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Abstract 

 
Modelling the choice of shipment size is an essential and common aspect in developing freight transport models 

which also consider logistic choices. The implementation of the shipment size choice constitutes a high-level 
modelling approach of logistical decisions made by freight traffic demanders. The consideration of logistic choices in 
a freight transport context is accompanied with a huge diversity of involved actors and commodity characteristics 
which are influencing the choice behavior. 

In this study we model the behavior of shipment size choice as a discrete outcome of the total logistic costs. 
Further we used a Latent Class Analysis approach that reduces the dimensions of influencing factors coming up in 
context with the shipment size choice. Dimension reduction in the sense of groups with similar behavior improves the 
application in freight transport models as well as analyzing and predicting policy impacts. The study also reveals 
possible starting points for further research dealing with homogenous groups of logistical behavior.    
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1. Motivation 

Besides vehicles, shipments are the most visible objects in freight transport. Moreover, 
all involved actors in a certain transport process have to deal with the concerned shipment. Thus 
it is an interesting object for the examination of the behavioral foundations of freight transport.  
Although the single shipment is the unit that has to be dealt with in operative freight transport, it 
cannot be seen as being independent from the context in which it was prepared and will be 
routed on the way from the shipper to the recipient. This context comprises the relationship 
between shipper and recipient, the properties of the shipment itself and the supply of transport 
space that is available. Changes in the interaction patterns between shippers, recipients and 
carriers are likely to have consequences on freight transport operations and hence on the traffic 
of heavy goods vehicles. In the opposite direction, infrastructural and regulatory policy measures 
are taken with the intention to foster or alter the behavior that causes demand for freight 
transport. Thus the consideration of logistics is crucial in the development of behavior sensitive 
freight transport models. As every company organizes her logistic operations in a different way, it 
is not possible to reflect the behavior of each of these companies in a freight transport model. 
This holds especially in the case of large scale models that try to explain freight transport demand 
on an interregional or national level. Nevertheless, behavioral drivers of freight transport demand 
have to be accounted for in predictive models. Thus, simplifications have to be found that relieve 
the modeler from considering the details of trade and transport relationships. At the same time, 
these workarounds should not narrow the explanatory power of the model too much. If more 
complicated logistics aspects, like planning of networks and supply chain management strategies 
are set aside, the formation of shipment sizes remains as a proxy decision for the logistic 
interaction and optimization of all involved actors.  
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Shipment formation can thus be seen as one of the simplest links between commodity 
flows formed from the economic interactions on the transport demand side and the vehicle 
movements that take place on the various transport ways.   

In developing a shipment size model, two questions arise:  
1.) Which influences have to be considered as crucial and how can they be incorporated 

in an operational transport model? 
2.) How can the heterogeneity of actors and decision situations be addressed in a 

manageable yet realistic way? 
The purpose of this paper is to suggest answers to these two questions. Econometric 

models are the means of choice to deal with the variety of actors’ choices under seemingly 
identical conditions. We propose a discrete shipment size choice model, as it has turned out that 
certain shipment size categories can be delimited due to given vehicle and bundle sizes. A case 
study is undertaken in which the choice of shipment size is modeled for shipments that were 
transported by truck in interregional trips with an emphasis on domestic trips in Germany. 
Discrete choice models are usually estimated from samples that cover a wide variety of flows and 
thus relationships. The consequence is that the obtained model instances suffer from aggregation 
bias when it comes to model the behavioral change of single actors on outside effects. A way to 
alleviate this problem is to delimit segments of freight transport demand that exhibit similar 
behavior. In our case study, decision makers are segmented according to logistics aspects by 
means of a latent class logit model.  

The rest of the paper is organized as follows: Section 2 contains a brief review of the 
literature dealing with shipment size choice models and the formation of homogenous groups. In 
section 3 the conceptual framework which consists of the theoretical background of shipment size 
choice, the development of a discretized total logistic costs model and the essentials of 
determining latent classes. The source data and descriptive analysis are central in section 4 
whereas section 5 presents the estimation results. Finally a summary and an outlook on further 
purposes of investigation will be given in section 6. 

 

2. Literature review 

The formation of a shipment ready for transport is usually influenced from two directions. 
First, logistics requirements of the shipper and recipient determine the size of a shipment. 
Second, transport services that are available determine costs and transport time. In cases where 
the underlying order is not a one-off business, a shipment will be ordered in the frame of a long- 
established business relationship. From a transport analyst’s point of view, these relationships 
are only of interest as far as they influence transport services and vice versa. The first model 
considering the flow of goods which results from such a relationship in a certain period of time 
was presented by Baumol and Vinod (1970). They emphasize the tradeoff between fixed 
transport costs and the costs entailed by storing large quantities of the concerned good. Hall 
(1985) adds the aspect of transport mode choice when taking the lower envelope of the cost 
function of various transport modes as a decision criterion. By doing so, the inherently discrete 
choice of a transport mode is combined with the choice of a, continuous, shipment size. In the 
sequel, most transport models did not consider shipment size choice as isolated anymore but 
rather combined with the choice of mode, carrier or transport chain. However, Holguin-Veras 
(2002) points out that the choices on shipment size and transport mode are often not drawn by 
the same decision maker, although they are in many cases seen as belonging together. 
Transport models do not address the decisions of single shippers but rather consider the whole 
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population of them and their relevant behavior. As companies are different and can’t be 
measured by a single quantitative model, regression has been prevailing in shipment size 
modelling. Within the group of econometric models, there are basically three different ways in 
which the problem has been addressed: 

 
 

1.) Modeling of shipment sizes independently of transport mode choice (e.g. Combes (2009), 

Wisetjindawat et. al. (2005)). 

2.) Modeling of continuous shipment sizes and discrete modes of transport (e.g. Holguin-Veras 

(2002), De Jong and Johnson (2009), Abate and de Jong (2014) and Abdelwahab and 

Sargiuos (1992)) 

3.) Modeling of discrete shipment sizes and discrete modes of transport (e.g. De Jong and 

Windisch (2009), De Jong and Ben Akiva (2007), Pourabdollahi et. al. (2013)) 

Combes (2009) tries to verify the economic order quantity equation on the basis of the 
French shipment survey ECHO1. He adds further dummy variables that indicate the chosen mode 
of transport for the sampled shipment at hand. Given the data from the survey, it is shown that 
the EOQ model is a good approximation for the choice of a continuous lot size regardless of what 
mode of transport was actually chosen. Moreover, further variables are added to explain the lot 
size formation such as the transport distance and the question if the shipment was transported 
directly or in a vehicle tour. As the model was estimated on a comprehensive sample of transport 
cases of all kinds, the theoretical EOQ-model, can be seen as feasible to insert in a more 
comprehensive freight transport model. Such an insertion was done by Wistejindawat et. al. 
(2005). The EOQ-formula was applied to create shipments in a commodity based model for urban 
freight transport to feed these shipments into vehicle tours. In both cases, the parameters were 
estimated by OLS regression. 

