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Abstract
The worldwide demand for food has been increasing due to the rapidly growing global popu-

lation, and agricultural lands have increased in extent to produce more food crops. The pat-

tern of cropland varies among different regions depending on the traditional knowledge of

farmers and availability of uncultivated land. Satellite images can be used to map cropland

in open areas but have limitations for detecting undergrowth inside forests. Classification

results are often biased and need to be supplemented with field observations. Undercover

cropland inside forests in the Bale Mountains of Ethiopia was assessed using field observed

percentage cover of land use/land cover classes, and topographic and location parameters.

The most influential factors were identified using Boosted Regression Trees and used to

map undercover cropland area. Elevation, slope, easterly aspect, distance to settlements,

and distance to national park were found to be the most influential factors determining

undercover cropland area. When there is very high demand for growing food crops, con-

strained under restricted rights for clearing forest, cultivation could take place within forests

as an undercover. Further research on the impact of undercover cropland on ecosystem

services and challenges in sustainable management is thus essential.

Introduction
Cropland expansion is one of the major anthropogenic factors causing loss of major natural
ecosystems around the globe [1, 2]. With the increasing global population and demand for
food, cropland continues to expand and has resulted in 'land grabbing' (large-scale acquisitions
of agricultural land) mostly in developing countries of the tropics [3–5]. Vast areas of land in
sub-Saharan African countries such as Sudan, Ethiopia and Kenya are leased to local and global
investors for large scale agriculture [1, 6]. In most cases, local small-scale farmers are displaced
when their land is needed for investment [7]. Thus, with growing population, poor technology
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and increasing 'land grabbing', local farmers in sub-Saharan Africa are often forced to look for
unoccupied marginal lands in the mountains that are not optimal for growing crops due to
extremely rugged topography. These ecosystems are generally threatened worldwide by land
use/land cover (LULC) change and are under continuous pressure due to cropland expansion
to feed the rapidly growing global population [7, 8]. Mountainous areas provide diverse ecosys-
tem services such as water, sediment retention, erosion control, flood regulation and recreation,
and they are hotspots of biodiversity [9–11]. In the long-term, conversion of forests and grass-
lands to croplands may lead to degradation of fragile mountainous ecosystems [12, 13]. This
impact has been realized worldwide and protection of mountain ecosystems has gained atten-
tion [14–16]. However, in regions with slow industrial development and the majority of the
population being subsistence farmers, the past efforts in protecting forests in mountainous
areas only shifted the patterns and distribution of cropland instead of slowing its rate.

Agroforestry systems that combine multipurpose trees with crops have been effectively
practiced in the past across different parts of the world. For instance, in India, wheat has been
planted with Eucalyptus and Poplar plantation trees [17–21]. In the western Himalaya, rice and
wheat are intercropped with tree species such as Grewia optiva,Morus alba and Eucalyptus
[22]. In China, an area of over two million hectares was an intercrop of wheat and Paulownia
trees during the 1990's [23]. Multipurpose trees such as Ginkago biloba have been grown in
southern China with broad beans and wheat mixtures [24].

In Ethiopia, agroforestry systems (e.g. combining fruit trees, coffee, crops and vegetables as
multi-story vegetation) have been traditionally practiced for hundreds of years [25]. However,
this was mainly limited to flat and moderate slope areas of the southern and south western
parts of Ethiopia. In the past, researchers have investigated the potential for the adoption of
agroforestry systems in the mountainous areas of the Ethiopian highlands [25–27]. However,
the transfer of agroforestry knowledge from the southern and southwestern regions to the
mountainous regions of Ethiopia showed limited success. In most cases, tree-crop combina-
tions in the mountainous areas of Ethiopia lasted only for short time until the forest land was
fully converted to cropland. One example of such LULC patterns is undercover cropland inside
forests in mountainous areas. In this study we define the term 'undercover cropland' as cultiva-
tion and growing of crops under forest canopies without future plans for transforming the for-
est into a multistory agroforestry system. To ensure sustainability of such complex systems
where multistory vegetation types form an ecosystem, detailed analysis and assessment of its
influential factors and emerging land management challenges is essential.

Remote sensing provides fast and reliable data for large scale assessment of vegetation
cover. In principle, airborne and satellite remote sensing data are suitable for LULC classifica-
tion [28–31]. However, due to their property of being a reflectance measure, these datasets are
mainly based on canopy structure visible from above. Consequently undercover cropland can-
not be fully detected. Most of the global land cover classifications in the past used coarse resolu-
tion data and provided only broad classes such as cropland-woodland and cropland-grassland
mosaics. Thus, detailed analysis to capture the hidden cropland inside forests requires supple-
menting the remote sensing data with field surveying in order to obtain reliable results.

