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Abstract. The concept of the de Hoffmann–Teller frame is

revisited for a high Mach-number quasi-perpendicular col-

lisionless shock wave. Particle-in-cell simulation shows that

the local magnetic field oscillations in the shock layer intro-

duce a residual motional electric field in the de Hoffmann–

Teller frame, which is misleading in that one may inter-

pret that electrons were not accelerated but decelerated in

the shock layer. We propose the concept of the adaptive de

Hoffmann–Teller (AHT) frame in which the residual con-

vective field is canceled by modulating the sliding velocity

of the de Hoffmann–Teller frame. The electrostatic potential

evaluated by Liouville mapping supports the potential pro-

file obtained by electric field in this adaptive frame, offering

a wide variety of applications in shock wave studies.
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1 Introduction

Understanding collisionless shock waves remains one of the

challenges in space and astrophysical plasmas. The shock

dissipation mechanism converts the kinetic energy of the in-

coming flow partly into thermal energy and partly into the en-

ergy of supra-thermal particles (Thomsen et al., 1987). There

are different approaches to explain electron acceleration and

heating processes in the collisionless shocks: (1) through

the large-scale quasi-stationary electrostatic potential (called

hereafter the cross-shock potential) and (2) through turbu-

lent heating of the shock ramp (Scudder et al., 1986; Hull

et al., 1998, 2000, 2001; Walker et al., 2004; Dimmock et

al., 2011, 2012; Wilson III et al., 2014a). In this study, we

limit the study to the understanding the heating process in a

quasi-static electrostatic field using a numerical simulation in

order to obtain a stationary picture of collisionless shock. Of

course, fluctuating electromagnetic and electrostatic waves

may contribute to heating (Breneman et al., 2013; Hull et al.,

2006; Pulupa et al., 2010; Wilson III et al., 2007, 2010, 2012,

2014a, b), which is beyond the scope of our current study.

The Liouville theorem formulating the phase-space den-

sity conservation has successfully been applied to map the

electron velocity distribution function in the upstream re-

gion onto that in the shock transition layer and further in

the downstream region. This procedure, referred to as Li-

ouville mapping, provides the cross-shock potential that can

explain the origin of the thermal and supra-thermal popula-

tions of electrons (e.g., Scudder et al., 1986; Scudder, 1995).

The cross-shock potential is subject to the choice of the

frame (Goodrich and Scudder, 1984). For example, it can be

evaluated in the normal incident frame (NIF) in which the

flow is aligned with the shock normal direction or in the de

Hoffmann–Teller (HT) frame in which the flow is aligned

with the upstream magnetic field on the both upstream and

downstream sides. These two frames are related to each other

by the Galilean transform using a constant frame velocity

tangential to the shock front (called the sliding velocity). The

utility of the de Hoffmann–Teller frame lies in that the mo-

tional (or convective) electric field is canceled such that one

can study the electric field that arises from the electrostatic
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potential without being confused by the motional field. Fur-

thermore, the use of the de Hoffmann–Teller frame can nat-

urally be extended to the entire shock region so long as the

electron flow velocity and the local magnetic field remain

nearly parallel to each other within the shock transition layer

(Scudder, 1987).

On the other hand, the collisionless shock is known to

become more dynamic at a sufficiently high Mach number

in that the structure of the transition layer becomes non-

stationary, exhibiting various kinds of wave–particle interac-

tions. If strong gradients occur in electric and magnetic fields

at small scales in the shock front, one may expect that adia-

batic heating of electrons can no longer function. For exam-

ple, See et al. (2013) have shown that such short-scale large-

amplitude structures of the electric field can switch the adia-

batic heating regime into a non-adiabatic one, in accordance

with previous theoretical studies of Balikhin et al. (1993),

and in situ measurements, e.g., Walker et al. (2004) and Bale

and Mozer (2007).

The demagnetization of electrons in the shock ramp is ex-

pected also for small-scale large-amplitude oscillations of

the magnetic field direction. Furthermore, the de Hoffmann–

Teller frame is no longer able to provide the electric field

unique to the shock transition layer, since both the residual

component of the motional electric field and the electrostatic

field are measured simultaneously. In other words, the appli-

cation of the constant sliding velocity for the de Hoffmann–

Teller frame is no more valid to study the electric field nature

of the shock transition layer properly. The breakdown of the

validity of the de Hoffmann–Teller frame weakens the accu-

rate measurement of the electric field for the cross-shock po-

tential. However, the method of Liouville mapping has suc-

cessfully been applied to determine the shock potential that

is responsible for the electron heating. A question arises nat-

urally: in which reference frame can we construct the shock

potential profile using the electric field data?

