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Abstract

We used recently produced Solar System ephemerides, which incorpo-
rate two years of ranging observations to the MESSENGER spacecraft,
to extract the secular orbital elements for Mercury and associated uncer-
tainties. As Mercury is in a stable 3:2 spin-orbit resonance these values
constitute an important reference for the planet’s measured rotational pa-
rameters, which in turn strongly bear on physical interpretation of Mer-
cury’s interior structure. In particular, we derive a mean orbital period of
(87.96934962± 0.00000037) days and (assuming a perfect resonance) a spin
rate of (6.138506839 ± 0.000000028) ◦/day. The difference between this ro-
tation rate and the currently adopted rotation rate (Archinal et al., 2011)
corresponds to a longitudinal displacement of approx. 67 m per year at the
equator. Moreover, we present a basic approach for the calculation of the
orientation of the instantaneous Laplace and Cassini planes of Mercury.
The analysis allows us to assess the uncertainties in physical parameters
of the planet, when derived from observations of Mercury’s rotation.
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1 Introduction

Mercury’s orbit is not inertially stable but exposed to various perturbations which
over long time scales lead to a chaotic motion (Laskar, 1989). The short-term
(about few thousand years) evolution of the orbit can be approximated by a sec-
ular contribution to the orbital elements. Most prominent is the precession of
the pericenter of Mercury’s orbit, which was also an important test of Einstein’s
theory of general relativity (Einstein, 1915). Due to the Sun’s torque on the asym-
metric mass distribution of Mercury, the rotation of Mercury is strongly coupled
to its evolving orbit. Radar observations (Pettengill and Dyce, 1965) revealed that
Mercury’s rotation period is about 59 days and in a stable 3:2 resonance with its
orbital period (Peale and Gold, 1965; Colombo, 1965). More recently Margot et al.
(2007) have used an Earth-based radar-speckle correlation technique to precisely
measure the physical libration amplitude and the obliquity of Mercury. By inter-
pretation of these measurements in terms of physical parameters of the planet -
following the idea of the Peale experiment (Peale, 1976, 1981) - the authors con-
cluded that Mercury’s core is at least partially molten (Margot et al., 2007, 2012).

With the MESSENGER space probe (MErcury Surface, Space ENvironment,
GEochemistry, and Ranging) having entered orbit around Mercury in March
2011, the observational data of Mercury have greatly improved. Further, new
Solar System ephemerides which incorporate two years of ranging and Doppler
tracking observations to MESSENGER were produced. For the interpretation
of the observations of Mercury’s rotation performed by instruments on MES-
SENGER, precise knowledge of the resonant rotation parameters of Mercury is
mandatory. In fact, the resonant spin rate, currently adopted in the rotation model
of Mercury, dates back to the first IAU report (Davies et al., 1980).

In this work we provide updated reference values for Mercury’s rotation as-
suming the perfectly resonant rotation model based on the most recent planetary
ephemerides. These values serve as a basis for the interpretation of the rotational
parameters of Mercury, which are proposed to be measured with high precision
(Stark et al., 2015).

2 Secular orbital elements of Mercury

Recently, new Solar System ephemerides DE432 from the Jet Propulsion Labora-
tory (W. M. Folkner, personal communication, 2014) and INPOP13c from the In-
stitut de Mécanique Céleste et de Calcul des Éphémérides (Fienga et al., 2014) were
produced. Besides other improvements these ephemerides incorporate updates
to the orbit of Mercury. Both ephemerides although different in their production
process and covered time span led to identical results in our calculations. We
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Figure 1: The unit vectors eX,Y,Z denote the International Celestial Reference
Frame (ICRF). Mercury’s orbital plane is illustrated by a dashed ellipse and its
orientation by the vector eo. The ecliptic and the eX-eY plane of the ICRF are
given by dotted and dash-dotted ellipses, respectively. The Laplace plane normal
is indicated by ew and Mercury’s spin axis by es. The figure is based on numbers
given in Tab. 1 at the J2000.0 epoch.

concentrate here on the DE432 ephemeris and give the orbital elements derived
from the INPOP13c ephemeris in appendix 4.

The DE432 ephemeris covers a time span of approximately 1,000 years (1 Jan-
uary 1550 to 1 January 2550). In this time span we derived the osculating Ke-
plerian orbital elements of Mercury from state vectors given with respect to the
Sun-centered International Celestial Reference Frame (ICRF). We used a time step
of 7 days and set the gravitational parameter of the Sun to

GM� = 132, 712, 440, 041.9394 km3/s2 (Folkner et al., 2014).

