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ABSTRACT 

This study presents methods of grouping cities into clusters by their socio-economic indicators and 

tracing changes in the content of cluster within a socio-economic scenario. For cities’ grouping, three 
main clustering approaches have been analyzed:  hierarchical, exclusive and probabilistic clustering. 

Analyzing advantages and disadvantages of these approaches, probabilistic clustering of normal mixture 
has been chosen to separate cities from the air passenger demand (APD) forecasting model. Three 

parameters, a city’s GDP, population and GDP per capita, have been used for clustering. Utilizing these 

parameters and based on special metrics, separation of cities into 9 clusters has been chosen. 
Furthermore, this study introduces the “cluster dynamic”. The cluster dynamic defines how cities are 

allocated to the various clusters at a given point in time within a socio-economic scenario.  

1 INTRODUCTION 

The modular environment AIRCAST1,2 is designed to forecast changes in the air transportation system 

(ATS) utilizing socio-economic scenarios. An air passenger demand (APD) forecast model of ‘origin-
destination air travel passenger demand between city-pairs’ on a global level called D-CAST1 is the first 

layer in a chain of models within AIRCAST2. The APD model has two steps: forecasting the topology of 
the APD network between cities worldwide and calculating demand on existing and new connections. As 

shown in existing studies3,4, a partition of elements  into groups improves link prediction performance 

and, thereby, increases the accuracy of the APD topology forecast between cities5. Furthermore, 
studies6,7 show that the APD has a clear correlation with economic and social indicators.  Thus, it is likely 

that the process of the APD generation is different for different cities. Therefore, these cities could be 
allocated to a number of groups by their socio-economic indicators, where cities in each group possess 

similar patterns. Furthermore, within the forecast period it is likely that the placement of cities within 
particular groups will change as the various city indicators change. Thus, the aim of this paper is it to 

define qualitative and quantitative features of these groups in the base year (the starting point for 

forecasting) and the dynamic by which cities change groups. 
 

2 CLUSTERING 

In AIRCAST the forecast of future development of the ATS on city level is based on socio-economic 

scenarios. These scenarios contain indicators including GDP and population of cities and a global average 

oil price. In AIRCAST the base year is year 2012. For this year, 4,435 cities with at least one airport have 
been obtained utilizing the ADI8 database. This number of cities remains fixed for the duration of the 

scenario. For all cities the GDP9,10, population11,12 and geographical coordinates13,14 have been retrieved 
from various databases1. The problem of allocating cities into groups can be presented as a clustering 

task. The goal of clustering is to determine a finite set of groups (clusters) to describe a dataset 
according to similarities among its elements15,16. This allows the determination of appropriate methods for 
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forecasting the APD for each cluster pair and, thereby, increasing the accuracy of the whole APD forecast 

method. 

2.1 Clustering methods 

There are various clustering methods. They can be divided into two main groups: hierarchical and 

partitional. Hierarchical clustering (HC) constructs clusters based on their proximity and forms a 
hierarchical tree17. At first, HC treats each element as a cluster. Then, the two nearest clusters are 

combined and form a new cluster. This procedure continues until there is only one cluster containing all 
elements18. As a result, there is a hierarchical tree of clusters also known as a dendrogram (Fig.1). Thus, 

HC builds a system of nested clusters. Using this method, clusters could be retrieved by cutting the 
dendrogram at different levels. However, HC is appropriate for small sets of data, up to several thousand 

elements. The method is very sensitive to noise and outliers in the data. Furthermore, HC algorithms are 

not capable of correcting any previous potential misclassification. Once an object is assigned to a cluster, 
it will not be considered again17. Moreover, HC does not work well in overlapping areas18 (in these areas, 

elements from several clusters share the same space). 

 

In partition methods two approaches can be highlighted: exclusive clustering (EC) and probabilistic 
clustering (PC).  For both approaches the number of clusters has to be determined in advance. In an EC 

approach, elements are only allocated to certain clusters and then can no longer be included in others 
(hard clustering). One of the most commonly used algorithms in the EC approach is k-means algorithm, 

which is based on a certain number of clusters defined in advance. The main idea of k-means is to define 

means for every cluster (Fig.2). This algorithm picks the randomly chosen number of elements in the 
initial set equal to the number of clusters defined in advance.  These randomly chosen elements are 

assumed to be cluster means. This is an iterative process. The algorithm performs recalculations of 
cluster means until a specified criterion is met. The affiliation to clusters is defined for every element in 

the set by defining the minimum distance between means and elements. The k-means algorithm is 

appropriate for large sets of data, up to hundreds of thousands elements. However, the appropriate 
number of clusters is unknown.  It is necessary to specify number of clusters before one starts the 

algorithm18. The algorithm is sensitive to the selection of the initial partition19. In addition, it does not 
perform well in the case of overlapping areas18. 

