0) and members (1) or any other representative measurable charac-
teristics like the concentration of substances in a mixture. In comparison to the PCA, the
derived LVs are similar to the PCs but describe only spectral characteristics and variations,
which are necessary for identification of the samples. Spectral variations that have no effect on
the Y data are neglected. After establishing a PLS model, a sample prediction based on this
model was done for a set of unknown spectra.

Fig. 4 Transmittance spectra
(corrected) of the samples that
were used in this study besides the
sugar and acetylsalicylic acid
mixtures shown in Fig. 3
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3.1 Principal Component Analysis

The PCAwas done with both the raw data and the corrected dataset of 10 measurements for 12
substances and mixtures. We used a maximum of seven PCs for the calculation but with
already three PCs nearly 98 % of the data variance can be explained by the PCA model within
the corrected data and nearly 97 % within the original data. Figures 5 and 6 show the two-
dimensional score plots of the PCA for the first three PCs of the raw data and the corrected

Fig. 5 Results of the PCA
analysis of the raw dataset. Shown
are the scores of the first and
second PC (top), first and third PC
(middle) and second and third PC
(bottom). The variance in the data
explained by the appropriate PC is
given in brackets
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data. Each point represents a single spectrum. As can be seen, spectra of the same substance
cluster in the score plots of the first three PCs. It is worth noting that despite the strong
standing waves in the spectra obtained from the uncorrected interferograms, the differences
between the two PCA models are very small, and the clustering is almost identical. Also, the
variance is almost the same independently whether the original data or the corrected data were
used for the PCA. This demonstrates that the standing waves in the spectrum do not have a
significant influence on the MVA and the identification of the substance. To better explain the

Fig. 6 Results of the PCA
analysis of the corrected dataset
without any other data
manipulation. Shown are the
scores of the first and second PC
(top), first and third PC (middle)
and second and third PC (bottom).
The variance in the data explained
by the appropriate PC is given in
brackets
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model results and to identify which spectral characteristics mostly influence the clustering, we
refer to the corrected data. The loadings for the corrected data are shown in Fig. 7. In PC1, the
sample separation is achieved mainly due to the strong absorption features in the spectrum of
sugar. These explain 85 % of the variance. In the score plots PC1 vs. PC2 and PC1 vs. PC3,
the spectra that contain these features appear on the right side due to their positive correlation.
Spectra that do not correlate or are anticorrelated appear in the middle or on the left,
respectively. The separation in PC2 is primarily based on the frequency-dependent transmit-
tance. PC2 basically resembles the decreasing transmittance of the samples with increasing
wavenumber. The absorption features of sugar and acetylsalicylic acid are the main features
that form the separation in PC3. Besides that, the sugar features are inverted which leads to an
anticorrelation. Therefore, samples that contain sugar yield negative score values. The samples
containing acetylsalicylic acid result in positive score values. Higher dimensions of the PCs
lead to a slightly better explanation of the remaining substances but with minor influence in the
total spectral variation. The use of seven PCs in the PCA model results in an overall
explanation of 99.8 %, which is only a marginal improvement compared to the 97.9 %
explanation with three PCs. Despite the small improvement of the model explanation that
occurs by increasing the dimension of the PCA, the separation of individual substances may
occur in the higher PCs.

The explanation based on scores alone does not provide any information about the
localization and separation of clusters containing the same samples with respect to other
clusters or samples. Therefore, a cluster analysis of the PCA results is necessary. To
calculate a scalar measure of the statistical cluster spreading, we assume that the scattering
of the appropriate measurement parameters like temperature, pressure, sample thickness, is
described by a normal distribution. Therefore, the score clusters are expected to be
described by a normal distribution as well. We determined the distances of each score
value SA;k;m of every substance A to the cluster centroid SA;k, with m the number of
measured spectra and k the PC dimension. The standard deviation σA;k of these distances
is then calculated according to

σA;k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m

X
m

SA;k;m−SA;k
� �2

:

s
ð1Þ

Fig. 7 The loadings of the first
three PCs indicate those spectral
features which are responsible for
the separation in the appropriate
PC
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We then calculated the amount of overlap IAB;k (the so-called Bhattacharyya coefficients
[28]) of the normal distributions NA;k and NB;k for each substance A to all other substances B
and each PC k:

IAB;k ¼ IBA;k ¼
Zþ∞

−∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NA;k xð ÞNB;k xð Þ

q
d x: ð2Þ

This is a measure of the cluster overlap and therefore defines the probability that the
measured spectrum of a substance, which belongs to cluster A, cannot be separated from the
cluster B in the corresponding PC dimension. The probability of a cluster separation S is
defined by:

S ¼ 1−∏
k
IA;B;k : ð3Þ

The matrix S is symmetric due to the reversibility of SAB from cluster A to B. Also, diagonal
elements are zero, because same clusters are not separable. The separation matrix S is shown in
Table 1.