For the calculation of the osculating orbital elements standard techniques were
used (Bate et al., 1970). In order to obtain the secular parts of the elements we
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decomposed the osculating orbital elements in a quadratic polynomial and a sum
of periodic terms

x(t) = x0 + x1t/cy + x2(t/cy)2 + ∑
i

Ai cos(νi t + φi) , (1)

where x stands for a Keplerian orbital element a, e, I, Ω, ω, M, being semi-major
axis, eccentricity, inclination, longitude of ascending node, argument of pericen-
ter, and mean anomaly, respectively. The time t is measured in Julian centuries
(cy) from the J2000.0 epoch. Higher order terms in the polynomial were discarded
because their estimated uncertainty exceeded the actual value by many orders
of magnitude. The periodic terms are characterized by their amplitude Ai, fre-
quency νi, and phase φi. We list these values for ten highest amplitudes of each
orbital element in appendix 4.

The decomposition of the osculating orbital elements time series into the form
of Eq. 1 was performed with the help of the frequency mapping tool (FAMOUS1).
This is done because a simple least-squares fit may lead to biased results given
the fact that the variations of the orbital elements are in first order periodic and
not random. At least 50 frequencies were identified and subtracted from the vari-
ation of the orbital elements. The variance of the periodic variations σ2

x was used
to estimate an uncertainty for the coefficients. Thus, orbital elements with rela-
tively high periodic variations receive higher error bars. The uncertainties of the
secular coefficients x1 and x2 were derived by considering the maximal slope and
curvature of the polynomial within the interval [−σx, σx] and a time span of 1000
years. The resulting values are given in Table 1.

In order to demonstrate the convergence of the method we increased the num-
ber of frequencies to 100 and found only changes below 2% of the uncertainties
of the polynomial coefficients. For further verification of our approach we calcu-
lated orbital elements with respect to the ecliptic at J2000.0 (see appendix 4) and
compared our results with those published by Standish and Williams (2013). Beside
the secular parts of the inclination and longitude of ascending node our values
and their uncertainties are consistent with the published values. The discrepancy
we found in I1 and Ω1 may result from the fact that we consider the quadratic
term, which is significant for these elements. Comparison with other literature
values (Margot, 2009; Noyelles and D’Hoedt, 2012; Noyelles and Lhotka, 2013) shows
excellent agreement with our values for these orbital elements.

Additionally, we calculated the precession of the pericenter of Mercury. Note
that the secular rates are strongly dependent on the selected reference frame. We
used the mean orbital plane of Mercury at J2000.0 (see Sec. 2.2) as reference frame
and found a precession of 575.3± 1.5 arc sec/cy (see appendix 4). Again this is

1F. Mignard, OCA/CNRS, ftp://ftp.obs-nice.fr/pub/mignard/Famous
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x0 x1 x2

a/(106 km) 57.90909 0.002× 10−6 −0.002× 10−6

±0.00011 ±22.34× 10−6 ±4.45× 10−6

e 0.2056317 20.4× 10−6 −20× 10−6

±0.0000071 ±1.4× 10−6 ±290× 10−6

I/◦ 28.552197 0.0048464 −9.8× 10−6

±0.000036 ±0.0000073 ±1.5× 10−6

Ω/◦ 10.987971 −0.032808 −12.3× 10−6

±0.000099 ±0.000020 ±4.0× 10−6

ω/◦ 67.5642 0.18861 −3× 10−6

±0.0020 ±0.00040 ±80× 10−6

M/◦ 174.7948 149472.51579 8× 10−6

±0.0032 ±0.00063 ±126× 10−6

Table 1: Secular Keplerian orbital elements of Mercury as derived from the DE432
ephemeris at epoch J2000.0, given with respect to ICRF (see Fig. 1).

in a very good agreement to the literature value of (5600.73− 5025) arc sec/cy =

575.73± 0.41 arc sec/cy (computed from Weinberg, 1972, p.199).
Another method to obtain the secular orbital elements involve the usage of

a secular potential and integration of the averaged differential equation of Mer-
cury’s motion. However, such a method neglects the mutual interaction of the
perturbing planets and is not appropriate for precise interpretation of spacecraft
data (Yseboodt and Margot, 2006). More details on averaging methods can be found
in e.g., Sanders et al. (2007).

