
ROYAL INSTITUTE OF TECHNOLOGY
STOCKHOLM

MASTER DEGREE PROJECT

Design of an Automatic
Specification-based

Test-framework for On-board
Software of Satellites

Author Kilian Höflinger
Supervisor Company Benjamin Weps
Company German Aerospace Center
Examiner Christian Schulte
Supervisor University Gabriel S. Hjort Blindell
University KTH – Software and Computer Systems
TRITA Number TRITA-ICT-EX-2015:77

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institute of Transport Research:Publications

https://core.ac.uk/display/31022704?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Satelliter är sofistikerade och därför komplicerade konstruktioner som
kräver tvärvetenskapligt lagarbete mellan olika experter från olika akademiska
discipliner. Integrationen av specifika nyttolastkomponenter, liksom veten-
skapliga experiment, med inbyggd programvara för satelliter är mycket ut-
manande. Domänexperten, som ägare av nyttolastkomponenten, besitter detal-
jerade insikter om hans eller hennes del, men saknar tillräckliga kunskaper i
programmering för att implementera den i den inbyggda programvaran. Pro-
grammeraren är i stånd att skriva rätt kod för den inbyggda programvaran, men
är oerfaren med nyttolastkomponenten. Denna rapport beskriver utformningen
och genomförandet av ett automatisk, specifikationsbaserat testramverk för
inbyggd programvara för satelliter för att överbrygga kunskaps- och kommu-
nikationsklyftan mellan programmeraren och domänexperten. Modell- och
testdriven utveckling är i fokus för testramverket. Med hjälp av ett domänspeci-
fikt språk kan domänexperten modellera en specifikation i formell notation,
som representerar potentiella användningsscenarier av komponenten. Dessa
scenarier är automatiskt översatta till kompilerbara testfall i C++, som hjälper
programmeraren att kontrollera den funktionella korrektheten av den inbyggda
programvaran för nyttolastkomponenten när han eller hon programmerar den.

iv

Satellites are sophisticated and therefore complicated constructs that require
interdisciplinary teamwork of various experts of different academic disciplines.
The integration of specific payload components, like scientific experiments, in
the on-board software of the satellite is very challenging. The domain expert,
as the owner of the payload component, possesses detailed insights on his or
her component, but lacks sufficient programming skills to implement it in the
on-board software. The programmer is able to write proper code for the on-
board software, but is inexperienced with the payload component of the domain
expert. This report describes the design and the implementation of an automatic
specification-based test-framework for on-board software of satellites to bridge
the knowledge and communication gap between the programmer and the
domain expert. Model- and test-driven development are in the focus of the test-
framework. With the help of a domain-specific language, the domain expert is
able to model a specification in formal notation, representing potential use-case
scenarios of the component. These scenarios are automatically translated to
compilable C++ test cases, which help the programmer to verify the functional
correctness of the on-board software implementation of the payload component
while he or she is programming it.

Table of contents

List of figures ix

List of tables xi

Nomenclature xiv

1 Introduction 1
1.1 Motivation . 1
1.2 Space Environment of the Test-framework 3
1.3 Objective . 5
1.4 Strategy . 7
1.5 Report Overview . 9

2 Background 11
2.1 Packet Utilization Standard . 11

2.1.1 CDH Structure . 12
2.1.2 Packet Structure . 13
2.1.3 Behaviour Determined by PUS 13

2.2 Definition of Testing . 14
2.3 From Manual Testing to Keyword-driven Test-frameworks . . . 14
2.4 Model-based Testing . 16

2.4.1 Approaches in Model-Based Testing 16
2.4.2 Model-based Testing Taxonomy 17

2.5 Domain Specific Languages . 24
2.5.1 Domain Specific Language Definition 24
2.5.2 DSL vs. GPL . 24
2.5.3 Modelling with DSLs . 24

2.6 The Development Tools . 25
2.6.1 Eclipse Platform . 25
2.6.2 Eclipse Modelling Framework 25
2.6.3 Xtext . 27

vi Table of contents

2.6.4 Xtend . 27
2.7 Temporal Logic . 28

2.7.1 Kripke Structure . 28
2.7.2 Linear Temporal Logic 29
2.7.3 Computation Tree Logic 31

2.8 Related Work . 32

3 Project’s Ethic Responsibility 35
3.1 Space Shuttle Challenger Disaster 35
3.2 Code of Ethics for Engineers . 36
3.3 Ethical Aspects of the Project 37

4 Analysis and Requirements 41
4.1 General Requirements . 41
4.2 Protocol Requirements . 43

4.2.1 Package Structure . 43
4.2.2 Behavioural Expressiveness Requirements 44

4.3 Additional Temporal Requirements 46

5 Design 47
5.1 Generic Top-Level Design Considerations 47

5.1.1 Test Dimensions . 47
5.1.2 Test-framework Approach 49
5.1.3 Different Model-based Approaches 51

5.2 Application of the MBT Taxonomy 52
5.2.1 Model Class . 52
5.2.2 Test Generation Class 53
5.2.3 Test Execution Class . 55
5.2.4 Test Evaluation Class . 55

5.3 Top-level Design . 56
5.3.1 Data Description Language 57
5.3.2 Data Testing Language 57
5.3.3 Test Execution & Evaluation Platform 57

5.4 Data Description Language . 58
5.4.1 Application-specific DDL 58
5.4.2 PUS-conform DDL . 59

5.5 Data Testing Language . 59
5.5.1 Data-centric Sub-grammar 60
5.5.2 Relational Expressions Sub-grammar 61

Table of contents vii

5.5.3 Modified Linear Temporal Logic Sub-grammar 62
5.5.4 Coverage Report . 66

5.6 Test Execution & Evaluation Platform 66
5.6.1 Shared Components . 66
5.6.2 OBSW Components . 67
5.6.3 TEEP Components . 68

6 Implementation 71
6.1 Used Tools & Implementation Workflow 71
6.2 Data-Description Language . 71

6.2.1 DDL Grammar . 72
6.2.2 Code Generator . 74

6.3 Data-Testing Language . 75
6.3.1 Data-centric Sub-grammar 75
6.3.2 Relational Expressions Sub-grammar 78
6.3.3 Modified Linear Temporal Logic Sub-grammar 80
6.3.4 DTL Structural Coverage Report 86

6.4 Test Execution & Evaluation Platform Implementation 88
6.4.1 Shared Components . 88
6.4.2 OBSW Components . 89
6.4.3 TEEP Components . 90
6.4.4 Test Process . 92

7 Evaluation 95
7.1 Automatic Specification-based Challenges Evaluation 95
7.2 Requirements Coverage Evaluation 96

7.2.1 General Requirements Coverage 96
7.2.2 PUS and Additional Temporal Requirements Coverage . 99

7.3 Limits of the Test-framework . 103

8 Conclusion 105
8.1 Summary . 105
8.2 Outlook . 106

Bibliography 109

Appendix A Introduction 115

List of figures

1.1 The growth of the industry, displayed by the SFI between May
2013 and May 2015 . 2

1.2 Space mission phases . 4

1.3 Generic satellite hardware structure. 5

2.1 PUS architecture . 12

2.2 Telecommand package structure 13

2.3 Overview of MBT taxonomy of Zander, Schieferdecker and Moster-
man . 18

2.4 Ecore components hierarchy. 26

2.5 Mapping of Ecore to Jave elements. 26

2.6 Overview of the workflow with Xtext. 27

2.7 Kripke structure example: A man throws a ball vertically. 29

2.8 Kripke model to explain expressiveness of CTL compared to LTL. 32

4.1 Telecommand packet structure 44

4.2 Telemetry packet structure . 44

4.3 Packet structure of the TC/TM packet of the test-framework . . 44

5.1 Test dimensions . 48

5.2 Overview of the test-framework design and workflow. 56

5.3 Overview of the Data Testing Language 60

5.4 Behavioural part of the OBSW, represented as Kripke structure. 63

5.5 Overview of the Test Execution & Evaluation Platform 67

6.1 Abstract syntax tree of DDL. 72

6.2 System model example. 73

6.3 Test model example. 76

6.4 Abstract syntax tree of the Data-Centric sub-grammar. 77

6.5 Abstract syntax tree of the relational expressions. 79

6.6 Abstract syntax tree of the Modified Linear Temporal Logic. . . 80

x List of figures

6.7 Coverage report for the domain expert. 87
6.8 Reporter output of reportAll.xml. 91
6.9 Logger output of logAll.xml. 91
6.10 Flowchart of testing process. 93

7.1 Simple test model. 101

List of tables

2.1 Temporal and logical operators in LTL 30

4.1 General requirements of the test-framework 43
4.2 Expected behavioural expressiveness of the test-framework . . . 46
4.3 Additional temporal requirements of the test-framework 46

5.1 Temporal and logical operators in MLTL 64

6.1 Evaluation struct of the TestEvalMeta class. 84
6.2 Evaluation struct of the TestEvalMeta class. 86

A.1 Mission phases milestones . 115
A.2 Satellite classification according to the mass 116

Nomenclature

AOCS Attitude and Orbit Control System

ASBT Automatic Specification-Based Testing

CDH Command and Data Handling

CTL Computation Tree Logic

DDL Data Description Language

DLR German Aerospace Center

DSL Domain-Specific Language

DTL Date Testing Language

ESA European Space Agency

GPL General-Purpose Language

LTL Linear Temporal Logic

MBSD Model-Based Software Development

MBT Model-Based Testing

MLTL Modified Linear Temporal Logic

NASA National Aeronautics and Space Administration

OBSW On-board Computer Software

SBT Specification-Based Testing

SUT System Under Test

TC Telecommand

TEEP Test Execution & Evaluation Platform

xiv List of tables

TM Telemetry

TTC Test Telecommand

Chapter 1

Introduction

This chapter introduces the topic and depicts the problem this report targets. It
further outlines the main tasks, the goals as well as the purposes of this final
degree project. The chapter closes with an explanation of the used scientific writing
methods and a document overview.

1.1 Motivation

There is movement within space. Urgent space-related questions, like
the future in human space-flight, are on the agenda of many governments.
Depending on their answers, huge financial capital might be washed into the
industry. The Space Foundation Index (SFI) displays the space industry in the
U.S. public markets regarding its breadth and depth. Members of the SFI are
on one side the manufactures of hardware, software or services, used to create
space systems. And on the other, companies which exploit signals from space
systems to offer a service to the customer, like TV broadcasting, remote sensing
or mobile communication [1]. Figure 1.1 displays the development of the SFI
between May 2013 until May 2015. Within the last two years the index grew by
40%, being able to keep up with high performance indices like the NASDAQ [1].
This steep growth reveals the current trend of this economical sector. The trend
got further pushed by the market entry of famous entrepreneurs, like Elon Musk
with his SpaceX falcon [3], who loudly claim market shares in the industry.
Additionally, open innovation projects like CubeSat [2], which advertise their
goals and challenges to a broad public, help to establish awareness for the
industry. The strong market growth, the advertisements of open innovation
projects and the unbroken public interest on Mars missions and human space-
flight quicken this economic sector.

2 Introduction

Fig. 1.1 The growth of the industry, displayed by the SFI between May 2013
and May 2015. Source: [1]

In 2013, the total amount of launched satellites rose by two thirds, in com-
parison to 2012 [4]. The reason for the increase cannot only be traced back to
the aforementioned growth of the industry but also to a paradigm shift in the
design of satellites. Nowadays, more than 50% of all launched satellites weigh
less than 200 pounds. These micro-, nano- and pico-satellites often serve as a
test platform for potential future technologies and have a rather short lifespan
[4]. The strong economic growth of the industry and the paradigm change to
smaller satellites challenge the market participants. On one side, they have
to develop satellites faster and simultaneously maintain or even improve the
quality of the space systems. On the other side, the shift from prototyping to
industrial production has to be mastered wherever possible [5]. To overcome
these challenges, standards, new approaches and innovative thinking is in need.

"Software quality assurance is a planned and systematic pattern of all ac-
tions necessary to provide adequate confidence that the item or product
conforms to established technical requirements" - ESA’s software quality
assurance definition [6] -

This report presents a design and an implementation of an automatic test-
framework to ensure software quality for on-board software (OBSW) of satel-
lites and additionally accelerate the development of the same. The framework
bridges the communication gap between domain experts and programmers,
and increases the software quality by a reduction of the threat of erroneous
code. Therefore, this test-framework accepts the aforementioned challenges
and follows the ESA’s software quality assurance.

1.2 Space Environment of the Test-framework 3

1.2 Space Environment of the Test-framework

The test-framework is used to verify OBSW of satellites. To better under-
stand the application and the impact of the test-framework, it is useful to set
it into context with the general life cycle of a space mission. Additionally,
the generic hardware structure of a satellite is elaborated, as it is the target
platform of the OBSW.

Space Mission Phases

The European Cooperation of Space Standardization (ECSS [7]) defined
the space mission life cycle in their Space project management standard [8],
dividing it in seven phases. Figure 1.2 reveals the phases graphically in a Gantt
chart format, including the project milestones (a denotion of the milestones
can be found in the appendix A). The phases are characterized form 0 to F [8]:

• 0: Among other project top-level tasks, mission goals, preliminary tech-
nical requirements specifications and a preliminary risk assessment are
elaborated.

• A: Basic concepts with the focus on feasibility are conducted. Mission
goal crucial as well as critical tasks are identified and denoted in various
project plans.

• B: A task division takes place among all project participants, including
deadline definitions for the subcomponents. Therefore, interfaces are
defined.

• C: The designs and concepts are finished and implementation as well as
testing begins. In this phase the test-framework is used for the first time.

• D: The subcomponent is assembled and tested in integration and system
tests. Here, the test-framework is also in use.

• E: Final checks take place before the launch and therefore the actual
mission begins.

• F: The final phase is reached when the mission goals are accomplished or
something unexpected and fatal happened. The only task is the disposal
of the equipment.

4 Introduction

Fig. 1.2 Space mission phases. Source: [8, p: 19]

Generic Satellite Hardware Structure

The generic satellite hardware structure is elaborated by the usage of the
BIRD (Bispectral Infra-Red Detection) mission, as an example. The BIRD
mission has the goal to gain data on bush or forest fires on a global scale.
Additionally, the bearing of volcanoes is evaluated. Infra-red sensors are used
to measure the radiation at 4 and 10 micrometer wavelength, resolving temper-
ature differences with a 0.5 K accuracy. The satellite got launched in 2001 and
with its 92 kg it can be classified as a micro-satellite (Appendix A contains a list
of the various satellite classes) [9, p: 667].

A satellite (space segment of a space mission) consists of two major com-
ponents, the payload and the satellite bus. Figure 1.3 displays the generic
hardware structure of a satellite graphically. The payload is the actual reason
why the satellite is deployed in space. It depends on the mission goals and can
comprise scientific instruments, transponders, meteorology instruments, naviga-
tion technology or military payload. On shared missions, different payloads can
be combined on one satellite. Regarding the BIRD mission, the payload consists
of a bi-spectral infra-red sensor system, an optoelectronic wide angle stereo
sensor scanner, a data processing system and an artificial neuronal network
classifier [9, p: 669].

The satellite bus is adapted to the payload. It takes care of generic tasks,
which have to be executed on all satellites. The BIRD mission’s satellite bus

1.3 Objective 5

consists of an Attitude and Orbit Control System (AOCS), an on-board computer,
a mechanical structure, an energy supply system, a telecommunication sys-
tem and a thermal control system. Additionally, some satellites also have a
propulsion system [9, p: 669].

Satellite

Payload

Scientific Instruments

Transponder

Meteorology Instruments

Navigation Technology

Military Payload

Structure

Energy Supply

Thermal Control

Propulsion (optional)

On-board computer

Attitude and Orbit Control

Telecom. System

Satellite bus

Fig. 1.3 Generic satellite hardware structure.

1.3 Objective

Problem Statement

Testing is an important aspect in the development of aerospace software.
This is due to the difficulties for mission online software updates and the impact
of programming errors, which – in the worst case – can lead to a total loss of
the entire mission. The famous priority inversion bug of the Mars Pathfinder
mission is an excellent example for that [10] [11]. Humans are likely to
produce erroneous code. According to Steve McConnell, the software industry’s
average is about 15 – 50 errors per 1000 lines of delivered code [12]. Currently,
OBSW tests are hand-crafted at the German Aerospace Agency (DLR).

Another problem is the poor re-usability of the OBSW, which leads to a
drastic loss of knowledge already gained in previous missions. Institutes like
the DLR and other space agencies are strongly project-orientated, with projects
that run for years. It is not uncommon that employees leave the institute
(change to another company, retire etc.), when their main project is finished.
If that happens a drain of insights and know-how is mostly the result. The

6 Introduction

National Aeronautics and Space Administration (NASA) tackled that problem
with their Lessons Learned Information System, which got launched in 1994
[13]. Therefore, the preservation of know-how in vital concepts and the re-
usage of knowledge is something that always needs to be improved, especially
in a high-tech industry.

Also the growing complexity of the systems is problematic. Satellites are
sophisticated constructs, which require interdisciplinary teamwork among
experts of various domains (propulsion, thermal, data management etc.). Those
experts define requirements for their components, which are a basis for the
OBSW implementation of the programmer. This procedure is an iterative
knowledge exchange process in which the domain expert provides requirements
and the programmer returns specifications. It is iterative because the domain
expert lacks sufficient knowledge on OBSW and the programmer lacks profound
insights into the component of the domain expert, which can lead to miss
understandings and therefore miss designs. The challenge is to bridge this
knowledge gap by the creation of a, for both sides understandable, language to
describe the requirements of the component of the domain expert.

Task

A concept for an automated test-framework on the basis of the Data De-
scription Language (DDL) [14] has to be developed and implemented, which
enables the execution of black box tests. Further, an analysis of a telemetry (TM)
and telecommand (TC) transmission protocol, used in current space missions,
has to be conducted. The result of this analysis is an additional definition of
requirements for the test-framework.

The DDL is a DLR in-house-developed Domain Specific Language (DSL). It is
constructed with a data-centric approach. Data-centric means that the focus
lies on the data and the data-flow in the system. Therefore, the DDL describes
the data structures as well as the interfaces for the data transmission on the
application and service level of the OBSW of satellites. Its purpose is to model
the Command and Data Handling (CDH) subsystem of the satellite, which is in
charge of the routing of TM and TC packets within the OBSW [14]. The concept
of the test-framework should exploit the DDL and therefore get attached to
it. To be able to test the functionality of the test-framework, chosen test cases
have to be implemented. Concluding, a theoretical evaluation regarding the
fulfilment of the requirements and the capability of the framework has to be
conducted.

1.4 Strategy 7

Purpose & Goal

The purpose is to bridge the communication gap between the domain
experts and the programmers regarding the desired behaviour of the final
satellite system. This gap exists due to a lack of a common language and
knowledge basis. Test-driven development and automatic code generation has
to be strengthened. And the code re-usability for follow-up missions ought to
be increased.

The goal is to create a standard-compatible automatic test-framework. The
framework has to be usable by the domain experts to define software speci-
fications of their satellite components, which are automatically transformed
into executable test-cases. These test-cases have to enable a test-driven devel-
opment of OBSW. Therefore, the test-framework needs an execution platform
which automatically executes and evaluates the tests against the OBSW under
development.

Ethics and Sustainability

The ethical aspects as well as the sustainability of a project have a huge
influence on its long term success. The report details the connection between
theses aspects and this project in the Ethics Chapter (3).

1.4 Strategy

Method

The research for this project is conducted in a qualitative manner. An
evaluation of various existing testing methods and frameworks is executed.
Additionally, an analysis of a TC and TM protocol is conducted to derive data
in the form of requirements for the test-framework. The basic philosophical
assumption is the interpretivism, with an inductive research approach. The
research is follows with the conceptual method [15].

Data Collection and Analysis

A qualitative data collection is carried out by the usage of academic search
engines, like Google Scholar or the IEEE Explorer. Furthermore, an investigation
of DLR in-house databases for scientific papers and articles is executed. The
analysis of the potential sources is conducted using the three-pass approach.

8 Introduction

In the first pass the quality and the relevance for the topic has to be evaluated.
The second pass is focusing again on the quality and the relevance in a more
detailed way, with an additional investigation of the references of the document.
If the document overcomes also the second pass, a final evaluation takes place
to incorporate the knowledge into the thesis [16].

Workflow

The workflow is subdivided into six phases. One day represents an 8 hours
working day of one person.

1. Orientation and organizational phase (21 d)
In this phase, the project planning, the acquirement of DLR specific
knowledge and the initial literature research lies in the focus. Additionally,
an initial presentation of the thesis topic is done.

2. Interpretation and evaluation phase (19 d)
The interpretation and evaluation of the TC and TM protocol as well as
the final literature research takes place. In the end, potential concepts
should be prepared for a discussion with colleagues.

3. Design phase (19 d)
This phase emphasises on the design of the concept, with an intermediate
feedback round in the form of a midterm presentation and discussion.

4. Implementation phase (21 d)
The implementation phase is focusing on the step-wise implementation
of the concept.

5. Evaluation Phase (10 d)
The evaluation phase is used to theoretically evaluate the automated
test-framework regarding its requirements. Additionally, selected test
applications are implemented and used as a practical demonstrator of the
functionality and capability of the test-framework.

6. Documentation phase (34 d)
In the final phase the results have to be documented. A major part of that
is the establishment of the thesis, using the already written documents
of the previous phases as a basis. Concluding, important documents like
manuals and user-docs have to be written.

1.5 Report Overview 9

1.5 Report Overview

The Introduction Chapter displays the motivation for this project and the
targeted problems are elaborated. The task is presented and the purpose as
well as the goal of the project denoted. Additionally, the strategy, based on the
scientific method, the data collection and the workflow within this project, is
documented. The subsequent Background Chapter provides the reader with
sufficient project specific knowledge and states the related work in the domain.
Following, the Analysis and Requirements Chapter reveals the requirements
for the project. These requirements are applied in the Design Chapter to
define the layout of the test-framework, under consideration of various options.
Two emphasises are within this Chapter, one on the derivation of the top-
level design and the other on the theoretical structure of the components of
the test-framework. The output of this Chapter is used in the subsequent
Implementation Chapter to show how the theoretical design got transformed
in an executable test-framework. The evaluation of the implementation is
based on knowledge of the Background Chapter and the requirements of the
Analysis and Requirements Chapter as well as on the problem statement of the
Introduction Chapter. In addition, identified limitations of the test-framework
are explained. Lastly, a summary of the project and a future outlook is provided
in the Conclusion Chapter.

Chapter 2

Background

The primary goal of the Background Chapter is to provide information which
serves as a basis for the upcoming chapters. The reader gets informed about
procedures, standards, hardware structures and software structures in the field of
the space industry, which are in context to this report. Afterwards, basic testing
knowledge is provided, focusing on automated frameworks and model-based testing
in particular. Domain Specific Languages and modelling with them is elaborated
and the Eclipse Modelling Framework (EMF) with the Xtext framework presented.
Finally, temporal logic with a focus on Kripke structures, Linear Temporal Logic
and Computation Tree Logic is introduced. The related work in the domain of this
test-framework closes this chapter.

2.1 Packet Utilization Standard

The Packet Utilization Standard (PUS) [17] is a customizable standard,
defined by the European Cooperation for Space Standardization (ECSS, http:
//www.ecss.nl/). It can be seen as a guideline to develop OBSW of satellites
with a focus on the communication. The term OBSW refers in the context of
PUS and the entire subsequent report to the OBSW in the user-mode. To apply
the standard it has to be tailored to the specific space mission requirements. The
necessity of tailoring lies in the vast range of requirements of space missions,
especially scientific ones. PUS describes three main aspects: the structure of the
OBSW, the communication package structure and the behaviour of the OBSW
[17].

http://www.ecss.nl/
http://www.ecss.nl/

12 Background

2.1.1 CDH Structure

PUS defines the structure of the software, which is mirrored in the CDH
subsystem of the OBSW. Figure 2.1 displays the structure graphically. The CDH
subsystem can be seen as the heart of the user mode OBSW. It is subdivided
in three layers. On the top layer are the application processes, the middle
layer is occupied by the services and the base layer consists of the sub-services
(packets). The sub-services contain the payload parameters. This structure
determines the routing of the packets from the application-level down to the
sub-service-level.