Here, we present a numerical simulation study of the non-

stationary shock. We obtain the answer that the motional

electric field needs to be locally canceled within the shock

transition layer by modulating the sliding velocity for the de

Hoffmann–Teller frame. By doing so, it is possible to mea-

sure the electrostatic field and the shock potential for the

electron heating properly as Liouville mapping does. We re-

fer to the modulated frame as the Adaptive de Hoffmann–

Teller frame (AHT). Without this correction, one may be

misled to the conclusion that the electric field was acting to

decelerate incoming electrons due to the dominance of resid-

ual component of the motional field in the de Hoffmann–

Teller frame. We perform the one-dimensional particle-in-

cell (PIC) simulation of a high Mach number, low-beta,

quasi-perpendicular collisionless shock. Earlier PIC simu-

lations have already shown that the shock wave becomes

highly non-stationary under such a condition with various

kinds of instabilities developing in the shock foot and the

ramp regions. We track the spatial evolution of the electric

field, the magnetic field, and the electrons through the shock

when its transition is the steepest, and obtain the shock po-

tential in two different ways: from the electric field measure-

ment in the AHT frame and from Liouville mapping.

2 Particle-in-cell simulation

The shock wave is produced numerically using the “em1D”

code (Birdsall and Langdon, 1991; Scholer et al., 2003a, b).

Using this code, an electron–proton plasma is injected in the

one-dimensional simulation box from the left-hand side. The

plasma streams toward the right-hand side (the positive x di-

rection). The simulation box is set under a uniform magnetic

field at an angle of 81◦ from the shock normal (which points

in the negative x direction). The upstream magnetic field has

two components, Bx and Bz. At the boundary on the right-

hand side of the simulation box, the ions and the electrons are

reflected by the “wall”. The shock wave is formed and prop-

agates in the negative x direction. After a sufficiently long

time, the shock wave reaches the boundary on the left-hand

side and the whole simulation box becomes the downstream

region. The shock wave in the simulation box is related to

that in NIF in that the shock wave is not at rest but propa-

gates in the negative x direction.

The simulation box consists of a mesh with 40 000 cells.

Each cell has an equal size, the Debye length λD. Time,

length, and particle velocity are normalized to the inverse

proton cyclotron frequency (�i), the electron inertial length

(λe), and the speed of light in vacuum (c), respectively. The

magnetic field and electron density are scaled to their respec-

tive upstream values. The electrostatic potential is given in

units of the product of the upstream magnetic field B0 and

the Debye length. Unless noted, we use the Gaussian units

elsewhere. Five hundred particles for electrons and ions are

set in each cell. Ions are assumed to be protons, but the ion-

to-electron mass ratio is set to 1000 for efficient computation.

The upstream plasma flow obtains Alfvén Mach number 8.

When the shock wave develops, the Alfvén Mach number

reaches a value of about 10. The value of plasma beta is 0.2

in the both species with a Maxwellian initial incident par-

ticle velocity distribution. The ratio of the electron plasma

frequency to the electron gyrofrequency is 8. Note that the

values of beta and the frequency ratio are constrained to the

maximum computational load, and not set to reproducing

the collisionless shock in space such as Earth’s bow shock

(which is by far too demanding compared to the computa-

tion capacity available to date). During the simulation run,

the shock wave forms and propagates, while it is highly non-

stationary in that the shock transition layer exhibits the re-

formation process.

Figure 1 displays the snapshot (or the spatial profile) of the

magnetic field (the z or tangential component to the shock

surface), the electron density, and the electron phase-space

density at the time about 4.5 ion gyroperiods. No smooth-
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H. Comişel et al.: Cross-shock potential 347

Figure 1. Snapshot of the magnetic field (the z component), the

electron density, and the subset of electron phase-space density at

the time around 4.5 ion gyroperiods. The magnetic field and the

electron density are normalized to the respective background values.

ing is applied here. It is interesting to note that the wave ac-

tivity is the smallest in the maximum phase of the reforma-

tion shock in our simulation. Highly oblique shocks may ex-

hibit turbulent ramp regions if the detectors have high enough

time resolution in the spacecraft observations (Horbury et

al., 2001; Hull et al., 2006; Lobzin et al., 2007; Wilson III

et al., 2012, 2014a, b). The shock re-formation reaches its

maximum and the transition layer is the narrowest with the

largest transition amplitude in the magnetic field data. The

transition is clearest and sharpest from upstream to down-

stream in the magnetic field and the density profile at this

time. Wave activity is present throughout the foot region

(x ' 1000λe), the ramp region (x ' 1020λe), and the over-

shoot region (x ' 1040λe). In contrast, at the time one half-

cycle earlier in re-formation (at the time about 3.5 ion gy-

roperiods), the foot region is extended over a larger spatial

scales with higher wave amplitudes.