2.1 Mean orbital period

The mean period of the orbit is defined as Torbit = 2π/n0, where n0 is the mean
motion of Mercury. We can derive n0 from the first order term of the mean
anomaly M = M0 + M1t = n0(t0 + t). The time t0 is the elapsed time at J2000.0
since the last pericenter passage. Using the values in Tab. 1 we derive

n0 = M1 = (4.092334450± 0.000000017)◦/day (2)

t0 = M0/M1 = (42.71274± 0.00077)day (3)

Torbit = 360◦/M1 = (87.96934962± 0.00000037)day . (4)

In order to check the derived value of n0 we used Kepler’s third law

n0 =
√

GM�/a3
0

and found 4.092343± 0.000083 ◦/day. This value is consistent with Eq. 2 but has
an error larger by two orders of magnitude.
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2.2 Mean orbital plane

From the secular parts of the orbital elements Ω and I we can calculate the mean
normal vector of the orbital plane by

eo = sin Ω sin I eX − cos Ω sin I eY + cos I eZ (5)

= cos αorbit cos δorbit eX + sin αorbit cos δorbit eY + sin δorbit eZ , (6)

where eX,Y,Z denote the orientation of the ICRF (see also Fig. 1). Comparing
Eq. 5 and 6 we find the right ascension and declination of the orbit pole to
be αorbit = Ω − π/2 and δorbit = π/2 − I. At J2000.0 the values are αorbit

0 =

(280.987971± 0.000099)◦ and δorbit
0 = (61.447803± 0.000036)◦, respectively. From

the secular components of Ω and I we can directly derive the first order pre-
cession rates of the orbit pole αorbit

1 = Ω1 = (−0.032808 ± 0.000020)◦/cy and
δorbit

1 = −I1 = (−0.0048464± 0.0000073)◦/cy. It should be noted that the preces-
sion of the orbit normal is treated here as a secular variation in inclination and
longitude of ascending node, which is justified by the long period of the preces-
sion. By that reason the given description of the mean orbital plane is strictly
valid only for the time span of the ephemeris, i.e. about ±500 years around the
J2000.0 epoch. The error bars on the orbit pole orientation and precession rates
were obtained through propagation of the uncertainties in the orbital elements.
Note that the derived values are in agreement with the findings of Margot (2009)
with αorbit = 280.9880◦ − 0.0328◦t/cy and δorbit = 61.4478◦ − 0.0049◦t/cy,
where DE408 ephemeris and a period of 200 year was used.

2.3 Laplace plane

The other planets of the Solar System exert a torque on the orbital plane of Mer-
cury, which leads to a quasi-periodic precession of the orbit normal. Further,
the plane to which the inclination of Mercury remains constant, i.e., the Laplace
plane, also undergoes slow variations (Noyelles and D’Hoedt, 2012). Several at-
tempts have been made to calculate the orientation of the Laplace plane normal
(Yseboodt and Margot, 2006; Peale, 2006; D’Hoedt et al., 2009), each of them leading
to different results in the Laplace pole position and the precession period (see Fig.
2).

The concept of the "instantaneous" Laplace plane was proposed for Mercury
by Yseboodt and Margot (2006) to derive an approximate Laplace plane valid for
several thousand years. Note that without additional assumptions the instanta-
neous precession vector w is only constrained to a line. In order to overcome the
ambiguity in the instantaneous Laplace plane either a fit to the ephemeris (Yse-
boodt and Margot, 2006) or some additional assumptions (Peale, 2006; D’Hoedt et al.,
2009) are used.
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Here we introduce a concept of an instantaneous Laplace plane, which re-
moves the ambiguity in its instantaneous orientation and precession frequency.
As the only assumption we require the instantaneous Laplace plane to be invari-
able, i.e. ẇ ≡ 0. Note that a similar concept was suggested by Yseboodt (2011).
When an instantaneous Laplace plane is considered it is also important to clarify
in which time period it should be instantaneous. The free precession period of
Mercury is in the order of 1000 years (Peale, 2005). This means that the rotation
axis will not be affected by the short period (on the order of decades) changes
in the orientation of the orbit normal, but will follow the changes at long peri-
ods due to adiabatic invariance (Peale, 2005). In order to obtain an instantaneous
Laplace plane, which is relevant for Mercury’s spin, we can neglect all periodic
variations and consider only the secular terms.