CDH Subsystem

Application 1 Application 2

Service 1 Service 2 Service 3

Subservice 1
(TC/TM)

Parameter 1 Parameter 2

Parameter 3

Parameter 4

Subservice 2
(TC/TM)

Subservice 3
(TC/TM)

Fig. 2.1 PUS architecture

The application processes control the hardware systems of the satellite
and the specific features of them, invoking system actions by the usage of
hardware drivers. Additionally, they hold interface references to the services.
An application process can be contacted via its unique application process ID
(APID) [17].

The services host the sub-services and can be reached over the application
via references. Services can be used by one or more applications. Identification
takes place by a service ID (SERID). There are already services defined in PUS,
which are very common on spacecrafts, like the Housekeeping Service or the
Memory Management Service. Additional information on how to design custom
services is provided [17].

The sub-services are either TC or TM packets. These data structures are
parameters for methods which are directly integrated in the services. TC
packets are transmitted from the ground station to the satellite and TM packets

2.1 Packet Utilization Standard 13

vice versa. Identification takes place via the sub-services ID (SUBSERID). When
a sub-service is triggered by the arrival of a TC packet, it modifies the state
of the application process. The application then reacts on this modification
accordingly [17].

2.1.2 Packet Structure

The second major part that is standardized is the structure of the TC &
TM packets. Both packet types consist of a Packet Header and a Packet Data
Field. Depending on the requirements of the mission, some header information
may get used, some may not (remember PUS has to be tailored before usage).
The maximum packet size is 65KB, due to limited connection time, limited
link bandwidth and recovery time from failure. In case of a larger payload,
the data can be grouped or sequenced, using the specific parameter of the
Packet Header. Figure 2.2 displays the structure of a TC packet. In the Analysis
and Requirements chapter, the TC and TM packet structures are analysed to
determine requirements for the test-framework [17].

The structures of the packets

Packet Header (48 Bits) Packet Data Field (variable)

Packet ID
Packet Sequence

Control
Packet
Length

Data Field
Header

(Optional)

Source
Data

Spare
(Optional)

Packet
Error

Control

Version
Number
(=0)

Type
(=0)

Data
Field
Header
Flag

Applica
tion

Process
ID

Grouping
Flags

Source
Sequence
Count

3 1 1 11 2 14

16 16 16 Variable Variable Variable 16

Telemetry packet

Packet Header (48 Bits) Packet Data Field (variable)

Packet ID
Packet Sequence

Control
Packet
Length

Data Field
Header

(Optional)

Applica
tion
Data

Spare
Packet
Error
Control

Version
Number
(=0)

Type
(=1)

Data
Field
Header
Flag

Applica
tion

Process
ID

Sequenc
e

Flags

Sequence
Count

3 1 1 11 2 14

16 16 16 Variable Variable Variable 16

Telecommand packet

CCSDS
Secondary

Header
Flag

TC Packet
PUS Version

Number
Ack

Service
Type

Service
Subtype

Source ID
(Optional)

Spare
(Optional)

Boolean (1 Bit)
Enumerated

(3 Bits)
Enumerated

(4 Bits)
Enumerated

(8 Bits)
Enumerated

(8 Bits)
Enumerated

(n Bits)
Fixed BitString

(n Bits)

Telecommand data field header

Spare

TM Source
Packet PUS

Version
Number

Spare
Service

Type
Service
Subtype

Packet
Subcounter
(Optional)

Destination ID
(Optional)

Time
(Optional)

Spare
(Optional)

Fixed
BitString

(1 Bit)

Enumerated
(3 Bits)

Fixed
BitString
(4 Bits)

Enumerated
(8 Bits)

Enumerated
(8 Bits)

Unsigned
Integer
(8 Bits)

Enumerated
Absolute

Time

Fixed
Bitstring
(n Bits)

Telemetry data field header

Fig. 2.2 Telecommand package structure

2.1.3 Behaviour Determined by PUS

The PUS describes the behaviour of the OBSW to a certain extent. Options
and modes of the OBSW are defined [17]. A reference to the Analysis and
Requirements Chapter shall be given, in which the implemented behavioural
aspects of the PUS in the test-framework are elaborated in detail.

14 Background

2.2 Definition of Testing

M. Uttinger and B. Legeard give a definition in their book Practical Model-
Based Testing - A Tools Approach [18] which is used for the rest of the report.

"Testing is a dynamic verification of the behaviour of a program on a finite
set of test cases, which get selected from the in general infinite cases domain,
against the expected behaviour." - Definition of Testing by Uttinger and Legeard
[18, p: 3] -

Dynamic means that we execute the program with the input predefined by
the various test cases. In contrast to that, static testing of a program is without
its execution (code reviews, walkthroughs, etc.). The finite set of test cases
reveals the incompleteness of testing. Problematic for testing are programs with
side effects as they mostly result in a state space explosion (reactive systems).
This can lead to an infinite amount of test cases, which lacks the feasibility of
testing it completely [19, p: 11]. Hence the selection of a sufficient set of test
cases is one of the key challenges, which is evaluated by a predefined coverage
criteria. Strategies like finding equivalence classes and boundary value testing
are just two of many in use. The final step is to resolve the oracle problem,
which is the determination whether the test outcome is a success or a failure by
comparing it to the expected outcome (oracle) [18, p: 3-4].

2.3 From Manual Testing to Keyword-driven Test-

frameworks

Manual testing is a process in which the tester searches directly and man-
ually for defects in the System Under Test (SUT) without the usage of any
automation supporting concepts or tools [20]. An automated test-framework
is a collection of assumptions, concepts, processes and environments used
to design, execute and evaluate software tests in an automatic fashion [21].
Testing evolved over time, offering the possibility to subdivide it into four main
generations: Manual testing, linear script-based testing , data-driven testing
and keyword-driven testing.

2.3 From Manual Testing to Keyword-driven Test-frameworks 15

Manual and Capture & Replay Testing

In manual testing the entire testing process is hand-crafted. The test case
design often follows an informal test plan, which has to be translated in input
for the SUT. The execution is conducted by the usage of that input directly on
the SUT. Also the result of the test case is evaluated manually as well as the
fulfilment of the test coverage requirements. Manual testing requires a deep
understanding of the SUT and its expected behaviour. In case of a huge and
complicated SUT, the testing process becomes very time- and money-intense
[18, p: 21].

To reduce the costs and the required time for the test execution, the capture
& replay approach has been developed. In this approach, the test case execution
gets recorded once, to be able to replay the test case execution on later versions
of the SUT. The test cases itself are still hand-crafted. The outputs of the test
runs on the various versions can be logged and compared to each other. This
first semi-automatized approach is often used for GUI tests. Problematic is the
sensitivity of the captured tests towards API changes of the SUT, making it al-
most impossible to maintain multiple versions, especially when the comparison
of logged output is used to evaluate the correctness of the current version [22,
p: 62].

Script-based Testing

Script-based testing focuses on the execution and evaluation of the test
cases. The script itself is executable and runs one or more test cases. It interacts
directly with the SUT. The conducted tasks of the script are: initialization
by a state change of the SUT, execution of the tests directly on the SUT and
comparison of the result to derive a verdict on the success or failure of the test
[22, p: 65].

The script-based testing automatizes the execution and evaluation of the
testing process. But the direct interaction with the SUT makes it almost as
difficult to maintain as the capture & replay approach. The input data resides
within the scripts as well as at least the API of the SUT, sometimes also complete
source code sections of the SUT. The poor re-usability of the scripts leads to a
fast rank growth of scripts, which are hard to read and to maintain [18, p:24].

Data-driven Testing

In the data-driven approach, the input data of the script is stored in separate
files. This enables the usage of the same script for multiple input data, which

16 Background

is reducing the overall amount of scripts. But the general poor re-usability
of linear scripts is not tackled by a data-driven approach. Nevertheless, the
overview is better, due to a clear separation of code and data [23].

Keyword-driven Testing

The keyword-driven (also called: table-driven, action-word-driven) ap-
proach introduces an abstraction layer between the tests and the SUT. The test
scripts contain action words which are associated to functions of the SUT or
scripts that can be executed on the SUT. The relation between the action words
and the scripts/functions is determined in a table, which serves as an adapter
between the test script and the SUT. To run a test script, a test execution tool is
necessary [18, p:26].

The keyword-driven approach offers more independence of the SUT. The
action word layout of the test scripts allow also non-programmers to read
and write the tests. An additional advantage is that a change in the SUT can
often be handled by a change in the adapter. Nevertheless, changes have
to be implemented manually as well as the verification of the test-coverage
[18, p:28].

2.4 Model-based Testing

Model-Based Testing (MBT) belongs to the family of keyword-driven testing,
as a model is nothing but an abstraction of the underlying system. There are
four major approaches in MBT.

2.4.1 Approaches in Model-Based Testing

1. Generation of test data from a domain model: The input is derived
from the domain model. The goal is to find an efficient subset of all
possible inputs to meet the coverage requirements of the test. The oracle
problem remains unsolved [18, p: 6].

2. Generation of test cases from an environment model: The subset of
all possible inputs is derived from an environment model of the SUT. Also
here, the oracle problem remains unsolved [18, p: 6].

3. Generation of test cases with oracles from a behaviour model: In
this approach the input as well as the expected output are created from
a behaviour model of the SUT. To be able to incorporate this oracle

2.4 Model-based Testing 17

information in the model, the test designer requires knowledge about the
relationship between the input and the output [18, p: 6].

4. Generation of test scripts from abstract tests: Abstract test cases are
given, which are transformed in executable test scripts. The information
on the structure and the API of the SUT for the executable test script is
gained by the system model [18, p: 6].

2.4.2 Model-based Testing Taxonomy

A taxonomy classifies a topic in ordered categories. This is very helpful
to keep the oversight on huge software constructs, like an automatic test-
framework. Taxonomies display options and reveal dependencies based on the
selected options. They help to develop a correct design from the beginning and
therefore prevent deadlocks in the implementation phase.

The basic Model-Based Testing (MBT) taxonomy was introduced by Utting,
Pretschner and Legeard in 2006, in their working paper "A taxonomy of model-
based testing" [47]. At this stage, the taxonomy does not have a specific
addressee. It can be seen as a generic concept to derive characteristics for an
implementation of a MBT framework.

In 2009, Zander-Nowicka used the taxonomy as a basis for her doctoral
dissertation. She enriched the existing taxonomy to fulfil the specific needs of
real-time embedded systems in the automotive industry [48].

This was taken by J. Zander, I. Schieferdecker and P. J. Mosterman in their
book "Model-Based Testing for Embedded Systems" (2012) as footing [46, p: 3].
They changed the taxonomy of Zander-Nowicka to make it usable for embedded
systems of multiple industry domains. Figure 2.3 displays the overview of their
taxonomy.

Figure 2.3 reveals the structure of the MBT graphically, with the classes as
the root elements and specific categories as their childes. On the lowest level are
the options, which represent selectable technologies/approaches/algorithms of
the categories. The mentioned exemplary options do not comprise all available
options, but represent a list of commonly used ones within the field of MBT.
It is possible to select multiple options within one category, in case they are
applicable together [46, p:8].

1. The Model Class

The Model class contains the MBT basis, as well as the specific model
properties as categories.

18 Background

Model

Overview of the taxonomy for Model-Based Testing

Test
generation

Test execution

Test
evaluation

Technology

Specification

Execution
options

Result of the
generation

Technology

Test selection
criteria

Properties

MBT basis Test model

System model

Coupled system and test model

Mutation-analysis based

Structural model coverage
Data coverage

Requirements coverage

Test case specification

Random and stochastic

Fault-based

+

Executable test scripts

Executable code

Executable test models

Mil / Sil / Hil / Pil (simulation)

Reactive /nonreactive

Generating test logs

Reference signal-feature based

Reference signal based

Requirements coverage

Test evaluation specification

Atutomatic/manual

Online/offline

Automatic/manual

Random generation
Graph search algorithm

Model checking

Symbolic execution

Theorem proving

Online/offline

Options:Categories:Classes:

Fig. 2.3 Overview of MBT taxonomy of Zander, Schieferdecker and Mosterman.
Source: [46, p:8]

MBT Basis

To be able to derive tests, different sources to create test cases can be used. It is
possible to create tests using the information obtained within the system model,
which is the abstract representation of the SUT. Another option is to extract
the test cases from a specific test model, which only contains test relevant data.
This can be also an environment model, but it is not considered explicitly by
the authors. The third option is to use a coupled system and test model, linking
the system model with the test model [46, p:8].

2.4 Model-based Testing 19

Properties

The properties describe the abstraction level of the model and cluster re-
quirements for it. In case of a specific domain model, the domain requirements
for the model are listed here. These requirements are mostly soft requirements
which offer a certain interpretation freedom.

2. The Test Generation Class

The test generation class focuses on all aspects which are related to the
creation of the test cases. It is subdivided into three categories: test selection
criteria, technology and result of the generation [46, p:9].

Test Selection Criteria

The test selection criteria determine how the tests are selected from the
source, which is in our case the coupled system and test model. And how to
evaluate the completeness of the generated test suite regarding a specified
coverage criteria. Those two criteria have to fit each other and get combined to
one category. There are several options within this category, following different
approaches. Underneath, frequently used ones are listed [46, p:10].

• Mutation-analysis based: There exist different versions of this option,
but they all share a mutation of the system model or the test model.
In case of a system mutant, which is a slightly modified version of the
original system model, the output of the test on the mutant is compared
to the output of the not mutated one. In case they match, the mutant is
marked as equivalent. Another alternative is to modify the test model.
There, the input data is altered to determine ranges and borders of the
system model [46, p:10].

• Structural model coverage: Within this approach, the control-flow of
the system model is investigated to determine the structure and to gen-
erate test cases out of this information. A pre-defined coverage criteria,
regarding the control-flow, defines the termination of the test generation
[46, p:10].

• Data coverage: The central part of this approach is a data range de-
composition to reveal equivalent classes and a boundary value analysis
on those classes. Testing takes place on the boundaries as well as on

20 Background

one representation of every identified equivalent class. The coverage is
determined by the range of data, which is analysed [46, p:10].

• Requirements coverage: This simply sets an informal requirements
coverage as the coverage criteria as well as the test selection criteria [46,
p:10].

• Test case specification: The test specification, which is created by the test
designer, is used to derive and instantiate test cases of it. The coverage is
manually determined by the test designer and therefore the test coverage
criteria [46, p:10].

• Random and stochastic: This approach is mostly applied to environment
models. There is a huge variety of algorithms which are used to create
the input data, in case of random as well as stochastic. Determining
a meaningful coverage criteria is difficult, especially when a random
approach is used. Mostly a specific amount of test cases stops the testing
[46, p:10].

• Fault-based: This approach is based completely on the insights and
experience of the test designer, who tries to cover the errors that might
occur. The coverage criteria is basically the knowledge of the test designer
about the potential failure sources [46, p:10].

Test Generation Technology

The subsequent mentioned technologies can be applied to create the test
suite. They are highly depending on the prior decisions in the test selection
criteria. This is due to the fact that not every technology can be combined with
all test selection criteria. But it is possible and even recommended to combine
test generation technologies to exploit automatism and other wanted effects
[46, p:12].

• Automatic/manual: Automatic test generation is based on the automatic
creation of executable tests by the usage of test specifications. Manual
test generation is the same, but the creation is done by hand and not
automatic [46, p:12].

• Random generation: The random generation technology refers directly
to its counter part in the test selection criteria category. It is simple to
implement but not predictable in case of execution time to reach the
specified coverage [46, p:12].

2.4 Model-based Testing 21

• Graph search algorithm: This covers a collection of algorithms to ex-
plore the nodes or/and the transitions of a graph, representing the sys-
tem model. Famous example algorithms are the Chinese postman or
Depth-first-search. Many coverage criteria can be applied: all nodes, all
transitions, all cycles etc. [46, p:12].

• Model checking: The goal is to verify or falsify certain properties of a
model. The focus lies in general on the verification that something bad
never happens. In case a property is falsified, the model checker returns
a counterexample. This counterexample is the test case [46, p:12].

• Theorem Proving: Theorem Provers and Model checkers are closely
related to each other and sometimes replaceable by each other. But
theorem provers generally check formulas on satisfiability which are
included within the system model [46, p:12].

• Online/offline: Online generation technologies can react to state changes
of the SUT while runtime. That means test cases can be created while
the SUT is under execution, to execute them in the same test run. Offline
generation technologies are not able to do that while runtime. The
creation of the entire test suite has to be completed before the execution
of the test begins [46, p:12].

Result of the Generation

There are three potential results of the test case generation: Executable test
models, executable test scripts and executable code [46, p:12].

3. The Test Execution Class

The test execution class has only one child category: the execution options.
This category determines the development stage of the system on which the
tests "loop". Additionally, reactive and non-reactive execution is considered and
the generation of logs [46, p:13].

Execution Options

• Model-in-the-Loop (MiL): Required is a behavioural model on which the
tests are executed, to enable a development process early evaluation of
the functionality of the design [46, p:13].

22 Background

• Software-in-the-Loop (SiL): The software implementation of the entire
system is the SUT. In our case the software implementation is the OBSW
and the entire system is the satellite [46, p:13].

• Processor-in-the-Loop (PiL): One level above the SiL is the PiL. There
the software is tested on the hardware. In case of an embedded sys-
tem, the software is tested, using the micro-controller it is designed for
[46, p:13].

• Hardware-in-the-Loop (HiL): The SUT is the complete hardware-software
system with the peripherals under test and a simulated environment
[46, p:14].

• Vehicle: The final development stage for an SUT is the entire final hard-
ware and software system, tested in the actual environment [46, p:14].

• Reactive/Non-reactive execution: In case a reactive execution is de-
sired, the execution platform has to react on the output of the SUT and
decides which test case should be executed next. This comes often along
with an online generation of test cases [46, p:14].

• Generating test logs: Test logs can be produced for each run and reused
to evaluate the coverage. They contain detailed information on the steps
and the order of the execution of the test cases on the SUT [46, p:15].

4. The Test Evaluation Class

Within this class the results of the test cases are evaluated. The goal is to
compare the output of the test cases to the specific oracle, to derive a verdict.
This class is subdivided into two categories, the specification and the used
technology [46, p:14].

Specification

The specification of the test evaluation is needed to determine the source of
the oracles and which characteristic of the output of the test cases are used to
derive the verdict [46, p:14].

• Reference signal-based specification: The output signal value of the
SUT is compared directly to an oracle signal value to assess the behaviour
of the SUT [46, p:14].

2.4 Model-based Testing 23

• Reference signal-feature-based specification: To do a signal-feature-
based specification, it is necessary to determine the features of the output’s
signals. Signal features are attributes of a signal, for example a maximum
or an increase [46, p:15].

• Requirements coverage criteria: This criteria is used to evaluate the
coverage of informal requirements regarding the actual behaviour of the
SUT. The requirements should be traceable towards the test model and
the SUT, to simplify the evaluation [46, p:16].

• Test evaluation definition: The specification-based output (oracle) is
evaluated against the actual output of the SUT. The test designer is able
to determine which oracle has to be evaluated against the output at a
specific point in time. Formal notations for the test case specification are
often used [46, p:16].

Technology

The technology used within the test evaluation class has to be selected
whether the test evaluation should be a manual or an automatic process and if
the evaluation should take place in an offline or online manner [46, p:16].

• Automatic/Manual technology: As already mentioned in the test gener-
ation class the distinction between the automatic and the manual tech-
nology is how a predicate is created. In the test evaluation class, the
focus lies on the oracle, if it got created manually by the test designer
or automatically by a deduction of the behavioural model. In case of an
automatic creation of the oracles, this step is in general already executed
within the test generation. Another point is the manner how the result is
compared to the oracle and therefore assessed [46, p:16].

• Online/Offline execution of the test evaluation: This option is used to
distinguish the point in time when the output of the result is assessed. In
case of an online evaluation, the verdict is created when the SUT is still
under execution. On the other side, in case of an offline evaluation the
collected outputs of the test cases are assessed after the execution of the
SUT, when all the test cases are executed [46, p:16].

24 Background

2.5 Domain Specific Languages

2.5.1 Domain Specific Language Definition

A domain is a class of problems. A Domain-Specific Language (DSL) is a
language which can be used to describe these problems. A General-Purpose
Language (GPL) covers bigger or multiple domains. The DSL’s terminology
is close to the one in the domain to enable a precise representation of the
abstraction used in the domain. Most DSLs are text-based, but also graphic and
symbolic elements get applied [24, p: 28].

2.5.2 DSL vs. GPL

A clear categorization of a language whether it is a DSL or a GPL is often not
easy. Some languages may appear in one direction as a DSL and in the other
as a GPL. The following characteristics are therefore soft characteristics which
have to be evaluated in every specific language case to derive a conclusion.

GPLs cover larger and more complex domains and have a larger language
size. They are almost always Turing-complete. Their lifespan can range from
years to decades and they evolve slowly, often standardized. The language
developer can be a guru or a committee and the user community is large and
anonymous.

DSLs focus on smaller and well-defined domains, what mirrors in the
language size and layout. The evolution velocity is high, driven by only a few
engineers and domain experts. DSLs are mostly not Turing-complete. The
lifespan is generally shorter as for GPLs and the user community is smaller and
local [24, p: 31].

2.5.3 Modelling with DSLs

DSLs are often used for modelling purposes. To enable Model-Based Software
Development (MBSD) a prescriptive model is needed, which can be used to
generate executable code. Most important is to translate the DSL and the
defined model instance in a meta model, which can be used to transform it into
the executable code. To enable this in a facile way, tool support is needed. Such
a modelling approach with tool support allows an easy definition of the notation
of the model. The code generator/compiler is customizable and the Abstract
Syntax Tree (AST) easy accessible to modify it on the fly. Sophisticated modelling
frameworks offer various additional features that facilitate the development of

2.6 The Development Tools 25

DSLs for modelling [24, p: 33]. The Xtext modelling framework is such a tool.
It is used for the implementation and presented in the subsequent section.

2.6 The Development Tools

2.6.1 Eclipse Platform

The Eclipse Platform contains the functionality to design and build Integrated
Development Environments (IDEs) and other tools. One of the core advantages
of IDEs and tools, developed on this platform, is the possibility to integrate
them with existing platform conform projects. The Eclipse Platform contains
the Rich Client Platform (RCP) as a subset, which clusters projects that do not
target classic software development. Members of the RCP act for example in
the field of the automotive industry, medical applications or space exploration
[25].

The most famous Eclipse Platform-based IDE project is the Software Devel-
opment Kit (SDK). Its development is mainly influenced by the Eclipse Platform
itself, the Java Development Tools (JDT) project and the Plug-in Development
Environment (PDE) project [25].

2.6.2 Eclipse Modelling Framework

The Eclipse Modelling Framework (EMF) targets the development of model-
based software. The goal of EMF is to generate software code for the implemen-
tation from a user-defined structured data model. The structured data model
is instantiated in a custom-developed editor, which is based on a user-defined
language [26]. The EMF model can be exploited to directly generate code from
it, using tools like Acceleo, Jet or Xtend [24, p: 274].

The core component of the EMF on the modelling side is the Ecore meta-
meta-model. Ecore is basically a subset of UML Class diagrams, and is therefore
mappable to many Object-Oriented (OO) programming languages [26]. The
goal of the design of Ecore was to facilitate the translation between the in the
Ecore format defined model in executable source code [27]. Figure 2.4 displays
the hierarchy of the Ecore language (green components are abstract). And
Figure 2.5 denotes the mapping to the Java language, as an OO programming
language example.

26 Background

Fig. 2.4 Ecore components hierarchy. Source: [28]

Fig. 2.5 Mapping of Ecore to Jave elements. Source: [28]

2.6 The Development Tools 27

2.6.3 Xtext

Xtext is an open-source framework to develop GPLs as well as DSLs and is
fully integrated in the Eclipse Platform. With the Xtext framework, grammars
can be described in EBNF (Extended Backus-Nauer Form) style. It derives the
AST from the user-defined grammar as an instance of the Ecore language by
an integrated parser [24, p: 196]. It therefore builds up on the EMF. Different
grammars can be cross-referenced to be able to use instantiated objects of
one model in another. To instantiate the model, an editor – which runs as
an SDK plug-in – is generated from the grammar. Exemplary features of the
editor are: syntax highlighting, code completion, code folding and static syntax
validation. The framework also offers the option to easily include semantic
validation, explicit scoping and code generation [29]. Semantic validation is
used to verify the model on its semantics while the user generates it, based on
constraints which have to hold [24, p: 239]. The explicit scoping is important
for the correct referencing of already defined objects of the model or of a cross-
referenced model [24, p: 230]. The code generation is conducted using Xtend,
which accesses the AST and translates the model instance into the desired
format [24, p: 274]. Figure 2.6 shows an overview of the workflow with the
Xtext framework.

