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Abstract 

We aim to assess two mechanisms involved in 

opposition effect phenomenon, i.e. shadow hiding 

effect (SHOE) and coherent backscattering effect 

(CBOE), using OSIRIS images taken on the 14th of 

February 2015.  

1. Introduction 

Launched in 2004, the Rosetta spacecraft woke up on 

January 20, 2014 after 10 years in cruise and 30 

months of deep space hibernation. OSIRIS, the 

Optical, Spectroscopic, and Infrared Remote Imaging 

System [1] is the scientific imaging system onboard 

Rosetta. It contains two cameras: the Narrow Angle 

Camera (NAC) and the Wide Angle Camera (WAC) 

covering the wavelength range of 250 nm to 1000 nm 

with total of 25 filters. NAC and WAC have been 

designed as a complementary pair that addresses the 

study of the nucleus surface such as its morphology 

[2] or its photometric properties [3] and the 

investigation of the dynamics of the sublimation 

processes. During the close flyby (~ 6 km) on the 

14th of February 2015 zero phase angle observations 

were performed and acquire images taken in 

combination of various filters. These observations 

allow us to increase our understanding of the sharp 

spike in the brightness near zero phase angles of 

atmosphereless bodies. This phenomenon is called 

opposition effect and is of special interest among 

photometric studies. 

2. Methodology 

We apply the Hapke [4] and Shkuratov [5] 

photometric models since formalism of both models 

considers the contribution of SHOE and CBOE 

mechanics in the opposition effect. The main 

difference between SHOE and CBOE is that SHOE 

does not vary with wavelength, while the CBOE 

depends on the wavelength of incidence light.   

We evaluate a spectral appearance of CBOE [6] for 

the regions of the images obtained at phase angles 

less than 3° using NAC images in three filters F84 

(480.7 nm), F82 (649.2 nm) and F88 (743.7 nm). 

Since the CBOE mechanism is believed to occur due 

to multiple scattering, we also apply the Minnaert 

photometric modeling [7] to estimate the contribution 

of multiple scattering at opposition. In order to 

extract the intensity and the associated geometric 

angles for the images, we used the shape model of 

comet [8] and the SPICE toolkit [9]. 
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