The general equation for the precession around an axis w is

w× eo = ėo . (7)

The precession vector w is given by w = −µ ew, where ew is the orientation of
the Laplace plane and µ the precession rate. First we multiply both sides of Eq. 7
with eo and obtain

w = (eo × ėo)− µ cos ι eo , (8)

where we used eo ·w = −µ cos ι and ι is the inclination of Mercury’s orbit with
respect to the Laplace plane. In order to constrain the instantaneous orientation
of the Laplace plane we have to find an instantaneous value for µ cos ι. By differ-
entiating Eq. 7 and the requirement ẇ ≡ 0 we obtain

ëo + µ2 eo = −µ cos ι w , (9)

where we make use of w× ėo = w× (w× eo) = −µ cos ιw− µ2eo. The differ-
ential equation Eq. 9 describes a regular (uniform) rotation of eo around ew with
the frequency µ. Following the concept of the instantaneous Laplace plane Eq. 9
is only fulfilled with a unique w for a specific time t. By multiplying Eq. 9 with
eo and using Eq. 7 we can find

µ cos ι =
ėo · (eo × ëo)

|ėo|2
. (10)

By using Eq. 5 for eo and ëo we can obtain the values of µ cos ι as it would be in a
regular form and by that an expression for the instantaneous Laplace plane. The
combination of Eq. 8 and 10 gives the instantaneous Laplace plane orientation

w = (eo × ėo)−
ėo · (eo × ëo)

|ėo|2
eo . (11)
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Figure 2: Orientation of the orbit (OP) and the Laplace plane (LP, black disk with
error bars) normal at J2000.0 epoch with respect to the ICRF. The precession of
the orbit pole around the instantaneous Laplace pole is indicated by a dashed arc.
The Laplace plane orientation of Yseboodt and Margot (2006) (grey disk) overlaps
with the values derived in this work. Note that the longitude of the Laplace
pole is given incorrect in (D’Hoedt et al., 2009) and was corrected in (Noyelles and
D’Hoedt, 2012). The figure shows the corrected position (blue disk).

Following the formalism of Peale (2006) Eq. 11 can be expressed as

w =
(

İ cos Ω +
(
wz − Ω̇

)
tan I sin Ω

)
eX +

+
(

İ sin Ω−
(
wz − Ω̇

)
tan I cos Ω

)
eY + wzeZ (12)

and wz given by

wz = Ω̇ +
( ÏΩ̇− İΩ̈) sin I + Ω̇ İ2 cos I

İ2 + (Ω̇ sin I)2
cos I . (13)

The instantaneous Laplace pole given by Eq. 11 is practically equivalent to the fit
of the ephemeris to a cone, performed by Yseboodt and Margot (2006).

Using Eq. 11 we calculate the coordinates of the Laplace pole at J2000.0 to
αLP

0 = (273.8± 1.0)◦ and δLP
0 = (69.50± 0.77)◦ in the ICRF. It should be noted

that the covariance Cov(αLP
0 , δLP

0 ) = −(0.77◦)2 is very high, indicating a high
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correlation (−99.8%) of the right ascension and declination values. The instan-
taneous precession rate is µ = (0.00192± 0.00018)/cy, TLP = (327300± 32000)
years and ι = (8.58± 0.84)◦.

However, if Mercury is in a Cassini state (see Sec. 3.4) the determination of
the polar moment of inertia from the obliquity is not largely affected by the un-
certainties of the Laplace pole (Yseboodt and Margot, 2006; Peale, 2006). Using our
formalism we can derive the relevant quantities and their errors

µ sin ι = (2.8645± 0.0016)× 10−6/years (14)

µ cos ι = (18.98± 1.83)× 10−6/years . (15)

The correlation between µ sin ι and µ cos ι is very low

Corr(µ sin ι, µ cos ι) = −10−3 .

3 Mercury’s rotation

3.1 Rotation model

The rotation model of a celestial body consists of a set of values defining its ori-
entation as a function of time with respect to a reference frame. Here we recall
briefly the IAU convention of a rotation model for Mercury (e.g. Archinal et al.,
2011).

The orientation of Mercury’s spin axis is described by the right ascension α

and declination δ coordinates of the intercept of the spin axis vector es with the
celestial sphere. The spin axis vector es with respect to the ICRF is given by

es = cos α cos δ eX + sin α cos δ eY + sin δ eZ , (16)

where eX,Y,Z denotes the ICRF. The orientation at J2000.0 epoch is denoted by α0

and δ0 and the first order precession rates are α1 and δ1. The rotational axis is
consequently given by

α(t) = α0 + α1 t (17)

δ(t) = δ0 + δ1 t . (18)

The rotation of Mercury around its axis is described by the longitude of the prime
meridian ϕ0, the rotation rate ϕ1, and the physical longitudinal libration ϕlib

ϕ(t) = ϕ0 + ϕ1t + ϕlib(t) . (19)

The rotation model is of great importance, as it is used to derive body-fixed coor-
dinates of observations performed by spacecraft. The matrix R which transforms
coordinates from ICRF to body-fixed is composed from three rotations

R = RT
z(ϕ)RT

x(π/2− δ)RT
z(α + π/2) , (20)
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where Rx,z denote counter-clockwise rotations (right hand rule) around the x-
and z-axis, respectively. Note that the spin axis orientation can be computed by
es = Rz(α + π/2)Rx(π/2− δ)eZ.