In this study, we assess undercover cropland area and its explanatory variables in the hilly
terrains of the Bale Mountains of Ethiopia by analyzing field observed percent cover in combi-
nation with topographic and location factors using Boosted Regression Trees. The study is
based on the hypothesis that topographic parameters such as slope, elevation and aspect as well
as location factors such as distance to settlements and the national park influence undercover
cropland inside forests in the Bale Mountains of Ethiopia. The main objectives are to i) map
LULC and identify hotspots of cropland under forest canopies; ii) identify explanatory
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variables and map undercover cropland area; iii) assess the emerging challenges and future
prospects of undercover cropland in the region.

Materials and Methods

Study site
Situated in the southeastern part of Ethiopia, the Bale Mountains are characterized by enor-
mous ecological heterogeneity and steep gradients of altitudinal zones (Fig 1A). The site we
selected for data sampling is part of the Adaba, Dodola, Asassa and Dinsho districts of the Arsi
and Bale zones of the Oromia regional state of Ethiopia. It is adjacent to the boundary of Bale
Mountains National Park (BMNP), which is known for its enormous biodiversity and insitu
conservation of highly endangered mammals, birds, plants, and amphibians endemic to Ethio-
pia [32–35].

The region supplies diverse ecosystem goods and services to local and national beneficiaries.
For instance, provisioning services dominant in the Bale Mountains and the surroundings
include food, water, timber, fuelwood, and fodder. Regulatory services include flood regulation,
erosion control, and water purification. Due to the availability of tourist attraction sites in the
area, the aesthetic and recreational values are the other important services supplied by ecosys-
tems in the Bale Mountains. The high population growth in the area has increased demand for
food by local farmers, nearby villages, and towns. In the past, crop production in the area was
concentrated in the lower escarpments and flat areas. However, with increased population the
open grasslands and forest areas are nowadays intensively cultivated [36]. Furthermore, recent
cropland expansion under forest canopies is becoming an ongoing practice. Local farmers
expand croplands in the uplands where forest clearing is restricted by the local government.
Such shifts in the patterns of land cover indicate potential for tradeoffs in the supplies of vari-
ous ecosystem services such as provisioning and regulatory services.

The area is under continuous pressure from various actors and growing population in the
surrounding districts, which pose a threat to conservation areas of the BMNP. The fact that the
area is adjacent to the national park, situated at the border of the four districts mentioned
above, and subject to varying altitudinal gradients makes it interesting for assessing the LULC,
especially the patterns of cropland expansion.

Remote Sensing data
In this study, RapidEye images [37] taken during dry periods (December 2012) were used for
the LULC classification. The images used were orthorectified 3A products with the spectral
bands: Blue (440–510 nm), Green (520–590 nm), Red (630–685 nm), Red Edge (690–730 nm)
and Near Infrared (760–850 nm). Each image had a resolution of 5 meters and covered a total
ground area of 625 km2 (image dimension of 25x25 m). The level 3A products are geometri-
cally corrected for sensor-related effects using sensor telemetry. The bands are co-registered
and spacecraft-related effects are corrected using attitude telemetry and best available ephem-
eris data. These products are further orthorectified using ground control points (GCPs) and
Digital Elevation Models (DEMs).

The two scenes were mosaicked using the ENVI 5.0 [38] georeferenced mosaicking func-
tion. Atmospheric and topographic corrections were performed using ATCOR 3 software [39].
ATCOR 3 was preferred used for our largely mountainous study site as it provides algorithms
for correcting images taken from rugged topography [39, 40]. ATCOR 3 corrects changes in
spectral reflectance of objects, removes haze and reduces the effects of shadow in mountainous
terrains [39, 40].
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Fig 1. Study site and land use/land cover classes a) Location of the study site and distribution of sample plots b) Major land use/land cover types
derived using Random Forest classification of RapidEye images. Field estimated percent cropland per plot is overlaid on the land use/land cover map.

doi:10.1371/journal.pone.0130079.g001
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Field data sampling
A field visit in the study site was carried out between October and December 2012, the same
season in which the RapidEye satellite images were taken. Land use/land cover related data was
collected with the official permission of the Adaba, Dodola, Asassa and Dinsho districts of
Ethiopia, given by the local village leaders and private land owners in the area. Since part of the
site is inside the boundary of the Bale Mountains National Park, permission to collect land
cover related data was granted by the head of the national park. The study does not involve ani-
mals in experiments and we confirm that the field studies did not involve endangered or pro-
tected species. A total of 136 sample plots were laid out randomly at varying intervals based on
heterogeneity of LULC and accessibility of the landscape (see Fig 2 for details of steps in field
sampling). The interval between the sample plots was long (up to 5 kilometres) in homogenous
areas while it was short (1–2 kilometres) in heterogeneous landscapes. The sample plots were
laid out with a distance of 300 m from the center point in four directions: North, East, West
and South with each having an area of 0.36 km2 (Fig 2A). The sampling of data was carried out
for each plot and recorded in the worksheets prepared for field surveying.