With a PC approach, each cluster can be present as a parametric distribution. Thus, the initial set of 
elements is modeled by a mixture of these distributions. In contrast to k-means, where elements are 

deterministically assigned to one and only one cluster (hard clustering), a PC approach assigns elements 

to clusters with certain probabilities (soft clustering). The most commonly used algorithm in PC is a 
normal mixture or a mixture of Gaussians. The normal mixture algorithm is similar to k-means. The 

normal mixture uses expectation-maximization (EM) algorithm where on expectation step (E-step) 

  
 

Fig.1. Hierarchical clustering Fig.2. Exclusive clustering Fig.3. Probabilistic clustering 
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expected values of the cluster membership for each element is calculated. Here probabilities for all 

elements are calculated. Then, maximization step (M-step) recalculates the parameters of each Gaussian 
to maximize the probabilities found on E-step. These steps repeat until convergence. The normal mixture 

algorithm based on a probabilistic approach performs well in overlapping areas18. However it is sensitive 

to the selection of the initial partition17. 
The APD forecast model contains 4,435 cities. For every city numerical attributes are obtained from 

various databases: GDP and population for 2012 and geographical coordinates. All economic indicators 
within the study are adjusted to 2005 US dollarsi. Cities’ distributions by population and GDP are 

presented in Fig.4 and Fig.5 respectively. Based on these distributions, cities’ quantiles by population and 
GDP are presented in Tab.1 and Tab.2 respectively. Cities possess various socio-economic indicators, but 

they are not separated well, as can be seen in Fig.6. Most cities are concentrated in a small area. 

 
  

Fig.4. City distribution by population Fig.5. City distribution by GDP Fig.6. City distribution by population and GDP 

 

Percent 

of cities 
Quantiles Population City 

100.0% maximum 14,608,512 Shanghai, China 

75.0% quartile 206,570 Annaba, Algeria 

50.0% median 50,675 Mweka, DR Congo 

25.0% quartile 7,716 Fort Dix, US 

0.0% minimum 2 Portage Creek, US 

 

 

Percent of 

cities 
Quantiles 

GDP, 

billions 
City 

100.0% maximum 350 New-York, US 

75.0% quartile 3 Pekanbaru, Indonesia 

50.0% median 0.744 Arcata, US 

25.0% quartile 0.103 Lakselv, Norway 

0.0% minimum 0.00007 Kadhdhoo, Maldives 

Tab.1 City quantiles by population  
Tab.2. City quantiles by GDP (indicated here in constant 

2005 US dollars) 

 

Thus, cities in this area have quite similar values for GDP and population and lay in overlapping areas. It 

is difficult then to understand exactly to which group they should be assigned. Despite the simplicity of 
retrieving clusters, HC algorithms are not capable of correcting potential previous misclassification. Once 

an object is assigned to a cluster, it will not be considered again. In other words, if a city is assigned at 
the beginning of the algorithm to one cluster, it will not be taken into account on subsequent clustering 

steps. EC algorithms are considered to be a form of “hard clustering”. They do not work well in the 

overlapping areas. In other words, if a city is assigned to a cluster, it can no longer be included in others. 
The PC approach assigns elements to clusters with certain probabilities. It works well when clusters have 

different sizes and correlation within them. HC and EC algorithms perform well when clusters are well 
separated, but they fail in overlapping areas18. Thus, for clustering cities in the APD model, a PC 

                                                
i In this study, one of the main used socio-economic scenario is the Randers scenario. In this scenario all economic are adjusted to 
2005 US dollars. Thus, to unify all economic indicators within the study, they are adjusted to 2005 US dollars. 
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algorithm of normal mixture is used. However, for this type of clustering it is necessary to define the 

appropriate number of clusters. 

2.2 Application of normal mixture clustering 

The PC of normal mixture is chosen to group cities into clusters. As discussed above, the process of APD 

generation will likely be different for different city clusters. Thus, it is important to define the appropriate 
number of clusters as well as the number of city parameters for clustering. Utilizing a few parameters 

could lead to high bias and missed opportunities for cluster insight. Such clustering is not flexible enough 
to describe the sample well. In contrast, clustering with too many parameters will not be able to fit 

observed data well, but will be too closely tailored to it. Such models may generalize poorly.20 AIRCAST 
socio-economic scenarios contain cities GDP and population. Based on these parameters it is possible to 

add one more parameter - GDP per capita. This parameter allows a normal mixture algorithm to describe 

clusters with higher precision.  Thus, to define the number of city groups with similar socio-economic 
indicators, clustering in this study is done by utilizing city GDP, population and GDP per capita.  