3.2 Resonant rotation

Using the secular orbital elements in Tab. 1 we derive the resonant spin rate of
Mercury ϕ

(3/2)
1 for the case that the spin is in perfect 3:2 resonance to the motion

of the planet on its orbit. Using the mean motion value n0 = M1 derived from the
mean anomaly and the precession of the argument of pericenter ω1 we compute
the mean resonant spin rate to

ϕ
(3/2)
1 =

3
2

n0 + ω1 = (6.138506839± 0.000000028) ◦/day . (21)

The current value of Mercury’s rotation found in the literature is 6.1385025◦/day
(Archinal et al., 2011). The difference between these rates corresponds to a longi-
tudinal displacement of 5.7 arc sec per year (approx. 67 m per year at the equator
of Mercury), which should be noticeable during e.g. the MESSENGER mapping
mission (where typical image resolution vary from few kilometers to few meters).

We want to stress that the resonant spin rate ϕ
(3/2)
1 in the rotation model is

composed of the planet’s rotation around its spin axis and the precession of Mer-
cury’s orbit. Thereby, we have to consider the precession of the argument of
pericenter ω1 = (5.164± 0.011)× 10−6 ◦/day, and not the precession of the lon-
gitude of pericenter v1 = Ω1 + ω1 since the precession of the ascending node
Ω1 is already incorporated in the precession of the rotational axis. Note that the
spin rate ϕ

(3/2)
1 is defined with respect to a precessing frame and is not strictly

"sidereal" since the rotation axis changes slowly its orientation. Further, Mercury
has a small but non-zero obliquity of ic = 2.04 arc min (Margot et al., 2012). How-
ever, the correction arising from the obliquity is in the order of icΩ2

1/I1 and can
be neglected when comparing with the error of ω1 (see appendix 4).

If one of the sub-solar points at perihelion is used for the definition of the
prime meridian ϕ0, the orientation of Mercury’s long axis at J2000.0 with resonant
rotation would be

ϕ
(3/2)
0 =

3
2

M0 + ω0 = (329.7564± 0.0051)◦ . (22)

We find excellent agreement of this value with the findings of Margot (2009), who
stated a value of 329.75◦. Note that the actual prime meridian of Mercury ϕ0 is
defined with respect to the crater Hun Kal located at 20◦W (Archinal et al., 2011).
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3.3 Physical libration in longitude

The annual libration of Mercury is closely tied to the revolution of Mercury about
the Sun. Of particular importance is the mean anomaly M of Mercury since it
defines the period and the phase of the libration. The libration is modeled as
follows (Goldreich and Peale, 1966)

ϕlib(t) = ∑
k

g88/k sin (k n0(t + t0)) . (23)

The amplitudes g88/k follow a recursive relationship

g88/(k+1) = g88/k
G2 0 1(k + 1, e0)

G2 0 1(k, e0)
, (24)

where G2 0 1(k, e0) are given by Kaula’s eccentricity functions (Kaula, 2000)

G2 0 1(k, e) =
G2 0 1−k(e)− G2 0 1+k(e)

k2 . (25)

Using e0 = 0.2056317± 0.0000071 from Tab. 1 we calculate the first five terms to

G2 0 1(1, e0) = 0.569650 ±0.000027 (26)

G2 0 1(2, e0) = (−60.0733 ±0.0042)× 10−3 (27)

G2 0 1(3, e0) = (−5920.32 ±0.77)× 10−6 (28)

G2 0 1(4, e0) = (−1200.10 ±0.20)× 10−6 (29)

G2 0 1(5, e0) = (−267.691 ±0.053)× 10−6 . (30)

The main period of the annual libration is the mean orbital period Torbit (Eq.
4) with the phase given by M0 = n0t0. In addition, long-period variations of the
orbital elements can lead to forced librational motion of Mercury with periods
other than the orbital period (Peale et al., 2007; Yseboodt et al., 2010), but these are
not considered in this work.