Fig 2. General workflow of a) Field data sampling b) Image classification c) Validation of classification results.

doi:10.1371/journal.pone.0130079.g002
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Trimble Juno-3B GPS was used to measure the coordinates at the centre of the sample plots
to identify the spatial location where the data was recorded. Percentage cover of different
LULC classes was estimated for each plot taking the GPS centre point as a reference. The per-
cent cover for each LULC class was estimated visually in a range of 0 to 100. The visual estima-
tion was made relative to the total area of the plot i.e. 0.36 km2. For this, discontinuous LULC
classes (e.g. forest patches, meadows, croplands) were assumed to be as continuous relative to
the plot area to assign total percent cover per plot. As a visual guideline the area covered by 1%
of the LULC class as a percentage of 0.36 km2 which is equivalent to 0.0036 km2. Thus, one per-
cent cover of LULC is equivalent to a square of 0.06 x 0.06 km. Besides the percentage cover
per plot, LULC classes at the GPS points were recorded for later use in the validation of classifi-
cation results. To further support validation of results from the satellite image classification,
photographs were also taken in four directions from the GPS centre point using the built-in
Trimble Juno 3B camera.

Land use/land cover classification
The Random Forest (RF) classifier [41] implemented in R 3.02 statistical software package (R
Development Core Team 2008)was used to classify the RapidEye images in order to derive
LULC classes. This method uses an ensemble of tree-like classifiers similar to Bagging Trees in
which bootstrap samples are drawn to construct multiple trees [41]. RF is a refinement of Bag-
ging Trees, since it improves bagging by “de-correlating” the trees. In the RF methodology a
large number of trees (500 to 2,000) are grown. Unlike Bagging Trees, in RF each tree is grown
with a randomized subset of predictors from which the name random forests is derived. Trees
are grown to maximum size without pruning, and are aggregated by averaging to select only
the best split among a random subset at each node [41].

Random Forest classifier searches a random subset of features from the total number of pre-
dictors to find the best split at each tree node in order to minimize the correlation between clas-
sifiers in the ensemble. The classifier ensembles are based on the concept that a set of classifiers
performs better than individual classifiers [42]. Since the resampling is not based on weighting,
the RF classification method is not sensitive to noise or overtraining [43]. Moreover, the
method has been widely used for classification since it provides high classification accuracy
[43–46].

For the purpose of classification, eleven major LULC classes (Table 1) were identified based
on field observations of the study site. Accordingly, sample polygons (ESRI shape files)

Table 1. Description and broad categories of the land cover classes.

LULC_ID Description of classes Broad category

1 Dense forest Forest

2 Single scattered trees Forest

3 Recently grown green crops Cropland

4 Close to ripening green crops Cropland

5 Ripened crops or recently harvested land Cropland

6 Cultivated land_dark colored wet soils Cropland

7 Cultivated land_grey colored dry soils Cropland

8 Meadows and fallowed croplands Meadows or fallowed croplands

9 Reservoirs Reservoirs

10 Shrublands Erica arborea shrubs

11 Bare rocks Rocky barelands

doi:10.1371/journal.pone.0130079.t001
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representing each class were digitized based on LULC data collected at 136 field sample plots
and georeferenced GPS photographs taken at the center of the plots. For each LULC class, 250
samples (pixels) were randomly extracted from the list of image features (S1 Fig) and split into
training (63%) and testing (37%) datasets. Each tree is grown on the training datasets using the
bootstrap sampling process. The number of trees in the forest (ntree) and the number of ran-
dom subsets of features tried at each node (mtry) were set to 1000 and 3, respectively. For the
LULC classification, the five bands and indices calculated from the RapidEye images were eval-
uated for their importance in identifying different LULC classes. In RF, the importance of a fea-
ture is determined based on how often the feature was used in the tree construction process. S1
Fig illustrates the relative importance of the features evaluated for the RF classification showing
the most used and least used features.

After classification into the eleven classes, similar LULC types were grouped into major clas-
ses such as cropland, forest, meadows or fallowed cropland, shrubs and barelands. From classes
listed in Table 1, classes 1(dense forest) and 2 (single scattered trees) were grouped into forest
since they represent different types of forest. Similarly, classes 3 to 7 were grouped as cropland
because they all represent areas of land used for growing crops. The boundaries of state farms
and major settlement areas were digitized manually from the RapidEye images from high reso-
lution Google Earth images and GPS points recorded during the field observation and overlaid
on the produced LULC map.

Validation
For validation of the RF classification, as a cross-validation step, error measurements used
were of twofold: errors calculated from the Out-Of-Bag (OOB) subset of data and those calcu-
lated from the test data subset. Firstly, performance of the RF classifier was evaluated using
cross-validation during the model training process. Each tree is grown using a bootstrapping
technique that involves sampling in which some of the data are left out i.e. the Out-Of-Bag
(OOB) sample, while some others are repeated in the sample [41]. In the training process, 2/3
of the training data was actually used for tree construction leaving 1/3 as OOB. Since the OOB
data was not used for tree construction, in parallel with the training step, the OOB samples
were used for cross-validation. Secondly, independent test datasets were used to assess the per-
formance of RF algorithm by calculating the proportion of test elements that were incorrectly
predicted. Finally, confusion matrices were calculated for each predicted class and its corre-
sponding reference class as well as the OOB and test error rates. The steps in the cross-valida-
tion of the classification result are shown in Fig 2B.