Although the model of Wisetjindawat et. al. (2005) also incorporates a feedback on 
shipment size decisions from the transport system, parameters on the single model stages were 
estimated separately from the remaining parts of the model. This is different from models listed 
under 2.) and 3.). In these cases, shipment size choice is intertwined with other choices on the on 
the level of parameter estimation. The influence that multilevel decisions have on the parameter 
estimates depends on the model structure. In the case of type 2.) two different model types have 
been applied in the past. The more common one is the combination of a discrete choice model for 
the mode choice and a regression of a continuous lot size (e.g. Holguin-Veras (2002), De Jong 
and Johnson (2009), Abate and de Jong (2014)). In Abdelwahab and Sargiuos (1992) shipment 
and mode choice is modeled by a simultaneous equations model. In the models belonging to type 
2.), two general problems occur. First, as shipment size often enters the mode or vehicle choice 
submodel as an independent variable, a simultaneous equation problem exists. Correlation 
between the submodels thus has to be accounted for. Further, in a model whit revealed 
preference data, only such data records will exist in which the shipment size is conditional on the 
chosen mode or vehicle. This leads to selectivity bias which has been accounted for in several 
ways. The way pursued by Holguin-Veras (2002) and De Jong and Johnson (2009) is a two stage 
procedure that starts with estimating the parameters for the continuous shipment size model. To 
avoid selectivity bias and feedback between the submodels, shipment size is estimated 

                                                 
1
 Enquête ECHO Envoi-Chargeurs-Opérateurs de transport (Guilbault and Soppé (2009)) 
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independently from the chosen mode or vehicle type on regressors that do not occur in the 
discrete choice submodel. The shipment size obtained by the OLS regression is entered into the 
discrete choice model for vehicle type or mode choice. Abate and de Jong (2014) also pursue a 
two-step approach but start with transport mode choice according to a MNL model. The obtained 
choice probabilities serve as arguments for a correction function that is added to the shipment 
choice equation. A completely different way of discrete/continuous choice is undertaken by 
Abdelwahab and Sargiuos (1992) who estimate a switching sequential equations model with a 
stage least squares regression and in one step with a maximum likelihood estimator.  

Models of type 3.) assume that shipment sizes can be classified into discrete categories. 
This goes along with the finding of Hall (1985) that certain shipment sizes are unfavorable given 
the vehicles or transport modes to choose from. In the models of category 3.), random utility 
models are combined either by nesting (e.g. Windisch et. al. (2010), De Jong and Ben Akiva 
(2007)) or by copula functions (e.g. Pourabdallah et. al. (2013)). The central problem of nested 
discrete choice models is the determination of the nesting structure between lot sizes and 
transport modes. According to Windisch et. al. (2010), shipment sizes are better placed in the 
lower level of a nested logit model, indicating that a switch between shipments of various sizes is 
more usual than between transport chains.  

Pourabdallah et. al. (2013) refrain from nesting discrete choices, but rather use various 
copula functions to link multinomial logit choices of shipment size and mode choice. By the choice 
of an appropriate copula function, dependency structures between the two decision problems can 
be modeled in greater flexibility than with the hierarchical nested logit model.  

Regardless of the context in which the formation of shipment sizes is modeled, often 
three aspects are determined as important: Shippers’ preferences, transport costs and properties 
of the good to be transported. Especially the first two aspects result from logistic or technical 
restrictions to which the actors have adapt to. If the choice of a shipment size also serves as a 
low resolution model for addressing aspects of logistics, adaptions have to be made. Drivers for 
the lot size choice can be addressed in econometric models as the ones mentioned above 
basically in two ways. The first one is the consideration of corresponding variables and the 
second one is the model structure. The latter refers to nesting structures in models of type 3.) and 
to the considerations of variables on the various stages of the models.  

In several cases, logistics components have been mirrored by proxy variables such as 
characteristics of shipper and/or recipient (Holguin-Veras (2002), Pourabdallah et. al. (2013), De 
Jong and Johnson (2009)), the way that a shipment was packaged or handled (De Jong and 
Abate (2014), Abdelwahab and Sargiuos (1992), Windisch et. al. (2010). Transport logistics 
aspects were addressed by Combes (2009) who added information indicating if the shipment was 
part of a tour or delivered directly. Windisch et. al. (2010) added transport logistics via the 
structure of the choice models. Shipment sizes are nested given certain intermodal transport 
chains in which they are transported. 

Often preferences and logistics requirements are distributed very heterogeneously within 
the population of all transport cases at hand. Choice models that incorporate these motivations 
have to account for this heterogeneity to reach an increased explanatory value. Segmentation of 
the demand population is a possibility to enhance the behavioral foundation of econometric 
models. This is due to the fact that most econometric models are not really microscopic due to 
the way they are estimated. Although they display the behavior of single actors and the data sets 
used for estimation are derived from decisions on single transport cases, the estimation sample 
covers a range of more or less heterogeneous choice situations in which actors found 
themselves. Segmentation of demand can be endogenous to a model to various extends. A way 
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to group decision makers into classes in discrete choice situations are latent class models. Latent 
class models have their origin in marketing. They were picked up in transport research mainly to 
model mode choice decisions. In passenger transport, Bhat (1997) endogenously delimited 
several traveler groups according to socioeconomic characteristics and estimated the model with 
an Expectation-Maximization-Algorithm. Demand segmentation for mode choice in freight 
transport is done by Gopinath (1995) who classified shippers according to attitudes towards 
various modes of transport which in turn were derived from logistics figures such as maximum 
acceptable delay. Arunotayanun (2009) segmented mode choice according to logistic properties 
of the relationship between shipper and recipient. To our knowledge, latent class models have not 
been applied to shipment size decisions up to now.  