Grammar

AST
Meta-model

DSL
Source Code

Editor

Lexer &
Parser

Ecore
Meta-model

Instance (AST)

Custom
Generator

Custom
Format

Scoper

Validator

User-defined
Input/output

Customizable
Components

Automatically
Generated

Legend

Fig. 2.6 Overview of the workflow with Xtext.

2.6.4 Xtend

Xtend is a statically-typed, general purpose, high level programming lan-
guage and a dialect of Java. It is possible to mix Xtend and Java within one
project without interoperability problems. The code is translated directly in
readable Java code and not in Java byte code. It has some specific features
like operator overloading, type inference or powerful switch expressions, that
Java currently does not have [30]. To automatically transform the Xtend source
code in Java source code, a compiler is provided and additionally an interpreter.

28 Background

Xtend itself is built with the Xtext framework and therefore offers the powerful
Xtext-based editor.

It can be used for code generation and model transformation. In the case of
the Xtext framework, it’s main fields of application are the validator, the scoper,
the formatter and the code generator. The developers of Xtend emphasized
on the template expressions, to enable a faster and easier code generator
development [24, p: 274] [30].

2.7 Temporal Logic

Temporal logic is a formal notation to describe systems like programs. In
contrast to informal notations, the ability to express the system in temporal logic
is rather small. But the possible statements about the system are completely
unambiguous. Temporal logic has it’s roots in the propositional calculus and
adds temporal operators to it [31].

In software development it is common not only to divide the entire develop-
ment process in smaller processes (e.g. Waterfall model) but also to divide the
software in hierarchical abstraction layers. An UML model is an abstraction of
the source code. Arbitrary many abstraction layers can be integrated between
the first top-level design and the final source code implementation.

Temporal logic can be applied on any of these hierarchical abstraction layers,
whereas source code is also only an abstraction layer. A statement, described
in temporal logic, about the program is a meaningful statement on all lower
layers of the program/system [31].

2.7.1 Kripke Structure

A Kripke structure can be used to describe reactive systems. A reactive
system changes its internal state, based on external stimuli for the system, like
OBSW of satellites. Also the description of a model of the system is possible,
as it is part of the temporal logic and therefore applicable on any hierarchical
level of the entire system.

A Kripke structure is a graph with reachable states as the nodes and transi-
tions as the edges. Deadlock states, with no escape-transition, are not allowed
and are resolved by a transition to the deadlocked state itself. Additionally, the
states have labelling functions, which are sets of Atomic Propositions (APs) that
have to be true in that state. An AP can only evaluate to true or false and it is

2.7 Temporal Logic 29

user-defined [32, p:45].

A Kripke structure is a tupel κ = ⟨S,S0,R,L⟩ for a finite set of AP with:

• S : Set of states;

• S0 : Set of initial states with S0 ⊆ S;

• R : Transition relation with R ⊆ S×S

• L : Labelling function with S → 2AP

To illustrate a Kripke structure, an example is provided (Figure 2.7): A man
throws a ball vertically in the sky and catches it again (under the assumption
that the ball never reaches the escape velocity). The APs are the kinetic and
potential energy levels in the ball and attached via the labelling functions to
the state.

E
kin

= max
E

pot
 = 0

S0: leaves/arrives hand
(Initial state)

S1: reaches flight curve peak

E
kin

= max
E

pot
 = 0

E
kin

= 0
E

pot
 = max

Fig. 2.7 Kripke structure example: A man throws a ball vertically.

2.7.2 Linear Temporal Logic

Linear Temporal Logic (LTL) is used to describe properties that have to hold
on traces of a system and is widely used in model verification. The primary
version consists of a set of atomic propositions, the logical operators (boolean
connectives) ∧ and ¬ and the temporal operators (modal operators) "next"(⃝),
"always"(□), "eventually"(♢) and "until"(U). The temporal operators determine
the point in time and therefore the state in which the atomic propositions have
to hold. The logic operators connect and logically manipulate LTL formula
[33].

30 Background

Syntax

To understand LTL, the connection between atomic proposition, formula and
operator has to be stated clear:

• If the atomic proposition p is an element of the set of atomic propositions
APS, then p is a formula φ ;

• If φ and ψ are formulae, then φ ∧ψ, ¬φ , ⃝φ , □φ , ♢φ and φUψ are also
formulae;

Over the time new operators got introduced to the calculus. Table 2.1
explains common temporal as well as logical operators.

Operator Type Syntax Explanation

Temporal ⃝ ("next") φ φ has to hold at the next state;
Temporal □ ("always") φ φ has to hold in all future states;
Temporal ♢ ("eventually") φ φ holds eventually in a future

state;
Temporal φ U ("until") ψ φ has to hold at least until ψ

holds;
Temporal φ R ("release") ψ φ has to hold until and includ-

ing ψ holds; If ψ never holds, φ

has to hold forever;
Temporal φ W ("weak-until") ψ φ has to hold until ψ holds; If

ψ never holds, φ has to hold
forever;

Logical φ ∧ψ φ and ψ have to hold together;
Logical ¬φ if φ does not hold, ¬φ holds;
Logical φ → ψ if φ holds, it implies that ψ will

also hold;
Logical φ ↔ ψ if φ holds, it implies that ψ will

also hold, and vice versa;
Logical true the formula that always holds;
Logical f alse the formula that never holds;

Table 2.1 Temporal and logical operators in LTL

2.7 Temporal Logic 31

Semantics

To evaluate whether a LTL formula is satisfied or not, a structure is needed,
often called an interpretation. The LTL formula alone is not evaluable regarding
it’s satisfiability. We use Kripke structures as interpretation. The LTL formula is
satisfied if a specific sequence of APs hold (evaluate to true). This sequence is a
ω-word on a trace of the Kripke structure. An ω-word is an infinite sequence
of symbols, in our case an infinite sequence of APs. If the formula evaluates
to true, we say: "the ω-word on the interpretation satisfies the formula" [33];
The ω-word is indexed, meaning that the position i is related to an AP at the
ω[i]-word. This is how time can be visualized in a Kripke structure, also the
past [35].

The advantage of LTL is its temporal expressiveness. It is possible to describe
certain criteria for a system that have to hold, which are also called properties.
Properties can be classified. Subsequently, the two most important property
classes of LTL are explained [34] [36].

Safety: "Something bad will not happen." An example for such a property
looks like this: □ ¬(reactor_temp > 5000)

Liveness: "Something good will happen infinitely often." An example for such
a property looks like this: □(start → ♢ end)

2.7.3 Computation Tree Logic

Computation Tree Logic (CTL) is a close relative of the LTL, where both are a
subset of CTL*. CTL is a branching-time logic, it investigates the system model
(Kripke structure) as a computational tree with the initial state as the root node
and all possible transitions of that state and of the subsequent states as branches.
This visualizes all potential paths in a system. CTL offers the possibility to define
properties that have to hold on specific paths of the structure. To enable that,
quantifiers have to be attached to the properties. These quantifiers are A and
E. The A ("All") quantifier defines that the attached property has to hold on
every path of the computational tree from the current state. The E ("Exists")
quantifier determines that there is at least one path in the computational tree
from the current state on which the attached property has to hold [36].

The A quantifier can be seen as integrated by default in the LTL, meaning
that all properties defined in LTL have the A quantifier attached to it. The
E quantifier is not expressible in LTL. It can be seen as a weakening of the

32 Background

property, so that not in every traversal of the Kripke structure it has to hold,
but in at least one [36]. This is important for reactive systems when a model
checking approach is used to verify the entire system. Figure 2.8 shows a simple
example for a reactive system. The system receives in SGetInput some input data
of a user. Depending on the evaluation of the input data, it transits to SGoodInput

or to SBadInput and terminates in SFinished. If we want to verify that at least in
one case the transition to SBadInput is taken, we can not express this with LTL,
because the property has to hold always on all paths. The correct notation in
CTL for this case would be: E(SGetInput ⃝SBadInput)

S
GetInput

S
BadInput

S
GoodInput

S
Finished

S
Finished

Fig. 2.8 Kripke model to explain expressiveness of CTL compared to LTL.

2.8 Related Work

Discussions with colleagues at the DLR regarding Model-Based Development
(MBD) revealed that it is in use in the industry, but primarily in the mission
phases 0, A, B and C. There, MBD methods are used to define mission goals and
requirements for an entire mission, like done with the Virtual Satellite project
[37]. Or the definition of non-behavioural software structures, conducted in
the ATON project [38]. Additional investigations on MBT for OBSW of satellites
showed that some specific components get verified using a MBT approach (like
the AOCS). But the approaches are tailored specifically for the component
and do not match the requirements for our test-framework. Therefore, an
investigation of related industries and industry generic methods in the field of
MBT is done.

2.8 Related Work 33

Nan Li and Jeff Offutt tackled the problem of the transformation of abstract
tests into executable concrete tests. They identified four major issues in the field
of MBT: "(1) building the test model, (2) using test criteria and algorithms to
generate abstract tests from models, (3) transforming abstract tests to concrete
tests and (4) generating test oracles in concrete tests" [39]. To overcome these
problems, they invented STALE. STALE is a framework with an equally named
language. The STALE language creates mappings between the SUT and the
abstract tests. The SUT is expected to be written in an OO language. To achieve
the mapping, the mapping object has a unique name, the type of an element of
the SUT and the name of the element. In case of a mapping to a Class type, the
name of the object has to be given too. In the body of the mapping object, the
test designer is able to set the referenced OO object in an initial state, before the
constraint (test case) that has to hold is written. These test cases are translated
in executable code by the framework. An evaluation of the efficiency of the
framework revealed that 29,6% less time is needed to generate the executable
tests, compared to the manual method [39].

In the paper Integrated model-based approach and test framework for embed-
ded systems the authors present a test-framework to test Resource-Constrained
Real-Time Embedded Systems (RC-RTES). The user can define a non-behavioural
model of the SUT in the UML language, which is transformed in an executable
application for a RC-RTES via a code generator. The UML model is linked to
a test model, which is part of the test framework. The test model is called
proxy test model and can be used to define test cases with input and expected
output for specific components of the UML model. The test input data is trans-
formed into executable stimuli and transmitted via a Target Debugger to the
location of the implemented application on the RC-RTES. In return, the result
of the execution is transmitted back to the Target Debugger and resolved by
the test-framework to compare it to the expected output. The verdict of that
comparison can then be investigated in another UML diagram [40].

Shaoying Liu’s paper describes the challenges of Automatic Specification-
Based Testing (ASBT) [41]. Specification-Based Testing (SBT) is the creation of
test cases with the specification as the sole input. The structure or behaviour
of the SUT remains unused. This method of test case creation is often also
referred as "black-box testing" or "model-based testing". ASBT is basically the
same, but every task in the entire testing process ought to be automatized.

The specification language to describe the specifications can be either
formal or informal. Informal languages are hard to use for ASBT due to their
ambiguity and the lack of a well-defined structure. Formal languages are more

34 Background

suitable for ASBT purposes, as they can be created with a strongly structured
domain emphasis. That facilitates the extraction of information, which is
necessary for the latter steps. Additionally, interface gaps have to be considered
between the specification language and the test execution platform as well as
the SUT [41].

The method for generating adequate test sets is difficult to implement.
Coverage criteria or termination criteria can be used to determine the test case
sets. But the obtaining of the required information that terminates the test case
generation process is difficult. Model checking approaches gained attention
over the last years [41].

The translation between the abstract data and the concrete data is
challenging. Mostly, the abstract test cases of the specification can not be
directly used in a test execution platform. They need to be translated into
concrete test cases. The same counts for the expected abstract and concrete
test output (oracles) [41].

Important to bear in mind when analysing test results to determine bugs
is, that the oracles need to be at least defined for any output. To determine the
correctness of an output, the output must be traceable, otherwise there will
be always a bug detection. Only defined oracles are outputs with "don’t cares"
[41].

Debugging is the localisation of a bug in the software. The challenge is to
trace a bug back from the SUT to the specification. When testing, the SUT is
traversed in paths. In case of a bug it is needed to determine the exact state in
which the bug occurred and not only the initial and the terminal state of the
traversed path [41].

Integration testing is a huge process in overall testing. In ASBT a trade-off
between the completeness of the integration test and the provided information
in the specification has to be accepted. This is due to the fact that not every
test case produces a traceable output. One solution is to add extra pre- and
post-conditions in the specification for the execution of a test case, but this
increases the workload on the specification writer. Also the incompleteness of
testing has to be more or less accepted in ASBT, as the tests always traverse
paths from a specific initial state to a terminal state. Testing on all initial states
is almost impossible for huge SUTs [41].

Chapter 3

Project’s Ethic Responsibility

The chapter introduces to the engineering ethics with the famous O-ring failure,
which led to the Space Shuttle Challenger disaster. Following, the Code of Ethics
for Engineers with its Fundamental Canons is elaborated and subsequently applied
to the test-framework and its development.

3.1 Space Shuttle Challenger Disaster

There are several historical examples in which wilful ignorance of ethical
standards lead to a catastrophic outcome, sometimes even lethal for humans.
One of the most famous ones is the malfunction of an O-ring sealing, which
lead to the Space Shuttle Challenger disaster in 1986.

The catastrophe occurred due to a fissure of at least one of the O-ring seals
of the solid rocket boosters attached to the space shuttle. These sealings were
obstructed between the four segments of the booster. The low temperatures
of the night before the launch decreased the flexibility of the sealing material,
leading to a brittle failure, which couldn’t stand the sudden calefaction while
the launch. The hot fuel-gas leaked out of the booster and eventually also
got inflamed by the nozzle, although this could not be clarified entirely. The
fuel-gas blow-out had contact to the adjacent external tank of the space shuttle,
leading to a structural failure. After 73 seconds, the entire spacecraft broke
apart due to aerodynamic forces, killing all seven crew members [42, p: 339-ff].

The subsequent investigation of the accident, regarding the cause for the
disaster, was conducted by the Rogers Commission [43]. The result of the inves-
tigation of the commission was, that the design of the O-ring was insufficient,
considering NASA’s requirements for low temperature environments. Roger
Boisjoly and other engineers of Morton Thiokol (manufacturer of the boosters)
were aware of this insufficiency, and informed their management in the night

36 Project’s Ethic Responsibility

before the launch. The management of Morton Thiokol briefed the NASA and
quickly established the Seal Task Team to investigate the risk. Though, the
managers of Morton Thiokol under managed the Seal Task Team and overruled
the recommendation of Roger Boisjoly not to launch the space shuttle. Against
all warnings, the NASA accepted the recommendation of Morton Thiokol to
launch and initiated the catastrophe [42, p: 339-ff].

Roger Boisjoly tried to follow the first Fundamental Canon of the Code of
Ethics for Engineers, but got overruled by his management. The managers
did not want to delay the start, due to financial and reputation concerns. The
NASA was aware of a potential risk and agreed on it. In the end, the Rogers
Commission blamed the NASA as the main culprit for the disaster [43]. If the
management of the NASA or Morton Thiokol would have obeyed the Code of
Ethics for Engineers, seven lives and billions of US Dollars might have been
saved.

3.2 Code of Ethics for Engineers

The Code of Ethics for Engineers is one of many existing ethical guidelines
(compare: IEEE Code of Ethics [45]), established by the National Society of
Professional Engineers [44]. The code consists of three basic sections: the
Fundamental Canons, the Rules of Practice and the Professional Obligations.
The goal of the codex is to provide basic rules with explanatory use-cases, to
help engineers taking ethically as well as morally correct decisions in average
and exceptional situations.

The Fundamental Canons

Obeying the Fundamental Canons should help to remain in a state of ethical
correctness. They serve as the basis for the entire codex and have to be taken
as is. The Fundamental Canons are [44]:

1. "Hold paramount the safety, health, and welfare of the public."

2. "Perform services only in areas of their competence."

3. "Issue public statements only in an objective and truthful manner."

4. "Act for each employer or client as faithful agents of trustees."

5. "Avoid deceptive acts."

3.3 Ethical Aspects of the Project 37

6. "Conduct themselves honourably. responsibly, ethically, and lawfully so as to
enhance the honour, reputation, and usefulness of the profession."

The Rules of Practice

This section of the Code of Ethics for Engineers provides the explanation of
the Fundamental Canons. The single cannons are enriched by potential scenar-
ios which could occur in an engineers life. Following, an example scenario of
the Rules of Practice is cited, which targets the Fundamental Canon number
one:

"If engineers’ judgement is overruled under circumstances that endanger life or
property, they shall notify their employer or client and such other authority as
may be appropriate." [44]

The Professional Obligations

Compared to the Fundamental Canons, which can be seen as strict rules,
the obligations cover the moral aspect of the codex, with the focus on social in-
teractions. That does not mean the Professional Obligations are less important,
but breaking those obligations is in general not as harmful as breaking one of
the canons. An example for an obligation is:

"Engineers shall at all times strive to serve the public interest." [44]

3.3 Ethical Aspects of the Project

Under consideration of the Fundamental Canons, the developer of the
system has to bear the following ethical rules particularly in mind:

• Hold paramount the safety: The test-framework evaluates the correct
functionality of parts of the OBSW, which later will run on the specific
hardware. In case of a flawed implementation of the test-framework,
test results might not forecast the actual OBSW behaviour. If this is the
case, hardware in the loop tests could lead to a severe damage of the
hardware or even worse of the operator. Every user has to be aware that
there might be an error in the test-framework, but the developer has the
duty to reduce this risk as much as possible. Therefore, the conduction
of meticulous and precise actions during the development of the design

38 Project’s Ethic Responsibility

and the implementation are of importance. Furthermore, documentations
and operational manuals have to be provided to allow other engineers to
detect potential risks and to inform the test operator about the capabilities
and the handling of the test-framework.

• Perform services only in the area of your competences: Here, the
admission of personal knowledge limitations are in the focus. The testing
of software grew strongly over the last years. New technologies like
symbolic execution or model checking became usable within this field.
Additionally, the creation of an automatic testing platform on the basis
of DSLs is not trivial. The degree project takes place in the aerospace
environment, which has its own rules and systems. For field-external
developers, they are hard to catch on, especially in the short amount
of time provided. The developer has to overcome theses barriers. The
solution is the discussion with experts in the various fields, to profit of
their knowledge. Being aware that one’s personal knowledge is limited,
seeking for help is the way to hold that Fundamental Canon.

• Issue public statements only in an objective and truthful manner:
This canon is important for all presentations as well as documents, like
this report, developed within the project. This counts for internal as well
as external documents. Telling the untruth creates risks for the colleges,
for the employing company and for oneself. This in combination with
objectiveness, is one of the bases for a successful project, which can be
used to develop further.

• Conduct themselves honourable and ethically to enhance the repu-
tation of the profession: The test-framework is planned to be used.
Therefore, it’s quality has to be sufficient and it has to be created under
the consideration of ethical aspects. This is important, because the DLR
as well as the colleges are inferred by the result of the project. In case the
ethic code is not obeyed and externals are aware of that, the reputation
of the colleges and the DLR might suffer. Hence, the goal is to increase
their reputation by the delivery of a honourable result.

Ethical codex conformity ensures a long-term success everyone can benefit
from. Sometimes these ethical rules seem to slow you down in your personal
development, but this impression is wrong. They actually enforce a sustain-
able and continuous development, which in the long run helps you to reach
your desired goals faster. Ethic codes are not an invention of engineers, they

3.3 Ethical Aspects of the Project 39

evolved in the field of social science and simply got adapted to the engineering
profession. There is an option to replace all the Fundamental Canons by one
and still fulfil the Code of Ethics for Engineers or any other ethical codex: Live
the Categorical Imperative.

Chapter 4

Analysis and Requirements

This chapter displays three types of requirements which determine the final
design of the test-framework. The general requirements focus on the handling
of the test-framework by the domain expert and the programmer. The protocol
requirements are gained via an analysis of the Packet Utilization Standard. They
consist of the packet structure requirements and the behavioural expressiveness
requirements. The third are additional temporal requirements which target specific
temporal behaviour.

4.1 General Requirements

The general requirements are based on the experience of the employees at
the Institute for Software and Simulation of the DLR, regarding the collabora-
tion with domain experts of various scientific fields. The general requirements
are denoted in the subsequent Table 4.1.

Enum Requirement Motivation

1. Domain expert as test designer The domain expert is the
test designer, who is using
his or her experience and
domain knowledge to de-
fine the tests.

42 Analysis and Requirements

2. Simple to use tool Parts of the framework
must be operated by non-
programmers, which are
not used to IDEs like
Eclipse. Keeping the tool
facile to utilise reduces the
threat of rejection.

3. Steep learning curve via repetition Repetitive patterns in the
design of the tool help to
accelerate the learning how
to operate the same.

4. Date-centric design The DDL describes the struc-
ture and the interfaces with
their parameters. This must
be pursued by the test-
framework.

5. As automatic as possible The more the framework is
automated, the less work
will remain for the program-
mers and the domain ex-
perts. Also the threat of
oversight is reduced.

6. Enable test-driven development Tests have to be written be-
fore the OBSW source code.

7. All outputs in XML The outputs have to be in
XML format to be able to au-
tomatically generate a test
documentation in a stan-
dardized way, using Maven
or other tools.

8. Logs and reports Logs display all TC and TM
transmissions from and to
the OBSW. Reports denote
the result of a test case.

4.2 Protocol Requirements 43

9. Exploit re-usability Model components should
be re-usable in the model
as well as in other mis-
sion models to reduce re-
dundancy.

10. Functional testing The test characteristic of
the test-framework is to
test the functionality of the
OBSW.

11. Manual test creation The domain expert has to
be able to define test cases
manually, based on his or
her domain specific experi-
ence.

Table 4.1 General requirements of the test-framework

4.2 Protocol Requirements

The protocol requirements are elaborated by an investigation of the PUS.
In focus is the TC/TM packet structure and the expected specific behaviour
determined by the standard. It is not requested to fully implement the standard,
but core parts of it. This is due to the fact that the standard always gets tailored
according to the mission requirements and therefore varies [17].