Besides the cross-validation step, reference LULC classes collected at the center of the sam-
ple plots were used in combination with reference LULC classes identified from GPS photos
taken in North, East, West and South directions (Fig 2A). The GPS photos were converted to
points using QGIS 2.0.1 software and the reference LULC classes were assigned to the points
based on the photos. The sample GPS points were merged with the photo points and were used
to validate the major LULC such as cropland, forest and meadows or fallowed croplands (Fig
2C). A total of 611 (120 GPS points taken at the center of the plot and 491 points extracted
from GPS photos taken in four directions from the center point) were used for the accuracy
assessment.

Identifying factors influencing undercover cropland area
Boosted Regression Trees (BRTs) [47], an ensemble method used for fitting statistical models
was used to identify influential variables for cropland area. At each sample plot, undercover
cropland area was calculated as the product of area of the sample plot and field estimated
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percent undercover cropland. Boosted Regression Trees combine algorithms of regression
trees that use recursive binary splits to relate a response to their predictors and boosting that
combines simple models to improve predictive performance [47–49]. Moreover, BRTs are pre-
ferred since they capture complex structures that arise from spatial autocorrelation within a
dataset. In contrast, with simpler modeling approaches, results are highly influenced by spatial
autocorrelation in datasets [50]. BRTs is an additive regression model that undergoes stagewise
fitting without changing existing trees when the model enlarges [49].

Boosted Regression Trees were constructed using R 3.02 statistical software package [51] to
identify the relationship between undercover cropland area and potential influential factors.
The factors considered include elevation, slope, east aspect, west aspect, north aspect, south
aspect, distance to the national park, and distance to settlement areas. Slope and aspect maps
were derived from digital elevation model, while distance to the national park and distance to
settlements were calculated from sample plot centers to the boundaries of the national park
and settlement areas. These factors were selected for analysis since they often dictate agricul-
tural activities in mountainous regions [52, 53]. The four aspect raster layers were extracted
from aspect map as dummy values of 0 and 1. All the raster layers were rescaled to a grid size
of 10 pixels. Values of all the influential factors were calculated for the sample plots where
undercover cropland area was estimated. The BRTs model was set with Gaussian error distri-
bution, tree complexity of 2, learning rate of 0.008 and bag fraction of 0.75 while the maximum
number of regression trees specified was 3000. The results of the relationship between the influ-
ential factors and undercover cropland area estimated in the field were plotted and visualized
as fitted functions showing the relative importance of each influential factor as a percentage. In
addition to the undercover cropland inside forests, influential variables were predicted for total
cropland area per plot both from field estimated data and the RapidEye images for further
understanding of factors determining the general patterns of cropland expansion in the region.
See [47] for details about Boosted Regression Trees and the model settings.

Prediction and mapping of the undercover cropland
The raster layers of influential variables tested using BRTs model in section 2.6 were used to
predict and map the percentage cover of undercover cropland. Field estimated percentage
undercover cropland data from 135 sample plots were used to predict the undercover cropland
from the most influential factors such as elevation, slope and east aspect using Boosted Regres-
sion Trees. To obtain reliable result, the prediction was done using 16-fold cross-validation of
the data. Hence, the final predicted undercover map is the result of the 16-fold cross-validation.
Furthermore, the predicted map of undercover cropland was overlaid with the forest layer
derived from the classification of RapidEye images to produce the final map of undercover
cropland.

Results

Land use/cover types
The results of the RF LULC classification are presented in Fig 1B. The major LULC types in the
study area include small-scale croplands, state owned large-scale croplands, forest land and
meadows. The forests are situated in the upper escarpments of the area while croplands mainly
occupy the lower escarpments. The upper most escarpments adjacent to the forest land are
Erica arborea shrublands. These shrublands are found mixed with rocky barelands in
extremely rugged topography. Settlement areas consist of built-up areas mixed with croplands,
meadows or fallowed croplands, and scattered trees. In the study site, there is a large reservoir
that belongs to Melka Wakena hydropower station and is used by the government of Ethiopia
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to generate electricity. The area is near the BMNP and cropland has extended to parts of the
national park shrinking the area which was previously part of the national park (Fig 1B).

Accuracy of classification
The OOB and test error rates of the RF classification for each LULC class are presented as con-
fusion matrices in Tables 2 and 3 respectively. Most of the LULC types were classified with an
OOB error rate of 4.87% and test set error rate of 4.22%. The error rate in each class shows the
proportion of misclassified observations in that class, whereas the average test error rate shows
the proportion of misclassified observation for the entire dataset. The mean test error rate per
class ranges from 0 to 10.77.