For normal mixture, the number of cluster must be set in advance. This is a typical issue for a normal 
mixture clustering approach. It is solved through measurements of standard metrics for different 

numbers of clusters. In this study two standard metrics are used: the Bayesian information criterion21 

(BIC) and the Akaike information criterion22 (AIC). Both these metrics are penalized-likelihood information 
criteria. BIC and AIC choose the model with a particular number of clusters which demonstrates the best 
penalized log-likelihood. BIC and AIC is a variation of a penalty weight 𝐴𝑛 in the information criterion: 

𝐼𝐶(𝑘) = −2𝑙 + 𝐴𝑛𝑝 (1) 

Where 𝑘 is number of clusters; 𝑙 is the log-likelihood; 𝑝 is the number of parameters in the model. For 

AIC 𝐴𝑛 = 2, and for BIC 𝐴𝑛 = ln (𝑛); 𝑛 is sample size. BIC and AIC penalize more for models with 

additional parameters. The penalty of BIC depends on the sample size and it is usually more “heavy” then 
AIC. The number of clusters 𝑛 minimizing BIC and AIC is considered to be the optimal number of clusters 

for a given set. For clustering, 20 independent restarts of the estimation process with different starting 

values are used. This avoids the problem of finding a local solution. The maximum number of iterations 

of the convergence stage of the EM algorithm is 200. The convergence criterion is the difference in the 
likelihood at which the EM interactions stops and it is equal to 0.00000001. BIC and AIC for 4,435 cities 

in the base year 2012 of the APD forecasting model is presented in Fig.7. Clustering of these cities is 
performed based on their GDP, population and GDP per capita. 

 
Fig.7. BIC and AIC metric for the different number of clusters for the city set of the ADP forecast model 

Based on AIC and BIC in Fig.7, separation into 11 clusters provides the best results. However, some 

means of these clusters are close to each other. It is difficult to interpret the meaning of these means. 
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Thus, three separations of the smallest AIC and BIC into 9, 10 and 11 clusters have been considered. 

Cluster means of these separations are depicted in Fig.8 based on population and GDP per capita. As it 
can be seen each time, the clustering algorithm detects groups of cities with the largest socio-economic 

indicators. The main changes in separations are in city groups with populations of less than 1 million. The 

cluster means for these separations are depicted in Fig.9, Fig.10 and Fig 11 based on their population 
and GDP per capita.  

 

Fig.8. Cluster means of separation into 9, 10 and 11 clusters by population and GDP per capita 

For separation into 11 clusters, a few means are in close proximity to each other. These groups of cities 

have relatively small populations with high GDP and GDP per capita. Furthermore, there are two 

proximate city groups of small cities with small GDP and GDP per capita (Fig.9). The same proximity 
groups are for separation into 10 clusters (Fig.10). However, the situation is different for separation into 

9 clusters (Fig.11). These cluster means are clearly distinguished from each other and are easily 
interpreted. The performance of the 9 clusters is good enough, and separation to 10 and 11 clusters do 

not add much. Thus, despite that it does not demonstrate the best AIC and BIC, for simplicity separation 

into 9 clusters has been chosen for this study. 

   

Fig.9. Cluster means for separation into 11 
clusters of citieswith less than 1 million 

inhabitants. 

Fig.10. Cluster means for separation into 
10 clusters of cities with less than 1 million 

inhabitants. 

Fig.11. Cluster means for separation into 
9 clusters of cities with less than 1 million 

inhabitants. 

All 9 clusters centres are well separated. These clusters cover “small”, “middle” and “big” cities by 

population and “poor”, “middle class” and “rich” cities by wealth. Based on these 9 clusters, the APD 

network in 2012 can be presented as a set of 45 cluster pairs. For the purpose of the study, cluster 
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names derived from population and per capita GDP of cluster means were adopted. Tab. 3 reflects the 

number of cities in each cluster, cluster means and cluster names. For the PC of normal mixture a 
complex formula to find probabilities of every city affiliation to each cluster is obtained. Thus, utilizing this 

formula it is possible to retrieve probabilities for city affiliations to different clusters for developing socio-

economic indicators, and, thus, trace how cities are changing their clusters within a given time period.  

Cluster # Population GDP, billions 
GPD per 
capita 

Number of cities  
in cluster 

Proportion Size Wealth 

1 8,520 0.3 37,134 1,453 0.32191 Very small Rich 

2 47,010 0.3 7,729 1,055 0.22774 Small Poor 

3 824,546 27 33,219 108 0.02487 Big Rich 

4 307,440 3 12,066 417 0.09684 Middle Middle 

5 5,394,129 77 19,767 76 0.01748 Megacities  

6 82,790 2 37,010 565 0.13312 Small Rich 

7 1,493,549 11 8,032 238 0.05451 Big Poor 

8 278,644 9 35,547 207 0.04738 Middle Rich 

9 369,340 1 2,744 316 0.07615 Middle Poor 

Tab.3. Clusters centers, city distribution among clusters and cluster names. GDP and GDP per capita indicated here 
in constant 2005 US dollars. 