3. Modelling approach 

The empirical validation of the EOQ-model for long-distance haulage conducted by 
Combes (2009) offers the opportunity to model the choice of shipment size in the context of 
freight transportation. As the freight transport markets are characterized by a huge variety of 
decision makers and transported commodities, the utilization of the EOQ-model enables the 
application of a decision rule which is suitable for the generality of logistical actors. Also the high 
explanatory power, the necessary high-level perspective and the relatively strong robustness of 
optimal shipment sizes substantiate the appropriateness of the EOQ-model (Combes (2009)).  

A discrete shipment size choice model for road transports on the basis of minimal total 
logistic costs provides a promising basis to establish a consistent conjunction between logistics 
choices and the discrete mode choice. In general, the total amount of transported goods per 
period which represents the firm’s commodity flows empirically contributes a big portion to the 
explanatory power of the shipment size choice (Abate and de Jong (2014), Combes (2009). In 
other words the variance of the periodic demand mainly causes the heterogeneity regarding the 
shipment size choice. To account for the exceeding heterogeneity which isn’t captured by the 
EOQ-model itself, the models in the literature use variables like commodity type and/or 
commodity characteristics (Abate and de Jong (2014), Pourabdollahi et al. (2013), Windisch et al. 
(2010), de Jong and Johnson (2009), de Jong and Ben-Akiva (2007), Holguín-Veras (2002)). Due 
to the amount of possible characteristics, the concomitant absence of simplicity and the tendency 
of an inflation of the estimated models in the statistical sense we use an approach that groups 
decision makers into clusters with similar behavior and therefore simplify the model.  

 

3.1 The EOQ-model as core of the shipment size choice 
 

According to the microeconomic theory a consumer with transitive, reflexive and complete 
preferences choses a bundle of continuous and positive quantities of goods and services – while 
satisfying prevalent constraints - for which he receives the maximum utility. The utility itself is a 
dependency function of the goods and services which mathematically represents the preferences 
and is except an order preserving transformation unique. Transferred to the logistical context, the 
decision maker chooses the shipment size for which he receives the maximum utility (minimum 
costs). This is represented by the optimal distribution of the annual flow of goods on various 
shipments leading to an optimal shipment size as the result of the minimization of a firm’s logistic 
costs based on the tradeoff between inventory costs and fixed transport costs. The total logistic 
costs per year for a decision maker n are given by:  

 



 

6 

 

 

 𝐶𝑛(𝑞𝑛) =
𝑄𝑛

𝑞𝑛
𝐹𝑛 + 𝑄𝑛𝑐𝑛(𝑞𝑛) +

𝑞𝑛

2
(𝑤𝑛 + 𝑟𝑣𝑛),   (1) 

 

 
whereby the individual parameters are described as follows: 
 

𝑄𝑛: Constant and continuous flow of goods regarding individual n per period (ton/year). 
 

𝑞𝑛: Shipment size per transport of individual 𝑛 to satisfy the total demand 𝑄𝑛 (ton/shipment). 
 

𝐹𝑛: Fixed transport costs per shipment for individual 𝑛 independent of the shipment size 𝑞𝑛

 (cost/shipment). 
 

𝑐𝑛(𝑞𝑛):  Variable transport costs for individual 𝑛 dependent on the shipment size 𝑞𝑛 (€/ton). 
 

𝑤𝑛: Warehousing costs per unit of commodity per year for individual 𝑛 (€/ton). 
 
𝑟: Interest rate valuing the bounded capital in form of inventory holding costs 
 
𝑣𝑛: Value density of the transported commodities (€/ton) 
 

The total logistic costs are not a typical utility function in the sense of the microeconomic 
consumption theory which increases with a higher amount of the consumed good and which is 
marked by the consideration of multiple goods or/and services. The continuous cost function in 
contrast is one-dimensional with respect to the decision space as well as regarding the image 
space and reaches its optimum for 𝑞𝑛 in the interval (0, 𝑄𝑛] depending on the values of the 
parameters representing the costs for transport and inventory holding.  
 

Assuming a linear nondecreasing function representing proportional variable transport costs 

𝑐𝑛(𝑞𝑛) the minimization of 𝐶𝑛(𝑞𝑛) leads to the optimal shipment size for individual 𝑛: 
 
 

𝑞𝑛
∗ = √

2𝐹𝑛𝑄𝑛

𝑤𝑛+𝑟𝑣𝑛
.  (2) 

 

Equation (2) reveals the relationship between the optimal shipment size for individual 𝑛 and its 
influencing parameters. An increase of the fixed transport costs like order, handling and set up 

costs are leading to a higher optimal shipment size as well as an increasing flow of goods 𝑄𝑛. As 
the inventory holding costs increase the optimal shipment size will decrease due to the relatively 
higher costs for capital commitment and storage. 

 
 

3.2 Choice sets and applied model 
 

The model presented in this publication is based on the discrete choice theory using a random 
utility approach. A prevalent discrete space of alternatives changes the conditions of decision 
making: Choosing only one alternative and therefore not realizing the remaining ones leads to 
corner solutions and thus to a not applicable marginal calculus which necessitates the 
consideration of the utility functions of each alternative directly. The decision rule is given by the 
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selection of the alternative which spends the highest utility among all reachable alternatives. The 
utility functions are assumed to be a summation of attributes describing the alternatives and the 
characteristics of the decision maker. The attributes themselves are weighted with parameters 
representing the influence on the utility functions as linear in parameter specifications. 

The development of the discrete shipment size choice model includes the categorization of the 
continuous shipment size into different shipment size classes. For this procedure we used a 

systematic approach: Let 𝑞𝑖 = 1,2, … , 𝐼 denote the 𝑖-th shipment size class which is 

characterized by the interval (𝑞𝑖 , … , 𝑞
𝑖
] where 𝑞𝑖 and 𝑞

𝑖
 represent the respective class bounds. 