3 Cross-shock potential

The cross-shock potential is evaluated in two different ways:

first by integrating the electric field in the adaptive de

Hoffmann–Teller frame and second by Liouville mapping.

The electric field in the adaptive de Hoffmann–Teller frame

is constructed as follows.

E(AHT)
=E(NIF)

+U ×B + δU ×B +U × δB, (1)

where the symbol E(NIF) denotes the electric field in the

NIF frame obtained by correcting for the shock propagat-

ing speed, U and δU are the sliding velocity for the de

Hoffmann–Teller frame and its modulation for the adaptive

frame, and B and δB are the asymptotic upstream magnetic

field (far from the shock transition) and the spatial oscilla-

tion of the magnetic field within the transition layer. To ob-

tain the electric field in the adaptive frame, the sliding veloc-

ity is modulated in the third term on the right-hand side to

compensate for the residual motional electric field originat-

ing in the magnetic field fluctuation (the fourth term on the

right-hand side). The electric field is obtained first in the NIF

frame E(NIF), and then transformed into the de Hoffmann–

Teller frame E(HT) (using the first and the second terms) and

the adaptive de Hoffmann–Teller frame E(AHT) (including

the third and the fourth terms). We set the direction of the

shock normal to the negative x axis in our one-dimensional

shock simulation in the adaptive de Hoffmann–Teller frame,

and the local residual motional electric field is compensated

with respect to the flow in the shock normal direction. It is

worth mentioning that local compensation for the motional

electric field in three dimensions is also possible.

The shock potential is obtained by the integration of the

electric field over the spatial coordinate along the shock

normal in the de Hoffmann–Teller frame (8(HT)) and the

adaptive frame (8(AHT)). The potential is set to zero in the

limit of far upstream. Figure 2 displays the electrostatic po-

tentials 8(HT) and 8(AHT) as a function of the spatial co-

ordinate around the shock transition layer at the time of

shock re-formation maximum (4.5 ion gyroperiods after the

simulation kickoff). Here, we applied smoothing in the HT

and AHT potential profiles because of numerical noise. The

x axis range in Fig. 2 is extended to the border of simula-

tion box (the wall). The electric potential should ideally be

close to zero far from the shock but remains finite because

of the relatively small box setup. It is interesting to note that

the potentials have different signs. The potential has mostly

negative values in the de Hoffmann–Teller frame. This is the

effect of the residual component of the motional electric field

(the third term in the equation) which originates in the spa-

tially oscillating magnetic field. The representation of the po-

tential in the de Hoffmann–Teller frame is misleading, since

one might interpret it to mean that the shock potential was de-

celerating electrons. On the other hand, when the correction

is undertaken for the oscillating magnetic field (by adding the

third and the fourth terms), the shock potential is represented

with the positive sign and the association of the potential with

the electron acceleration is justified.

We evaluate the shock potential using the Liouville map-

ping of the electron distribution function at various distances

from the upstream region (the simulation border on the left-

hand side) to the shock transition layer. Liouville mapping

is an alternative procedure to find the electrostatic poten-

tial by fitting the two distribution functions using the least

square method on the assumption that the magnetic mo-

ments of individual particles are conserved. Frame transfor-

mation into AHT system was not applied to Liouville map-

ping. We used Liouville mapping (Lefebvre et al., 2007) in

the de Hoffmann–Teller frame as a reference potential be-

cause Liouville mapping is a coordinate-free method. Fig-

ure 3 displays an example of the fitting procedure in Liou-
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Figure 2. Cross-shock potential obtained by the three different

methods: electric field integration in the global de Hoffmann Teller

frame (solid curve in black in the lower panel); electric field integra-

tion in the adaptive de Hoffmann Teller frame (solid curve in black

in the upper panel); and electrostatic potential obtained by Liouville

mapping (in gray).

ville mapping at the time 4.5 ion gyroperiods and the spatial

coordinate x = 1020λe and for the pitch angle 65◦. The elec-

tron distribution function obtained by the PIC simulation is

shown by the solid curve in black, and that obtained by Li-

ouville mapping is in dotted symbols in gray. The profile of

the cross-shock potential is obtained by Liouville mapping

along the normal direction from the upstream region to the

shock. This potential is over-plotted in Fig. 2 in gray. While

the maximum potential value is different from the potential

in the adaptive de Hoffmann–Teller frame, the sign and the

asymptotic behavior of the potential agreements between Li-

ouville mapping and the adaptive frame.