The OOB error value computed from the left out data during the training process showed a
very good performance of the RF model with an average model accuracy of 95%. The calculated

Table 2. Confusion matrix showing the error rate of the training dataset (OOB error rate).

Predicted

LULC_ID 1 2 3 4 5 6 7 8 9 10 11 Class error

Reference 1 121 7 0 0 0 0 0 0 0 0 0 0.05

2 4 124 5 5 0 1 0 0 0 0 0 0.11

3 0 2 108 1 0 0 3 6 0 0 0 0.10

4 0 2 0 120 0 0 0 0 0 0 0 0.02

5 0 0 0 0 123 0 0 0 0 0 2 0.02

6 0 0 0 0 1 123 1 0 0 0 0 0.01

7 0 0 1 0 0 1 111 0 0 0 0 0.02

8 0 0 1 1 0 0 0 130 0 0 0 0.02

9 0 0 0 0 0 0 0 0 121 1 0 0.01

10 0 0 0 0 3 0 0 0 1 117 9 0.08

11 0 0 0 1 3 1 0 0 5 107 0.11

Average OOB estimate of the error: 4.87%.

doi:10.1371/journal.pone.0130079.t002

Table 3. Confusion matrix showing the error rate of the test dataset.

Predicted

LULC_ID 1 2 3 4 5 6 7 8 9 10 11 Class error

Reference 1 113 9 0 0 0 0 0 0 0 0 0 0.07

2 5 101 3 1 0 0 1 0 0 0 0 0.09

3 0 11 116 1 0 0 0 2 0 0 0 0.11

4 0 0 0 128 0 0 0 0 0 0 0 0.00

5 0 0 0 0 119 0 0 0 0 0 3 0.02

6 0 0 0 0 0 125 1 0 0 0 0 0.01

7 0 0 0 0 0 0 137 0 0 0 0 0.00

8 0 0 1 1 0 0 0 116 0 0 0 0.02

9 0 0 0 0 0 0 0 0 128 0 0 0.00

10 0 0 0 0 0 1 0 0 0 118 4 0.04

11 0 1 1 0 4 2 0 1 0 5 116 0.11

Average estimate of the error rate for the test dataset: 4.22%.

doi:10.1371/journal.pone.0130079.t003
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test set errors imply that all the LULC types were classified with an average accuracy above
95%. The numbers in the matrix show the number of samples from the actual class (reference
class) that is correctly or wrongly predicted. For instance, in the training set, class 1 has 128
samples of which 121 (94%) are correctly classified while 7 (6%) are misclassified as class 2. In
the test set, class 1 has 122 samples of which the 113 (92%) are correctly classified and 9 (8%)
samples are misclassified as class 2. The values for the rest of the classes in confusion matrices
(Tables 2 and 3) can be also interpreted in a similar way.

The matrices indicate major confusion between the “dense forest” and “single scattered
tree” classes, but also between the class “single scattered trees” and “recently grown green
crops”. These overlaps are very well known and can be attributed to the spectral similarity
among green vegetation classes. However, the high resolution of RapidEye data may be one
reason that mixed pixel problems have less influence on classification accuracies as observed
also in classification of Savannah landscapes of West Africa using ASTER 15 m datasets [30].
Minor confusion between “Erica arborea shrubs” and “bare rocks” can be explained by the
topography, because both classes mainly occur in rugged terrain where shadows occur which
can cause uncertainty during classification.

The validation results for the three major categories of LULC classes (Cropland, forest,
meadows or fallowed croplands) are presented in Table 4. These LULC were considered for
further validation besides the cross-validation step since they are the central focus of the
research on the undercover cropland.

Cropland and forest were classified with accuracy of 94% and 89% respectively. The accu-
racy of classification for the class meadows or fallowed croplands was 86%. The overall accu-
racy achieved for the three major LULC classes was 92% with a Kappa coefficient of 0.84
(Table 4). In general, the cross-validation and validation results showed that the RF classifica-
tion was performed with an acceptable accuracy.

Relative importance of factors influencing undercover cropland area
The Boosted Regression Trees fitted model for each of the influential factors of undercover
cropland area calculated from field estimated percent cover is presented in Fig 3. The area of
undercover cropland rises with increasing elevation, slope, and distance to major settlements
while it decreases with distance from the national park. However, after certain limit the graph
remains constant with a value of 0 showing that there is no undercover cropland above such
limits. Similar patterns of the relationships between aspect and undercover cropland area were
observed (Fig 3).

The results of the BRTs model of undercover cropland area showing the relative influence
of the variables considered and predictive performance of the model are summarized in

Table 4. Accuracy assessment of classification results for dominant land cover classes in the study site.