Then the width 𝑏𝑞𝑖
 of class 𝑞𝑖 is given by 

 
 𝑏𝑞𝑖

= 𝑞
𝑖

− 𝑞𝑖 , 𝑖 = 1,2, … , 𝐼.  (3) 
 

We applied a growth factor 𝜏 which determines – by choosing 𝑞𝑖 arbitrarily – the bounds and 

therefore the widths by the following way: 
 
 

𝑞𝑖  =  {
𝑞𝑖,            𝑖𝑓 𝑖 = 1, ; 𝑞𝑖  > 0

 𝜏𝑞𝑖−1, 𝑖𝑓 𝑖 = 2,3, … , 𝐼.
  (4) 

 

 
 

𝑞
𝑖

 =  {
𝜏𝑞𝑖,           𝑖𝑓 𝑖 = 1, ; 𝑞𝑖  > 0

 𝜏𝑞
𝑖𝑖−1

, 𝑖𝑓 𝑖 = 2,3, … , 𝐼.
  (5) 

 

 
Referring to the classification of piece goods, partial loads and (multiple) full loads on road 

transports we divided the shipment sizes by choosing 𝜏 = 4 and 𝑞1 = 0.75t into three classes: 

 
 

𝑞1  =  {
1, 𝑖𝑓 0.75𝑡 < 𝑞𝑛

∗  ≤ 3𝑡 𝑎𝑛𝑑 
0,                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 

 
 

𝑞2  =  {
1,          𝑖𝑓 3𝑡 < 𝑞𝑛

∗  ≤ 12𝑡 𝑎𝑛𝑑 
0,                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

  (6) 
 

 
 

𝑞3  =  {
1, 𝑖𝑓 12𝑡 < 𝑞𝑛

∗  ≤ 48𝑡 𝑎𝑛𝑑 
0,                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 

 

This yields to the global choice set 𝑆 = {𝑞1, 𝑞2, 𝑞3} =   𝑆𝑛, ∀𝑛 assuming all alternatives are 
accessible for every decision maker 𝑛. 

The model in this case is restricted to road transports which are not distinguished by different 
vehicles or vessels. The logistic costs 𝐶𝑛(𝑞𝑖) – adapted from equation (1) – for actor 𝑛 choosing 

shipment size class 𝑞𝑖 can now be expressed by: 
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𝐶𝑛(𝑞𝑖) = (

𝐹𝑛

𝑞𝑖
+ 𝑐𝑛(𝑞𝑖)) 𝑄𝑛 +

𝑞𝑖

2
(𝑤𝑛 + 𝑟𝑣𝑛).  (7) 

 

Due to the exclusive consideration of road transports we assume the fixed transport costs 𝐹𝑛 to 
be constant for all logistical actors 𝑛. This assumption can be relaxed in further enhancements 
with multiple means of transport or varying fixed costs within each of the modes. The variable 

transport costs 𝑐𝑛(𝑞𝑛) from equation (1) are originally represented by an increasing function 
dependent on the shipment size. As the shipment size in our model is discretized the variable 

transport costs 𝑐𝑛(𝑞𝑖) are dependent on the shipment size categories. Out of that reason we 
consider them to be constant within each shipment size class and not varying between the 
decision makers which also can be replaced by detailed tariff functions in further research. 

The warehousing costs mainly depend on the handling of the good (heating, cooling, packaging 
etc.) and the respective space requirement (sizing of warehouses, opportunity costs of space 
consumption etc.) during the storage processes. The handling and the used space strongly go 
along with the characteristics, the weight and the respective concentration of the commodity. Due 
to data constraints regarding the concentration of the transported goods and as a useful 
simplification without loss of model validity, we suppose the warehousing costs 𝑤 in this model 

only to vary between the different shipment size classes and not between each decision maker 𝑛. 
This leads to the following specification:  
 

 
𝐶𝑛(𝑞𝑖) = (

𝐹

𝑞𝑖
+ 𝑐(𝑞𝑖)) 𝑄𝑛 +

𝑞𝑖

2
(𝑤𝑞𝑖

+ 𝑟𝑣𝑛).  (8) 
 

The division of expression (8) by the constant and continuous flow of goods 𝑄𝑛 resulting in the 
total costs per ton represents a model formulation, which can be on the one hand empirically 
estimated and is on the other hand properly interpretable with respect to the alternative-specific 
constants: 
 

 𝐶𝑛(𝑞𝑖)

𝑄𝑛
=

𝐹

𝑞𝑖
+ 𝑐(𝑞𝑖) +

𝑞𝑖𝑤𝑞𝑖

2
∙

1

𝑄𝑛
+

𝑞𝑖𝑟

2
∙

𝑣𝑛

𝑄𝑛
.  (9) 

 

Choosing the alternative with maximum utility, which is in our case equivalent to minimum costs, 
requires the formulation of a utility function 𝑈𝑞𝑖,𝑛 of decision maker 𝑛 for the alternatives in 𝑆𝑛. 

Adding a stochastic component 𝜀𝑞𝑖,𝑛, a matrix with further influencing factors 𝑿𝑛 and interpreting 

increasing costs per ton for shipment size class 𝑞𝑖 as negative utility results in the following 
parametrized function: 
 

 
−𝑈𝑞𝑖,𝑛 = 

𝐶𝑛(𝑞𝑖)

𝑄𝑛
+ 𝜀𝑞𝑖,𝑛 =  𝛼𝑞𝑖

+ 𝛽𝑞𝑖,1 ∙
1

𝑄𝑛
+ 𝛽𝑞𝑖,2 ∙

𝑣𝑛

𝑄𝑛
+ 𝜷𝑞𝑖,𝑋 ∙ 𝑿𝑛 + 𝜀𝑞𝑖,𝑛. 

 
   (10) 

 

According to the discrete choice theory in association with the random utility approach a shipment 
size class 𝑞𝑖 gets chosen by an individual n if 𝑈𝑞𝑖,𝑛  ≥  𝑈𝑞𝑘,𝑛   ∀𝑘 ∈ 𝑆𝑛, 𝑖 ≠ 𝑘. This means 

that the sum of the observable and unobservable part of the costs of a chosen alternative has to 
be lower than the costs of all other alternatives in the choice set 𝑆𝑛. 
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Due to the huge variety of shippers and the diversity of the transported commodities, the 
categorization of homogeneous subgroups offers a possibility to reduce the behavioral 
heterogeneity and therefore improves the model. To enhance the core of the shipment size 
choice with homogenous cluster we applied a so-called “exogenous segmentation” approach. 
The integration of these classes is realized by adding supplements and deductions to the utility of 

each alternative depending on the membership in the respective class of each individual 𝑛. 
These supplements and deductions also capture the already addressed warehousing costs which 
strongly depend on the characteristics of the commodities. This is formally represented by the 

vector 𝑿𝑛 in this model which includes the classes with the respectively assigned transports. 
Although exogenously derived clusters don’t guarantee the minimization of heterogeneity in the 
population, they lead in our model to an intuitive interpretation of the segments itself and to a 
meaningful enrichment to the analysis of shipment size decisions.    