4.2.1 Package Structure

Figures 4.1 and 4.2 visualize the structure of the packets defined in PUS.
In the test-framework, TC and TM packages can have the same layout, as

most of the packet type specific flags refer to a specific behaviour which will
not be implemented. The resulting structure of the packets is visible in Figure
4.3. The structure of the packets has been simplified. Beginning with the Packet
Header, the Type denotes whether it is a TC or a TM packet (TC = 1). The
APID remains as in the PUS packet structures, but the SERID and the SUBSERID,
which are normally located in the Packet Data Field, are extracted and added to
the Packet Header. The Packet Sequence Count remains, and helps to identify the

44 Analysis and Requirements

The structures of the packets

Packet Header (48 Bits) Packet Data Field (variable)

Packet ID
Packet Sequence

Control
Packet
Length

Data Field
Header

(Optional)

Source
Data

Spare
(Optional)

Packet
Error

Control

Version
Number
(=0)

Type
(=0)

Data
Field
Header
Flag

Applica
tion

Process
ID

Grouping
Flags

Source
Sequence
Count

3 1 1 11 2 14

16 16 16 Variable Variable Variable 16

Telemetry packet

Packet Header (48 Bits) Packet Data Field (variable)

Packet ID
Packet Sequence

Control
Packet
Length

Data Field
Header

(Optional)

Applica
tion
Data

Spare
Packet
Error
Control

Version
Number
(=0)

Type
(=1)

Data
Field
Header
Flag

Applica
tion

Process
ID

Sequenc
e

Flags

Sequence
Count

3 1 1 11 2 14

16 16 16 Variable Variable Variable 16

Telecommand packet

CCSDS
Secondary

Header
Flag

TC Packet
PUS Version

Number
Ack

Service
Type

Service
Subtype

Source ID
(Optional)

Spare
(Optional)

Boolean (1 Bit)
Enumerated

(3 Bits)
Enumerated

(4 Bits)
Enumerated

(8 Bits)
Enumerated

(8 Bits)
Enumerated

(n Bits)
Fixed BitString

(n Bits)

Telecommand data field header

Spare

TM Source
Packet PUS

Version
Number

Spare
Service

Type
Service
Subtype

Packet
Subcounter
(Optional)

Destination ID
(Optional)

Time
(Optional)

Spare
(Optional)

Fixed
BitString

(1 Bit)

Enumerated
(3 Bits)

Fixed
BitString
(4 Bits)

Enumerated
(8 Bits)

Enumerated
(8 Bits)

Unsigned
Integer
(8 Bits)

Enumerated
Absolute

Time

Fixed
Bitstring
(n Bits)

Telemetry data field header

Fig. 4.1 Telecommand packet structure

The structures of the packets

Packet Header (48 Bits) Packet Data Field (variable)

Packet ID
Packet Sequence

Control
Packet
Length

Data Field
Header

(Optional)

Source
Data

Spare
(Optional)

Packet
Error

Control

Version
Number
(=0)

Type
(=0)

Data
Field
Header
Flag

Applica
tion

Process
ID

Grouping
Flags

Source
Sequence
Count

3 1 1 11 2 14

16 16 16 Variable Variable Variable 16

Telemetry packet

Packet Header (48 Bits) Packet Data Field (variable)

Packet ID
Packet Sequence

Control
Packet
Length

Data Field
Header

(Optional)

Applica
tion
Data

Spare
Packet
Error
Control

Version
Number
(=0)

Type
(=1)

Data
Field
Header
Flag

Applica
tion

Process
ID

Sequenc
e

Flags

Sequence
Count

3 1 1 11 2 14

16 16 16 Variable Variable Variable 16

Telecommand packet

CCSDS
Secondary

Header
Flag

TC Packet
PUS Version

Number
Ack

Service
Type

Service
Subtype

Source ID
(Optional)

Spare
(Optional)

Boolean (1 Bit)
Enumerated

(3 Bits)
Enumerated

(4 Bits)
Enumerated

(8 Bits)
Enumerated

(8 Bits)
Enumerated

(n Bits)
Fixed BitString

(n Bits)

Telecommand data field header

Spare

TM Source
Packet PUS

Version
Number

Spare
Service

Type
Service
Subtype

Packet
Subcounter
(Optional)

Destination ID
(Optional)

Time
(Optional)

Spare
(Optional)

Fixed
BitString

(1 Bit)

Enumerated
(3 Bits)

Fixed
BitString
(4 Bits)

Enumerated
(8 Bits)

Enumerated
(8 Bits)

Unsigned
Integer
(8 Bits)

Enumerated
Absolute

Time

Fixed
Bitstring
(n Bits)

Telemetry data field header
Fig. 4.2 Telemetry packet structure

packet, to enable the comparison with the Oracle packets. The Packet Length
determines the total length of the Application/Source Data of the Packet Data
Field.

The structures of the packets

Packet Header (57 Bits)
Packet Data Field

(variable)

Packet ID
Sequenc

e
Count

Packe
t

Lengt
h

Application / Source Data

Type APID SERID
SUB
SERID

8 8 8 8 16 16 variable

Test-Framework packet

Fig. 4.3 Packet structure of the TC/TM packet of the test-framework

4.2.2 Behavioural Expressiveness Requirements

TM verification
The expected basic scenario is that the test-framework sends a TC packet to
the OBSW and expects a TM packet in return. The returning TM packets is

4.2 Protocol Requirements 45

compared to an expected output, the Oracle packet.

TC/TM sequences
TM verifications for each TC are not necessary. In PUS there is also the possibil-
ity to send a sequence of TC packets to the satellite, expecting a TM in return
after the execution of the entire sequence. This is very important in case of
an error event, when ground tries to find a workaround sending a sequence
of low-level commands, like: "switch relay" or "load register". In addition, a
sequence of TM packets, created by the OBSW in return, has to be possible too.

Procedures
Testing is incomplete verification and can be seen as traversing paths through
the OBSW/SUT. The test designer has to be able to concatenate multiple states
to build a chain of states and therefore a trace in the OBSW, represented as a
Kripke structure. Procedures are concatenated TM verifications or/and TC/TM
sequences.

Periodic TM packets
The PUS defines two types of TM packet transmissions, housekeeping and
event-based. Event-based are aperiodic transmission of TM packets, triggered
by events in the system (for example by an arriving TC packet). Housekeep-
ing packets are periodic TM packets, that are continuously transmitted. The
event-based transmissions are covered by the prior mentioned TM verification.
The domain expert has to be able to define the housekeeping packets and their
expected interval arrival time.

Missing TM packets
Due to latency reasons of the link between the base station and the orbiter, the
tracing of missing packets is shifted from the transport layer to the application
layer (there is no Transmission Control Protocol used for the communication).
The in PUS defined Sequence Count is used to identify missing packets. The
test-framework has to wait for a configurable amount of time for all TM packets
to arrive and denote missing packets in a report.

Table 4.2 summarizes the gained requirements of the behavioural aspect of the
PUS for the test-framework.

46 Analysis and Requirements

Enum Expected behaviour Explanation

1. TM verification There must be an option to define ex-
pected TM packets in response to cer-
tain TC packets.

2. TC/TM sequences Concatenations of TC/TM packets
must be possible.

3. Procedures Concatenations of TM verifications
and/or TC/TM sequences must be pos-
sible.

4. Periodic TM packets Periodic housekeeping TM packets
have to be definable.

5. Missing TM packets Missing TM packets have to be re-
ported.

Table 4.2 Expected behavioural expressiveness of the test-framework

4.3 Additional Temporal Requirements

The additional temporal requirements target basic testing scenarios which
are not covered by the PUS.

Enum Temporal behaviour Explanation

1. Always The tester must be allowed to define
a TM packet that always arrives as
defined.

2. Never The test designer must be able to de-
fine TM packets which should never
arrive.

3. Until The test designer must be allowed to
define a property that has to hold until
a certain TM packet arrives (state is
reached).

Table 4.3 Additional temporal requirements of the test-framework

Chapter 5

Design

In this chapter the design of the test-framework, based on the defined re-
quirements of the Analysis and Requirements Chapter is explained. The design
elaboration follows a top-down approach. In the first section, generic top-level
design considerations are elaborated. Based on that, the model-based taxonomy
is applied, to determine the technical capabilities of the components of the test-
framework. The subsequent section uses the output of the prior ones to explain the
actual top-level design with its three main parts. Finally, each part is detailed in a
distinct section.

5.1 Generic Top-Level Design Considerations

The generic top-level design considerations section targets universal design
questions which are of importance for any test-framework. The test dimensions
are defined and the used approach for the test-framework elaborated. Both
considerations are based on the prior in the Analysis and Requirements Chapter
(4) defined requirements.

5.1.1 Test Dimensions

The test dimensions cluster decisions on test goals, test scope and test
abstraction. They are visualized in a coordinate system in Figure 5.1. The
outcome of the application of the requirements on this coordinate system serves
as a first basis for the test-framework.

48 Design

Nonfunctional

Structural

Functional

Abstract Nonabstract

Component

Integration

System

Static

Dynamic

T
e
s
t

g
o
a
l

Test abstraction

Test scope

Fig. 5.1 Test dimensions. Source: [46, p:5]

Test Goal

The test goals depend on how the tests are conducted. In the Background
Chapter, testing is defined as a dynamic process, excluding static means like
code reviews (2.2). Therefore, our test goals are the ones achievable by dynamic
verification.

Structural tests cover the structure of the SUT. They are also called white
box test or glass box tests. To derive test cases for such a test, insights on the
structure of the SUT must be given [46, p:6]. As the test-framework has to
enable test-driven development, the SUT is coded after the tests have been
written. Therefore, a direct investigation of the structure of the SUT is not
possible. But the model defined with the DDL describes the structure of the
final SUT with sufficient detail to investigate the data-flow of the packets in the
structure. Hence, structural tests are implemented and defined as the first test
goal.

The second test goal is based on the requirements of the test-framework,
which demand functional tests. This is in our case the correct reaction of the
OBSW in the form of expected TM packets on stimuli in the form of specific TC
packets. Non-functional goals like reliability, scalability or maintainability are
not covered by the requirements and thus not a test goal of the test-framework.

5.1 Generic Top-Level Design Considerations 49

Test Scope

The test scope defines the granularity of the tests, reflected in the granularity
of the SUT [46, p:6]. The test scope is also called the test level. In the coordinate
system the granularity decreases when veering away from the center. To define
the test scope, the available granularity has to be considered.

The component scope is the granularity which is necessary for unit tests
[46, p:6]. The model of the system, described with the DDL, does not have
that granularity. And, as already mentioned, the SUT is at this stage not yet
available. Therefore, components are out of the test scope.

The integration scope considers subsystems and the system scope the
entire system [46, p:6]. For these test scopes, the granularity of the model is
sufficient. They are the target scopes of the test-framework.

There are additional higher scopes like the regression or the acceptance
scope. In the space industry, these test scopes are covered by the Acceptance
Review and the Operational Readiness Review milestones in the mission phase
D, as explained in the Introduction Chapter (1.2).

Test Abstraction

The test abstraction defines the gap between the final executable test and
the test specification. The higher the abstraction, the higher the readability and
the re-usability of a test specification. But the test specification must provide
enough data to be able to derive the executable test cases of it [46, p:7].

In the test abstraction dimension, the requirements regarding the steep
learning curve, the simplicity of the usage and the domain expert as the test
designer are in focus. The abstraction must be high enough to reach such
requirements and low enough to derive the executable test cases of the test
specifications. The exact position on the coordinate system is blurry, but the
goal is to push it as far as possible towards the center, to keep it as abstract as
possible.

5.1.2 Test-framework Approach

The test-framework has to dynamically verify the behaviour of the SUT
regarding it’s expected behaviour by selecting test cases of the infinite test
case domain. Test-driven development has to be enabled, by a specification-
based approach of the test case generation, conducted by the domain expert.
Additionally, the framework ought to be as automatic as possible and re-usability
is in the focus. The produced output has to be in XML format, which has to hold

50 Design

for the logs as well as for the reports. Based on these requirements, the approach
for the test-framework is selected, which are detailed in a distinct section in
the Background Chapter (2.3). Pure manual testing is not investigated, as high
automatism is requested.

For the rest of the document SUT and OBSW can be seen as equivalent ex-
pressions for the same thing. They are interchangeable, whereas the expression
OBSW ought to direct the attention of the reader in the direction: software
construct for satellites. And the expression SUT should help to identify it as an
appended part of the test-framework.

Capture and Replay

The capture and reply technology allows a good comparison between differ-
ent versions of the SUT, backtracking failures to a specific change in the SUT.
But it is also very sensitive on API changes. This can lead to a huge amount of in-
correct failure detections between different OBSW versions. The encapsulation
of the SUT requires OBSW while writing the tests, which is by the requirements
(enable test-driven development) not given. These counterarguments prohibit
an implementation following capture and replay.

Scripts

Scripts are simple to implement and help to automatize the testing process.
But the test designer needs a deep understanding of the OBSW, which is not
given, as the test designer is the domain expert. Problematic is also the amount
of test scripts which would be necessary to test such a huge construct like an
OBSW for satellites. Additionally, the SUT must be given when writing the
test to incorporate parts of it in the scripts, which is again not the case. These
reasons forbid a concept based on scripts for the test-framework.

Data-driven

The data-driven approach with scripts enables better re-usability due to the
data separation, compared to basic scripts. Whereas the implementation is as
simple as in basic scripts. But the redundancy is still relatively high, because
the test scripts also contain the functional implementation of the SUT, which is
not available. The result of this investigation is that the data-driven approach
with scripts can not be exploited for the test-framework.

5.1 Generic Top-Level Design Considerations 51

Keyword-driven

The keyword-driven approach is based on functional decomposition by the
insertion of an abstraction layer. The used action words result in an increased
readability and understandability, which allows also non-programmers to design
test cases. The action words reduce the redundancy compared to a data-driven
approach with scripts. Contradictory is the expected technical expertise of
the test case designer, which is in general a negative aspect. But in our case
the domain expert has this knowledge, which transforms this disadvantage
to an advantage. A real disadvantage is the increased complexity of such a
framework and the inherent increased required management support. Also the
coverage criteria has to be developed manually, which is costly.

Model-based

The model-based approach belongs to the keyword-driven approach family.
It owns the same advantages and disadvantages, with one major difference.
The coverage requirements are easier to implement and allow an automatic
evaluation. This increases the overall coverage over time of the tests. A coverage
criteria determines the point in time for the test case generation termination.
This is needed when automatic test case generation is requested. Therefore,
the model-based approach is also referred as an "intelligent framework". A
disadvantage of the model-based approach which often leads to a rejection,
is the necessity of a model of the SUT. But in our case, the model is already
provided by an instantiation of the DDL. When balancing the advantages and
the disadvantages of all approaches in context to the requirements, a model-
based approach is the most promising solution.

5.1.3 Different Model-based Approaches

In the Background Chapter, the four major MBT approaches have been
elaborated (2.4.1). Subsequently, these insights are applied to the requirements.

The generation of test data from a domain model approach is only walk-
ing half the way, as the correctness of the tests cannot be evaluated automati-
cally due to the lack of oracles. Additionally, it is for our case not possible to
test all possible input data, as this would create too many test cases. And the
focus is clearly on specific behaviour of the OBSW, related to specific input.

The generation of test cases from an environment model approach
would solve the problem of too many implausible test input data and therefore
test cases, as the data is obtained by an environment model. But currently,

52 Design

there is no environment model available and the problem of the lacking oracles
also remains here.

The generation of test cases with oracles from a behaviour model ap-
proach allows the creation of specific input data and correlating oracles of a
behavioural model. The provided system model by the DDL is a non-behavioural
model. To be able to use this approach an additional behaviour model or a mod-
ification of the system model is requested. A modification of the system model
is not possible, as the DDL has to remain fully functional, also when standing
alone. Simply copying the DDL and building up on it to create an implementa-
tion which allows the definition of behaviour is also not recommended, as two
modelling softwares of one system would have to be maintained in parallel. An
additional problem is that modelling behaviour is difficult for a domain expert
with insufficient programming skills. Basic constructs in programs have to be
known. Learning them just to be able to operate the test-framework is against
the requirements of the steep learning curve and the "simple to use" paradigm.

The generation of test scripts from abstract tests approach targets the
creation of executable test cases from an abstract test case definition by the
usage of the system model as interface and structure information source. This
is matching our requirements. The DDL describes the routing behaviour and
the data structures of the SUT. Using only this as input to generate test cases
would offer a limited test coverage, capping only the structural test goal. But
the entire functionality of the OBSW ought to be tested too. Therefore an
additional test model has to be created which allows a precise definition of
input and expected output data (oracles) in the form of abstract test cases.

5.2 Application of the MBT Taxonomy

To derive the functionality of the components of the test-framework, the
MBT taxonomy is used. The taxonomy with various options is elaborated in the
Background Chapter (2.4.2).

5.2.1 Model Class

MBT Basis

The "generation of test scripts from abstract tests" approach is selected for
the test-framework. The system model, instantiated with the DDL, provides
enough information for structural tests, but not enough for functional tests.
Hence, an additional test model is required for the description of the expected

5.2 Application of the MBT Taxonomy 53

behaviour of the OBSW. To exploit the re-usability, which is a defined require-
ment, the two models are linked. This allows the test model to reuse data
structures and interfaces of the system model. Therefore, a coupled system
and test model is selected as testing basis.

Properties

The properties are based on the same requirements as the prior explained
test abstraction. The system model and the test model have to follow an "simple
to use" paradigm with a steep learning curve with the domain expert as the
main user. Therefore, the layout of the modelling language to describe the
tests has to be traceable and somehow related to human language. The gap
between the existing DDL layout and the test modelling language should be
kept as small as possible to steepen the learning curve. The handling of the
framework by the domain expert has to be easy and self explaining.

5.2.2 Test Generation Class

Test Selection Criteria

Remember that when the test cases are generated only the coupled system
and test model is available, not the SUT. A mutation of the system model is not
recommended because of the lack of sufficient behavioural information for the
functionality testing. Mutating the test model to determine input equivalence
classes would be feasible, but the input data is infinite and a sufficient test
coverage criteria hard to reach. Additionally, the later evaluation on the
correctness of the test case’s output would be an enormous manual task for
the domain expert, due to the shire amount of test cases. The usage of data
coverage to generate tests creates too many test cases, also if the input data is
limited. And the later evaluation, as prior described in test model mutation, is
equivalently arduous. The requirements coverage option is too informal and is
the current method to create integration and system tests for OBSW. The task
of the test-framework is to overcome this knowledge exchange process. Also
random and stochastic test case generation is not applicable due to the infinite
potential input data and the difficulties to determine a sufficient coverage.

Therefore, the test-framework follows a mixture of two options for the
test selection criteria: the test case specification and the fault-based. The
domain expert is the designer of abstract test cases. His or her knowledge
on the expected behaviour of the system can be exploited by the test case

54 Design

specification option. Additionally, his or her insights on potential faults can be
used for the fault-based option.

Problematic is the coverage criteria, as test case specification and fault-
based do not have a measurable coverage criteria. The test coverage is reached
when the domain expert states the amount of tests as sufficient. To help him
or her not to oversee test cases, an additional structural model coverage is
used. This is done by the evaluation on the data-flow in the system model. The
domain expert receives a warning in case not all possible data-flow transitions
of the system model are covered by at least one test case.

Test Generation Technology

A manual generation of the test cases is not conformable with the required
automatism. Additionally, this is not closing the gap between the programmer
and the domain expert, as the programmer is the one who would have to
write the executable test cases, based on the specification of the domain expert.
This is again the current knowledge exchange process. Additionally, a random
generation and a graph search algorithm is not combinable with the defined
test selection criteria. Model checkers and theorem provers are good means for
the test case generation in case there is a huge amount of potential test input
data. In the case of this framework, the input is already determined precisely
by the domain expert. This makes the usage of such technologies senseless.

The for this project selected test generation technology is an automatic
offline approach. All abstract test cases in the test model are translated into
executable test cases. These test cases cover the functional tests. Invisible for
the domain expert, structural test cases are attached to every of him or her
defined abstract test case. The generation of the test cases is conducted before
the test run begins and is therefore offline.

Result of the Generation

The output of the test generator of this project is executable code, as the
goal is to transfer the knowledge over the gap between the domain expert to
the programmer with the help of the models.

5.2 Application of the MBT Taxonomy 55

5.2.3 Test Execution Class

Execution Options

The primary execution option is the SiL, because this is the stage in which
the functionality of the OBSW can be tested for the first time in the develop-
ment process of the satellite. But also PiL and the HiL execution options are
possible. To enable that, an interface between the computer on which the
test-framework is executed and the on-board computer of the satellite has to
be created. This is clearly in the focus of the employees at the DLR for the
test-framework, but exceeds the extend of this thesis. Vehicle tests are generally
not conducted in satellite development, especially not in scientific satellite
development. Therefore, this stage is left out.

The test-framework is basically reactive, but with certain limitations. Some
"waiting" test cases get executed if structural tests of prior executed test cases
are successful. But the evaluation of the functional tests has no impact on
the "waiting" test case. That means if the functional tests of a test case fail,
the structural tests of a test case pass and another test case is waiting on the
test case, the waiting test case will be executed. This is important to reduce
the pressure on the test-framework by forcing the programmer to check every
functional test case evaluation manually. It is necessary because the system or
the test model of the domain expert might have errors, which could remain
undetected when the test-framework automatically states test cases as passed.

Also the generation of logs is implemented. There are two types of logs. A
transmission log, in which all transmitted TC and TM packets are chronological
listed. And an unresolved packet transmission log, which protocols arriving
TM packets form the OBSW at the test-framework which are not expected or
unknown.

5.2.4 Test Evaluation Class

Specification

The test-framework uses two options of this category. The reference signal-
based specification is used to directly compare the parameters of the packets
with the specified oracles. This is used because the derivable features of the TM
packets of the SUT are not capable to evaluate the correctness of the behaviour
of the OBSW. And the test evaluation definition option is applied to determine
the specific oracle and the time when to evaluate it against the SUT’s output.

56 Design

Technology

The evaluation of the test cases is conducted in fully automatic manner,
creating reports in XML. This is possible because the used test generation
technology is automatic, which also covers the generation of the test oracles.
These test oracles are needed for the evaluation at this stage.

Additionally, the evaluation process is conducted in an online fashion. This
is important as the tests might run for hours and the programmer needs an
immediate feedback on the correctness of the OBSW. The worst case scenario
would be an offline evaluation of a long time test with the result that in the first
seconds a simple OBSW failure destroyed the entire test run’s expressiveness.
In case of an offline approach, this would be only visible in the final report.

5.3 Top-level Design

In this section the top-level design of the test-framework is elaborated and
the workflow with the test-framework explained. Figure 5.2 displays the design
overview of the test-framework. It consists of three main components: the
Data-Description Language (DDL), the Data-Testing Language (DTL) and the Test
Execution & Evaluation Platform (TEEP).

DDL

TEEP

ReportsLogs

Domain
Knowledge

Satellite &
Programming

Knowledge

DTL

OBSW
(SUT)

Legend Data-flow

1. OBSW & CDH
2. CDH
3. AST of System Model
4. Coverage Report
5. Test cases + Oracles
6. TM & TC Packets
7. Test Output Files

User Actions

8. Has Domain Knowledge
9. Defines System Model
10. Defines Test Model
11. Gets Coverage Report
12. Controls TEEP
13. Programs OBSW
14. Has Satellite &
 Programming Knowledge
15. Gets Reports & Logs

3.

5.

6.

7.

8.

9.

11.
12.

13.

14.

Coverage
Report

4.10.

Test-Framework
Components

Reports
& Logs

Domain Expert

Programmer

1.

15.

2.

Fig. 5.2 Overview of the test-framework design and workflow.

5.3 Top-level Design 57

5.3.1 Data Description Language

The DDL is a modelling language to define and instantiate the system model.
The domain expert, with his or her specific domain knowledge (8.), uses the
DDL in a specific editor to define the CDH subsystem structure and the TC &
TM packets (9.) of the OBSW. One output of the DDL are code stubs for the
OBSW, representing the CDH subsystem and the structure of the OBSW (1.).
Additionally, the CDH is provided for the TEEP (2.). The third output is the
AST of the instantiated model (3.). The layout of the DDL is following the
defined properties of the MBT taxonomy’s Model Class. The same counts for
the subsequent DTL.

5.3.2 Data Testing Language

The DTL is also a modelling language, used to define the test model. The
AST of the system model is accessible within the editor of the DTL. This is the
linking between the two models and therefore the coupled system and test
model. The domain expert initializes the in the DDL defined TC & TM packet’s
parameters, to create the Test TeleCommand (TTC) and the Oracle packets (10.).
Subsequently the test cases get defined, which are potential scenarios for the
domain expert’s component (10.). The test case definition, as well as the TTC
and Oracle packet initialization are based on the specific insight of the domain
expert and follow the test case specification and fault-based criteria of the
MBT taxonomy’s Test Generation Class. Feedback on the completeness of the
test suite is provided by the coverage report, which determines the structural
coverage of the system model (4. & 11.). When the coverage of the test suite
is sufficient, depending on the coverage report and the opinion of the domain
expert, his or her work is done. A code generator automatically translates the
test cases with the TTC and the Oracle packets into executable C++ classes and
integrates them in the Test Execution and Evaluation platform (5.). Additional
structural tests are integrated, hidden from the domain experts eye. This covers
the rest of the Test Generation Class categories.

5.3.3 Test Execution & Evaluation Platform

The TEEP is used to execute and evaluate the test cases regarding the
expected behaviour and the actual behaviour of the attached OBSW (SiL). It
covers the Test Execution and Evaluation Classes of the MBT taxonomy. The
programmer is in control of the TEEP (12.) and programs the OBSW (13.),
based on his or her satellite OBSW and programming knowledge (14.). The

58 Design

OBSW receives stimuli in the form of TTC packets and returns TM packets
to the TEEP (6.). The order of the stimuli and the Oracle packets, which are
compared to the arriving TM packets, follow the generated test case scenario
of the domain expert. The TEEP creates log entries of the transmission of the
packets and report entries with the test evaluation results (7.). The reports and
logs are primarily provided for the programmer (15.). In case the programmer
discovers a miss-design by the domain expert, he or she is able to discuss this
with him or her on the basis of the system and test model, the reports and the
logs.