Ground truth points

LU_Name Croplands Forests Meadows or fallowed croplands Total Class accuracy (%)

Predicted Croplands 379 8 16 403 94.04

Forests 8 111 6 125 88.80

Meadows or fallowed croplands 4 8 71 83 85.54

Total 391 127 93 611

Sum of correct predictions 561

Overall Accuracy 91.82

Kappa Coefficient 0.84

doi:10.1371/journal.pone.0130079.t004
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Table 5. The Boosted Regression Trees model for area of undercover cropland calculated from
field estimated percent cover can explain 70.35% of the total deviance. The deviance was deter-
mined using a Gaussian family distribution function and is a measure equivalent to R2.

Elevation is the most influential factor accounting for 43.70% of the variance explained. Dis-
tance to settlements and east aspect consist of 13.80 and 13.30% respectively. The percentage of
explained deviance by distance to national park is 10.70%, while slope consists of about 7.3% of
the total explained deviance. West aspect, south aspect and north aspect each explained only
less than 5% of the deviance (see Fig 3).

Besides the undercover cropland, for comparison, the BRTs results of cropland area and its
influential factors is provided in the electronic supplementary information. Cropland area here

Fig 3. Boosted Regression Trees fitted model showing the relative importance of influential factors of undercover cropland area calculated from
field estimated percent cover.

doi:10.1371/journal.pone.0130079.g003

Table 5. Influential factors of undercover cropland area (ha) calculated from field estimated percent cover derived using BRTsmodel with tree
complexity, tc of 2, learning rate, lr of 0.008 and bag fraction, bf of 0.75.

Explanatory variables Relative influence (%) Rank

Elevation 43.7 1

Distance to Settlements 13.80 2

East aspect 13.30 3

Distance to National Park 10.70 4

Slope 7.30 5

West aspect 4.90 6

South aspect 4.50 7

North aspect 1.90 8

Predictive performance of the BRTs model

Mean total deviance Mean residual deviance Estimated CV Deviance CV correlation

41.25 12.23 26.94 (SE ± 4.5) 0.59 (SE ± 0.05)

doi:10.1371/journal.pone.0130079.t005
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refers to the area of land in sample plots where crops are grown i.e. including the area of crop-
land estimated as an undercover and the area of cropland in open areas. S2 Fig shows BRTs fit-
ted model for influential factors of cropland area calculated from plot-level field estimated
percent cover. The proportion of total deviance explained by slope, elevation and distance to
national park are 34.7, 30 and 19.7% respectively while aspect appears less influential for crop-
land area estimated at sample points (S2 Fig). The BRTs fitted models for plot-level cropland
area calculated from RapidEye images (S3 Fig) show that elevation is most influential factor
accounting for 57.7% of the total explained deviance. Due to the difficulty of calculating under-
cover cropland from RapidEye images, the calculated cropland area here refers to what can be
captured with the images without including the undercover cropland. Distance to national
park and distance to settlements each account for 8.7% of the deviance. Aspect appears less
influential when compared with the aforementioned parameters (S3 Fig). For details on the
relationship between the holdout deviance and the number of trees in BRTs model for the
undercover cropland area calculated from field estimated percentage cover and RapidEye
images, refer to S4 Fig

Predicted undercover cropland
The land use in the study site includes cropland inside the remnants of forests. Though the
classification of RapidEye images shows forest as dominant LULC type in the upstream areas,
there is cropland under the tree canopies. The undercover cropland area predicted using only
the most influential variables slope, elevation and east aspect ranges from 0 to 32 hectares per
pixel (Fig a in S5 Fig). Undercover cropland predicted from all the topographic variables (ele-
vation, slope, east aspect, west aspect, north aspect and south aspect) using BRTs is presented
in (Fig b in S5 Fig). Probability of undercover cropland in the area ranges from 0 to 25 hectares
per pixel when all topographic factors are included in the prediction. S6 Fig compares under-
cover cropland area predicted using the selected variables slope, elevation and east aspect (Fig a
in S5 Fig) with all variables (Fig b in S5 Fig). The scatter plot showed that there is no much dif-
ference between undercover cropland area predicted using only the most influential variables
and all the variables. S7 Fig presents the comparison of cropland area calculated from RapidEye
images and area estimated in the field. In this study, we assumed that remote sensing underesti-
mates area of cropland since undercover cropland cannot be detected. However, results at
some of the sample plots showed that the classification of RapidEye images overestimated
cropland area which might be due to error in classification of LULC classes such as meadows
as croplands (S6 Fig). Although classification of remote sensing images provides useful infor-
mation, it is usually subject to unavoidable uncertainties that call for more research in this dis-
cipline. The undercover cropland map produced by overlaying the probability map with the
forest layer from RapidEye image classification is shown in Fig 4.

Undercover cropland is located in the upper escarpments though there is no undercover
cropland in the upper most extremes of the site (Fig 4). The upper most extremes are domi-
nated with dense Erica arborea shrubs and are not suitable to grow crops due to the extremely
cold climatic condition and also the dense shrubs that require complete clearing for growing
crops. Thus, the larger portion of undercover cropland forms a belt in the upper escarpments
of the study site (Fig 4). Field observations confirmed that this belt is dominated with Juniperus
procera trees. The undercover cropland forms a vertical stratum with cropland as undergrowth
and trees being the upper canopy (Fig 5). As it was observed in the field, the major crop culti-
vated inside the forest is wheat. The reasons for this preference shown by farmers are most
likely the high market demand for wheat and provision of improved seeds and fertilizer by the
government due to its recent plan to improve crop production.