With three PCs, the separability is very good and reaches 100 % for most of the
substance combinations (Table 1). Due to the fact that independent spectral features are
described by different PCs, the separability of two clusters (or substances) does not
increase continuously by increasing the dimensionality. This means that substances with
similar spectral features separate mostly in the PC that describes their spectral differences.
For example, KCl and K2CO3 are mainly separated by PC5 (total separation 100 %),
whereas three PCs can only achieve a cluster separation of 64 %, and 4 PCs reach a total
separation of 75 %.

Table 1 Cluster separation probability (in %) calculated for three PCS used in the PCA model. The substances
are numbered from 1 to 12 with the assignment below

1 2 3 4 5 6 7 8 9 10 11 12

1 0 100 100 100 100 64 100 100 100 100 100 100

2 100 0 100 100 100 100 100 95 100 100 100 100

3 100 100 0 100 92 100 100 100 100 80 100 100

4 100 100 100 0 100 100 100 100 100 100 100 100

5 100 100 92 100 0 100 100 100 100 94 100 100

6 64 100 100 100 100 0 100 100 100 100 100 100

7 100 100 100 100 100 100 0 100 100 100 100 100

8 100 95 100 100 100 100 100 0 100 100 100 100

9 100 100 100 100 100 100 100 100 0 100 63 100

10 100 100 80 100 94 100 100 100 100 0 100 100

11 100 100 100 100 100 100 100 100 63 100 0 100

12 100 100 100 100 100 100 100 100 100 100 100 0

1 KCl, 2 fertilizer, 3 NaCl, 4 acetylsalicylic acid, 5 NH4CO3, 6 K2CO3, 7 chocolate, 8 fruit chew, 9 sugar, 10
acetylsalicylic acid–sugar 1:1, 11 acetylsalicylic acid–sugar 1:3, 12 acetylsalicylic acid–sugar 3:1

184 J Infrared Milli Terahz Waves (2016) 37:175–188



3.2 Partial Least Squares Regression

A PLS model was built by using eight spectra of the dataset for each substance as reference
data. The remaining two spectra are used for the prediction process as Bunknown^ substances.
The matrix Y was defined in non-discrete form, which means that in addition to the reference
spectra also ratios of pure substances that build the components of mixtures were specified.
Therefore, the value 0 is assigned when a substance was not in the mixture, and the value 1 is
assigned to a pure substance. Sugar for example is part of chocolate (0.48 for 48 %) and fruit
chew (0.60 for 60 %). The sugar-acetylsalicylic acid mixtures are 0.25 (sugar) and 0.75
(acetylsalicylic acid) for the 1:3 mixture, 0.5 and 0.5 for the 1:1, 0.75 and 0.25 for 3:1. In
analogy to the PCA, the PLS model was built with seven LVs. The scores and loadings
obtained from the PLS are similar to those of the PCA except that eight instead of 10 spectra
were used to generate the PLS model. The corresponding cluster analysis based only on the
first three LVs or PCs shows the similarities between the PLS (Table 2) and the PCA (Table 1).
It is worth noting that despite the good cluster separation when only the first three LVs are
used, the PLS explains only 64.7 % of the data variance. This means that information in higher
dimensions needs to be considered in order to generate a good PLS model. On the other hand,
too many dimensions would lead to a so-called overfitting. That means by starting with an
optimal model, additional dimensions would only describe remaining noise in the data and
therefore the prediction error increases. To obtain an optimal model, the prediction error
should be minimal (namely, root mean square error for calibration (RMSEC), [26]). The
RMSEC is calculated from the reference Y values and the corresponding predicted values.
In our case, a mean RMSEC value of 17 % is given within all substances whereas the
maximum RMSEC is given for NaCl with 24 %. To reduce the prediction error, another
PLS model with 12 LVs was built. This equals the number of samples in the study and
resulted in an explanation of 86.6 % and a mean RMSEC of 10 % (maximum RMSEC of
14 % in the case of K2CO3).

