
Utilizing Artificial Intelligence to Achieve a Robust
Architecture for Future Robotic Spacecraft

Steffen Jaekel
German Aerospace

Center (DLR)
Robotics and

Mechatronics Center
Wessling, 82334

+49 8153 28 3496
Steffen.Jaekel@dlr.de

Abstract-This paper presents a novel failure-tolerant

architecture for future robotic spacecraft. It is based on the

Time and Space Partitioning (TSP) principle as well as a

combination of Artificial Intelligence (AI) and traditional

concepts for system failure detection, isolation and recovery

(FDIR). Contrary to classic payload that is separated from the

platform, robotic devices attached onto a satellite become an

integral part of the spacecraft itself. Hence, the robot needs to

be integrated into the overall satellite FDIR concept in order to

prevent fatal damage upon hardware or software failure. In

addition, complex dexterous manipulators as required for on

orbit servicing (OOS) tasks may reach unexpected failure

states, where classic FDIR methods reach the edge of their

capabilities with respect to successfully detecting and resolving

them. Combining, and partly replacing traditional methods

with flexible AI approaches aims to yield a control

environment that features increased robustness, safety and

reliability for space robots. The developed architecture is

based on a modular on-board operational framework that

features deterministic partition scheduling, an OS abstraction

layer and a middleware for standardized inter-component and

external communication. The supervisor (SUV) concept is

utilized for exception and health management as well as

deterministic system control and error management. In

addition, a Kohonen self-organizing map (SOM) approach was

implemented yielding a real-time robot sensor confidence

analysis and failure detection. The SOM features non

supervized training given a typical set of defined world states.

By compiling a set of reviewable three-dimensional maps,

alternative strategies in case of a failure can be found,

increasing operational robustness. As demonstrator, a satellite

simulator was set up featuring a client satellite that is to be

captured by a servicing satellite with a 7-DoF dexterous

manipulator. The avionics and robot control were integrated

on an embedded, space-qualified Airbus e.Cube on-board

computer. The experiments showed that the integration of

SOM for robot failure detection positively complemented the

capabilities of traditional FDIR methods.

T ABLE OF CONTENTS

1. INTRODUCTION ... 1

2. STATE OF THE ART ••• 2

3. ON-BoARD OPERATIONAL ARCHITECTURE ••• .4

4. ARTIFICIAL INTELLIGENCE ARCHITECTURE • • 5

5. DEMONSTRATION SCENARIO •••••••••••••••••••••••••••• 8
6. CONCLUSIONS AND FUTURE WORK •••••••••••••••• 10

REFERENCES ••• 12

BIOGRAPHY •. 14

978-1-4799-1622-1/15/$31.00 ©20 15 IEEE

Bastian Scholz
German Aerospace

Center (DLR)
Robotics and

Mechatronics Center
Wessling, 82334

+49 8153 28 1309
Bastian.Scholz@dlr.de

1. INTRODUCTION

Currently, the operation and further development of robotic
systems in space is an important topic as there is a multitude
of applications. Using the Shuttle and Space Station Robotic
Manipulator System (SRMS, SSRMS), respectively, the
International Space Station (ISS) was assembled from
several modules using in-space robotic assembly (ISRA)
[1]. Small robotic satellites are planned to serve for
inspection purposes [2] and NASA's Robonaut [3] or
comparable systems such as DLR's humanoid robot Justin
[4] are candidates for future EVA support operations.
Similar to ISRA and EVA support, dexterous robotic
manipulators are planned to be utilized to capture, maintain
and/or de-orbit operational and defective satellites within
on-orbit servicing (OOS) missions [5]. Finally, robotic
exploration of other celestial bodies, such as the Moon,
Mars or Near Earth Objects (NEOs) is already underway,
and continues to be an important mission in space [6].

By introducing dexterous manipulators to traditional
satellite platforms, the spacecraft design becomes
increasingly sophisticated and complex. Due to the high
level of interdependencies between the manipulator and its
floating base, it becomes an integral part of the overall
spacecraft design. Basically the whole satellite turns in into
a 'space robot'. Consequently, the underlying computing
environment needs to support both traditional satellite as
well as robot control. In this context, a novel on-board
architecture was presented within [7] that applies the
concept of time and space partitioning (TSP) [8] on an
embedded platform, provides configurable means for
internal and external communication for both real-time and
non-real-time applications, as well as mechanisms for
achieving autonomy and a system-level approach to failure
management.