The distribution function in Fig. 3 is obtained in the de

Hoffmann–Teller frame for accelerated and heated electrons

at the shock ramp. The sliding velocity vdHT of this frame

is rather high (vdHt ' 0.2c), since the shock has a high

Mach number and a large angle from the upstream magnetic

field. Incident particles with higher perpendicular energies

are most likely reflected by the magnetic mirroring at the

shock ramp, while particles with lower perpendicular ener-

gies can be trapped in the potential well of the existing over-

shoot (Hull et al., 2001).

Additionally, the validity of Liouville mapping is exam-

ined by comparing the distributions functions using two dif-

ferent methods: one is the direct measurement by counting

the number of particles with various velocities, and the other

one is the exact mapping (without assuming energy conserva-

tion nor magnetic moment conservation) of the phase-space

density associated with the individual tracked particles. We

find that the two distribution functions agree with each other

for nearly adiabatic particles within the accuracy of magnetic

moment conservation by greater than 90 % between the ini-

tial and final stage of the mapping.

Figure 3. Example of the electron distribution function at the time

shown in Fig. 1 in the de Hoffmann–Teller frame, the spatial coor-

dinate x = 1020λe (at the shock ramp), and the pitch angle 65◦ ob-

tained by the PIC simulation (solid line in black) and that obtained

by Liouville mapping (in gray diamonds).

4 Summary and discussion

In the case of stationary shock, one may safely construct the

de Hoffmann Teller frame and apply the method of Liouville

mapping to determine the cross-shock potential. In the case

of non-stationary shock, the existence and the uniqueness of

the de Hoffmann Teller frame are no longer guaranteed. Nev-

ertheless, the use of Liouville mapping is a valid approach.

We find in this study that the construction of an adequate

reference frame (the adaptive de Hoffmann–Teller frame) is

possible for the study of electric field to validate the poten-

tial obtained by Liouville mapping by modulating the slid-

ing velocity and correcting locally for the spatially oscillat-

ing magnetic field. Without this correction, one obtains the

cross-shock potential in the de Hoffmann–Teller frame with

the opposite sign, and may be misled to the conclusion that

the shock potential were not accelerating but decelerating the

electrons.

See et al. (2013) have proved that short-scale large-

amplitude electric field structures within the electric field

profile lead to incoherent heating of the electrons. In our

study, we observe large-amplitude oscillations of the mag-

netic field direction that result in a residual motional electric

field in the de Hoffmann–Teller frame. The local demagne-

tization of the adiabatic electrons should alter the quality of

Liouville mapping, but overall, the electron thermalization

remains primarily controlled by the coherent heating.

In the first-order picture, the high-frequency electrostatic

waves should not influence the determination of the de

Hoffmann–Teller frame because the impact of waves on the

electromagnetic component ve×B is small, see e.g., Brene-

man et al. (2013), Mozer and Sundkvist (2013), and Wilson

III et al. (2014a, b). In the second-order picture, however,

there might be a possibility that the high-frequency electric

field oscillation affects the electron bulk motion.

The cross-shock potential was analyzed using in situ mea-

surements, e.g., in the NIF frame, by Walker et al. (2004),

Dimmock et al. (2011, 2012), and Wilson III et al. (2014a),
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but determination of the cross-shock potential from direct

spacecraft observations is still far too inaccurate in the

de Hoffmann–Teller frame because the electric field is too

small.

Various methods have been alternatively devised to eval-

uate the cross-shock potential (Hull et al., 2001): evaluation

using the electron fluid momentum equation, that using the

electron fluid energy equation, that using the electron poly-

trope assumption, and that using Liouville mapping.

These procedures are based on specific assumptions that

are mutually dependent. Moreover, the irreversibility prob-

lem is not yet solved. Above all, we find that Liouville map-

ping is robust in that the method can be applied even to a

non-stationary shock. In this way, the time evolution of the

shock potential can be tracked throughout the shock refor-

mation process. However, Liouville mapping relies on the

assumption that the electrons are adiabatic, and the validity

of this assumption needs to be examined by other means. In

the adaptive de Hoffmann–Teller frame, the electric field can

directly be associated with the electrostatic potential. This

frame would be a convenient choice in order to track the

evolution of the electron distribution function and that of the

electric field through the shock wave.
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