5.4 Data Description Language

Based on a discussion with this project’s supervisor at the DLR, regarding
the current structure of the DDL, the decision was made to completely redesign
and reimplement it. The current DDL is application-specific and the redesigned
and reimplemented is PUS-conform.

5.4.1 Application-specific DDL

The application-specific DDL targets specific applications in the OBSW. The
code generator is adapted precisely to the requirements of the application. This
allows a more sophisticated generation of code of the model.

The scoping of this DDL is similar to the one required in PUS. But it also
allows the definition of TC & TM packets and parameters on all levels of the
model’s AST, which is in contrast to PUS. The defined TC & TM packets can
be referenced in a service and the parameters in a TC or TM packet. Not
referencing them leads to dangling definitions. This structure gives a lot of
freedom to the domain expert but complicates the usage of this DDL.

Another difference to the PUS is that referencing of applications is not
possible, because there is no element that can hold these references. Sometimes
it is necessary to use two instances of the same application. For example a
camera application, when two equivalent cameras are integrated in the satellite.

Furthermore, it is not possible to assign the addressing of the applications,
services and sub-services in the format of uint8t IDs in addition to the names
of the definition. But this is important for the transmission and the on-board
routing of the packets. Also the syntax is not matching the PUS.

Additionally, features like the declaration of ranges and enums for the
parameters are integrated in this DDL. They are used to find the correct data

5.5 Data Testing Language 59

type for the parameter in the code generator. But in the case of the test-
framework, the instantiation of the parameters takes place in the test model.
In case a value of a parameter instantiation is not within the range or the enum
of the system model, a validator has to inform the domain expert about this
issue. Generally, this would be a good idea, but the validator is defined as out
of the scope for the project.

5.4.2 PUS-conform DDL

The mentioned problems of the application-specific DDL reveal already a
lot of the design of the the PUS-conform DDL. For the rest of this report, DDL
refers to the PUS-conform DDL.

The redesigned DDL is following a top-down approach, mirroring the routing
structure, and therefore the CDH subsystem, of the TM & TC packets in the
OBSW. The top node of the AST holds the references to the applications. The
applications hold the references to the services. And the services contain the
definitions of the TM & TC packets. This is the hierarchical structure displayed
in the Background Chapter in Figure 2.1.

TM & TC packets can have an arbitrary amount of parameters, depending
on the needs of the domain expert’s component. The TC & TM packets can be
uniquely identified according to their IDs: APID (application), SERID (service)
and SUBSERID (TC or TM packet itself). The sequence count is added by the
test-framework automatically to identify the oracle packet against which the
arriving TM packet has to be compared. The syntax is adapted to the PUS,
offering a recognition value, which is helping the domain expert to use the
DDL.

The output is the AST of the system model, for the DTL to traverse. Addi-
tionally, the TC and TM packets are generated as non-initialized classes, which
are used for the reinitialization of arriving TC or TM packets at the OBSW or
the TEEP. Lastly, the actual structure of the behavioural part of the OBSW is
generated with the CDH subsystem to rout the TC and TM packets through the
OBSW.

5.5 Data Testing Language

The DTL consists of three sub-grammars: the Data-centric, the Modified
Linear Temporal Logic (MLTL) and the Relational Expressions sub-grammar.
Figure 5.3 reveals the structure of the DTL graphically.

60 Design

The Data-centric sub-grammar is instantiating the in the DDL model defined
packets. It cannot be used to define packets itself, it is only able to reference
existing ones of the system model, by the investigation of the DDL model
instance’s AST. For the instantiation of the parameters, the Data-centric sub-
grammar requires help by the Relational Expressions sub-grammar. Within the
Relational Expressions sub-grammar, values and value ranges can be assigned
to the parameters. When all parameters of a referenced TC or TM packet have
values or a value range, they become TTC and Oracle packets. The packets
are ready to be used in the MLTL sub-grammar. In the MLTL sub-grammar, the
actual test cases can be defined, which are basically concatenations of TTC
packets for the OBSW and expected Oracle packets in return from the OBSW.
The MLTL sub-grammar is able to describe the expected temporal behaviour
of the OBSW in a formal notation. The output of the DTL are compilable test
cases in C++ and a test suite coverage report for the domain expert.

Data-centric Grammar

Relational Expressions

AST
of
System
Model

Executable
C++
Test Cases

Modified Linear Temporal Logic

Data Testing Language

Coverage
Report

Fig. 5.3 Overview of the Data Testing Language

5.5.1 Data-centric Sub-grammar

The Data-centric sub-grammar is used, as aforementioned, to instantiate the
defined TC/TM packets, to obtain TTC and Oracle packets. To enable that, the
AST of the system model has to be cross-referenced. Here, cross-referencing

5.5 Data Testing Language 61

means that the results of the parser rules of one grammar/model are reachable
by the other.

To instantiate a specific TTC/Oracle packet, the specific TC/TM packet needs
to be identified and referenced. Identification and referencing is determined by
the scoping of a grammar. Therefore, the layout of the referencing mechanism
in the Data-centric sub-grammar is adapted to the scoping of the DDL.

The grouping of TTC/Oracle packets is the scoping of the Data-centric
sub-grammar. Instantiated packets have to be named. A TTC/Oracle packet
must be in a group, to enforce the oversight of the test model. To reference an
instantiated packet in a test case, a fully qualified name is requested, which
consists of the packet name and the group name.

The initialization of the parameters of the TTC/Oracle packets is closely
related to the definition of the parameters. This facilitates the usage for the
domain expert by the exploitation of repetitive patterns and contributes to the
fulfilment of the requirements of a steep learning curve and the "easy-to-use"
paradigm. To assign the concrete value or value range to the parameter, the
Relational Expressions sub-grammar is used.

5.5.2 Relational Expressions Sub-grammar

Parameters have to be initializable with a direct value, an open range or a
closed range. Therefore, the Relational Expressions sub-grammar is subdivided
in two groups, unary and binary expressions.

A unary expression consist of one operand and one operator. The selectable
operand can be a simple integer or a real value (also negative values are
possible). The operator can be selected of a list of operators containing: "equal",
"unequal", "less than", "less equal", "greater than" and "greater equal". The entire
list is only reachable for the Oracle packet parameters, TTC packet parameters
can just select the "equal" operator. This is due to the fact that TTC packets
have to be precise for the OBSW. With unary expressions, the initialization with
direct values and open ranges is covered.

A binary expression consists of two operands and two operators. The
selectable operands are the same as for unary expressions and therefore simple
integer and real values (also here, negative values are possible). The selectable
operators are two unary operators, following the theory of sets in math. The
first operand can be the "greater than" and the "greater equal" operator. The
second operand can be the "less than" and the "less equal" operator. This is
creating ranges and allows the initialization with the desired closed ranges.

62 Design

5.5.3 Modified Linear Temporal Logic Sub-grammar

The MLTL sub-grammar is used to describe the behaviour of the OBSW.
And more precise the properties that have to hold at a specific point in time,
respectively at a specific state of the OBSW. It uses the prior defined TTC
and Oracle packets as atomic proposition input for it’s formula. LTL and CTL
got investigated as a formal basis for the test-framework. Because of the
specification-based and fault-based test case selection criteria, it is very difficult
to exploit the quantifiers of CTL. To be able to profit of the additional option to
declare properties that do not have to hold on all paths but at least at one, all
potential paths have to be investigated. This makes CTL suitable for approaches
with model checkers or SAT solvers, which are used with different coverage
and test selection criteria as selected in this project. Therefore, not CTL but
LTL serves as a basis for the test-framework. However, the MLTL is not as free
as the LTL, it can be seen as a restricted subset of it. This means that not all
operators are accessible for the test designer and the ones which are accessible
can only be used in certain contexts.

OBSW as Kripke Structure

To understand the linking between the MLTL and the OBSW, the OBSW
can be described using the formal notation of Kripke structures. It has been
already denoted that the SUT is the OBSW in the user mode. The goal is to
test the functionality and the structure of the SUT. Several other components
in the user mode are additionally necessary to actually operate a satellite. In
the subsequent Test Execution & Evaluation Platform section, some of these
components are explained, representing a sufficient subset of all additional
components to simulate the expected behaviour of an OBSW.

Figure 5.4 displays the behavioural part of the OBSW in the formal notation
of a Kripke structure. The set of atomic propositions is a three tuple APs =
⟨α,β ,τ⟩. α is a set of all evaluated addressing parameters of packets (APID,
SERID, SUBSERID and Sequence Count). This set can be further subdivided
in αOR for the Oracle packets, and αT TC for the TTC packets. β is a set of all
evaluated payload parameters of the data field of the packets. This set can be
further subdivided in βOR for the Oracle packets and βT TC for the TTC packets.
τ is a set of all evaluated temporal parameters for periodic TM packets. The
set of states is a three tuple S = ⟨ST TC,SOR,S0⟩. ST TC is a set of all TCC states.
SOR is a set of all Oracle states. The states are visualized from the perspective
of the test-framework, therefore they are not TC and TM states, but internally
they are. The TCC states can not be investigated by the test-framework. They

5.5 Data Testing Language 63

TTC
1

State

S
0

Initial State

OR
1

TTC
3

Transissions

Labelling Function

 ⟨ α
TTC

, β
TTC
⟩

OR
n

TTC
2

OR
2

OR
3

OR
n

TTC
n

Legend

OR
4 TTC

n

 ⟨ α
TTC

, β
TTC
⟩

 ⟨ α
OR

, β
OR

 , τ⟩

 ⟨ α
OR

, β
OR

 , τ⟩

 ⟨ α
TTC

, β
TTC
⟩ ⟨ α

OR
, β

OR
 , τ⟩

 ⟨ α
OR

, β
OR

 , τ⟩

 ⟨ α
OR

, β
OR

 , τ⟩

Fig. 5.4 Behavioural part of the OBSW, represented as Kripke structure.

are expected to hold as long as the Oracle states hold. S0 is the initial state
and is unknown. Other internal states of the OBSW are also unknown for the
test-framework. The set of labelling functions F maps a subsets of APs to the
different states. The transition relation T connects the states with each other.

Syntax and Semantics of MLTL

In this subsection the syntax and the semantics of the MLTL is explained.
The used temporal and logical operators are:

Operator type Syntax

Temporal ⃝ ("next") φ

Temporal □ ("always") φ

Temporal ♢ ("eventually") φ

Temporal φ U ("until") ψ

64 Design

Logical φ ∧ψ

Logical ¬φ

Logical φ → ψ

Table 5.1 Temporal and logical operators in MLTL

The subsequent inference rules determine the expressiveness of the MLTL
sub-grammar. In contrast to the basic LTL calculus, the MLTL needs further
restrictions in their inference rules. This is because the domain experts need
guidance and therefore limitations in the modelling process to facilitate the
usage of the test-framework.

1. If the atomic proposition sets αOR, αT TC, βOR, βT TC and τ are each element
of APs = ⟨α,β ,τ⟩, then αOR is a formula φαOR, αT TC is a formula φαT TC,
βOR is a formula φβOR, βT TC is a formula φβT TC and τ is a formula φτ .

2. If φαOR, φβOR, φαT TC and φβT TC are formula, then φαOR∧φβOR is a formula
φOR and φαTCC ∧φβT TC is a formula φT TC.

3. If φT TC and φOR are formula, then φT TC → ♢φOR is also a formula Φ.

4. If φOR1 and φOR2 are formula, then φOR1♢φOR2 is also a formula φOR.

5. If φT TC1 and φT TC2 are formula, then φT TC1 ⃝ φT TC2 is also a formula
φT TC.

6. If Φ1 and Φ2 are formula, then Φ1 ⃝Φ2 is also a formula Φ.

7. If φOR and φτ are formula, then □(φOR ∧φτ) is a formula Ψ.

8. If φαOR and φβOR are formula, then □(φαOR ∧¬φβOR) is also a formula Ψ.

9. If φαOR and φβOR are formula, then □(φαOR ∧φβOR) is a formula Ψ.

10. If Ψ and φOR are formula, then ΨUφOR is a formula Γ.

Specific Behavioural Expressiveness Requirements

To explain the application of the aforementioned inference rules of the
MLTL, they are set into context with the requirements of the Analysis and
Requirements Chapter (4). This ought to increase the understandability of the
inference rules.

5.5 Data Testing Language 65

TM Verification requirement: This is the basic requirement and follows
the property of liveness. One TTC is transmitted and one specific TM packet
expected in return. If the formula holds, the test case is passed. It is covered by
(1.), (2.) and (3.).

TC/TM Sequence requirement: It must be possible to send multiple TTC
packets and receive multiple TM packets in return. The test-framework is
only in control of the TC side, meaning it can trigger the transmission of TTC
packets. Therefore the ⃝ ("next") operator can be placed between TTC packets
to model a sequence of TTC packets. The OBSW side is not in control of the
test-framework, therefore it is not possible to predict the exact state change
within the OBSW. To overcome this problem a less strict operator as ⃝ ("next")
is needed. The solution is the ♢ ("eventually") operator between the Oracle
packets. The used inference rules for this case are (1.), (2.), (3.), (4.) and (5.).

Procedures requirement: A procedure determines the point in time for
the test-framework when to react on the arrival of one specific TM packet and
can be seen as wait on statement for the test-framework. The reaction is a TTC
packet transmission. The result of the functional evaluation is independent
of the transmission, as it just has to arrive. This wait on statement is realized
with the ⃝ ("next") operator between formula. This can by achieved by the
application of (1.), (2.), (3.), (4.), (5.) and (6.).

Periodic TM Packets requirement: The periodically arriving TM packets
(housekeeping packets) must be coverable by the test-framework. The domain
expert can define an Oracle state that has to be reached within a certain time.
The expected time cycle is attached to the Oracle packet parameters as an
additional temporal parameter τ . The inference rules for that are (1.) and (7.).

The Missing TM packets requirement is handled by the TEEP and is not
integrated in the MLTL sub-grammar.

Additional Temporal Requirements

Never requirement: The test designer has to be able to define a TM packet
that should never arrive. This is following the LTL property for safety, meaning
that something bad never happens. It is covered by (1.) and (8.).

Always requirement: The test designer is able to define a TM packet that
should always arrive like defined in an Oracle packet. This can be achieved
similar as the never requirement, whereas the ¬ operator is removed. It is
covered by (1.) and (9.).

Until requirement: The test designer must be able to define a Oracle state
that is reachable until another Oracle state is reached. This requirement is an

66 Design

additional feature for the Never, Always and Periodic TM Packet requirements.
It is integrated in the grammar with (1.), (7.), (8.), (9.) and (10.).

5.5.4 Coverage Report

The coverage report is created by a comparison of the defined TC & TM
packets in the system model, and the instantiated and in test cases used TTC &
Oracle packets of the test model. The domain expert is able to overview the
coverage by a percentage value. In case a TC or a TM packet is not covered
by a test case, it is listed in the report and marked as not covered. The total
coverage per TC or TM packet is visualized by an additional number literal
per packet, determining the amount of test cases that use an instance of that
packet.

5.6 Test Execution & Evaluation Platform

The TEEP simulates the operation of a satellite and represents therefore
the ground station. Transmission delay and atmospheric disturbance aspects
do not have to be covered, as they are simulated by an extra hardware device.
The ground station transmits TC packets over the base station to the satellite’s
telecommunication system, which forwards it to the CDH subsystem to route it
to its final on-board destination. The satellite might then return a TM packet to
the ground station following the same path, but backwards. The ground station
evaluates the arriving TM packets and reacts accordingly to them. In case of
the TEEP, the outcome of the evaluation is based on the test case scenario and
the oracle, and happens fully automatic.

Figure 5.5 displays an overview of the components of the TEEP and the
OBSW. Subsequent, the different components of the TEEP and the OBSW are
elaborated regarding their functionality. Some of the components are equivalent
in the OBSW and the TEEP, they are denoted separately as shared components.
The OBSW is explained here as it is designed by the author following guidelines
of working colleagues and it is important for the implementation.

5.6.1 Shared Components

TC & TM Blueprints

The TC & TM blueprints are necessary for the Packet Handler to re-instantiate
the serialized packets which arrive in the TEEP or the OBSW. They are com-

5.6 Test Execution & Evaluation Platform 67

Fig. 5.5 Overview of the Test Execution & Evaluation Platform

pletely auto-generated by the test-framework, respectively by the code genera-
tor of the DDL.

Packet Handler

The Packet Handler is part of the communication system of the test-framework.
It accesses the Ringbuffer to read and write the serialized packets from and to
the buffer. The serialization mechanism of the packets is included in the TC
& TM blueprints. The Packet Handler for the OBSW and the TEEP are both
auto-generated by the code generator of the DDL.

Ringbuffer

The Ringbuffer is used as a shared memory for the communication between
the OBSW and the TEEP. It is the only interface between the SUT and the
TEEP. The entire transmission of packets is logged in a specific XML log. The
Ringbuffer component is hand-crafted.

5.6.2 OBSW Components

CDH Subsystem

The CDH subsystem receives the instantiated TC packets from the Packet
Handler and routes them to the addressed Application, Service and Sub-service
of the Behavioural component of the OBSW. It is also called by the applications
to revert that process, to send TM packets in return to the TEEP. This component
is auto-generated by the DDL’s code generator.

68 Design

Behavioural Component

The Behavioural component represents the actual SUT. The structure in
the design is following the PUS. It is hierarchically structured in Applications,
Services and Sub-services. In case of an arriving TC packet, the payload of the
TC packet changes the state of this part of the OBSW. The structure of this
component is generated automatically by the code generator of the DDL. This
allows the programmer to implement the functionality, with no need to care
about the interfaces for the packet routing any more.

5.6.3 TEEP Components

TTC Packets

The TTC packets are the test case inputs. They are auto-generated by the
Relational Expressions sub-grammer of the DTL. These TTC packets have the
same structure as the TC Blueprints, but they are initialized with the by the
domain expert defined values.

Oracle Packets

The Oracle packets are the expected output of the test cases. They contain
the expected data and share structural parts of the TM packets. Their purpose
is to enable the evaluation of the arriving TM packets from the OBSW, which
are re-instantiated of the byte-stream of the ringbuffer with the help of the TM
blueprints. The Oracle packets are auto-generated by the Relational Expressions
sub-grammar.

TestExecMeta

The TestExecMeta holds the information for the test case execution. It is
auto-generated from the test case definition of the MLTL sub-grammar. The
TestExecMeta knows when to send a TTC packet and when not to. This decision
is based on a state change within the OBSW, about which the TEEP gets
informed via TM packets.

TestEvalMeta

The TestEvalMeta is the counter part of the TestExecMeta. It holds the
necessary information for the evaluation of the arriving TM packets against

5.6 Test Execution & Evaluation Platform 69

specific Oracle packets. It is completely auto-generated by the MLTL sub-
grammar.

Coordinator

The Coordinator is the worker of the TEEP. It spins on the TestExecMeta and
the TestEvalMeta. Its initial task is to send all currently by the TestExecMeta
allowed TTC packets via the Packet Handler to the SUT. These transmissions
are logged. When this task is finished, it waits for a response of the OBSW.
When the response arrives, it is evaluated by the help of the TestEvalMeta
and the Oracle packets. The result of the evaluation is reported. When all
parameters of all arrived packets are evaluated and reported, the process starts
from the beginning. This continues until there are no more Oracle packets left
that expect an evaluation or a watchdog timer ends the test run.

Logger

The logger notes the destination/source address and a TEEP time-stamp
of all arriving and leaving packets. Two logs are created by the Logger, the
expected TC and TM packet transmissions and unexpected TM packets from
the OBSW, which are not covered by the test cases. Those packets can not be
instantiated with the TM blueprints, but identified by the investigation of the
byte stream on their APID, SERID and SUBSERID.

Reporter

The Reporter is called by the Oracle Packets and creates a report with the
result of the test evaluation. The provided data in a report entry is the TM
packet source address, the Oracle Packet name, the parameter name, the actual
value, the expected value and the line number of the test case in the test
model. As the test evaluation is online, it also prints the coloured test result
immediately to standard out. This is important for the tester, to see as early as
possible whether a test failed, leaving the choice to him or her to cancel the
entire test run.

Chapter 6

Implementation

In this chapter the implementation of the test-framework is elaborated. Begin-
ning with the DDL, then the DTL and its sub-grammars and finally the TEEP.

6.1 Used Tools & Implementation Workflow

In the Background Chapter, the used tools to implement the design are
presented (2.6). For the implementation of the grammars and the code genera-
tors, the Xtext framework is used. The grammar implementation takes place
in the Xtext grammar editor and is in EBNF. The explicit scoping and the code
generator is written with the Xtend language, as it offers strong concepts like
type inference and mighty template expressions. The TEEP is written in C++
and implemented in Microsoft Visual Studio.

The implementation workflow of the test-framework is subdivided into three
phases. Each phase’s output is the input for the next phase. The three phases
mirror the components of the test-framework: DDL phase, DTL phase and TEEP
phase.

After the first run through all phases, the prototype of the test-framework
was finished. The completion of the second run lead to the final version of the
test-framework. The subsequent explanation of the implementation follows the
order of the three phases and explains the final version of the test-framework.

6.2 Data-Description Language

The implementation of the DDL focuses on the grammar of the DDL and the
code generators. An explicit scoping and semantic validator are not necessary
in the DDL for the test-framework.

72 Implementation

6.2.1 DDL Grammar

The DDL grammar definition takes place in the Xtext grammar editor in
EBNF form. The finished grammar is transformed into an Ecore meta-meta-
model. This meta-meta-model is used to create the DDL editor in which
the domain expert defines the system model. The finished system model is
transformed into an Ecore meta-model. This meta-model is then accessible via
the cross-referencing by the later described DTL.

To oversee the DDL grammar, Figure 6.1 displays the AST with the parser
rules. The grammar itself is, in contrast to the DTL grammar, not following any
specific calculus. It reflects the hierarchical structure of the PUS, and enables
the definition of TC & TM packets.

System Model

List <ASDef>

MissionDef

ApplicationDef

ServiceDef

NameID

List <ApplicationRef>

List <ServiceRef>

NameID

List <TMDef>

NameID

SERID

List <TCDef>

DDL

APIDApplicationRef

ApplicationDef::NameID

NameID

ServiceRef

ServiceDef::NameID

NameID

List <PayloadParaDef>

NameID

SUBSERIDTMDef

TCDef

List <PayloadParaDef>

NameID

SUBSERID

PayloadParaDef

DataType

NameID

Float

Int

PayloadParaDef
DataType

NameID

Float

Int

System Model

List <ASDef> MissionDef

ApplicationDefServiceDef NameID List <ApplicationRef>

List <ServiceRef>NameIDList <TMDef>NameID SERID List <TCDef>

APID

ApplicationRef

ApplicationDef::NameIDNameIDServiceRef

ServiceDef::NameIDNameIDList <PayloadParaDef>NameID SUBSERID

TMDef TCDef

List <PayloadParaDef>NameID SUBSERID

PayloadParaDef

DataTypeNameID

FloatInt

PayloadParaDef

DataTypeNameID

FloatInt

Fig. 6.1 Abstract syntax tree of DDL.

A System Model consists of one MissionDef and a list of ASDefs. A MissionDef
has a name to identify it and a list of ApplicationRefs. An ApplicationRef refers
to an ApplicationDef and has to be named and additionally identified with an
uint8_t value, which is the APID. The referencing mechanisms of existing Appli-
cationDef is realized with implicit scoping, which is automatically generated by
the Xtext framework in the background. This implicit scoping is then accessible
within the grammar via cross-references to any other parser rule of the AST.

An ASDef can either be an ApplicationDef or a ServiceDef. An ApplicationDef
has a name and a list of ServiceRefs. A ServiceRef refers to a ServiceDef and has

6.2 Data-Description Language 73

to be named too. Also here, the referencing mechanism is realized with implicit
scoping.

A ServiceDef consists of a name, an uint8_t SERID and lists of TCDefs and
TMDefs. TCDefs and TMDefs are similar. The defined packet requires a name
and an uint8_t SUBSERID for the identification. Additionally, PayloadParaDefs
can be defined, which are collected in a list. A PayloadParaDef has to be named
and a data-type assigned, which can be int or float.