In addition to the nominal control environment, advanced
capabilities in fault detection and diagnosis are an important
problem in spacecraft operations and a critical aspect of on
board software with respect to safety, performance and
reliability. Especially for on-orbit servicing spacecraft,
ground operators have to observe increasingly large
volumes of telemetry for operation and fault diagnosis,
especially if close-proximity operations including robotic
manipulation are involved. The operator is not able to
perceive all relevant environmental parameters and act

accordingly in a timely manner. In the case of interplanetary
probes, increased time delay further complicates the
situation. Dissimilar to complex robotic systems the ground
has, there is no emergency button in space to halt the current
operation. Even after stopping the current movement, e.g.
due to an internal robot failure, remaining drift of the free
floating base can still lead to a collision, potentially
endangering the mission success. Thus, autonomous
nominal operation capability as well as FDIR functionality
must be transferred from the ground to the spacecraft itself
in order to cope with these challenges. In addition, such
capability results in a significant reduction of operational
cost and increase in operational uptime, as the spacecraft
does not remain in safe mode after unresolvable failure until
a respective recovery routine is triggered by ground
personnel.

For traditional satellites such as Earth observation or
telecommunication spacecraft, conventional and well
established FDIR methods have been shown to reduce the
occurrence of safe mode events and thus, increase the
spacecraft's operational time. One significant drawback of
classical fault diagnosis, however, is that it depends on
predefined error patterns, i.e. specific values or ranges of a
set of variables. These are subsequently connected to a
failure recovery routine represented by a set of actions.
Furthermore, recovery routines are usually executed in
open-loop, meaning that the resulting system state after each
execution are not necessarily congruent with the expected
state.

Combining and partly replacing classic methods with
flexible AI approaches that are able to detect previously
unknown failure states aims to yield a control environment
that features increased robustness, safety and reliability for
space robots The developed framework presented in this
paper aims to cope with these challenges by complementing
traditional system FDIR with an AI approach for robot
failure detection with special focus on the operation of on
orbit servicing robotic spacecraft.

2. ST A TE OF THE ART

Time and Space Partitioning

The modular architecture presented in this paper consists of
multiple software components running on a single on-board
computer. In order to achieve spatial partitioning for both
error containment through separation and re-usability
through independent software verification processes, they
are separated in logical containers, i.e. partitions. In
addition, temporal partitioning through scheduling
facilitates a deterministic system behavior [9, 1 0].

The described principle has already been adopted in some
industry branches. The aeronautic industry introduced a
comparable principle with the Integrated Modular Avionics
(lMA) [1 1] and the ARINC 653 [12] specifications. The
automotive industry currently tries to establish AUTOSAR

978-1-4799-1622-1115/$31.00 ©2015 IEEE 2

in order to decrease the number of hardware control
elements built into the car [1 3]. Time and space partitioning
concepts in space are still in their early stage [9]. ESA, in
cooperation with space industry [8], and NASA, are
particularly interested in applying this technology in the
next generation spacecraft [14].

FDIR in Space

Within the field of FDIR, a fault can be defined as an
undesired deviation of the property of some system variable
from an acceptable or nominal behavior that potentially
leads to degraded overall system performance,
malfunctions, up to loss of the mission itself [1 5]. In this
context, a FDIR mechanism is composed of the following
tasks [1 6] :

Detection of the presence of a fault and its rate of
occurrence (D)
Determination of its location, type as well as
estimation of its severity (I)
Reconfiguration of the faulty element and/or
overall spacecraft in order to achieve nominal
system behavior (R)

Failures are typically classified by their criticality and the
level on which they occur in the control system, which also
correlates to the present level to autonomy. Low-level
equipment failures can be resolved locally, or, if not
recoverable from, are propagated to the next higher level up
to system control level. This layered structure comprises a
hierarchically distributed FDIR system with the aim to
resolve occurring failures on the lowest possible level. The
higher the failure is propagated, the more system knowledge
and thus, deliberative capabilities are required by the FDIR
architecture to autonomously identify, isolate and
successfully resolve the problem. [17]