One way to determine segments exogenously is the application of the Latent Class Analysis 
(LCA). Latent classes are characterized as an unobservable and categorical variable which has a 
nominal level of measurement and is measured by categorical indicators. The notation in this 
paper is associated with the one from Collins and Lanza (2013). The basis of the LCA is a 

contingency table, which contains the response categories 𝑟𝑗  =  1, . . . , 𝑅𝑗 of the indicator 

variables 𝑗 =  1, . . . , 𝐽 and their absolute frequencies. Each cell of the multidimensional 
contingency table represents a specific response pattern 𝒚 =  (𝑟𝑗 , . . . , 𝑟𝐽 ) recording the answer 

to each of the 𝐽 indicator variables. The LCA clusters individuals with similar response patterns 
and is essentially determined by two sets of parameters: the latent class prevalences 𝛾 
describing the proportion of individuals in the respective class and the item-response 

probabilities 𝜌. The item-response probabilities express the relation between each indicator 
variable and the latent classes and provide out of that reason the basis for the interpretation of 

the latent classes. Let 𝒀 be the matrix with all possible response patterns 𝒚 and 𝐿 be the set of 
all latent classes 𝑐 =  1, . . . , 𝐶. The core of the LCA is the given by the probability of a specific 
response pattern 
 

 

𝑃 (𝒀 =  𝒚) =  ∑ 𝛾𝑐 ∏ ∏ 𝜌
𝑗,𝑟𝑗|𝑐

𝐼(𝑦𝑗=𝑟𝑗)

𝑅𝑗

𝑟𝑗=1

𝐽

𝑗=1

𝐶

𝑐=1

 

 
(11) 

 

 
 

where 𝛾𝑐 is the latent class prevalence of class 𝑐, 𝜌𝑗,𝑟𝑗|𝑐 is the item-response probability for 

responding 𝑟𝑗 to indicator variable 𝑗 conditional on the membership to class 𝑐 and 𝐼(𝑦𝑗  =  𝑟𝑗) 

represents an indicator variable being one if the response 𝑦𝑗 on variable 𝑗 is given by 𝑟𝑗 and zero 

otherwise. The parameters are estimated by maximizing the Log-Likelihood function of equation 
(11) via an Expectation-Maximization-Algorithm. Based on the results of the LCA each individual 
is classified into the group for which it reaches the maximum membership probability 
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𝑃 (𝐿 =  𝑐|𝒀 =  𝒚) =  

𝑃 (𝒀 =  𝒚| 𝐿 =  𝑐)𝑃 (𝐿 =  𝑐)

𝑃 (𝒀 =  𝒚)

=
(∏ ∏ 𝜌

𝑗,𝑟𝑗|𝑐

𝐼(𝑦𝑗=𝑟𝑗)𝑅𝑗

𝑟𝑗=1
𝐽
𝑗=1 ) 𝛾𝑐

∑ 𝛾𝑐 ∏ ∏ 𝜌
𝑗,𝑟𝑗|𝑐

𝐼(𝑦𝑗=𝑟𝑗)𝑅𝑗

𝑟𝑗=1
𝐽
𝑗=1

𝐶
𝑐=1

. 
(12) 

 

 
The results of the LCA are subsequently integrated into the choice model. Let 𝐿𝑐,𝑛 be a binary 

variable indicating if shipper 𝑛 belongs to the estimated latent classes 𝑐 =  1, . . . , 𝐶 then are the 

different variables 𝐿𝑐,𝑛, 𝑐 =  1, . . . , 𝐶 part of the attribute matrix 𝑿𝑛. For each actor 𝑛 and each 

class the matrix 𝑿𝑛 therefore contains inter alia the information about the membership which is 
mathematically expressed by zeros and ones. The already mentioned supplements and 
deductions to the utility are then added in reference to a specific base class if and only if the entry 

in the matrix of shipper 𝑛 is given by one.  

4. Data and descriptive analysis 

The data which is used for estimating the model was gathered within the scope of the 
research project "‘Development of a model for the calculation of freight traffics’ modal shifting to 
derive consistent evaluation approaches for the German federal infrastructure planning (BVWP)” 
(BVU – Beratergruppe Verkehr + Umwelt, TNS Infratest (2014)). Revealed preference (RP) data 
provide the base frame of both the survey and the model presented in this paper.2 The 
observations of the used dataset were ascertained via computer assisted personal interviews 
(CAPI) with responsible logistics employees of companies from all areas of processing and 
manufacturing trade. The chosen enterprises of the quota sample were drawn from a German-
wide business directory with about 10000 addresses whereby unsuitable members of the sample 
were excluded through a multicriteria screening.  

Table 1: Summary statistics of used variables for 487 observations 

Variable Definition Mean/Freq Std. dev. 

q Shipment size (t) 13.47 9.75 
Q Flow of goods (t/year)      1845.45 2369.30  
v Value density (€/t) 11311.84 55958.44 
1/Q Inverse of Flow of goods 0.0038 0.0076 
v/Q Relation of value density and flow of goods 69.53 414.67 
d Haulage distance (km) 447.81 363.40 
Fragile 1 if commodity is fragile 76  
Valuable 1 if commodity is extraordinary valuable     175  
Awkward 1 if commodity is awkward 150  
Temperature 1 if commodity has to be handled temperature-controlled 48  
Food 1 if commodity is a food product 58  
Dangerous 1 if commodity is inflammable, explosive, poisonous, caustic etc. 62  
Grabbable/Bulk 1 if commodity is unpacked grabbable or bulk cargo 35  
Liquid 1 if commodity is unpacked liquid good 5  
Standard 1 if commodity is transported on standard unit loads 213  
Custom 1 if commodity is a custom-made item 84  
Accumulation 1 if commodity is an accumulation of several articles 170  

Note: Regarding the categorical attributes no responses as well as multiple responses were possible.  

                                                 
2
 Within this survey also stated preference (SP) experiments were performed which based on the 

information obtained from the revealed preference part.   
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  In each interview, two representative transports and the corresponding attributes were 
recorded. The attributes contained information about the type, the weight, the value and the 
properties of the commodity. Relevant properties of the transported goods described the handling 
during the transport processes as well as other characteristics of the commodities which 
potentially influenced the execution of the transport. Further, the frequency of the transports and 
the position within the logistic chain was logged where the last-mentioned characteristics neither 
supported the formation of clusters nor improved the explanatory power of the models by 
individual integration. In addition to this, also the duration, the distance and the costs of each 
transport with the respective mode were ascertained. In total an amount of 926 transport cases 
gained from 474 interviews are available. Restricting the model to road transports below 48 tons 
decreases the amount of applicable observations to 794. 