The measurement of the libration amplitude provides important constraints
on the interior structure of Mercury. The amplitude of the annual libration g88 is
related by (Peale, 1981)

g88 =
3
2

B− A
Cm

G2 0 1(1, e0) (31)

to the ratio of moments of inertia (B− A)/Cm, where A ≤ B < C are the prin-
cipal axes of inertia of the planet and Cm is the polar moment of inertia of the
mantle and crust. Assuming the libration amplitude could be measured with a
negligible error, the uncertainty in (B − A)/Cm would be only at 6× 10−7, due
to the uncertainty in the eccentricity of Mercury’s orbit. Here we used a libration
amplitude of g88 = 38.5 arc sec (Margot et al., 2012).
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3.4 Cassini state

Mercury is assumed to occupy a Cassini state 1 (Peale, 1969), implying that the
spin vector of Mercury es lies in the plane defined by the Laplace plane normal
ew and the orbit normal eo with the latter being enclosed by the others. The spin
axis is consequently in a 1:1 resonance to the precession of the orbit normal, i.e.
α1 ≈ αorbit

1 and δ1 ≈ δorbit
1 . Note that the spin axis precesses with slightly higher

rates as described in appendix 4. The Cassini plane ec, which contains all Cassini
states can be expressed as a linear combination of the orbit and Laplace plane
normal

ec = r eo + s w . (32)

We can constrain r and s by |ec| = 1 and ec · eo = cos ic, where ic is the obliquity.
By using Eq. 8 for w and |eo × ėo| = |ėo| this results in

ec = cos iceo + sin ic
eo × ėo

|ėo|
, (33)

with

eo × ėo =
(

İ cos Ω− Ω̇ sin I cos I sin Ω
)

eX

+
(

İ sin Ω + Ω̇ sin I cos I cos Ω
)

eY + Ω̇(sin I)2eZ (34)

|ėo| = µ sin ι =
√

İ2 + (Ω̇ sin I)2 . (35)

From Eq. 33 it can be verified that the plane defining the Cassini state is in-
dependent from the exact form of the precession of the orbit around the Laplace
plane. Especially, it is not dependent on wz as recognized by Peale (2006) and
Yseboodt and Margot (2006). The Cassini plane is sufficiently defined by the ori-
entation of the orbit normal and its temporal change. In fact, the Cassini plane
normal is the vector ėo given by

ėo =
(
Ω̇ cos Ω sin I + İ sin Ω cos I

)
eX +(

Ω̇ sin Ω sin I − İ cos Ω cos I
)

eY − (36)

İ sin I eZ .

With the uncertainty of the orbital elements we can estimate the "thickness"
of the Cassini plane, which results from uncertainties in the knowledge of the
secular variation of Mercury’s ephemeris. At ic = 2.04 arc min (Margot et al., 2012)
we find a 1σ thickness of 0.18 arc sec. This allows to interpret possible offsets of
Mercury’s spin orientation from the exact Cassini state (Margot et al., 2012; Peale
et al., 2014).

Using the obliquity ic the polar moment of inertia C/mR2 (scaled with the
mass m and radius R of Mercury) can be calculated by (Peale, 1981)

C
mR2 =

n0 sin ic((J2(1− e2)−3/2 cos ic + C22G201(e)(1 + cos ic))

µ sin ι cos ic − µ cos ι sin ic
, (37)
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where J2 = 5.03216× 10−5 and C22 = 0.80389× 10−5 (Mazarico et al., 2014) are
the second degree harmonic coefficients of Mercury’s gravity field. Assuming
perfect knowledge in the obliquity and the gravitational coefficients the error on
C/mR2 is only at 6.1× 10−5 due to the uncertainty of the orbital elements. Note
that our analysis does not include model uncertainties of Eq. 37, e.g., simplifying
assumptions which were made in the derivation of the equation. We only infer
the uncertainty of C/mR2 due to orbital elements if Eq. 37 holds exactly and all
other quantities are perfectly known. A more sophisticated analysis including
higher order gravity field and tides can be found in Noyelles and Lhotka (2013).

4 Discussion and conclusion

In this work we extract orbital elements for Mercury from ephemeris data and
predict a mean rotational model for Mercury in the view of a perfect resonance
to its orbit. In this case the rotation is, besides the obliquity and the libration am-
plitude, completely determined by the mean orbital elements and their rates. On
the basis of the uncertainties in the mean orbital elements, errors of the theoretical
perfectly resonant rotation model can be estimated. Note that ephemeris uncer-
tainties are estimated from the periodic variation of the orbital elements and do
not reflect any accuracy or "error" of the ephemeris. They can be rather under-
stood as model uncertainties, since the secular part of Mercury’s orbital elements
does not capture the full variation of the orbit. In this work we introduced a con-
sistent approach which allows us to estimate the uncertainties of the rotational
parameters resulting from the simplified secular orbital elements. The findings
are of great importance for interpretation of the current and future observations
of Mercury’s rotation by MESSENGER and BepiColombo spacecraft.