Prediction of Undercover Cropland

PLOS ONE | DOI:10.1371/journal.pone.0130079 June 22, 2015 12 / 21



The photos in Fig 5 show a close-range view of undercover cropland inside forests from
sample plots. They reveal hidden cropland inside the areas that were classified as forest using
the RapidEye images which mainly capture the view of forest canopy from above. Cropland
was observed inside forests including very steep terrain areas that were entirely covered with
forest and/or with semi-open woody pasturelands that were previously used for livestock
grazing.

Discussion

Influential factors of undercover cropland
Growing of food crops in the Bale Mountains involves not only cultivation of open lands with
moderate slopes but also cultivation inside forests in the upper escarpments. The findings of
this study confirmed that topographic parameters such as elevation, slope and aspect are
important factors that influence cropland area in mountainous regions. These parameters were
found also important determinants of soil properties and vegetation types in the Bale Moun-
tains [54, 55]. Similar studies in mountainous areas also demonstrated that elevation, slope and
aspect are among the influential factors that need to be considered in mountain ecosystem con-
servation and habitat management [8, 56–58].

In the Bale Mountains, there is difference in the impacts of topographic parameters on crop-
land area as a whole and the area of cropland which is cultivated as an undercover. For
instance, inverse relationship was observed between cropland area and topographic parameters
such as elevation above sea level and slope (in degrees) which conforms to the findings in other
mountainous areas [59]. However, area of cropland cultivated as an undercover increased with
increasing elevation and slope inside semi-protected forests. The extremely steep terrains cor-
respond to high elevation areas that were not suitable for growing cereal crops. Nevertheless,

Fig 4. Undercover cropland area predicted frommost influential topographic factors identified using Boosted Regression Trees.

doi:10.1371/journal.pone.0130079.g004
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Fig 5. Undercover cropland area calculated from field estimated percent cover for selected sample plots with an area of 36 hectares. Photos
labeled a to d show close range view of the undercover cropland taken at the location on the map labeled with the same letters.

doi:10.1371/journal.pone.0130079.g005
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recently farmers started growing crops in these areas which is an indication of impacts of cli-
mate change in the region. Undercover cropland is influenced also by topographic aspects that
modify microclimatic conditions. Easterly aspect was found to be more determinant compared
with other topographic aspects. The main reason for this may be the exposure of land under
forest canopies to morning sunlight which provides favorable conditions for vegetation growth
inside forests [60].

Besides the topographic parameters, the extent of undercover cropland was found to be
influenced by location parameters such as distance to national park and settlement areas.
There is a positive relationship between cropland area and distance to the national park
whereas the area of cropland cultivated as an undercover showed inverse relationship with dis-
tance to national park. An inverse relationship might result from the fact that areas close to
national parks are relatively protected and hence, farmers’ only option has become growing
crops as an undercover. Cropland area in general increases close to settlement areas but area of
cropland cultivated as an undercover inside forests decreases near major settlement areas.

Generally, the study indicated the major topographic and location parameters that limit
human activities regarding growing of food crops in a mountainous region. The pattern of
growing crops as an undercover inside forests in the mountain escarpments could have series
consequences on ecosystem services which demand prompt solutions to address the ongoing
challenge in the region. The potential consequences on ecosystem services and the challenges
of growing crops as undercover are discussed in sections 4.2 and 4.3 below.

Consequences on ecosystem services
The study site we investigated supplies diverse ecosystem services that are essential for the live-
lihood of the local people. The undercover cropland in this mountainous region thus has multi-
faceted impacts on supplies of these ecosystem services. For instance, the forest in the area is
the major source of timber and fuelwood for the local people and to markets in the surround-
ings. However, the recent undercover growing of crops inside the forest in the upper steep
slope areas gradually degrades the forest thereby reducing supplies of timber and fuelwood.
Moreover, most of the forested areas where undercover cropland is maintained were previously
mixed with pasture. Hence, cultivation of cropland as an undercover may decrease the supply
of fodder for livestock, indirectly reducing the livestock production [61, 62].

Cropland under forest canopies often exposes soil to erosion, especially in the extremely steep
terrains [63, 64]. In addition, land degradation is likely to happen as more fertile soil is washed
away. This may in turn damage the agricultural prospects as well as the supplies of other ecosys-
tem services in the area [65]. As it was observed during the field surveying, soil eroded from the
upstream area of the Bale Mountains has already been a threat to the supply of electricity by the
local hydropower, MelkaWakena, due to the deposition of sediments in the reservoir. During
the rainy season the hydropower reservoir is usually filled with sediments coming from the
upstream area. Sediment deposition in the reservoir increases the cost for cleaning and mainte-
nance of the reservoir if undercover cropland continues without considering preservation of for-
ests in the upstream areas. Increased runoff from the upstream areas and sediment deposition in
the rivers and reservoir affects also the supply of clean water to nearby beneficiaries [7, 66, 67].