The names of all definitions in the DDL and the DTL model are just for
the domain expert to keep the overview. The actual test cases use the APID,
SERID, SUBSERID and Sequence Count for the identification of the packets. To
visualize the result of the applied DDL, Figure 6.2 shows a system model with
one application, two services and their packets.

nepumuc.ddl

1 // mission definition
2 mission is
3
4 applicationreference laser as Laser with apid 10
5
6 end
7
8 // application defintion
9 application Laser is

10
11 servicereference laserControl as LaserCtrlSer
12 servicereference housekeepingRef as HousekeepingSer
13
14 end
15
16 // service defintion
17 service LaserCtrlSer with serid 20 is
18
19 // telecommand packet definition
20 telecommandpacket TCLaserCtrl with subserid 30 is
21 parameter setState is int
22 end
23
24 // telemetry packet defintion
25 telemetrypacket TMLaserStatus with subserid 40 is
26 parameter state is int
27 parameter Temp is float
28 parameter PeakPower is float
29 end
30 end
31
32 service HousekeepingSer with serid 21 is
33
34 // telemetry packet definition
35 telemetrypacket LaserMeanvalues with subserid 41 is
36 parameter MeanTemp is float
37 parameter MeanPeakPower is float
38 end
39 end
40

Page 1

Fig. 6.2 System model example.

74 Implementation

6.2.2 Code Generator

The code generation is triggered when the system model has been saved
and the static syntax validator is not throwing any errors. The generated files
can be found in the src_gen folder of the project of the system and test model.

The code generator of the DDL generates the Packet Handler with the Packet
Factory of the TEEP and the OBSW, used to re-instantiate a packet as class
objects of the serialized byte stream of the Ringbuffer. The Packet Handler
waits on thread events when either the OBSW or the TEEP transmitted a packet
over the Ringbuffer.

Additionally, the CDH subsystem of the OBSW is generated. The CDH
resolves the packet address, APID, SERID and SUBSERID, to route it to the des-
tination in the behavioural component of the OBSW. Therefore, it is distributed
as handler methods on each level of the behavioural component.

The behavioural component itself is created as hierarchical structure. The
applications are classes that hold instances of service classes. The service classes
have methods as members, representing the sub-services. The programmer is
able to modify and implement the actual behaviour of the OBSW in this part of
the OBSW.

Finally, the by the packet factory used TC and TM packets to instantiate the
arriving TC and TM packets of the OBSW/TEEP are generated. The payload
parameters are members of the classes. For each payload parameter, related
getter and setter methods are generated as additional members. The addressing
parameters reside in an AbstractPacket class of which the TC and TM packets
inherit. This is also the case for addressing parameter related getter and setter
methods. The TC and TM packet classes have an empty constructor with no
parameters for it. Additionally, the virtual methods serialize() and deserialize(),
which also reside in the AbstractPacket Class, are generated as members. These
methods are needed to serialize and de-serialize the packet objects to create a
byte stream for the transmission from the TEEP to the OBSW and vice versa.
To enable that, each implemented virtual method stores all parameters in a
uint8_t array. The unknown-size problem of the payload parameters is resolved
with an index for the array and the sizeo f () method. The actual storing in the
array is conducted using memcopy().

After the code generator is finished with all components, the DDL copies
them to a specific location in the TEEP.

6.3 Data-Testing Language 75

6.3 Data-Testing Language

The implementation of the DTL focuses on the grammar of the DTL, the
explicit scoping and the code generation. Not every of these three aspects
is needed in every sub-grammar. The DTL grammar, and therefore the three
sub-grammars, is also defined in EBNF form. The output of the grammar
definition is similar to the DDL grammar and the AST in the from of a Ecore
meta-meta-model, used to create the DTL editor. This DTL editor can then
be used by the domain expert to create the test model. The DTL takes the
AST of the DDL system model and makes it accessible in the DTL editor via an
import statement and Xtext framework settings (grammar cross-referencing).
The imported AST is in case of the DTL accessible via the DDL_X variable.
To increase the understandability of the following subsections, explaining the
sub-grammars, an example of a test model in Figure 6.2 shall be given in
advance.

6.3.1 Data-centric Sub-grammar

The implementation of the Data-centric sub-grammar consists of a grammar
definition and explicit scoping.

Sub-grammar

Figure 6.4 displays the AST of the sub-grammar. The Test Model holds a list
of groups. A group can either be a TTCGroup, an OracleGroup or a TestGroup
declaration. These groups increase the overview of the test model.

A TTCGroup has to be named and owns a list of TTCDefs. An OracleGroup
has to be named too and owns a list of OracleDefs. A TTCDef must be named
and the TTCParameters defined. As already mentioned, the DTL is not able
to create new packets, but can reference existing ones of the system model.
This is achieved by referencing an ApplicationRef, a ServiceRef and a TCDef of
the system model. This is similar to an OracleDef definition, but the OracleDef
is not referencing a TCDef but a TMDef. According to the referenced TCDef
or TMDef, a list of either TTCPayloadParas or OraclePayloadParas is available.
These PayloadParaDefs of the system model can then be instantiated with values
or value ranges. At this point the Data-centric sub-grammar is left for the
Relational Expressions sub-grammar. The in the Data-centric sub-grammar used
referencing mechanism to instantiate a desired TC or TM packet is explained in
the following Explicit Scoping subsection.

76 Implementation

testNepumuc.dtl

1 // Group of TTC packets
2 TTCGroup ttcGr1 is
3
4 // laser control
5 TTC swLaserOn to [laser.laserControl.TCLaserCtrl] is
6 setState set 1
7 end
8 // laser control
9 TTC swLaserOff to [laser.laserControl.TCLaserCtrl] is

10 setState set 0
11 end
12 end
13
14 // Group of Oracle packets
15 OracleGroup orGr1 is
16
17 // laser control
18 Oracle laserStateOn from [laser.laserControl.TMLaserStatus] is
19 state expect == 1
20 Temp expect [80 .. 100]
21 PeakPower expect < 10
22 end
23 // laser control
24 Oracle laserStateOff from [laser.laserControl.TMLaserStatus] is
25 state expect == 0
26 end
27 // laser housekeeping
28 Oracle cyclicLaserMeans from [laser.housekeepingRef.LaserMeanvalues] is
29 MeanTemp expect == 90.563
30 end
31 end
32
33 // Group of test suites
34 TestSuitsGroup tsGR1 is
35
36 Testsuit ts1 is
37 // 1. TM verification
38 ttcGr1.swLaserOn implies orGr1.laserStateOn must hold
39 // 2. TC/TM sequences
40 ttcGr1.swLaserOn implies orGr1.laserStateOn future orGr1.laserStateOff must hold
41 // 3. Procedures
42 ttcGr1.swLaserOn implies orGr1.laserStateOn must hold
43 next
44 ttcGr1.swLaserOff implies orGr1.laserStateOff must hold
45 // 4. Periodic TM packets
46 cyclic set milSec: 2000 orGr1.cyclicLaserMeans must hold
47 // 5. Always & Never
48 always orGr1.laserStateOn must hold
49 never orGr1.laserStateOff must hold
50 // 6. Always until
51 always orGr1.cyclicLaserMeans until orGr1.laserStateOff must hold
52 end
53 end
54

Page 1

Fig. 6.3 Test model example.

The third group is the TestGroup and consists of a name and a list of
TestSuiteDefs. A TestSuiteDef has a name and a list of TestLTLExps. When
the test designer reaches a definition of a TestLTLExp, he or she is leaving the
Data-centric sub-grammar for the MLTL sub-grammar.

Explicit Scoping

The referencing of the correct TM and TC packets of the cross-referenced
system model is conducted, using explicit scoping. Scoping is generally achieved

6.3 Data-Testing Language 77

Test Model

List<Group>

TTCGroup TestGroup

NameID List <TTCDef>

TTCParametersNameID

DDL_X::ServiceRef::NameID

DDL_X::TCDef::NameID

DDL_X::ApplicationRef::NameID

List <TTCPayloadPara>

DDL_X::PayloadParaDef::NameID TTCRelaExp

NameID List <TestSuiteDef>

List<TestLTLExp>NameID

TestSuiteDefTTCDef

TestLTLExp

TTCPayloadPara

OracleGroup

NameID List <OracleDef>

OracleParametersNameID

DDL_X::ServiceRef::NameID

DDL_X::TMDef::NameID

DDL_X::ApplicationRef::NameID

List <OraclePayloadPara>

DDL_X::PayloadParaDef::NameID OracleRelaExp

OracleDef

OraclePayloadPara

Fig. 6.4 Abstract syntax tree of the Data-Centric sub-grammar.

by a scoping method which gets called if a parser rule wants a specific object,
created by another parser rule, of the AST. The scoping method can traverse
the AST from the position of the specific object downwards. Each parser rule of
a Xtext grammar gets a scoping method by default, created by a code generator
in the background. This is implicit scoping. The method can be called by a
cross-reference definition in the grammar of the form:

result = [<RefParsRule>]

When the model is instantiated, the selected <RefParsRule> object is stored
in the result variable. In the case of the test-framework, the DDL grammar is
cross-referenced with the DTL, but the scoping methods of the DDL are not
available in the DTL editor. Therefore, an explicit scoping method needs to be
defined for the Data-centric sub-grammar. To call the explicit scoping method,
a naming convention is integrated in Xtext. If the cross-referenced grammar’s
AST is imported and the root node of the AST is stored in the DDL_X variable,
then the call in the grammar looks like this:

<ParsRule> : result = [DDL_X:<RefParsRule>];

Referencing a parser rule which has to be on the top-level of the cross-referenced
AST. If such a call is integrated in a grammar, Xtext searches for the scoping
method:

78 Implementation

def Iscope scope_<ParsRule>_result(<ParsRule> object, EReference ast)

This is the reason why there are different parser rule names (TTCParameters
and OracleParameters) for the addressing of the packets. In the scoping method
for the TTC packets the TM packets are filtered out. And in the scoping method
of the Oracle packets, the TC packets are filtered out. When the desired TC or
TM packet is referenced, a list of the selectable PayloadParaDefs appears.

Additionally to mention is, that the ApplicationRefs are not on the top-level
of the cross-referenced AST. Therefore, all explicit scoping methods have to
traverse the AST to the MissionDef to reach the there-stored ApplicationRefs as
a starting point of the scoping.

6.3.2 Relational Expressions Sub-grammar

The implementation of the Relational Expressions sub-grammar consists of
a grammar definition and a code generator.

Sub-grammar

The sub-grammar has the task to enable the assignment of values or value
ranges to the payload parameters of the TC and TM packets of the DDL system
model, which are referenced in the Data-centric sub-grammar. When this is
done, the TTC and Oracle packets are finished and can be used by the code
generator to transform them in C++ classes.

Figure 6.5 displays the AST of the Relational Expressions sub-grammar. In
case of a TTCRelaExp, the only option is to assign a Numberliteral, which can
be either an int or a float value. This is due to the fact that the TTC packets
have to have a precise value as input for the OBSW. The IntValue and Realvalue
parser rules of the Numberliterals are integrated with a cross-referencing of
the AST of the basic Ecore model. There, the parser rules for integer and real
values are already defined (EFloat and EInt). Whether the selected value fits
the format of the defined TC packet is not validated, as a validator is out of the
scope of this project, what is the same for the OracleRelaExp.

In the OracleRelaExp either a UnaryExp or a BinaryExp can be selected. In
case of a unaryExp a unaryExpOperator has to be selected and a Numberlit-
eral. If a binaryExpr has been selected a LBracketOperator, followed by two
Numberliterals and a RBracketOperator is necessary.

6.3 Data-Testing Language 79

OracleRelaExp TTCRealExp

NumberliteralUnaryExp BinaryExp

Numberliteral unaryExpOperator

IntValue

RealValue

LBracketOperator

Numberliteral

RBracketOperator

Numberliteral

IntValue

RealValue

= | != | < |
 <= | > | >=

] | [

] | [

IntValue RealValue

RealValueIntValue

Fig. 6.5 Abstract syntax tree of the relational expressions.

Code Generator

The code generation of the Relational Expressions sub-grammar is triggered
when the test model has been saved and the static syntax validator is not
throwing any errors. The generated files can also be found in the src_gen folder
of the project of the system and test model.

The code generator creates the TTC and Oracle packet classes. To generate
the TTC packet classes, the TC packet classes are enriched by an additional
constructor which takes all parameters, the one of the Packet Header and of
the Packet Data Field, as arguments. These are the instantiated addressing and
payload parameters. In the body of the constructor are the correlating setter
methods to instantiate the object with all parameter values. These specific
constructors are called by a constructor of the TTCAll class, that holds all TTC
packet objects as members.

The Oracle packet classes have only methods to compare all parameters of
an arriving TM packet with the expected values as members. The return value
of these methods is a truth value, which is an AP for the MLTL sub-grammar.
The comparison is based on if-conditions with the selected operators of the
Oracle packet parameter instantiation. Also here, the Oracle packet classes
inherits the Header Field-related parameter comparison methods of a specific
abstract class. Their constructors are also empty, which is obvious as they only
have methods as members. Problematic is that the TEEP does not know how
many payload parameters are in one packet, therefore it lacks the information

80 Implementation

on which compare methods to call. To overcome this issue, the specific abstract
class contains also a virtual compare all method, which is implemented in each
Oracle class. The implemented compare all method has all comparison methods
of the packet and the specific abstract packet in its body. The TEEP only calls
the compare all method, in which also the Reporter is triggered after each
parameter evaluation.

The last step for the code generator of the Relational Expressions sub-
grammar is to copy the created classes at a predefined position in the TEEP,
making them ready for usage in the TEEP.

6.3.3 Modified Linear Temporal Logic Sub-grammar

The MLTL sub-grammar implementation consists of a grammar and a code
generator.

Sub-grammar

Figure 6.6 displays the AST of the MLTL in the same notation as the ASTs of
the Data-centric and Relational Expression sub-grammar. It is expected that the
reader is now able to use the gained knowledge on how to read such an AST
from the prior sub-grammar subsections. Therefore, this AST is not explained
in detail.

TestLTLExp

List <ImplicationExp>

CycleTime

IntValue

CyclicExp

OracaleDef::NameID

OracleOperand

List <OracleOperand>

AlwaysExp

OracaleDef::NameID

OracleOperand

List <OracleOperand>

NeverExp

OracaleDef::NameID

OracleOperand

List <OracleOperand>ImplicationExp

OracaleDef::NameID

OracleOperand

List <OracleOperand>

TCCDef::NameID

TCCOperand

List <TCCOperand>

Fig. 6.6 Abstract syntax tree of the Modified Linear Temporal Logic.

Here, the focus lies on the explanation of the transformation of the theo-
retical design of the MLTL in concrete syntax of the grammar. To enable that,
the concrete syntax is set in context to its theoretical MLTL formal notation and
the requirement. The subsequent formal notation is already a simplification,

6.3 Data-Testing Language 81

as the scoping of the APs is done by the data-centric sub-grammar. The output
of the Data-centric sub-grammar is: φα , representing a group of all addressing
parameter APs of one packet; φβ , representing a group of all payload parameter
APs of one packet;

To illustrate the TM Verification requirement, it is in formal notation:

(φαTCC ∧φβT TC)→ ♢(φαOR ∧φβOR)

The equivalent expression is in concrete MLTL syntax:

<TTCPk> implies <ORPk> must hold

The TC/TM Sequence requirement is elaborated with a sequence of two TTC
packets and two Oracle packets as example. But the sequences can also be
arbitrary long. This is in formal notation:

((φαTCC1 ∧φβT TC1)⃝ (φαTCC2 ∧φβT TC2))→ ♢(φαOR1 ∧φβOR1)♢(φαOR2 ∧φβOR2)

The equivalent expression is in concrete MLTL syntax:

<TTCPk1> next <TTCPk2> implies <ORPk1> future <ORPk2> must hold

To show the Procedures requirement in formal notation, two TM verifications
are concatenated. But the concatenation can be arbitrary long and also consist
of TC/TM sequences.

(φαTCC1 ∧φβT TC1)→ ♢((φαOR1 ∧φβOR1)⃝ ((φαTCC2 ∧φβT TC2)→ ♢(φαOR2 ∧φβOR2)))

The equivalent expression is in concrete MLTL syntax:

<TTCPk1> implies <ORPk1> next <TTCPk2> implies <ORPk2> must hold

The Periodic TM Packets requirement is in formal notation:

□(τ ∧φαOR ∧φβOR)

The equivalent expression is in concrete MLTL syntax:

cyclic set milsec:<int> <ORPk> must hold

The Never requirement is in formal notation:

□(φαOR ∧ (¬φβOR))

The equivalent expression is in concrete MLTL syntax:

never <ORPk> must hold

82 Implementation

The Always requirement is in formal notation:

□(φαOR ∧φβOR)

The equivalent expression is in concrete MLTL syntax:

always <ORPk> must hold

The Until requirement is applicable for the three requirements, Never (1),
Always (2) and Periodic TM Packets (3). All three are in formal notation:

□((φαOR1 ∧¬φβOR1)U(φαOR2 ∧φβOR2)) (1)
□((φαOR1 ∧φβOR1)U(φαOR2 ∧φβOR2)) (2)

□((τ ∧φαOR1 ∧φβOR1)U(φαOR2 ∧φβOR2)) (3)

The equivalent expressions for these three use-cases are in concrete MLTL
syntax:

never <ORPk1> until <ORPk2> must hold (1)

always <ORPk1> until <ORPk2> must hold (2)

cyclic set milsec:<int> <ORPk1> until <ORPk2> must hold (3)

Code generator

The code generator of the MLTL sub-grammar transforms the test case
formulae into two C++ classes. The TestEvalMeta and the TestExecMeta class.
These classes contain a list of structs with specific members. The classes member
methods can search the lists top-down and update specific members of the
structs. Each list entry corresponds to one implication. A test case can contain
multiple implications. To explain the transformation of the abstract test cases
into compilable C++ code, each classes struct and the enclosed members get
explained.

The evaluation struct in the TestEvalMeta class can be investigated in Table
6.1. It is searched and updated, depending on the arriving TM packets from
the OBSW.

Member Explanation

s t r u c t <TMPkgAddress>{
u in t8_ t apid ;
u in t8_ t s e r i d ;
u in t8_ t subse r id ;

} tmPkgAddress

The <TMPkgAddress> struct is used
to identify the Oracle packet based
on the APID, SERID, SUBSERID and
Sequence Count of the arriving TM
packet. The list is searched for the
matching address.

6.3 Data-Testing Language 83

<TMPkgAbstract>* orPkg

This pointer points to the Oracle packet
object which is needed for the evalua-
tion. It is of the type of the inherited
abstract class, because the concrete
Oracle packet objects are of different
classes.

<bool> a c t i v e

The active flag states a list entry to
be accessible for evaluation. It is by
default "true" and is set to "false" if
the Oracle packet is not allowed to be
reached any more. This is the case, if
the second TM packet of an until ex-
pression arrived.

<int> rmvActiveLstNum

The rmvActiveLstNum is only impor-
tant for the second packet of an until
expression, in other cases it is set to
zero. It carries the index of the list
entry which ones active flag has to be
set to "false", because this is the first
packet in the until expression and not
allowed to be reached any more.

<double> timeDeadl ine

The timeDeadline is the τ value and
therefore the defined interval time in
which the cyclic TM packet has to ar-
rive.

<double> timeStamp

The timeStamp is updated by the test-
framework at the beginning of the test
run. It is used for the evaluation of the
timeDeadline and is always refreshed
when a cyclic TM packet arrives.

84 Implementation

<bool> arrivedOnce

The arrivedOnce flag helps to iden-
tify missing packets and is by default
"false". It is set to "true" if the packet
arrived at least once in the test run. All
packets that remain in state "false" are
printed in the reportNeverArrived.xml
report. While the test run, this report
is shrinking by every arrived packet.

<bool> neverExp

The neverExp flag determines a test
case is created by the usage of the Nev-
erExp. In case it is "true", the eval-
uation of the TM packets against the
Oracle packets is negated. All other
Expressions of the MLTL have this flag
set to "false".

<bool> TTCLess

The TTCLess flag is set to "true" for
the NeverExp, the AlwaysExp and the
CyclicExp. These expressions do not
need a prior TTC packet transmission
to trigger a specific TM packet in re-
turn. The reason for a TM packet trans-
mission can be for example a techni-
cal on-board event of the satellite. If
this flag is set to "true", the Sequence
Count is ignored for the evaluation of
the packet, only the APID, SERID and
SUBSERID have to fit.

<std : : s t r i ng > tes tSu i teGroup
<std : : s t r i ng > t e s t S u i t e
<std : : s t r i ng > testCaseModelL ine

These strings are important for the
back-tracing of an evaluation entry in
the reports to the test model. They con-
tain the names of the test suite group
and the specific test suite as well as the
line number of the test case in the test
suite of the test model.

Table 6.1 Evaluation struct of the TestEvalMeta class.

6.3 Data-Testing Language 85

The execution struct in the TestExecMeta class can be investigated in Table
6.2. It is searched in the beginning of the test loop to trigger the transmission
of TTC packets which are in TTCstate "ready". It is also updated on arriving
TM packets to change the dependabilities and to modify the TTCstate.

Member Explanation

<int> TTCState

Based on the value of the TTCState,
the TEEP triggers the transmission of a
TTC packet or not. The different value
of the TTCstate have following mean-
ings: 0 = "not ready", 1 = "ready", 2
= "waiting on TM response", 3 = "pro-
cessed".

<TCPkgAbstract>* tcPkgAbst

This pointer points to the TTC packet
object which has to be transmitted if
the TTCstate == 1. It is of the type
of the inherited abstract class, because
the concrete TTC packet objects are of
different classes.

s td : : l i s t <TMPkgAdr> TMWaitList

The TMWaitList is a list of all TM pack-
ets on which the TTC packet has to
wait for arrival before it can be trans-
mitted. This is needed for the proce-
dures. In case a TM packet of the list
arrives, it is removed from it. When
the list is empty the TTCState is set
from "not ready" to "ready".

s td : : l i s t <TMPkgAdr> TMEvalList

The TMEvalList is needed to determine
whether all expected packets, triggered
by a TTC packet, arrived. In case
the list is empty, the TTCState is set
from "waiting on TM response" to "pro-
cessed".

86 Implementation

<uint8_t> seqCount

The Sequence Count of the TTC is
stored separately from the actual TTC
packet in this execution list. The pack-
ets are identified regarding the APID,
SERID, SUBERID and Sequence Count
in the evaluation. To enable a re-
usage of TTC packets with different
expected TM packets in different test
cases, the Sequence Count has to be
changed from test case to test case.
The value that is stored to identify the
Oracle packet for the evaluation is the
token offset in the test model of the
test case expression. The programmer
has to copy the Sequence Count of the
TTC packet, which is overwritten by
this seqCount short before the trans-
mission of the TTC packet, into the
TM packet Sequence Count in the be-
havioural OBSW.

Table 6.2 Evaluation struct of the TestEvalMeta class.

The final task for the code generator of the MLTL sub-grammar is to copy
the generated C++ classes to a specific location in the TEEP.

6.3.4 DTL Structural Coverage Report

The structural coverage report is created by a comparison of the TM and TC
packets definitions in the system model, with the in test cases used TTC and
Oracle packet instantiations. The coverage criteria is fulfilled if all TM packets
are referenced in at least one Oracle packet instance, which is then used in a
test case. Additionally, the TC packets have to be referenced in at least one TTC
packet instance, which is referenced in a test case.

To enable that, the DDL creates a list of all TC and TM packets of the system
model via a small code generator. For each found packet, the application,
service and sub-service names are collected. In the test model, the test cases

6.3 Data-Testing Language 87

are traversed and the there referenced TTC and Oracle packets investigated.
The names of the system packets, which are referenced in the TTC and Oracle
packets are compared to the aforementioned list. In case a packet of the system
model is not covered by at least one test case, it is specifically marked in the
coverage report. All other system model packets are denoted with the amount
of test cases that target them.

This determines the structural coverage of the system model by the test
model. The concrete output is the Coverage Report for the domain expert. It
consists of a percentage coverage value, a list of not referenced system model
packets and a list of all TM and TC packets with the amount of test cases they
are referenced in. In case the percentage coverage value is less than 100%,
the list of not referenced system model packets reveals the uncovered packets.
Figure 6.7 shows a screen-shot of the coverage report.