Appendix 1

The Keplerian orbital elements derived from the INPOP13c ephemeris (Fienga
et al., 2014) are given in Tab. 2. We find very little difference of the values when
comparing to the DE432 ephemeris (see Tab. 1). The deviation for the trend a1 of
the semi-major axis is about 1.7 meter per century.

In Tab. 3 we give values for reference frame dependent orbital elements with
respect to the ecliptic (ECLIP, inclination 23.439291◦), Mercury orbital plane (OP),
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x0 x1 x2

a/(106 km) 57.90909 −44× 10−12 420× 10−12

e 0.2056317 20.4× 10−6 −0.027× 10−6

I/◦ 28.552197 0.0048473 −9.8× 10−6

Ω/◦ 10.987969 −0.032808 −11.9× 10−6

ω/◦ 67.5642 0.18862 −4× 10−6

M/◦ 174.7948 149472.51578 7× 10−6

Table 2: The same as Tab. 1 but derived from the INPOP13c ephemeris and a time
span of 2000 years (09.06.973 AD - 23.06.2973).

and Mercury Laplace plane (LP) at J2000.0. The rotation matrices for the transfor-
mation to the these reference frames from the ICRF are given by

RECLIP =

 1 0 0
0 0.91748206 0.39777716
0 −0.39777716 0.91748206

 , (38)

ROP =

 0.98166722 0.19060290 0
−0.16742216 0.86227887 0.47795918

0.09110040 −0.46919686 0.87838205

 , (39)

RLP =

 0.88845611 0.43672271 0.14113473
−0.45838720 0.82896828 0.32045711

0.02295468 −0.34940643 0.93669004

 . (40)

The precession of the pericenter of Mercury is given by vOP
1 = ΩOP

1 + ωOP
1 =

575.3 arc sec/cy. The inclination of the orbital plane with respect to the Laplace
plane ILP

0 = ι = 8.58◦ remains constant ILP
1 = ILP

2 ≈ 0. The precession of the orbit
around the Laplace plane is |ΩLP

1 | = µ = 0.109981◦/cy.

Appendix 2

In Tab. 4 we list the first ten periodic terms, which were identified in the osculat-
ing orbital elements time series. Some of the periods can be assigned to planetary
perturbations, e.g., Venus: (λV) 0.62 years; (2λV) 0.31 years; (2λM − 5λV) 5.66
years; (λM − 3λV) 1.38 years; (λM − 2λV) 1.11 years; (2λM − 4λV) 0.55 years;
Earth: (λM − 4λE) 6.58 years; Jupiter: (λJ) 11.86 years; (2λJ) 5.93 years; (3λJ)

3.95 years; Saturn: (2λS) 14.73 years, where λ = M + v = M + Ω + ω denotes
the mean longitude of the planet, respectively.
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x0 x1 x2

Ecliptic
I/◦ 7.004975 0.0059524 0.7× 10−6

Ω/◦ 48.330908 −0.125416 −89.2× 10−6

ω/◦ 29.1252 0.28428 80× 10−6

v/◦ 77.4561 0.15886 −13× 10−6

Mercury orbital plane
I/◦ 0.0 −0.016413 −3.9× 10−6

Ω/◦ 68.735669 −0.054375 337.0× 10−6

ω/◦ 320.3895 0.21417 −350× 10−6

v/◦ 29.1252 0.15980 −13× 10−6

Mercury Laplace plane
I/◦ 8.582338 1× 10−18 5× 10−21

Ω/◦ 0.0 −0.109981 −25.9× 10−6

ω/◦ 50.3895 0.26855 13× 10−6

v/◦ 50.3895 0.15857 −13× 10−6

Table 3: Orbital elements of Mercury as derived from the DE432 ephemeris at
epoch J2000.0 with respect to the following reference frames: Ecliptic and Earth
equinox of J2000; Mercury orbital plane of J2000.0 and ascending node with re-
spect to the ecliptic; Mercury Laplace plane and ascending node with respect to
the Mercury orbital plane of J2000.0.