Traditional FDIR concepts are able to react to predefmed
events and subsequently select a recovery routine from a
given set of options accordingly [18]. Failure recognition is
mainly based on fixed thresholds, logical conjunctions of
variables, device built-in health and consistency checks that
trigger the switch of redundant software and/or hardware
components up to complete strings of hardware and
software. In addition, analytical redundancy is utilized that
is based on voting mechanisms or estimation techniques
such as Kalman filters. These correlations are mostly
implemented at design time and are based on extensive
evaluation using the engineering methods of failure mode,
effects and criticality analysis (FMECA) as well as failure
tree analysis (FTA) [1 9]. In addition to hard-coded
reactions, the use of on-board control procedures (OBCP)
allows script-like actions that are assembled of
telecommands, e.g. using the Packet Utilization Standard
(PUS), or specific language implementations [20]. This
allows in-flight adaption of the failure management logic
through the upload of new OBCPs. As ultimate system
reaction to unresolvable failures, the spacecraft is
transitioning into safe mode, from where it has to be

...

::c
Q
�
o

e> �..c = ...
ti°
�

Analytical model

based FDIR

Remote Agent on Deep

Space One, 1998 [24]

Fault diagnosis in (GNC),

2010 [31]

Bayesian

Networks

Fault diagnosis in SSHM,
2011 [33]

Autonomous SIC FDLR,

2012 [19]

Landing Site Selection,

Artificial Neural

Networks

Advanced FDIR (ESA), 2001 [28]

Fuzzy

Logic

SMARTJDLR, 2003 [36]

Landing Site Selection,

2009 [37]

1 '--__ 2 _00_6""'[3_4..:...] __ -'
AOCS subsystem control,

Dempster-Shafer

Evidence Theory

Landing Site Selection,

2009 [41]

Fault diagnosis in SSHM,
2010 [29]

------------------,------------------- r ------------------T 2010�� r-------------------·
MEX thruster FDl, 20 I 0 I

Fault Diagnosis in Power
I

Sensor FDIR with NN, I :===========::::: I

[32] Subsystems, 2009 [35] 1991 [26]

Rocket engine FDl, 1990
[25]

Fault diagnosis in reaction

wheels, 2011 [39]

FaLLIt diagnosis in Power

Subsystem, 1996 [40]
I I I I ------------------;-------------------- . - . - . - ·1-------------------,.,-------------------·

FDIR for actuator faults in Robust robotic I FDI for cooperative
a robot arm, 1999 [44] manipulation, 2008 [30] • manipulators, 2008 [27]

Collision preventing for

ERA 2006 [45]

FDl for robot

manipulators, 2008 [42]

. I

;"'._._._.J
D Theoretical I

Simulation
D Flown

r- • ,
I . Field of . _ . I Research

Figure 1: Overview of research in the artificial intelligence (AI) domain for FDIR in space

recovered from by ground control. the sensors in the Space Shuttle Main Engine (SSME) [25],

The established FDIR principles as outlined above
constitute a good level of robustness for trad itional satellites
are industrially mastered and established within the
development process [2 1]. However, they have limited or no
knowledge of the actual on-board operational capabilities.
Mostly they only allow partial observability of the overall
system which leads to shortcomings in autonomous isolation
and recovery capabilities. One prominent example is Mars
Express [22]. Due to non-resolvable memory failure it
suffered from repeated safe mode transitions, as a result six
months of operation time was lost.