Table 1 presents the summary statistics of the main variables of interest which are 

initially revealed by the EOQ-model. The constant and continuous flow of goods 𝑄𝑛 was not 
directly inquired in the datasets. It was instead calculated from the shipment size of the 

representative transports and their frequency of occurrence per year. The value density 𝑣𝑛 was 
calculated by dividing the value of the transported goods by the shipment size. Because of the 
occurrence of missing values, the calculation of the flow of goods per year and the value density 
finally narrows the data basis to 487 useable observations. Due to the use of RP data and the 
concomitant unavailability of attributes, our model is estimated only on the basis of individual-
specific variables. Additionally used variables in the econometric estimation of the model are the 

transport distance 𝑑𝑛 and the attributes regarding the properties of the transported goods 
presented in table 1.  

Table 2: Shipment size categories and distribution of variables 

𝑞𝑖  𝑄𝑛 𝑣𝑛 1 𝑄𝑛⁄  𝑣𝑛 𝑄𝑛⁄  ln 1 𝑄𝑛⁄   ln 𝑣𝑛 𝑄𝑛⁄  d No. obs. 

0.75t – 3t 

Min 12 366.7 0.00133 0.815 -6.620 -0.2048 40 

104 

Q1 100 2 250 0.00333 9.944 -5.704 2.2970 200 

Med. 150 5 000 0.00667 33.333 -5.011 3.5066 302.5 

Mean 237.9 18 544.2 0.01045 250.543 -5.055 3.5663 377.8 

Q3 300 10 000 0.01000 101.042 -4.605 4.6154 500 

Max 750 500 000 0.08333 5 000 -2.485 8.5172 1 480 

3t – 12t 

Min 30 43.6 0.00033 0.0159 -8.006 -4.1434 5 

154 

Q1 250 1 531.2 0.00080 2 -7.131 0.6931 205 

Med. 600 3 660.7 0.00167 5.7060 -6.397 1.7414 397.5 

Mean 892.3 14 020.7 0.00358 42.602 -6.303 1.9492 450 

Q3 1 250 7 500 0.00400 21.276 -5.521 3.0570 550 

Max 3 000 625 000 0.03333 1 562.5 -3.401 7.3540 3 000 

12t – 48t 

Min 90 3.7 0.00004 0.0005 -10.127 -7.5090 20 

229 

Q1 1 100 500 0.00018 0.1736 -8.613 -1.7509 220 

Med. 2 400 1 250 0.00042 0.6250 -7.783 -0.4700 380 

Mean 3 217 6 205.6 0.00094 5.4366 -7.648 -0.6090 478.1 

Q3 5 500 3 000 0.00091 1.8333 -7.003 0.6061 600 

Max 25 000 752 380.9 0.01111 358.28 -4.500 5.8813 3 000 

 
Table 2 contains information about the shipment size classification and the distribution of 

the continuous variables in each of the classes. The positive influence of the total flow of goods 
and negative impact of the value density revealed by equation (2) can be already perceived 
considering the mean values in each class. It is obvious that the distributions of the variables in 
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each class are right-skewed. On top of that, the variances of 𝑄𝑛 are increasing with the class-
width whereas the statistical scatter regarding value density 𝑣𝑛 of the commodities is decreasing 

with the shipment size classes. Also the inverse of 𝑄𝑛 and the ratio 𝑣𝑛 𝑄𝑛⁄  show a varying 
dispersion whereby the relative variance of the value density is different to the variance of the 
annual flow of goods. These insights are also quite intuitively as the growing class widths can 
cause stochastic dependency of the error terms 𝜀𝑞𝑖,𝑛 and the used variables which is associated 

with the possible violation of a main assumption of the Logit-Model: the error terms 𝜀𝑞𝑖,𝑛 are 

independent and identically Gumbel distributed. This problem can be attended to by taking the 
natural logarithm of the variables cushioning the distributions nearly to a bell-shaped curve and 
also approaches the variance between the different shipment size classes. 

5. Model estimation 

In this section several multinomial logit models based on the specification of equation 
(10) in have been estimated. As a first step, models without latent classes, which represent the 
core of the shipment size choice, will be presented whereas the enhanced models with latent 
classes are part of the second section. We used the statistical software “R” with its supplemental 
packages “mlogit” and “poLCA” for the estimation of the models.  

 
5.1 Basic model 

Table 3: Shipment size choice model 1 – non-standardized variables. 

 𝑞2: 3𝑡 –  12𝑡 𝑞3: 12𝑡 –  48𝑡 

Constant    1.0838*** 
(0.1837) 

   2.4482*** 
(0.2015) 

1 𝑄𝑛⁄      -110.99*** 
(25.076) 

   -631.48*** 
(84.136) 

𝑣𝑛 𝑄𝑛⁄   -0.0005 
 (0.0005) 

-0.0071 
(0.0044) 

Log-Likelihood: -403.43 

McFadden 𝑅2 (𝜌2): 0.21 

Adj. McFadden 𝑅
2
 (𝜌

2
): 0.1982 

Likelihood ratio test: 𝜒2 = 214.46 (p.value = < 2.22e-16) 

Note: Significance levels: . p<0.1; * p<0.05; ** p<0.01; *** p<0.001; 487 observations. 

 

Table 3 shows the estimation results with 
1

𝑄𝑛
 and 

𝑣𝑛

𝑄𝑛
 as independent variables. The value 0.21 

of 𝜌2 indicates – despite the menace of heterogeneity – a well-performing shipment size choice 
model which was estimated in relation to the smallest shipment size class with its referencing 
parameter values equal to zero. Every coefficient has the expected sign respective the expected 
order. The ratio of value density and annual flow of goods doesn’t have a statistically significant 
impact whereas the other estimated coefficients are highly significant. As can be seen, the 
constants have a positive sign and an increasing order regarding the shipment size classes which 

describes the average influences of not considered attributes which are in our model 
𝐹

𝑞𝑖
+

𝑐𝑛(𝑞𝑖). The positive sign and the order of the constants show on average decreasing costs per 
unit choosing higher shipment size classes in reference to the smallest one. A decreasing annual 

flow of goods leads to an increase of the inverse 
1

𝑄𝑛
  which induces higher costs for higher 
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shipment size classes. This goes along with the theoretically positive impact of the annual flow 
revealed by equation (2). The high negative values of the estimated coefficients regarding the 

inverse of the annual flow of commodities are due to the low values of 
1

𝑄𝑛
  which are all positive 

but smaller than one and shown in table (2).  
 