Appendix 3

The obliquity of the spin axis ic introduces small changes in the precession and
resonant rotation rates. To stay within the Cassini plane the spin axis has to pre-
cess slightly faster than the orbital plane normal. In order to compute the correc-
tions we expand equation Eq. 33 to first order in the obliquity ic. The declination
δ and right ascension α of the spin axis are then given by

δ(t) =
π

2
− I +

Ω̇ sin I√
İ2 + (Ω̇ sin I)2

ic = δ0 + δ1t (41)

and

α(t) = Ω− π

2
+

İ/ sin I√
İ2 + (Ω̇ sin I)2

ic = α0 + α1t . (42)

By deriving the series in t we obtain the precession rates at J2000.0

δ1 = I1

−1 +
Ω1 I2

1 cos I0 + 2(Ω2 I1 − I2Ω1)√
(I2

1 + (Ω1 sin I0)2)3
ic

 (43)
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a [km] e [10−6]
i Ai Ti φi Ai Ti φi
1 109.56 1.11 145.25 7.23 5.93 272.97
2 56.37 0.20 140.65 4.63 1.11 326.10
3 54.55 5.66 356.60 3.53 5.66 181.05
4 35.31 0.29 213.41 2.53 1.38 141.21
5 31.01 0.12 76.038 1.52 11.86 123.83
6 29.41 1.38 325.51 0.89 0.25 261.39
7 21.92 0.13 211.50 0.88 0.55 109.00
8 21.19 0.25 81.45 0.86 14.73 304.98
9 20.27 0.55 285.27 0.81 0.46 128.90

10 19.46 0.40 70.013 0.78 0.29 36.27
I [10−3 arc sec] Ω [10−3 arc sec]

i Ai Ti φi Ai Ti φi
1 167.3 5.93 15.01 399.8 5.93 292.75
2 52.5 5.66 71.86 165.8 5.66 135.33
3 31.9 1.38 250.97 145.2 11.86 145.14
4 22.1 11.86 267.19 116.6 1.11 249.76
5 20.1 14.73 58.16 107.3 1.38 189.18
6 17.5 6.58 343.74 57.5 0.62 356.75
7 17.2 3.95 51.01 52.3 0.40 155.89
8 11.8 0.31 326.19 48.3 14.73 336.52
9 9.9 0.24 112.99 44.0 6.56 59.20

10 9.6 0.12 99.47 42.6 0.24 45.75
ω [arc sec] M [arc sec]

i Ai Ti φi Ai Ti φi
1 7.36 5.93 180.64 10.71 5.66 87.97
2 4.57 1.11 55.93 8.04 1.11 235.40
3 3.49 5.66 272.57 7.70 5.93 3.50
4 2.55 1.38 50.09 1.92 1.38 230.24
5 1.62 11.86 17.21 1.90 11.86 186.46
6 0.89 14.73 212.80 1.31 6.57 334.16
7 0.84 0.25 351.58 1.22 0.55 17.86
8 0.84 0.55 200.04 1.10 0.46 38.25
9 0.78 0.46 219.04 1.10 0.29 305.42

10 0.78 0.62 194.46 1.09 0.25 171.25

Table 4: Ten leading terms of the decomposition of the time series of the oscu-
lating orbital elements in ∑i Ai cos(νi t + φi) with νi = 2π/Ti. The unit of the
amplitude Ai is given in the brackets beside each orbital elements symbol, re-
spectively. The periods Ti are given in years and the phases φi in degrees. The
values are given for orbital elements in the ICRF and derived from the DE432
ephemeris.
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and

α1 = Ω1 −
(I2

1 cot I0 + Ω2
1 sin 2I0)I2

1 / sin I0√
(I2

1 + (Ω1 sin I0)2)3
ic . (44)

For ic = 2.04 arc min (Margot et al., 2012) this results in

δ1 = −0.00486◦/cy and α1 = −0.03291◦/cy . (45)

The rotation rate is also slightly modified due to the obliquity. For small ic we get

ϕ(t) =
3
2

M + ω− İ cot I√
İ2 + (Ω̇ sin I)2

ic = ϕ
(3/2)
0 + ϕ

(3/2)
1 t . (46)

The resonant rotation rate is consequently

ϕ
(3/2)
1 =

3
2

n0 + ω1+

+
(I1Ω1)

2(3 + cos 2I0)/2 + (Ω2 I1 − I2Ω1)Ω1 sin 2I0 + I4
1 /(sin I0)

2√
(I2

1 + (Ω1 sin I0)2)3
ic

(47)

and with ic = 2.04 arc min this amounts to 6.138506841◦/day. The introduced
correction is not significant when compared to the error of the resonant rotation
rate in Eq. 21.
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