CoverageReport

1
2 ***
3 * The Test Coverage *
4 ***
5
6 ‐ 100% ‐
7
8 ***
9 * Not covered Telecommand Packets *

10 ***
11
12 ‐ none ‐
13
14 ***
15 * Not covered Telemetry Packets *
16 ***
17
18 ‐ none ‐
19
20 ***
21 * Test case coverage per Telecommand Packet *
22 ***
23 4 laser laserControl TCLaserCtrl
24
25 ***
26 * Test case coverage per Telemetry Packet *
27 ***
28 8 laser laserControl TMLaserStatus
29 2 laser housekeepingRef LaserMeanvalues
30
31

Page 1

Fig. 6.7 Coverage report for the domain expert.

88 Implementation

6.4 Test Execution & Evaluation Platform Imple-

mentation

The general design of the TEEP and the OBSW can be found in the Design
Chapter (5.6). The focus of this section is on the implementation of this design.
Some components are equal in the OBSW and in the TEEP, therefore they only
get explained once.

6.4.1 Shared Components

TC & TM Packet Blueprints

These groups of classes contain the TC and TM packets, used for the re-
instantiation by the packet factory of the packet handler. They are used in the
TEEP as well as in the OBSW. These classes have been elaborated in detail in
the code generator subsection of the DDL (6.2.2).

Ringbuffer

The ringbuffer is a shared component, used for the communication between
the OBSW and the TEEP. The TEEP has one instance of it to send its TTC
packets to the OBSW. And the OBSW has one instance to transmit the TM
packets in return. In case the TEEP wants to send a TTC packet to the OBSW,
the serialized byte stream is copied to the ringbuffer, the position of the end
of the packet updated and the OBSW informed about the transmission of the
TTC packet via a thread event. The OBSW reads the packet and updates the
front position of the ringbuffer, respectively freeing the memory block. In case
the end position equals the front position, both positions are set to zero (empty
ringbuffer). The OBSW and the TEEP loop on their ringbuffers until they are
empty. When they are empty the thread event is set to zero. Problematic is
when the TEEP writes to the ringbuffer, updating the end position and setting
the event. And the OBSW thread gets the CPU back after it just has read the
ringbuffer, which it expects to be empty now, and resets the thread event. The
TTC packet in the ringbuffer will not be read by the OBSW until another TTC
packet transmission sets the thread event again. This might hang the test run
and is a classical race condition. Therefore, the ringbuffer is protected by a
mutex, including the setting and resetting of the events, to make it thread-safe.
The size of the ringbuffer can be defined by the programmer via a #define. It
should be sufficiently large to hold multiple (100 for example) of the maximum

6.4 Test Execution & Evaluation Platform Implementation 89

allowed packet size. This is important as the OBSW runs single threaded and if
the execution of one TTC takes very long the TEEP throws packets away when
the ringbuffer is full.

CDH Subsystem

The CDH subsystem mirrors the structure of the behavioural part of the
OBSW. It is used for two tasks. The first is to identify an arriving packet. This
identification is important for the packet factory of the Packet Handler, to
re-instantiate the serialized byte stream. The second task is to route the packet
trough the behavioural OBSW, to its final destination. The second task is not
required by the TEEP, only by the OBSW. Therefore, it is not available for the
TEEP. But one has to admit, that when the CDH subsystem already found the
packet, the routing task is also complete. This is true. But in a real OBSW, the
CDH subsystem also stores the arriving packets and transmits them in the form
of micro threads to the behavioural part of the OBSW (tasking framework).
This is done to schedule the arriving packets based on their priority level
(channelization). To enable that, the behavioural OBSW has virtual handler
methods on the application and service level, which resolve the packet address
again. This routing mechanism is also realized in the OBSW of this project, but
the creation of micro threads is not.

Packet Handler

The packet handler has access to the ringbuffer and re-instantiates the
arriving TC and TM packets via its packet factory. The packet factory is using
the CDH subsystem on the OBSW as well as on the TEEP side to find the
correct TM or TC packet blueprint class. In case it found a matching class,
it instantiates an empty object of it and fills it with the help of the packet’s
de-serialize method. In case it can not find a matching class, it throws it away
on the OBSW side and logs it on the TEEP side. The packet handler has the
method waitOnEvent, in which the TEEP and the OBSW thread stall until a
ringbuffer event has been triggered.

6.4.2 OBSW Components

Behavioural OBSW

The behavioural OBSW consist of application classes and service classes
with additional sub-service methods as members, mirroring the PUS structure

90 Implementation

of OBSW. The application objects have variables and methods as members.
They also hold a method to route the packet to a specific service object. This
method is a part of the CDH subsystem, as already denoted. The same counts
for the service objects, which route the packets to their sub-service methods.
In the sub-service methods, the payload content is evaluated. Based on the
evaluation, the service manipulates the state of the application. It is possible
to manipulate the application object, because a pointer to the object has been
routed too. This manipulation might trigger the creation of a TM packet in the
application. The application is able to do that by the call of a sub-service which
is part of a service it holds a reference of. Then, the sub-service calls the packet
handler to transmit a specific TM packet to the TEEP.

6.4.3 TEEP Components

Oracle and TTC Packets

The Oracle and TTC packets are classes, which are created by the code
generator of the Relational Expressions sub-grammar (6.3.2). They have been
explained in that section in detail.

TestEvalMeta and TestExecMeta

The TestEvalMeta class and the TestExecMeta class are created by the code
generator of the MLTL sub-grammar (6.3.3). They have been explained in that
section in detail.

Logger and Reporter Classes

These classes are in charge for the generation of the logs and the reports.
The logger produces two XML files, one with all arriving and resolvable TM
packets and all departing TTC packets. The other file consists of arriving TM
packets that could not be instantiated, because the CDH subsystem could not
resolve the addressing. Figure 6.8 shows a log of all arriving and departing
packets as example.

The Reporter creates three files, one with all results of the evaluations of
arriving TM packets against their designated Oracle packets. Another with all
evaluation results that failed, to enable a fast access to the failed test cases for
the programmer. And the third with all TM packets that have been expected
to arrive but never did. All three files are in XML format. Additionally, all test

6.4 Test Execution & Evaluation Platform Implementation 91File: /home/killroy/Dropbox/master_…awings/important/reportAll.xml Page 1 of 1

<?xml version="1.0" encoding="UTF-8"?>
<testsuites name="tsGR1">

 <testsuite name="ts4">
 <testcase oraclename="cyclicLaserMeans" telemetryddress="10.21.41"

testcaseLine="56" timestamp="Thu Jul 02 13:43:27 2015"
testresult="passed" parametername="Interval time"
expectedvalue="2000" actualvalue="1025"/>

 <testcase oraclename="cyclicLaserMeans" telemetryddress="10.21.41"
testcaseLine="56" timestamp="Thu Jul 02 13:43:27 2015"
testresult="passed" parametername="Apid"
expectedvalue="10" actualvalue="10"/>

 <testcase oraclename="cyclicLaserMeans" telemetryddress="10.21.41"
testcaseLine="56" timestamp="Thu Jul 02 13:43:27 2015"
testresult="passed" parametername="Serid"
expectedvalue="21" actualvalue="21"/>

 <testcase oraclename="cyclicLaserMeans" telemetryddress="10.21.41"
testcaseLine="56" timestamp="Thu Jul 02 13:43:27 2015"
testresult="passed" parametername="Subserid"
expectedvalue="41" actualvalue="41"/>

 <testcase oraclename="cyclicLaserMeans" telemetryddress="10.21.41"
testcaseLine="56" timestamp="Thu Jul 02 13:43:27 2015"
testresult="passed" parametername="MeanTemp"
expectedvalue="== 90.0000" actualvalue="90.0001"/>

 </testsuite>
</testsuites>

Fig. 6.8 Reporter output of reportAll.xml.

results are forwarded to the standard output. Figure 6.9 shows the report with
all evaluations of one cyclic packet, including the interval time.

File: /home/killroy/Dropbox/master_…/drawings/important/logAll.xml Page 1 of 1

<?xml version="1.0" encoding="UTF-8"?>
<testrun>

 <packetevent type="telemetry" timestamp="Thu Jul 02 13:43:27 2015"
address="10.21.41">

 <packetevent type="telecommand" timestamp="Thu Jul 02 13:43:28 2015"
address="10.21.32">

</testrun>

Fig. 6.9 Logger output of logAll.xml.

Google Test and other unit test frameworks got investigated to incorporate
them in the test-framework. The investigation revealed that the testing process
in such frameworks does not meet the requirement of an online evaluation of
the test cases. In case of Google Test, the test case’s evaluation is triggered
by a final RUNALLTESTS macro. This affords the storage of all arriving TM
packets until the test execution is completely finished. An online investigation
of the results is then not possible, what means that the programmer does not
receive any information about the test run while it is executed. It would be
possible to create the unit test environment for every parameter evaluation,
outputting the result and destroying the environment again. But the overhead
in the integration of the API of the unit test-framework in such a way is higher
than the actual benefit of it. The benefit is just a standardized XML output.
Therefore, the layout of the Google Test output is used as a template and a
custom made Reporter and Logger is implemented.

92 Implementation

Coordinator

The Coordinator class is the heart and the worker of the TEEP. Its only
member is the runTest method, in which almost the entire test process on the
TEEP side is implemented. It initializes all components of the test-framework
and controls the transmission and the evaluation of the packets in a loop. In
the subsequent section, this process in the loop is explained.

6.4.4 Test Process

Figure 6.10 shows the test process in great detail. The loop is implemented
in the Coordinator’s runTest method. The prior mentioned components are
integrated in that loop to fulfil their task in the TEEP.

When the test run begins, the OBSW, ringbuffer, Logger, Reporter, TTC
packets and Oracle packets are instantiated. The OBSW is spawned in an extra
thread. In case periodic TM packets got defined as test cases for the test run, a
watchdog timer thread is instantiated with twice the maximum interval time,
comparing all interval times of the periodic TM packets. Then the thread is
spawned and all periodic TM packet time stamps in the TestEvalMeta list get
updated.

In case no periodic TM packets got defined in any test cases, the watchdog
timer is initialized with a default value. The default value and the multiple
of the maximum interval time is configurable. The watchdog timer thread is
spawned and the noCyclicTMFlag set.

At this point the actual loop in the Coordinator begins. The TestExecMeta
is searched for TTC packets which are in the TCCState "ready". They get
transmitted via the Packet Handler and the Ringbuffer and logged via the Logger.
This continues until all TTC packets in TTCState "ready" got transmitted. After
the transmission of a TTC packet, the TTCState is set to "waiting on TM". There
is no possibility to define a test case with a TTC packet that is not expecting a
TM in return. This is due to the fact that the domain expert shall be forced to
write a test with measurable output of the reactive system.

If no TTC packet is waiting for a TM packet to arrive and the noCyclicTMFlag
is set, the test run is finished, as nothing is expected to happen any more. In
case this condition is false, the TEEP begins to wait for an event. In case the
watchdog timer throws an event, the test run is finished. The programmer has to
be aware that the watchdog time might be too short for some TM verifications.
Therefore, he or she has to make sure that the multiple of the maximum interval

6.4 Test Execution & Evaluation Platform Implementation 93

Update the timeStamp
of periodic packets

TestExecMeta::searchTestExecList

PkgHandler::waitOnEvent

IF: TM packet knowm

IF: Packet
Event

IF: test
passed

Reporter::repFailResult

AllReport.xml

FailReport.xml

Std::out

Reporter::repSucResult

AllReport.xml

Std::out

TestExecMeta::updateTestExecList

1

1 0

1

0

TestEvalMeta::updateTestEvalListUntil

0

1

1 0

IF: TM is until

01

IF: TTC in
State = “ready”

0

PkgHandler::sendTTC

Logger::logTTCTransmission

1

TEST RUN FINISHED

START TEST RUN

Initialize:
OBSW, Ringbuffer,
Logger,Reporter,

TTC packets and Oracle packets

Update watchdog timer thread

IF: Watchdog
Event

1

IF: no TTC in state
 “waiting on TM” &&

noCyclicTMFlag

1

IF: periodic TM packets

Start watchdog timer thread

Initialize watchdog timer with
2 x max-intervaltime

Set: noCyclicTMFlag

Start watchdog timer thread

Initialize watchdog timer with
default time

0

Logger::logRefPacket

RefLog.xml

Logger::logUnrefPacket

RefLog.xml

IF: Finished with all
Packet parmeters

OraclePacket::
compareParameter

TestEvalMeta::
searchTestEvalList

PkgHandler::PacketFactory::
Instatiate packet

RefLog.xml

IF: TM is
Periodic

TestEvalMeta::updateTestEvalListPreriodic

TestEvalMeta::comparePeriodicTM
IF: test
passed

Reporter::repSucResult

AllReport.xml

Std::out

Reporter::repFailResult

AllReport.xml

FailReport.xml

Std::out

0

0

1

1

Fig. 6.10 Flowchart of testing process.

94 Implementation

time is sufficient. This is a drawback of the watchdog timer, but without it, the
programmer would have to guess the time and abort manually.

In case of an arriving TM packet event, the watchdog timer is updated to its
initial value and the byte stream investigated to determine the TM packet. In
case it is unknown, the byte stream is logged via the Logger in the UnrefLog.xml
file and the program jumps to the beginning of the loop. In case it is known, it
is instantiated by the packet factory and the de-serialize method and logged in
the RefLog.xml.

If the TM packet is referencing to a periodic Oracle packet, the time stamp is
evaluated and a report entry written. Additionally, the time stamp in the TestE-
valMeta list is updated. After this, the evaluation is for all arriving TM packets
the same. The Oracle packet is used to evaluate the TM packet and calls the
Reporter after each parameter evaluation. The reporter either writes to std:out
and the AllReport.xml or to the std:out, AllReport.xml and FailReport.xml. This
depends whether the evaluation creates a success or a failure verdict.

When all parameters have been evaluated the TestExecMeta has to be
updated. This might change the TTCState of some TTC packets. In addition,
the TestEvalMeta list is updated if the TM packet is the second operand of an
until expression. Therefore, the prior explained active flag has to be set to false
and the Oracle cannot be reached any more. At this point, the end of the loop
is reached and the process begins again from the top.

Chapter 7

Evaluation

This Chapter targets the requirements coverage, the mastering of the chal-
lenges, identified in the Related Work Section of the Background Chapter, and the
limitations of the test-framework.

7.1 Automatic Specification-based Challenges Eval-

uation

In the Related Work Section of the Background Chapter, the challenges for
an automatic specification-based test-framework are elaborated (2.8). Based
on these challenges the test-framework is theoretically evaluated, to reveal the
coverage of them.

The challenge of the specification language is mastered by the application
of a formal language as a basis. This allows a precise definition of test cases,
overcoming ambiguities of informal languages.

The method for generating adequate test sets is mainly handed over to
the domain expert, with the specification-based and fault-based test selection
and termination criteria. But also structural test cases are created by the test-
framework in the background. Additionally, the domain expert is helped to
determine the coverage of the test suite by the Coverage Report.

The translation between the abstract data and the concrete data is
handled by the transformation of the TTC and Oracle packets in compilable and
therefore executable C++ classes. Also, the gap between the abstract test cases
and the executable test cases is mastered, with the translation of the temporal
behaviour of the test cases in C++ lists for the execution and the evaluation.

The analysis of test results to determine bugs requires the definition of
an oracle as an expected output. The Coverage Report helps the domain expert

96 Evaluation

to determine whether all Oracle packets are created or which ones are still
missing. But there can also be the situation that unexpected TM packets arrive,
which are not covered by the test model. In case this happens, these packets are
logged in a specific unresolvableTMLog.xml file. In this file, the entire Header
Field and Packet Data Field of the arriving TM packet is denoted, enabling the
programmer to trace the origin of the TM packet back to the application, service
and sub-service. This log can then be used to discuss this event with the domain
expert.

The debugging challenge is the tracing back of a failure to the model. The
test-framework displays the model line of the test case in the test model as
information for the programmer in every parameter evaluation.

The specific challenges for integration testing are hard to evaluate on a
theoretical basis. With the used coverage criteria, the completeness of an
integration test suite can not be guaranteed. In general, this challenge remains
when using specification-based testing, due to the incomplete nature of such
an approach. A concrete result for this aspect can be gained when the test-
framework is used for the first time in an actual space mission.

7.2 Requirements Coverage Evaluation

The entire report emphasises on the requirements for the test-framework.
In the Analysis and Requirements Chapter they are identified and applied in
the Design Chapter. In the subsequent Implementation Chapter the design is
linked to the actual implementation of the test-framework. In this section, the
implementation is evaluated theoretically towards its requirements coverage.

7.2.1 General Requirements Coverage

The subsequent list denotes the evaluation of the general requirements
regarding their fulfilment in the implementation.

• Data-centric design: The test-framework, and there more precise the
DTL, follows the same data-centric approach as the DDL. The TTC and Or-
acle packets, as test case input and expected output, are in focus, clustered
in groups. The entire test-framework emphasises on the transmission and
routing of data packets from and to the OBSW.

• As automatic as possible: The test-framework is able to generate exe-
cutable test cases by an automatic translation of the specification-based

7.2 Requirements Coverage Evaluation 97

definition of abstract test cases and the OBSW structure. The created files
are automatically copied to their location in the TEEP, in which they can
be executed immediately without any changes. The TEEP transmits the
TTC packets to the empty behavioural OBSW structure, which returns an
acknowledgement to the standard output from the destination of the TTC
packet in the OBSW.

• Enable test-driven development: The test-driven development is strongly
supported by the test-framework. It allows the creation of compilable test
cases before one line of behavioural OBSW source code is written. The
programmer has all use-case scenarios of the domain expert’s component
in the form of test cases available, before one line of source code of the
actual OBSW implementation is written.

• All outputs in XML: All reports and logs are in XML and it is additionally
possible to view them in HTML5 format, by setting of a #define in the
TEEP.

• Logs and reports: The reports as well as the logs are generated auto-
matically in an online fashion. This means that the reports are created
after each iteration in the test loop of the Coordinator. This allows the
programmer to abort a test run and still maintain all evaluation and trans-
mission results, that took place until the stop of the test run. Additionally,
the domain expert is provided with instant feedback on the results of the
parameter evaluations in the form of coloured printouts to standard out.

• Exploit re-usability: There are two different forms of re-usability in
the test-framework. On one side, the re-usability of structures within
the models is targeted. The packets of the test model are created by
an instantiation of existing TC and TM packets of the system model.
Additionally, it is not necessary to create new TTC or Oracle packets for
each test case. The packets can be reused arbitrary often in various test
cases. On the other side, the re-usability of the system and test model of
a mission for future missions is focused. It is possible to reuse test cases
for frequently applied services in various applications, like the Memory
Management Service. Only slight adaptations are necessary to integrate
a service in another application. In the system model, the service needs
to be referenced in the application definition. In the test model, the
TTC and Oracle packets of the service have to be copied and the new
application address adapted. In case different values or value ranges of
the parameters are requested, the domain expert changes them. As the

98 Evaluation

behaviour of the service is the same in all applications, the test cases
can also get copied and the new TTC and Oracle packets referenced. It
is recommended to have a database of common services and their TTC
packets, Oracle packets and test cases, to be able to just copy them into
the models.

• Functional testing: The functional testing is in the foreground of the
test-framework. The domain expert is able to specify a certain expected
behaviour of the OBSW, reflecting the behaviour of his or her component.

• Manual test creation: Not all test cases are created manually. The struc-
tural tests, related to the on-board routing of the packets are automatically
generated. But the functional tests have to be defined manually by the
domain expert.

• Domain expert as test designer: The handling of the test-framework
targets the domain expert as test designer, allowing him or her to generate
complex test scenarios for his or her component in a facile way. The
facility resides in the restrictions in the grammar. The structure in the
DDL, to describe the system model, guides the domain expert through the
process of creating OBSW, emphasising on its hierarchical structure. The
generated C++ code is way more complex, but hidden before the domain
expert’s eye. The DTL is following the same restriction idea, grouping the
test input, expected test output and the actual test cases. Additionally, the
domain expert is able to name his or her application, services and sub-
services without any convention. This helps to incorporate the domain
knowledge into the model and facilitates also the understanding on the
programmers side on the domain expert’s component.

• Simple to use tool: The tool is integrated as an Eclipse IDE plug-in, which
might be a drawback for this requirement. Such full-blown IDEs always
comprise a certain complexity in the handling, and can quickly lead to a
rejection by the operator, in case he or she is not used to them. But the
actual necessary functionalities of the IDE for the generation of a project,
respectively system and test model, are only a few. A project has to be
generated and two files created, one with .ddl and the other with .dtl at
the end. The actual generation of the models is then strongly supported by
features like syntax highlighting, code folding, syntax validation and the
display of options with the "Ctrl + Space" short cut in the editor. On the
side of the programmer, a certain experience with IDEs can be assumed.
The TEEP ought to be used in any IDE or also from the command line,

7.2 Requirements Coverage Evaluation 99

whereas Microsoft Visual Studio has been applied for the implementation.
To launch a test run, the TEEP only needs to be compiled and executed. In
case a specific test suite is of interest, other test suites can be commented
out with the "not" keyword after a test suite definition in the test model.

• Steep learning curve via repetition: An emphasis of the test-framework
are repetitive tasks while modelling. In case the basic principle, meaning
the hierarchical structure of OBSW, is understood, the enrichment of the
system model with additional applications, services and sub-services is
straight forward. The gained knowledge of the generation of a system
model can then be reused in the test model, especially in the instantiation
of TTC and Oracle packets. They follow the basic design of a system
packet, offering a strong recognition value for the domain expert. The def-
inition of test cases is more difficult, because multiple options are possible.
But keywords like "always", "never" and "cyclic" are self-explaining. Other
keyword like "implies" or "must hold" provide information on the back-
ground of the grammar. Also the repetitive patterns for the programmer
when actually executing a test run creates confidence in the programmer
over time. But a drawback is the reading of the reports and logs. They
are still self-explaining, but it has to be known why a packet is listed in
this report or log and not in another. This is something that has to be
learned by the programmer with the help of the manual.

7.2.2 PUS and Additional Temporal Requirements Coverage

The PUS requirements are specific for OBSW of satellites. The goal is to
integrate these requirements in the test-framework, to allow the domain expert
to specify different use-case scenarios of his or her component.

Packet Structure Requirement Coverage of PUS

The packet structure in the test-framework is strongly related to the subse-
quent elaborated behavioural requirements. This is due to the fact that some
behavioural aspects of PUS have to be transmitted in a packet from the ground
station to the OBSW in the satellite.

The Packet Field Header has a the Type as member which is important to
determine whether a packet is a TC or a TM packet. In case of the implementa-
tion of the test-framework, this is of minor interest. As the packets that arrive
at the TEEP from the OBSW are always TM packets and in the other direction
always TC packets. But when programming a real OBSW, the CDH subsystem

100 Evaluation

sorts and intermediate stores the packets. Therefore, it is useful to implement
it from the beginning.

The addressing parameters, APID, SERID and SUBSERID are all in the Packet
Header, which is in contrast to the PUS protocol. But it is very common to do
it like that, especially in smaller scientific space missions. The DLR conducts
mostly those smaller space missions, with micro satellites as the maximum
satellite size.

The Sequence Count is very important to determine whether a packet is lost
or not. In the implementation of the test-framework it is used for that purpose,
evaluating automatically if a packet is missing. Additionally, it is possible to
detect if the OBSW is in an unexpected state, by the arrival of a not expected
TM packet.

The Payload Length member defines the length of the Packet Data Field and
helps to optimize the usage of the ringbuffer. Additionally, it can be easily used
to determine the communication budget of the subsystems of the OBSW.

The Packet Data Field contains the payload parameters and is variable in size
as requested by PUS. PUS defines 65KB as the maximum packet size, but it is in
most missions much smaller. The programmer is able to control the maximum
size of the Packet Data Field by the definition of a maximum packet size that
can be written to the ringbuffer. In case the ringbuffer throws an error, the
programmer has to use multiple packets to transmit the payload parameters.

Behavioural Expressiveness & Additional Temporal Requirements Cover-
age

The behavioural expressiveness requirements target specific modes and
options of the PUS, offered to the ground station to control and supervise the
satellite. Together with the additional temporal requirements, they represent
the entire ability to express the behaviour of the reactive system over time.
The subsequent list denotes the correlation between these requirements and
the actual implementation. The enumeration in the list is mirrored in the test
case definition of a test model in Figure 7.1. This test model is the same test
model that has been presented in the Data Testing Language Section of the
Implementation Chapter (6.3). To facilitate the reading, the test model is again
displayed in this chapter.