Table 4: Shipment size choice model 1 – logarithmized variables. 

 𝑞2: 3𝑡 –  12𝑡 𝑞3: 12𝑡 –  48𝑡 

Constant    -4.5762*** 
(1.2542) 

   -7.9800*** 
(1.5676) 

ln(1 𝑄𝑛⁄ )     -0.9143*** 
(0.1855) 

   -1.5013*** 
(0.2272) 

ln(𝑣𝑛 𝑄𝑛⁄ )  -0.0775 
 (0.1041) 

   -0.5267*** 
 (0.1295) 

Log-Likelihood: -344.41 

McFadden 𝑅2 (𝜌2): 0.3256 

Adj. McFadden 𝑅
2
 (𝜌

2
): 0.3138 

Likelihood ratio test: 𝜒2 = 332.49 (p.value = < 2.22e-16) 

Note: Significance levels: . p<0.1; * p<0.05; ** p<0.01; *** p<0.001; 487 observations. 

 
As mentioned before, the danger of a misspecification concerning the possible heterogeneity is 

omnipresent. Out of that reason we estimated the model again transforming the independent 
variables by taking the natural logarithm. Table 4 contains the results which show an improved 
performance, although we’re moving away from core of the model represented by the total 
logistics cost per ton. An additional feature of this representation lies in the interpretability and 
therefore in the comparison of the parameters. The use of logarithmized independent variables in 
standard linear regression models admits – assuming small changes of the regressors – the 
interpretation of the coefficients approximately as semi-elasticities (Stock and Watson (2007)). 
Due to the comparison to the smallest shipment size class and the specification of its utility to 

zero in our case this practice can also be applied. More precisely: an increase for example of 
1

𝑄𝑛
 

by 1% changes the total logistic costs per ton of shipment size class 𝑞2 by 0,01 ∙ 𝛽𝑞2,1 

compared to 𝑞1. The alternative-specific constants are becoming negative with relatively high 
values. This is induced by the transformation of the variables which decreases small values 
( < 1) strongly to negative values and flattens out the slope with increasing values. Again all 
signs and orders of the coefficients are as expected although we also must point out that the 

coefficient for the 
𝑣𝑛

𝑄𝑛
-relationship regarding the second shipment size class has no significant 

influence. The coefficient of 
𝑣𝑛

𝑄𝑛
 explain the variation of the costs per ton which is not already 

covered by the reciprocal annual flow of goods. The impact is negative but has a relatively weak 
influence on the decision of the shipment size choice. This result supports the conclusion that the 
costs for tied-up capital are not going to pervade completely the shipment size choice and have 
therefore less explanatory power than the annual flow of goods. A reason is given by the fact that 
the value density may not describe the importance of the good in the supply chain and therefore 
underestimates the effect. This was also observed by Combes (2009).  
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5.2 Enhancement of the discretized EOQ-model with latent classes of shipments’ attributes 
 

The reasonable explanatory power of the discretized EOQ-model enables the enhancement of 
the model with further characteristics influencing the shipment size systemically. In light of the 
already acknowledged influences of commodity characteristics on the shipment size choice 
behavior the model will be expanded in this section. We therefore use an approach which has to 
our knowledge not been undertaken up to now in the modelling of shipment size choice behavior: 
clustering the logistical actors respectively the realized transports to model similar behavior more 
accurate and reduce the dimensions of possible heterogeneity which also leads to an 
improvement of the models in the statistical sense by bypassing the possibility of insignificant 
control parameters of commodity types and characteristics. 

Table 5: Information criteria of LCA’s. 

No. classes Log-Likelihood BIC 

2 -2284.309 4710.949 

3 -2232.398 4681.386 

4 -2191.574 4673.995 

5 -2175.075 4715.257 

6 -2158.490 4756.347 

7 -2146.076 4805.778 

 
 
To group the individuals, we used the LCA based on the characteristics of the transported 

goods which joins the actors by searching for similar response patterns. Due to the propensity of 
the Expectation-Maximization-Algorithm to get stuck in local optima, we repeated the estimation 
1000 times for each number of classes. The determination of the proper number of classes is not 
endogenously. Out of that reason we had to decide by reference to the values of the Bayes-
Information-Criterion (BIC) which are displayed in table 5 for several counts of classes. We 
picked the classification with four classes for which the results of the LCA can be obtained in 
table 6. The conditional probabilities of answering “Yes” to a specific indicator denote the 
probability to answer “Yes” if an individual is assigned to the respective class. High or low values 
– also in comparison to the other classes - are therefore characteristic and affect the 
interpretation of it. We marked in bold notation the conditional probabilities being characteristic for 
the class. This means that they are on the one hand relatively high compared to other 
probabilities in the same class and on the other hand quite different regarding the same indicators 
across the other estimated classes. The bold values are therefore used to apply the necessary 
subjective interpretation of each class. 

We called class 1 “(Temperature-controlled) Food Products” as every individual belonging to 
this class will answer assuredly “Yes” to the Food item and with more than 60% to Temperature 
item. Also the transported goods in this class are never dangerous or awkward and are 
transported with probability 0.555 on standard unit loads. Class 2 is mainly characterized by the 
items Standard and Dangerous wherefore we interpreted it as “Miscellaneous Standard Cargo” 
including dangerous commodities transported on the same. This class inherits also the main 
proportion of the population with 36%. The next class has high loads on the items Fragile, 
Valuable, Awkward and Custom which can be interpreted as “Special Goods” and describes 
mostly the mechanical engineering sector. The proportion of this class with about 35% seems 
relatively high and indicates a general overrepresentation of it in the sample. At least we named 
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class 4 “Unpacked Bulk Goods” as it has on the one side relatively high probabilities for the items 
Grabbable/Bulk and Liquid and on the other side low probabilities on Custom, Standard, 
Accumulation and Fragile. 

Table 6: LCA result with four classes. 

 Class 1 Class 2 Class 3 Class 4 

𝛾𝑐  0.1070 0.3600 0.3475 0.1854 

 
Conditional probability of answering “Yes” 

 

Fragile 0.1727 0.0634 0.3302  0.0000  

Valuable 0.2631 0.2395 0.6373 0.1266 

Awkward 0.0000 0.2376 0.4942 0.2734 

Temperature 0.6331 0.0855 0.0000 0.0000 

Food 1.0000  0.0000 0.0000 0.0651 

Dangerous 0.0000 0.2079 0.0599 0.1707 

Grabbable/Bulk 0.0398 0.0000 0.0000 0.3647 

Liquid 0.0555 0.0000 0.0000 0.1800 

Standard 0.5550 0.8113 0.2308 0.0305 

Custom 0.0384 0.0841 0.3974 0.0000 

Accumulation 0.4781    0.4134 0.3992 0.0557 

Observations: 487 
Parameter estimated:47     

Note: Bold parameters are characteristic for the class with respect to the class itself and across classes. 