In order to extend the operational on-board capabilities of
FDIR systems, several studies have been conducted utilizing
methods of artificial intelligence (AI) as summarized in
Figure 1 . The research can be classified into analytical
models, Bayesian reasoning, artificial neural networks
(ANN), fuzzy logic and the Dempster-Shafer evidence
theory [23]. A significant step towards a more robust and
autonomous on-board system and the only actual in-flight
study in this domain was the remote agent experiment
aboard Deep Space 1 [24], The agent was capable of taking
certain decisions autonomously, based on model knowledge
and thus, to react to unpredicted behavior without additional
human interaction. Other studies addressed the evaluation of
previously defined analytical rules describing specific parts
of the system in order to detect irregularities or deviations.
In 1 990, one of the first approaches was made in this area
using analytical failure detection and isolation methods for

978-1-4799-1622-1115/$31.00 ©2015 IEEE 3

This method was later enhanced by introducing an ANN in
order to estimate the actual value of the faulty sensor [26].
The ANN representing the dependencies between the
temperature sensors was trained during the startup of the
SSME allowing it to memorize the thermal behavior.
Subsequently, the network was able to detect anomalies and
recover from them by sensor estimation without the need to
shut down the engine. The previously discussed methods all
address the level of subsystem or actuator FDIR. In [27], a
Bayesian network was successfully used in order to describe
the spatial relationships between the different parts of a 6-
DoF robotic manipulator, which was used in order to detect
failures such as blocked or deformed joints.

In addition to the model-based approaches described above,
other studies tried to use more 'advanced' soft computing
techniques, e.g. the ' Advanced FDIR' study of the European
Space Agency (ESA) [28], In this work, different methods
for system FDIR were addressed such as Bayesian
networks, which are able to deal with corrupt or missing
values using previously defined dependencies in the system.
Furthermore, configuration spaces allow the system to
recover from a detected failure by estimating the erroneous
value by a comparison of the healthy part with a fault-free
model of the system. Within [29], the Dempster-Shafer
Evidence Theory was applied on fault diagnosis in software
and sensor health management (SSHM). This theory uses a
combination of uncertain information resulting in a belief
function, which describes the probability of failure for
different values. Although there are many different

techniques and studies using and evaluating advanced FDIR
methods, only the remote agent experiment was actually
flown and tested in space, whereas all the other projects
remain theoretical simulations including a few specific on
ground hardware tests. The projects [27] and [3 1] were
applied to manipulators on ground. The proposed principle,
however, could be transferred to the space domain.

The work described within this paper investigates the
capabilities of neural networks for manipulator sensor
failure detection. One advantage of ANN's is that they are
capable of adapting to changed properties of the system or
the environment. They show a robust behavior if the input
differs from the expected and trained input space and are
capable of dealing with high noise or uncertainties in a
value. This robust model behavior together with estimation
capabilities of faulty sensors makes neural networks a
promising candidate for reliable robot failure detection.

3. ON-BOARD OPERATIONAL ARCHITECTURE

On-Board Framework and Components

The developed on-board framework is composed of several
layers and software components that together form the
functionality for a holistic control approach for both classic
satellite operations and robotic control. Figure 2 depicts the
basic composition of the embedded architecture. For
achieving spatial and temporal separation, each node or
computational unit runs a TSP operating system (OS) such
as VxWorks 653 or PikeOS. Available resources are
separated into partitions, where usually one component is
dedicated to one partition in order to achieve complete
separation for safety purposes and to ease the deterministic
scheduling configuration. Hardware equipment such as a
GPS unit or arbitrary sensors and external communication
interfaces, are each represented by a specific equipment
handler component that exclusively has access to the
equipment's resources and can share its status and data with
other components.

The framework contains a middleware that provides a
standardization of on-board communication through an
abstract interface definition as well as an OS abstraction
layer for cross-platform portability. At this point, the OS
abstraction layer has been implemented for Linux (non
TSP), VxWorks 6.9 (non-TSP), and PikeOS. In addition to
the abstraction layer and middleware services, the core
components provide system control functionality of a
classical spacecraft, cpo Figure 3. The supervisor (SUV) is
used for deterministic system control and fault management.
It is the only component with administrative system access
and can therefore observe, start and stop all other
components. The 110 Handler (lOH) implements the
external operator interface using the packet utilization
standard (PUS) [40] as a de-facto-standard in the European
space industry and provides routing functionality between
multiple nodes and spacecraft. The configurable data
management (DM) realizes a data centric approach, i.e. all