1. TM verification: A TM verification triggers the transmission of a TTC
packet and expects a specific TM packet in return, which is compared to
an Oracle packet. In the test model, a TTC packet to switch the laser "on",

7.2 Requirements Coverage Evaluation 101

testNepumuc.dtl

1 // Group of TTC packets
2 TTCGroup ttcGr1 is
3
4 // laser control
5 TTC swLaserOn to [laser.laserControl.TCLaserCtrl] is
6 setState set 1
7 end
8 // laser control
9 TTC swLaserOff to [laser.laserControl.TCLaserCtrl] is

10 setState set 0
11 end
12 end
13
14 // Group of Oracle packets
15 OracleGroup orGr1 is
16
17 // laser control
18 Oracle laserStateOn from [laser.laserControl.TMLaserStatus] is
19 state expect == 1
20 Temp expect [80 .. 100]
21 PeakPower expect < 10
22 end
23 // laser control
24 Oracle laserStateOff from [laser.laserControl.TMLaserStatus] is
25 state expect == 0
26 end
27 // laser housekeeping
28 Oracle cyclicLaserMeans from [laser.housekeepingRef.LaserMeanvalues] is
29 MeanTemp expect == 90.563
30 end
31 end
32
33 // Group of test suites
34 TestSuitsGroup tsGR1 is
35
36 Testsuit ts1 is
37 // 1. TM verification
38 ttcGr1.swLaserOn implies orGr1.laserStateOn must hold
39 // 2. TC/TM sequences
40 ttcGr1.swLaserOn implies orGr1.laserStateOn future orGr1.laserStateOff must hold
41 // 3. Procedures
42 ttcGr1.swLaserOn implies orGr1.laserStateOn must hold
43 next
44 ttcGr1.swLaserOff implies orGr1.laserStateOff must hold
45 // 4. Periodic TM packets
46 cyclic set milSec: 2000 orGr1.cyclicLaserMeans must hold
47 // 5. Always & Never
48 always orGr1.laserStateOn must hold
49 never orGr1.laserStateOff must hold
50 // 6. Always until
51 always orGr1.cyclicLaserMeans until orGr1.laserStateOff must hold
52 end
53 end
54

Page 1

Fig. 7.1 Simple test model.

is transmitted and a TM packet, with the state and other parameters of
the laser with specific values or value ranges, is expected to return.

2. TC/TM sequences: The TC/TM sequences are concatenations of TTC
or/and Oracle packets. In the test model, the test case sends a TTC packet
to the OBSW, to switch the laser "on". It expects two TM packets in
return, one that states that the laser is actually "on" and another that
denotes that the laser will be switched "off" at some point in the future.

102 Evaluation

The concatenations on both sides, the TTC and the Oracle side, can be
arbitrary long.

3. Procedures: The Procedure in the test model is the most simple proce-
dure possible, which are two TM verifications combined with the "next"
operator. But it is also possible to append more TM verifications or
TC/TM sequences. At the test model, in the first TM verification the laser
is switched "on" and in the second switched "off" again.

4. Periodic TM packets: The periodic packets require the definition of the
expected time interval in which the TM packet ought to arrive. There
is no TTC packet needed. The result of the evaluation of all parameters
is reported, including the interval time. This construct can also be seen
as an always expression with an additional temporal requirement. The
model shows an example with an interval time of 2000 milliseconds and
an expected TM packet with certain mean values of the laser.

5. Always & Never: In the implementation the always and the never ex-
pressions have no TTC packet to trigger them. They are statements that
hold from the beginning of the test run’s execution until the end. The
never expression negates the payload parameter definitions of the Oracle
packet. It is also possible to define the Oracle packet with unwanted
values or value ranges and to use the always expression. This would lead
to the same results. In case of the example test model, it is expected that
the laser should be always in the state "on" and never in the state "off".

6. Until: The until expression is an attachment of the always, never and
periodic packets expressions, to determine a point in time (a state in the
OBSW), at which the prior, in the entire test case defined state, should
not be reached any more. In case the OBSW still transmits a TM packet
that reveals that the OBSW reached that banned state, the arriving TM
packet is handled as unknown and logged in the unresolvable TM packets
log. The test model only displays the combination of always and until,
but the other combinations follow the same rules. The test case asks for
the laser mean values until the laser is switched "off".

7. Missing TM packets: The Missing packets are listed in the test-framework,
which are all Oracle packets of the defined test cases at the beginning of
the test run. The list is reduced by an entry if a specific packet actually
arrives once. In case, an in a test case defined Oracle packet never arrived,
it is in state missing and reported to the programmer. The identification

7.3 Limits of the Test-framework 103

of the Oracle packets for the evaluation towards the arriving TM packets
happens in the background by the framework with the help of the Se-
quence Count, which holds the offset of the test case expression in the
test model as value. therefore it is not visible in the test model example.

7.3 Limits of the Test-framework

There are various limits in the test-framework and in the expressiveness of
the created reports and logs.

One issue is that the temporal behaviour of the SUT is measured using
the system time of the computer on which the test-framework is executed.
Scheduling aspects of the operating system of the computer are not covered.
Therefore, the expressiveness of periodic TM packets and their time stamp
evaluation is limited. The test-framework needs to run on a real-time operating
system to allow a realistic investigation of the temporal behaviour of the SUT.

Another limit is the implication that takes palace when executing a test
case. If a specific Oracle state is reached, verified by the test-framework, it is
expected (implied) that all the prior addressed TTC states are correct. The
assumption is that all transmitted TTC packets are without any failure. For the
programmer it is hard to realize that the expected TTC states was not reached,
when the Oracle state is verified. What actually happens in such a case is that a
wrong trace in the Kripke structure was tested, which has the expected Oracle
state as final state. Additionally to that, it is not clear if the test case itself is
correct. This is assumed within the test-framework and a general problem in
testing.

A similar limitation resides in the system model. The structural tests reveal
only that the structure of the system model fits the OBSW structure. But the
model of the structure itself can be wrong, as it is not tested.

Also problematic is the potential loss of precision when the OBSW or the
TEEP tries to store a floating point number in multiple uint8t data types when
serializing the packet for the transmission. The workaround for this problem is
a programmer-defined delta value that enables the comparison of floating point
values. The comparison takes palace while the evaluation of the TM packet
against the Oracle packet and is stated as successful if the difference is less than
the defined delta value.

Another potential source for failures is the transformation of the system
and the test model in compilable C++ code. There is always the threat of
a flawed implementation of the code generator. Software has bugs and the

104 Evaluation

test-framework is no exception. Therefore, the programmer has to be aware
that the translation from the model to the C++ code might be corrupted.

Chapter 8

Conclusion

8.1 Summary

The test-framework bridges the knowledge gap between the domain expert
and the programmer when developing OBSW for satellites. The domain expert
is able to define a system model of the OBSW, illustrating the software interface
that is controlling his or her satellite component. This system model serves as
an input for the test model, in which test cases can be defined. The domain
expert is able to write multiple test cases to simulate a realistic operation
of his or her component. The test case input and expected output data are
instantiated TC & TM packets of the system model in the test model. These
instantiated packets are Test Telecommand and Oracle packets. The test cases
and the data packets, are translated via a code generator in compilable C++
code. Additionally, the basic structure of the OBSW and the on-board routing
mechanism (CDH subsystem) of the packets is converted into C++ classes.
The entire code is integrated automatically in the Test Execution & Evaluation
Platform. To determine the coverage of the test suite, the domain expert is
supported by a Coverage Report that investigates the structural coverage of
his or her system model in the test model. When the coverage is stated as
sufficient by the domain expert, his or her work is done and handed over to the
programmer.

The programmer begins to implement the OBSW of the satellite. The OBSW
is the SUT and is connected, via a ringbuffer as communication interface for the
packet transmission, to the Test Execution & Evaluation Platform. During the
implementation of the OBSW, the programmer receives immediate feedback on
the correctness of the OBSW under development by the execution of the test
cases. He or she is able to determine the accurateness of the OBSW’s behaviour
by an investigation of various logs and test case evaluation reports. In addition

106 Conclusion

to that, the coloured evaluation result is forwarded to standard out. If the
programmer detects an error in the system or test model, he or she is able to
discuss this with the domain expert on the basis of the models, the logs and the
reports.

8.2 Outlook

There are a plethora of future applications and additional features for
the test-framework. A potential future scenario is the enrichment of the test-
framework by a feature, which is calculating the communication traffic between
the base station and the satellite over time. Heavily communicating systems
could be revealed at an early stage of the development, facilitating the com-
parison against the planned communication budget of each system of the
satellite.

Additionally, the usage of the test-framework for PiL and HiL tests is also
possible. The hardware connection to the on-board computer has to be es-
tablished by actual hardware and correlating hardware drivers. Exceptional
situations which might occur could be simulated and functioning workarounds
already implemented in the OBSW before an event actually triggers the same
when the satellite is operating in space.

It is also possible to enable early simulation of the entire system. Therefore,
an environment model is needed in addition to the test and system model. The
environment model simulates the space environment as well as the technical
behaviour of the satellite. This model could be used to generate behavioural
C++ code, which can be attached to the SUT to simulate the entire system
during the development of the OBSW, respectively the execution of the test
cases.

The test-framework uses the same interface as the ground station to the
satellite. Therefore, it could be used to write TC procedures which can be
transmitted to the operating satellite via the base station. These procedures
can be generated before the mission starts and carried out when the satellite
mission begins.

To go one step further, the test-framework itself could be integrated in
the ground station, to enable a dynamic reaction on specific TM packets that
arrive from the satellite. Especially in early mission phases, this would shift
control over the satellite from the on-board computer to the ground station.
Early mission phases are all phases before the satellite reaches its final working
environment. Nowadays, the satellite mostly manages itself during those phases,

8.2 Outlook 107

leaving mission control out of the decision process, because the evaluation of
the TM packets is primarily conducted in a manual fashion.

Finally, the test-framework can be used to perform mission online tests. The
actual TM packets of the OBSW have to be forwarded to the test-framework,
in which they are compared to specific Oracle packets. This would facilitate
the detection of errors in the satellite’s hardware components, when expected
TM packets fail the evaluation. In case an error is detected, the test-framework
can be used to build TC packet procedures to find a workaround for the error.
These procedures could then be forwarded directly to the satellite and the result
mission-online evaluated.

Bibliography

[1] Space Foundation. Space Foundation - Research and Analysis - Space Foun-
dation Indexes. URL: http://www.spacefoundation.org/programs/research-
and-analysis/space-foundation-indexes, accessed: [25/May/2015].

[2] CubeSat. Homepage - CubeSat. URL: http://www.cubesat.org/, accessed:
[15/Apr/2015].

[3] SpaceX. Homepage - SpaceX. URL: http://www.spacex.com/, accessed:
[15/Apr/2015].

[4] Space Foundation. The Space Report 2014. Space Foundation. USA, Col-
orado Springs. 2014. ISBN-13: 978-0-9789993-7-7

[5] OECD. The Space Economy at a Glance 2014. OECD Publishing. URL:
http://dx.doi.org/10.1787/9789264217294-en. November 2014.

[6] ESA Board for Software Standardisation and Control. Guide to software
quality assurance. ESA PSS-05-11 Issue 1 Revision 1. PARIS CEDEX, France.
March 1995.

[7] European Cooperation for Space Standardization. Homepage-ECSS. URL:
http://www.ecss.nl/, accessed: [19/April/2015].

[8] Space project management - Project planning and implementation. European
Cooperation for Space Standardization, Requirements & Standards Division.
Noordwijk, Netherlands. 2009.

[9] Wilfried Ley, Klaus Wittmann, Willi Hallmann. Handbuch der Raumfahrt-
technik. Carl Hanser Verlag. 2008.

[10] Lui Sha, Rajkumar, R.; Lehoczky, J.P., Priority inheritance protocols: an
approach to real-time synchronization, Computers, IEEE Transactions on ,
vol.39, no.9, pp.1175,1185, Sep 1990.

110 Bibliography

[11] Mike Jones. What really happened on Mars?. Record. URL:
http://research.microsoft.com/en-us/um/people/mbj/mars_pathfinder/
mars_pathfinder.html. December, 1997.

[12] S. McConnell. SM 2004. Code Complete: A practical Handbook of Software
Construction. 2nd. Microsoft Press. Redmond, Washington, USA.

[13] Paul K. Martin. Review of NASA’S Lessons Learned Information Sys-
tem.Report NO. IG-12-012 (Assignment NO. A-11-010-00) .National Aero-
nautics and Space Administration.Washington, DC, USA. March, 2012.

[14] Deshmukh, Weps, Isidro, Gerndt. Model Driven Language Framework
to Automate Command and Data Handling Code Generation.Brunswick,
Germany. January 2015.

[15] A. Håkansson, Portal of Research Methods and Methodologies for Research
Projects and Degree Projects. WORLDCOMP’13 - The 2013 World Congress
in Computer Science, Computer Engineering, and Applied Computing,
22-25 July, 2013 Las Vegas, Nevada; USA.

[16] S. Keshav. 2007. How to read a paper. SIGCOMM Comput. Commun. Rev.
37, 3, 83-84, July 2007.

[17] European Cooperation for Space Standardization. Space engineering
Ground systems and operations — Telemetry and telecommand packet utiliza-
tion. ESA Publications Division. Noordwijk, Netherlands. January 2003.

[18] Mark Utting, Bruno Legeard. Practical Model-Based Testing: A Tools Ap-
proach Morgan Kaufmann Publishers Inc. San Francisco, CA, USA. 2007.

[19] Lee Copeland. A Practitioner’s Guide to Software Test Design Artech Hous
Publishers. Norwood, USA. January 2004.

[20] Seon-Jae Jang; Hae-Geun Kim; Youn-Ky Chung, Manual Specific Testing
and Quality Evaluation for Embedded Software. Computer and Information
Science, 2008. ICIS 08. Seventh IEEE/ACIS International Conference on ,
vol., no., pp.502,507, 14-16 May 2008.

[21] Thopate, H.; Kachewar, R.R.. Chameleon model based automation frame-
work design for testing in agile environments. Software Engineering (CON-
SEG), 2012 CSI Sixth International Conference on , vol., no., pp.1,4, 5-7
Sept. 2012.

Bibliography 111

[22] M. Fewster, D. Graham. Software Test Automation - Effective use of test
execution tools. Addison-Wesley. 1999.

[23] Xinbian Wang; Guangjun He. The research of data-driven testing based
on QTP. Computer Science & Education (ICCSE). 2014 9th International
Conference on . vol., no., pp.1063,1066. 22-24 August 2014.

[24] M. Voelter. DSL Engineering Designing, Implementing and Using Domain-
Specific Languages. self-published (dslbook.org). 2013.

[25] W. Beaton. Eclipse Platform Technical Overview (v3.1), April 2006.
URL: https://www.eclipse.org/articles/Whitepaper-Platform-3.1/eclipse-
platform-whitepaper.html, accessed: [03/May/2015].

[26] Maximilian Koegel, Jonas Helming. What every Eclipse
developer should know about EMF. April 2015. URL:
http://eclipsesource.com/blogs/tutorials/emf-tutorial/, accessed:
[03/May/2015].

[27] Prof. Gerti Kappel. Eclipse Modeling Framework Tech-
nical Univaersity Dresden. April 2012. Lecture-notes:
Real-Time Systems Lab . URL: http://www.es.tu-
darmstadt.de/fileadmin/download/lehre/mbse/LectureSlides/02-
EMF.pdf, accessed: [03/May/2015].

[28] Documentation: Package org.eclipse.emf.ecore. URL:
http://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/
emf/ecore/package-summary.html,accessed: [03/May/2015].

[29] S. Efftinge, M. Voelter. oAW xText: A framework for textual DSLs. Version
1.1. September 2006.

[30] Xtend User Guide. URL: https://www.eclipse.org/xtend/documentation/
2.4.0/Documentation.pdf . April 2013.

[31] Leslie Lambort. What good is temporal logic. Elsevier Scinece Publishers B.
V. (North-Holland). Computer Science Laboratory, Manlo Park, USA. 1983

[32] Klaus Schneider. Verification of Reactive Systems: Formal Methods and
Algorithms. Springer Science & Business Media. 2004.

[33] Pierre Wolper. Temporal Logic Can Be More Expressive Academic Press, Inc.
Computer Science Department, Stanford University, Stanford, California,
USA. 1983.

112 Bibliography

[34] Cesar Sanchez, Martin Leucker. Linear temporal logic with until and next,
logical consecutions Elsevier. Department of Computing and Mathematics,
Manchester Metropolitan University, Manchester, UK, Siberian Federal
University, Krasnoyarsk, Russia. May 2008.

[35] V. Rybakov. Regular Linear Temporal Logic with Past Springer-Verlag Berlin
Heidelberg. Madrid Institute for Advanced Studies (IMDEA Software),
Spain. Spanish Council for Scientific Research (CSIC), Spain. Technische
Universitaet Muenchen, Germany. 2010.

[36] Christel Baier, Joost-Pieter Katoen. Principles of
Model Checking MIT Press, Cambridge, England. URL:
http://is.ifmo.ru/books/_principles_of_model_checking.pdf . 2008

[37] Virtual Satellite Project. DLR - Institute for Software. URL:
https://software.dlr.de/p/virsat/home/ accessed: [01/06/2015]

[38] Autonomous Terrain based Optical Navigation. DLR - Institute of
Space Systems. URL: http://www.dlr.de/irs/en/desktopdefault.aspx/tabid-
6657/10924_read-24821/, accessed: [01/06/2015]

[39] Nan Li, Jeff Offutt. A Test Automation Language Framework for Behavioural
Models. IEEE Eight International Conference on Software Testing. Verifica-
tion and Validation Workshop (ICSTW). 12th Workshop on Advances in
Model Based Tsting (A-MOST 2015) New York, USA. 2015

[40] Iyenghar P., Pulvermueller, E., Westerkamp, C., Wuebbelmann, J.. In-
tegrated model-based approach and test framework for embedded systems.
Specification and Design Languages (FDL). 2011 Forum on , vol., no.,
pp.1,8, 13-15 Sept. 2011

[41] Shaoying Liu. Automatic Specification-Based Testing: Challenges and Pos-
sibilities. Theoretical Aspects of Software Engineering (TASE). 2011 Fifth
International Symposium on vol., no., pp.5,8, 29-31 Aug. 2011

[42] Andrew J. Dunar, Stephen P. Waring. Power to Explore: A History of Mar-
shall Space flight Center 1960-1990. CreateSpace Independent Publishing
Platform. URL: http://history.msfc.nasa.gov/book/. July 2012.

[43] Committee on Science and Technology House of Representatives. Investi-
gation of the Challenger accident.U.S. Government Printing Office .Washing-
ton, DC, USA. October, 1986.

Bibliography 113

[44] Code of Ethics for Engineers. National Society of Professional Engineers.
Alexandria, Virginia, USA. January 2003.

[45] IEEE Board of Directors. IEEE Code of Ethics. Insti-
tute of Electrical and Electronics Engineers (IEEE). URL:
http://www.ieee.org/about/ieee_code_of_conduct.pdf. June 2014.

[46] Justyna Zander, Ina Schieferdecker, Pieter J. Mosterman Model-Based
Testing for Embedded Systems. CRC Press. September 2015.

[47] Mark Utting,Alexander Pretschner, Bruno Legeard. A TAXONOMY OF
MODEL-BASED TESTING. The University of Waikato. Hamilton, New
Zealand. April 2006.

[48] Justyna Zander-Nowicka. Model-based Testing of Real-Time Embedded Sys-
tems in the Automotive Domain. Doctoral Dissertation. Technical University
Berlin. 2009.

Appendix A

Introduction

Mission phases milestones

Table A.1 displays the milestones of the space mission life cycle form the
European Cooperation of Space Standardization.

Abbreviation Milestone
MDR Mission Definition Review
PRR Preliminary Requirements Review
SRR System Requirements Review
PDR Preliminary Design Review
CDR Critical Design Review
QR Qualification Review
AR Acceptance Review

ORR Operational Readiness Review
FRR Flight Readiness Review
CRR Commissioning Result Review
LRR Launch Readiness Review
ELR End-Of-Life Review
MCR Mission Close-Out Review

Table A.1 Mission phases milestones. Source: [8]

116 Introduction

Satellite sizes

Table A.2 displays the different satellite classes, categorized regarding their
mass.

Satellite class Mass
Conventional satellite > 500 kg

Mini-satellite 100 ... 500 kg
Micro-satellite 10 ... 100 kg
Nano-satellite 1 ... 10 kg
Pico-satellite 0.1 ... 1 kg

Table A.2 Satellite classification according to the mass. Source: [9, p: 666]

	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 Motivation
	1.2 Space Environment of the Test-framework
	1.3 Objective
	1.4 Strategy
	1.5 Report Overview

	2 Background
	2.1 Packet Utilization Standard
	2.1.1 CDH Structure
	2.1.2 Packet Structure
	2.1.3 Behaviour Determined by PUS

	2.2 Definition of Testing
	2.3 From Manual Testing to Keyword-driven Test-frameworks
	2.4 Model-based Testing
	2.4.1 Approaches in Model-Based Testing
	2.4.2 Model-based Testing Taxonomy

	2.5 Domain Specific Languages
	2.5.1 Domain Specific Language Definition
	2.5.2 DSL vs. GPL
	2.5.3 Modelling with DSLs

	2.6 The Development Tools
	2.6.1 Eclipse Platform
	2.6.2 Eclipse Modelling Framework
	2.6.3 Xtext
	2.6.4 Xtend

	2.7 Temporal Logic
	2.7.1 Kripke Structure
	2.7.2 Linear Temporal Logic
	2.7.3 Computation Tree Logic

	2.8 Related Work

	3 Project's Ethic Responsibility
	3.1 Space Shuttle Challenger Disaster
	3.2 Code of Ethics for Engineers
	3.3 Ethical Aspects of the Project

	4 Analysis and Requirements
	4.1 General Requirements
	4.2 Protocol Requirements
	4.2.1 Package Structure
	4.2.2 Behavioural Expressiveness Requirements

	4.3 Additional Temporal Requirements

	5 Design
	5.1 Generic Top-Level Design Considerations
	5.1.1 Test Dimensions
	5.1.2 Test-framework Approach
	5.1.3 Different Model-based Approaches

	5.2 Application of the MBT Taxonomy
	5.2.1 Model Class
	5.2.2 Test Generation Class
	5.2.3 Test Execution Class
	5.2.4 Test Evaluation Class

	5.3 Top-level Design
	5.3.1 Data Description Language
	5.3.2 Data Testing Language
	5.3.3 Test Execution & Evaluation Platform

	5.4 Data Description Language
	5.4.1 Application-specific DDL
	5.4.2 PUS-conform DDL

	5.5 Data Testing Language
	5.5.1 Data-centric Sub-grammar
	5.5.2 Relational Expressions Sub-grammar
	5.5.3 Modified Linear Temporal Logic Sub-grammar
	5.5.4 Coverage Report

	5.6 Test Execution & Evaluation Platform
	5.6.1 Shared Components
	5.6.2 OBSW Components
	5.6.3 TEEP Components

	6 Implementation
	6.1 Used Tools & Implementation Workflow
	6.2 Data-Description Language
	6.2.1 DDL Grammar
	6.2.2 Code Generator

	6.3 Data-Testing Language
	6.3.1 Data-centric Sub-grammar
	6.3.2 Relational Expressions Sub-grammar
	6.3.3 Modified Linear Temporal Logic Sub-grammar
	6.3.4 DTL Structural Coverage Report

	6.4 Test Execution & Evaluation Platform Implementation
	6.4.1 Shared Components
	6.4.2 OBSW Components
	6.4.3 TEEP Components
	6.4.4 Test Process

	7 Evaluation
	7.1 Automatic Specification-based Challenges Evaluation
	7.2 Requirements Coverage Evaluation
	7.2.1 General Requirements Coverage
	7.2.2 PUS and Additional Temporal Requirements Coverage

	7.3 Limits of the Test-framework

	8 Conclusion
	8.1 Summary
	8.2 Outlook

	Bibliography
	Appendix A Introduction