 
The assignment of the individuals to the classes is accomplished by calculating the 

membership probability showed in equation (12) and taking the maximum of the probabilities as 
allocation rule. This procedure denotes a probabilistic approach in contrast to a deterministic 
assignment and therefore needs a validation of applicability. One established indicator is the so 
called “Odds of Correct Classification” (OCC) which sets the average probability of the individuals 
assigned to a class in ratio to the general proportions of each class and has a ratio higher than 
five as threshold (Nagin (2005)). In our classification this is reached for every class which can be 
seen in table 7. 

Table 7: Key figures of classification. 

Class Mean Variance OCC 

1 0.93 0.02 109.45 

2 0.85  0.02  10.01   

3 0.84 0.02 10.12 

4 0.75 0.04 13.11 

Note: This table includes means and variances of the maximum probabilities from the assigned individuals. 

 
 
The next step consists in the integration of the identified classes into the model. Additionally we 

incorporate the haulage distance 𝑑𝑛to capture possible influences which are empirically verified 
(Abate and de Jong (2014), Combes (2009), Jansson and Shneerson (1982)). Table 8 shows the 
estimation results for the comprehensive model. The performance of the enhanced model 

increased which can be deducted from the value of 𝜌
2
. Also all coefficients become at least 

significant with respect to 0.1 level. The transport distance has a straight positive effect on the 
shipment size choice which goes along with the empirical findings. There is some dissent on the 
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interpretation of this effect. On the one hand there might be a deviation from of the assumed 
linear tariff function and the real tariff function which could be expressed by less than proportional 
increasing fuel/time cost per shipment for larger vehicles (Abate and de Jong (2014)). On the 
other hand this effect might be caused by cultural properties or upcoming safety needs which 
take the increasing risk of delays into account going along with longer haulage distances. 
Combes (2009) illustrates the effect with a potential decoupling between production location and 
regional retail center conducted through a regional distribution center. If in general the transports 
have larger shipment sizes from the production location to the distribution center and they are 
dispatched the positive influence of the transport distance could be explained. 

 
Table 8: Shipment size choice model 2 

 𝑞2: 3𝑡 –  12𝑡 𝑞3: 12𝑡 –  48𝑡 

Constant    -5.5253*** 
(1.3670) 

   -10.027*** 
(1.7849) 

ln(1 𝑄𝑛⁄ )     -0.8900*** 
(0.1933) 

   -1.4964*** 
(0.2451) 

ln(𝑣𝑛 𝑄𝑛⁄ )  -0.2239. 
(0.1175) 

   -0.7521*** 
 (0.1516) 

 𝑑𝑛  0.0013* 
(0.0005) 

    0.0027*** 
(0.0006) 

Miscellaneous Standard Cargo 0.9168. 
(0.4884) 

 1.3603* 
(0.5799) 

Special Goods 1.2750* 
(0.5004) 

  1.9700** 
(0.6004) 

Unpacked Bulk Goods  1.1386* 
(0.5776)  

    2.4094*** 
(0.6741) 

Log-Likelihood: -321.15 

McFadden 𝑅2 (𝜌2): 0.3711 

Adj. McFadden 𝑅
2
 (𝜌

2
): 0.3482 

Likelihood ratio test: 𝜒2 = 379 (p.value = < 2.22e-16) 

Note: Significance levels: . p<0.1; * p<0.05; ** p<0.01; *** p<0.001; 487 observations. 

 
 
The impacts of the latent classes have all been estimated in comparison to the first class of 

“(Temperature-controlled) Food Products”. As expected, all other classes tend to choose bigger 
shipment sizes as the warehousing of the goods is more expensive and the perishability doesn’t 
allow high order quantities. At first glance, the order of the coefficients for the classes is somehow 
contradictory. “Miscellaneous Standard Cargo” has in comparison to the group with “Special 
Goods” smaller coefficients which is from a superficial point of view unexpected. But the 
interviews showed that the members of the German mechanical engineering sector need to use 
higher shipment sizes because of the weight of their products. Finally the “Unpacked Bulk Goods” 
show by far the highest effect on the largest shipment size class. This behavior is reasonable as 
the warehousing costs should be relatively low and the production of the goods is performed in 
big batches. In general, the results reveal that the effects of the groups don’t vary much with 
respect to the medium shipment size class. Solely the food products are less likely to be sent in 
medium shipment sizes.   
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6. Conclusion and further research 

 
In this paper, a discrete shipment size choice model based on a discrete formulation of 

the total logistic costs was developed. In order to reach an appropriate microscopic 
representation of the choice situations’ heterogeneity, the choice behavior was addressed 
separately for clusters of homogeneous decision-makers. The decision makers respectively the 
conducted transports were classified by using a Latent Class Analysis approach on the basis of 
the commodity characteristics. The estimation of the models was performed on a database which 
was collected within the scope of the German federal infrastructure planning (BVWP).  

From a transport analyst point of view, the interesting results are that the volumes of the 
underlying commodity flows can explain the choice of shipment sizes to a large extent. The 
integration of the latent classes improved the model and provided reasonable signs and orders of 
magnitude for the estimated coefficients. Being estimated on a sample of very heterogeneous 
transport cases, qualifies the latent class model for incorporation in operational large scale freight 
transport models. Moreover, the latent class part shows that a shipment size model is a way to 
incorporate logistics aspects into freight transport models on the required coarse grained level of 
detail. It remains to be examined whether the same categorization applies to other decisions 
drawn on the shipments such as transport mode choice. Moreover, the influence of distance 
alludes that spatial aspects play a role in the choice of shipment sizes.  

A ubiquitous problem in the context of this model is the heteroscedasticity which is 
caused by the categorization of the shipment size classes and should be attended by future 
research. An additional aspect is represented by the possible variations of the estimated 
parameters across the groups of decision-makers which reveals different influences on the costs 
for different groups. One possible case would be the warehousing costs which strongly depend 
on the characteristics of the goods and therefore should have different influences with respect to 
the total logistic costs. At least should the shipment size choice model be extended to several 
modes of transports and in general be combined with the mode choice. 
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