978-1-4799-1622-1115/$31.00 ©2015 IEEE 4

Node

Partition 1 Parlilion2

[] [] Component1 Component2

[]
Co�onent3

I Middleware & OSAI. I
l J
lOS I II

I
Figure 2: On-board framework composition

components can store and read data from/to the DM.
Through configuration of the DM, thresholds and other
parameter statistics that are automatically evaluated can be
defmed. Similar to traditional FDIR functionality, upon
threshold violation a system event can be thrown. The event
handler (EVH) collects these asynchronous exceptions or
notifications and distributes them according to its
configuration. By triggering event-connected actions within
components (callbacks) or script-like on-board control
procedures that are handled by the OBCP handler
(OBCPH), an event/action mechanism is realized on which
autonomous functionality can be built. The mission time line
handler (MTH) contains the mission timeline (MTL) that is
composed of time-tagged commands. The logging handler
(LOH) records all occurring system events, actions and
configured data for subsequent transmission to ground.
Through their configurability, all core components and
established equipment handlers for specific external
interfaces can be re-used over mUltiple missions without
changing their code, saving implementation and verification
resources. In addition, mission components e.g. specific
robotic control (ROB) components and/or a mission planner
(MPL) broaden the capabilities of the on-board system. The
MPL is currently implemented as a functional interface that
can trigger offline-built task plans and store them in the
MTL, the contained commands are subsequently executed
upon time-tag expiration. Additional to its core
functionality, the SUV may contain mission specific code,
e.g. simple pre-defined failure management logic.

Communication Interfaces

Impedance control concepts allow a responsive or compliant
manipulation of targets through haptic feedback. They
require sufficiently high-speed and real-time data links with
low jitter in the communication channel in order to keep the
control system stable. In addition, the manipulator
movement imposes a direct physical feedback on its floating
base. Thus, synchronous data from other subsystems, e.g.
the AOCS is required for actively stabilizing the platform or
ignoring this external disturbance. Within the framework,
inter-component communication is achieved by message

Core Components

ilJ ilJ ilJ
MTH::MTLHandler EVH:: OM::

EventHandler Data Management

ilJ ilJ ilJ
LOH:: OBCPH:: GenericConponem

LoggingHandler OBCPHandier IOH::IOHandler

SUV:: superviso� I
I

Application Components

ilJ ilJ ilJ
EQH:: MPL:: ROB::

EquipmentHandler MissionPlanner RoboticControl

Figure 3: Core and specific software components

queues for asynchronous and synchronous system level
communication and shared memory for synchronous high
performance real-time communication. With the IOH, the
framework features its own PUS implementation for
transparent communication both from space-to-ground,
between spacecraft as well as on-board between different
nodes. PUS messages are decoded, mapped to internal
component callbacks and subsequently forwarded to the
dedicated receiving component. This process is transparent
to the software components. Classic housekeeping (HK) is
implemented by the DM. The operator can subscribe to
single parameters and/or groups that are subsequently sent
to ground in the configured manner via the dedicated HK
service. In general, arbitrary PUS services can be mapped to
internal framework callback functions of components that
implement the required functionality of the service.

Failure Management and Autonomy

The framework design follows the common three tier (3T)
architecture for system autonomy, cpo Figure 4. By
combining the data-centric approach of the data
management (low level synchronous and asynchronous
parameter control layer), the event/action mechanism
(asynchronous low-level reaction and exception handling),
scheduling (sequencing level with the mission time line) and
task planning (deliberative layer) together with system
supervision and control realized by the supervisor, a high
degree of system autonomy can be achieved. The supervisor
concept is used for both function and health monitoring. By

3T layers

1. Deliberative Layer

2. Sequencing Layer

3. Reactive Layer

Corresponding main service classes

Planning (MPL)

M New V plan

MTH

Pre· I condition
Action

sense

M New V action

1]' Re·plan

I Post
condition

lr Action W finished

Action (SUV, STK EQH . . .)

Figure 4: Three Tier architecture for autonomy

978-1-4799-1622-1115/$31.00 ©2015 IEEE 5

utilizing the spatial partitioning principle, the continuation
of the mission can be assured even on critical component
failure. As part of the health management, partitions can be
restarted by the supervisor after an unresolvable failure was
detected, in case this measure is applicable to the ongoing
spacecraft operations. The SUV also starts, controls, e.g.
mode management, and shuts down the system and its
components in a deterministic order. With these methods, a
holistic and deterministic system-level failure detection,
isolation and recovery (FDIR) scheme can be configured.