3 CLUSTER DYNAMIC 

Over the forecast period, the socio-economic indicators of the cities change. These changes affect the 

probability of membership of a given city to a certain cluster. This process reveals the changes over time 
of city distributions within the clusters. Thus, this study introduces the “cluster dynamic”. The cluster 

dynamic is a method of calculating the probability that a given element (city) will appear within a given 
cluster at a given point in time. This method is how the cities are allocated to the various clusters in any 

given forecast year, based on socio-economic indicators of cities. During the forecast period, cluster 

centers remain fixed as in the 2012 base year and do not change. In other words, in this study, affiliation 
calculations are made from a 2012 perspective. 

In this study the Randers socio-economic scenario23 from 2012 to 2050, with time slices every 5 years 
since 2015, is used. Utilizing the normal mixture PC formula from 2012, probabilities of city affiliations are 

defined from 2015 up to 2050, with 5 year step for 8 time slices (Fig.12). 

 
Fig. 12. Cluster dynamic based on Randers scenario 
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In this study the number of cities is constant within the forecast period and contains 4,435 cities from the 

base year. Based on the Randers scenario, “Small Rich” and “Very small Rich” clusters show significant 
decrease in the number of cities. This is because, in general, the Randers scenario is a positive scenario, 

where almost all cities demonstrate population and GDP growth. Thus, the cluster dynamic shows cities 

moving into more “powerful” clusters. As a consequence, “Middle Middle”, “Big Rich” and “Megacities” 
show significant increases. A transition diagram of cities in clusters between the base year 2012 and the 

last year of the scenario, 2050, are presented in Fig.13. 
 

 
Fig.13. Transition diagram between the base year 2012 and the last year of the scenario 2050 

The diagram shows 9 clusters on three levels by city population: small, middle and big. Cities that remain 

in clusters and change the clusters are indicated in percentage of the total number of cities. Arrows 

demonstrate to which clusters cities are moving. The diagram shows transitions between clusters with 
more than 1% of cities. Based on this diagram, tendencies can be seen showing the moving of cities 

between clusters. It is possible to trace three main paths: from cluster “Small Poor” to “Megacities”, from 
“Small Poor” to “Big Rich” and from “Very small Rich” to “Big Rich”. Cities in the “Small Poor” cluster 

show the highest diversity. These cities move to 4 different clusters. All cities have tendencies to move to 

the end point clusters of “Megacities” and “Big Rich”. Thereby, it is shown that there is a clear correlation 
with the Randers scenario, which has a positive tendency.  

Since the process of APD generation is different in different clusters, the content of clusters have a 
significant influence on the accuracy of the APD forecasting model. The introduction of the cluster 

dynamic provides a comprehensive approach to trace these changes within and between clusters, based 
on a given socio-economic scenario.  

4 CONCLUSION 

This study presents qualitative and quantitative features of different groups of cities in the base year and 
the dynamic of cities moving between groups. This study presents methods of grouping cities into 

clusters by their socio-economic indicators and tracing changes in the content of cluster within a socio-
economic scenario. For city grouping, three main clustering approaches have been considered:  

hierarchical, exclusive and probabilistic clustering. By analyzing the advantages and disadvantages of 
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these approaches, probabilistic clustering of normal mixture has been chosen to separate cities from the 

APD forecasting model. This clustering approach performs better than others in overlapping areas. This is 
essential in the case of the APD forecast model cities. Clustering is based on socio-economic indicators of 

cities that including city GDP and population figures. Thus, the three parameters of city GDP, population 

and GDP per capita have been defined to fit observed data. Utilizing these parameters and special metrics 
AIC and BIC, separation into 9 clusters has been chose. Notwithstanding that the separation does not 

demonstrate the best AIC and BIC, cluster means are distinguished well from each other and the number 
of city parameters for clustering are easily interpreted. Furthermore, this study introduces the “cluster 
dynamic”. This method demonstrates how the cities are allocated to the various clusters at a given point 
in time within a socio-economic scenario.  

Clustering is an important part of the APD forecasting model. The results of this study have significant 

impact on the accuracies of link predictions in the APD network5. Moreover, clustering results can help to 
understand the air passenger demand generation within and between different groups of cities in further 

studies. The next step in the study is to apply the cluster dynamic method to various scenarios within 
AIRCAST and, based on this cluster model, trace the changes in the APD on city level worldwide. 
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