Table 2 PLS cluster separation probability for three LVS. The substances are numbered from 1 to 12 with the
assignment below

1 2 3 4 5 6 7 8 9 10 11 12

1 0 100 100 100 100 56 100 100 100 100 100 100

2 100 0 100 100 100 100 100 100 100 100 100 100

3 100 100 0 100 100 100 100 100 100 100 100 100

4 100 100 100 0 100 100 100 100 100 100 100 100

5 100 100 100 100 0 100 100 100 100 100 100 100

6 56 100 100 100 100 0 100 100 100 100 100 100

7 100 100 100 100 100 100 0 100 100 100 100 100

8 100 100 100 100 100 100 100 0 100 100 100 100

9 100 100 100 100 100 100 100 100 0 100 74 100

10 100 100 100 100 100 100 100 100 100 0 100 100

11 100 100 100 100 100 100 100 100 74 100 0 100

12 100 100 100 100 100 100 100 100 100 100 100 0

1 KCl, 2 fertilizer, 3 NaCl, 4 acetylsalicylic acid, 5 NH4CO3, 6 K2CO3, 7 chocolate, 8 fruit chew, 9 sugar, 10
acetylsalicylic acid–sugar 1:1, 11 acetylsalicylic acid–sugar 1:3, 12 acetylsalicylic acid–sugar 3:1
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Predictions for the tested samples are shown in Fig. 8. The first result of this analysis is that
the sample identification works well for the pure substances, even though not all pure
substances are predicted with the ideal value of 1. Samples that do not contain the substance
are predicted with values lower than 0.5. The second result is that the PLS model can identify
concentration ratios of substances in powder or grainy mixtures. For example, sugar is
identified in the three sugar-acetylsalicylic acid mixtures with a mean value of about 26 %±
6 %, 47 %±5 %, and 79 %±6 % (nominal concentrations: 25 %, 50 %, and 75 % sugar, a
concentration error of 5 % is expected due to inhomogeneities in the mixture). Likewise, the
prediction for acetylsalicylic acid in the mixtures is about 68 %±9 %, 55 %±7 %, and 26 %±
8 % (nominal concentrations: 75 %, 50 %, and 25 %, 5 % error). In chocolate, sugar is
identified with a predicted concentration of about 63 %±12 % (48 % according to the
manufacturer specification), in chew of about 57 %±5 % (60 % manufacturer specification).

Fig. 8 PLS prediction based on
12 LVs for two spectra of each.
Grey bars show the nominal
fraction of a substance in the
samples. Scatters give the
predicted values with
corresponding prediction errors.
An ideal prediction has a
probability of 1 for a pure
substance whereas predictions of
samples not containing the
substance have a probability of 0.
In case of a mixture, the prediction
yields the concentration of a
particular substance in the mixture.
For example, the fraction of sugar
in fruit chew is 0.6. In our model,
the average deviation of the
predicted substance concentrations
compared to the real value is 9.7 %

186 J Infrared Milli Terahz Waves (2016) 37:175–188



4 Summary and Conclusion

We investigated a set of nine substances and three mixtures of two pure substances by utilizing
FTIR spectroscopy. Two MVA techniques, PCA and PLS, were used to analyze the spectral
data in the range from 0.45 to 3 THz. Despite the weak spectral THz features and strong
standing waves in the spectra, the substances can be distinguished from each other by applying
PCA. A cluster separation based on the overlap between normal distributions (Bhattacharyya
coefficient) was applied to calculate the separation probability of substance clusters from each
other. Based only on the first three PCs, the separation is already excellent, and differentiation
of different substances and mixtures is easily possible. With PLS, a model prediction where all
substances can be assigned to the correct class was obtained. Beyond that, concentration ratios
of pure substances within mixtures can be determined with an average deviation from the real
value of 9.7 %. The results demonstrate the applicability of FTIR spectroscopy for the
identification of various substances even if they have only weak THz absorption features
and if the spectra are strongly distorted by artifacts such as standing waves.
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