Due to this configurability of the modular system together
with knowledge about the health status of each component,
the SUV as central instance obtains a high degree of overall
system knowledge. Consequently, also model-based FDIR
decisions based on the current system task and available
resources can be included, resulting in a higher flexibility
and fault tolerance compared to traditional one-to-one
mapping between cause and action.

A more detailed description of the frameworks composition
and functionality can be found in [7]. The architecture
comprises a variety of methods for achieving both
traditional event/action and model-based autonomy for
nominal operations and failure handling. The next chapter
describes an additional AI approach for robot sensor failure
detection to complement the before mentioned system-level
methods.

4. ARTIFICIAL INTELLIGENCE ARCHITECTURE

Artificial Intelligence (AI) is used to solve a wide variety of
problems in different domains. For robotic manipulators, AI
can enable the control system to learn and react to unknown
and/or unpredictable events and inputs resulting in higher
robustness of the control system. The presented approach
focuses on artificial neural networks (ANN) and a further
development of ANN, the self-organizing map (SOM).
Currently the most common use of SOMs is forecasting,
classification and pattern recognition [43]. For human
machine interfaces, SOMs are used for speech recognition
to handle and interpret a spoken input. Here the exact
structure of such input is not known, as there is a multitude
of different voices and dialects and the words are spoken
fluently, possibly without clear distinction [46].
Furthermore, those maps are used to get a clear
representation of survey results that include
multidimensional information. The information is
transferred into a human-readable two dimensional map.
Those ANNs or SOMs are characterized by a black box-like
behavior, meaning that some input generates a specific
output with the help of previously trained dependencies,
which are generated automatically without human
interaction. One of the advantages of such a network is that
it does not require detailed knowledge of the described
system since all the required data is fed into the black-box
during training. Due to this process the network adapts its
inner connections, called weights, and therefore is able to
express the properties in a net-like structure. During real

Joint 1 [deg] Joint 2 [deg] Joint 3 [deg] Joint 4 [deg] Joint5[deg] Joint 6 [deg] Joint 7 [deg]

200
190
180
170

Tep Pos X Em) Tep Pos Y [m] Tep Pos Z [m] Tep Orient X [deg] Tep Orient Y [deg] Tep Orient Z [deg]

o Training Sets 200 Training Sets 1000 Training Sets

80

�60
Q)
g> 40
«
c:
'0 20 --,

0
100

100
Y[-I 50

o 0 o 0

0

Q)
C> c
«
c:
'0 --,

100

50 X [-I
Y [-I

o 0

100

50 X [-I

Figure 5: Trained SOM with all 13 vector elements displayed in a distinct plot (top) and example for different stages

of the training process for one information in the map (bottom)

time operations the SOM can deal with both expected
(trained) and unexpected inputs, Returning feasible outputs
in both cases makes this approach reliable and robust. [47]

Artificial Neural Networks

An ANN consists of one input layer, one or more hidden
layers and one output layer, which are usually
multidimensional. They contain a variable amount of nodes,
dependent on the complexity of the system to be
approximated. All of them are connected by weights
represented by a normalized value between 0 and 1 , which
is tuned during training or even in the running system to be
able to adapt to changes in real-time. If an input vector is
fed into the ANN it is processed from node to node
beginning at the input layer through the hidden layer until
an output is returned at the end node. In this process the
initial input values are recalculated in each node according
to their weights. ANNs can be trained to represent basic
mathematical functions, such as sine and cosine, but also
more complex and partially unknown dependencies, e.g. as
given with the temperature sensors in a Space Shuttle Main
Engine (SSME) [26].

Self-Organizing Maps

In this paper, a subgroup of ANN is used, the SOM, which
is similar to an ANN with one output and one hidden layer

978-1-4799-1622-1115/$31.00 ©2015 IEEE 6

represented by a two-dimensional arrangement of weights as
depicted in Figure 5. Here, x and y-axes describe the
position in the map, whereas the z-axis shows the non
normalized value of the weight. The SOM can be
characterized as a two-dimensional discretized
representation of a high dimensional input space. These
maps are trained using non-supervised learning, which
means they recognize the pattern and dependencies of the
input space and store them equally [43].