Challenges in transforming an undercover cropland into a sustainable
agroforestry system
Conversion of open forests with a herbaceous layer to undercover cropland inside forests in the
Bale Mountains cannot be regarded as a sustainable agroforestry system. Undercover cropland
lacks the following major features of an agroforestry system that need to be addressed.
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Selection of tree-crop combination. An agro-forestry system involves multistory land use
and is widely acknowledged for its capacity to ensure sustainable land use and resource man-
agement [68, 69]. Traditional agroforestry is usually a multistory composition of selected mul-
tipurpose trees, crops like maize, fruit trees, and vegetables [70, 71]. Agroforestry systems can
be used as a remedy for severe environmental problems in highland areas but require selection
of proper species of trees and crops [72–75]. Unlike traditional agroforestry systems involving
planned selection and growing of tree-crop combinations, the undercover cropland is intended
mainly for expanding cropland area without proper selection of tree-crop combination.

Management of trees and crops. In a well-managed agroforestry system, growing crops
like wheat under tree canopies (e.g. Eucalyptus) provides favorable microclimatic conditions
for the crops [17, 76, 77]. Tree canopy structure and distance from crops affects crop perfor-
mance [21, 19, 23]. In some cases, toxic effects from trees could reduce the crop yield [18, 20].
Management practices in an agroforestry system depend on the crops growing under the cano-
pies [78]. Considering the aforementioned typical features of tree-crop combinations, the
undercover cropland observed lacks proper management of trees and crops as a multistory
land use since the main goal of the farmers is to find a land for growing food crops.

Farmers' lack of experience in agroforestry. In the Bale Mountains, traditional knowl-
edge of agroforestry is limited because the people in the area are mainly used to monocropping
and livestock production. Thus, the undercover cropland introduced in the area brings forth
dilemmas as to whether the farmers are adopting the knowledge of agroforestry from other
parts of the country or using it as an opportunity for clearing forests to expand cropland in
unoccupied forest land restricted by the government. It was introduced by the local farmers as
a strategy for acquiring more land for growing crops inside remnants of the forest in the
uplands where clearing of forest is restricted by the government. The system emerged as a
result of the desperate need for food crop production and resembles a traditional agroforestry
system because it involves growing of crops under tree canopies.

In general, given its current status, the undercover cropland would not eventually develop
to an agroforestry system and it will only aggravate forest degradation. Thus, it can only be
considered as an initial stage of deforestation which will later end up in complete clearing of
the forests by gradually decreasing the forest density [79]. The use of open forests for livestock
production instead of undercover cropland might be a more sustainable land use. For instance,
it is a very well established traditional land use, e.g., in the European Alps where it is known as
wood pasture [80].

Conclusions
Although satellite image classification can be used for LULC mapping, assessment of under-
cover cropland inside forests requires detailed field surveying. The study confirmed that analy-
sis of field observed percent cover and topographic parameters such as elevation, slope and
aspect using Boosted Regression Trees enables assessment of undercover croplands in forested
areas which otherwise are not detectable with remote sensing data. The findings showed that
the extent of undercover cropland is determined by elevation, slope, aspect, distance to national
park and distance to settlements. Among the topographic parameters elevation, slope and east
aspect were found to be the most influential factors for growing of crops inside forests, having
a positive relationship with undercover cropland area. Similarly, distance to settlements
showed a positive relationship with undercover cropland area while an inverse relationship
was observed with distance to national park. Therefore, while planning land use and ecosystem
management in mountainous regions, decision-makers should take into account the relative
importance of these parameters.
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Further research is essential to find methods for designing and implementing policies that
ensure sustainable supplies of ecosystem services and nature conservation such as Payments
for Ecosystem Services (PES) schemes. Stakeholders such as farmers, government officials,
environmental authorities, hydropower company, and the Bale Mountains National Parks
(BMNP) should be incorporated into decision making. Further research is also needed to create
awareness and find alternative solutions for the livelihood of the local people to reduce the
expansion of cropland in extremely steep areas of this mountainous region. Since the under-
cover cropland observed resembles a traditional agroforestry system, there is potential to trans-
form it in to a more sustainable agroforestry system. The following points should be
considered to develop an undercover cropland into a sustainable agroforestry system. Firstly,
proper selection of tree-crop combinations that are suitable for mountainous areas needs to be
identified and used by the farmers in the area. Secondly, management practices for trees and
crops in the undercover cropland areas should aim at ensuring sustainable supplies of ecosys-
tem services. Lastly, knowledge transfer from well-established agroforestry areas to the moun-
tainous undercover cropland areas is essential.
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