Figure 6 depicts a schematic overview of the OOS system
with the coordinate frames of the servicer, client, arm end
effector (tool center point, TCP) and base camera as well as
the grasp frame. Both the arm and the servicer base camera
see the client to be captured, and can estimate the relative
position and orientation of the grasp frame yielding the two
transformations Tcaml-grasp and Tcam2-grasp. In addition, the
current arm configuration provides the transformation Tcaml-
cam2. As redundant information used for sensor validation,
the position of the end effector represented by Tcaml-grasp r
Icam2_grasp through camera estimation and Tcaml-cam2 through
the robotic arm are evaluated by the SOM. This results in a
1 3-dimensional input space represented by the seven joint
angles of the robot and the six-dimensional pose of the arms
TCP. The 1 3-dimensional input is mapped onto two
dimensions represented by the x and y-axes of the self
organizing map. Therefore each unit in the map contains 1 3
weights.

Architecture

The developed SOM framework is divided into two parts:
the training process of the map and the actual operation of
the system. The training can be done either on orbit, or on
ground with simulated models, as long as the utilized model
is accurate. The resulting map is subsequently used to
determine the confidence of the input and recover the
correct value of a corrupt sensor if necessary.

Training o/the SOM

The training algorithm generates a consistent map in order
to enable a fast and robust determination of a joints
confidence. Starting with a randomly initialized map the
weights of each unit are adapted gradually until neighboring
units are similar in their weights, cpo Figure 5 (bottom).
After initializing the SOM with 1 3 random, but consistent,
values within reasonable limits determined by the work
space of the manipulator, the actual training process begins.
The flow chart depicted in Figure 7 illustrates the conducted
steps. For this purpose several hundred data sets of joint
angles and corresponding TCP poses were gained from
either fault-free operation of the robotic arm or a simulated
model. The data sets are divided into two groups, one used
for training, the other for post-training evaluation. Therefore
the training process is split into epochs of 100 training sets
in order to evaluate the current status of the map after each
epoch. This is done by choosing random data out of the
evaluation sets and feeding it into the SOM. As soon as the
error between its output and the expected result goes below
a specific threshold, the SOM has completed the training
process. In order to further improve the performance of the
AI-system and limit the size of the maps, the operational
range of each joint is adapted to the expected workspace by
the planned approach trajectory. The range for each of the
seven joints is subsequently split into two parts resulting in

a total of 27
= 128 maps, increasing the overall resolution

while keeping the size of each map constant. In contrast to
one large map containing the same information, the
matching process becomes significantly faster. The
procedure of adapting the randomly initialized SOMs to the
input space is done step by step. One training set at a time is
chosen randomly and is fed into the SOM. According to the
joint angles in this set, one map out of the pool of 128 maps
containing the specific joint configuration is chosen and
trained. The training function searches for the best matching
unit (BMU) in the respective map and adjusts the weights of
the unit as well as its direct neighbors.

Neighborhood size

The amount of neighbors being adapted is determined by a
variable, which is decreased with time. In the beginning this
value has to be big in order to get a rough shape of the input
space in a short time, but is decreased until only one unit is
changed towards the end of the training procedure to obtain
the required map precision. The algorithm uses the formula

978-1-4799-1622-1115/$31.00 ©2015 IEEE 7

CglObal

Figure 6: Schematic overview of the OOS mission with

the servicer satellite on the left and the client satellite to

be capture on the right.

nSlzei = nSlzeo x exp -i x 0 x Kn ,
. . (IOg(nSiZe))

#settrain
(1)

with Kn being proportional to the desired speed of training
and i the current iteration of sets. The higher the speed of
training with higher Kn, the faster the adapt ion of the map to
the given training space. However the precision will be
worse, since the last sets to be trained still have an influence
on a big area of the map, which means that the system loses
its memory; older sets are overwritten by newer ones.
Furthermore the influence of the total amount of training
sets #seurain in (1) guarantees, that at the end of the
training procedure only a few units are adapted, whereas in
the beginning for i = 0

nSize#settrain = nSizeo (2)

units will be changed. This results in a fast change of the
map in the early stage of training, leading from quick
change to precise fine-tuning towards the end of the process.
The training yields similar precision for a constant (but
small) neighborhood size, with the disadvantage of taking
much more time compared with the previously described
procedure. In this particular case the best experience was

made with Kn = 2 and a neighborhood size starting at
nSize_O = 0.25 * map Dim depended on the size of the
map.

Learning Rate

Be�ide the neighborhood size, the learning rate (LR) plays
an unportant role in the training of a SOM. It describes how
much one unit is changed during the iterations and decreases
exponentially with ongoing training sets:

Divide sets Acquire data sets from ___ �
fault free system

maps

Adapt
weights

Make unit
consistent

Figure 7: SOM training process

(. 10g(LRo) 1)
LRi = LRo exp L x x .

#settrain KLR x epoch
with LRo E]0; 1[.

(3)

Again a faster change in the map can be achieved with an

increase of K LR' The difference to (1) is the dependency on
the epoch, which is currently being trained. The longer the
training is in progress, the better the map already adapted to
the input space and the less it should be affected by changes
in order to achieve the best precision possible. The number
of training sets #set_train is reset to 0 after each epoch and
starts to increment again with each iteration

Weights Update

Using the previously determined learning rate (3) and
neighborhood size (1) the new weight of the currently
treated unit is calculated by applying

Wnew = Wold X LR x (nSize - dist2BMU) x tow. (4)

The distance of the neighbors to the BMU affects the new
weight, too. Starting directly at the center of the
neighborhood the change in the weight is maximal, while
decreasing towards the edge. This results in a smooth
distribution in the map, which is necessary to achieve a fast
processing during confidence calculation. Furthermore the
difference between old unit and input vector (toweight)
influences the magnitude of change as well. With (4) each
unit in the map is adapted to the current training set until the
evaluation sets indicate a satisfying level of precision.

Sensor Fault Detection and Lost Value Estimation

Figure 8 depicts the conducted steps for observing all joints
continuously in the real-time environment based on the

Extract all
values but one

joint angle

Use estimated
1-----1 angle

fully-trained and stored map. As previously discussed, the
system consists of several maps covering different parts of
the joint range. The algorithm for calculating the confidence
for one joint uses all information but this specific value and
identifies the best matching unit based on the remaining 12
weights within all relevant maps.

Determining the BMU in a map can be done in mUltiple
ways. The method of brute force search allows the system to
always fmd the best solution while losing performance with
regard to time-behavior. In addition, the method of gradient
descent is much faster with the risk of detecting a local
minimum of the Euclidean distance between input space and
the units in the map instead of the desired global minimum.
Using five randomly distributed starting points for gradient
descent and subsequently choosing the best result has been
found to be a good compromise between precision and
speed. A fmite impulse response (FIR) filter is applied to the
found estimated angle over time to further improve the
performance. Due to oscillation of the found solution around
the true value due to local minima, the filter interpolates the
estimated value and thus further increases the maps
resolution.

The estimated joint angle is subsequently compared to the
measured one. If the sensor is working properly, the
estimated value should be near the measured one yielding a
high sensor confidence, whereas a big difference indicates a
sensor failure or blocked joint. By applying a threshold
triggered event to the confidence, a respective recovery
routine, e.g. retracting the arm, can be issued. Alternatively,
the recovered joint angle can be used in the control scheme
instead of the measured value to complete the current task.

Use measured
�---il�;an; g; le��e-

________ -/

Figure 8: Sensor confidence estimation scheme

978-1-4799-1622-1115/$31.00 ©2015 IEEE 8

5. DEMONSTRATION SCENARIO

Demonstration Setup

The Gennan Orbital Servicing Mission (DEOS) [48]
currently under development at DLR forms the basis for the
OOS demonstrator presented in this paper. DEOS
investigates technologies to autonomously and manually
perform rendezvous and proximity operations, as well as to
capture a tumbling and uncooperative target satellite with a
dexterous manipulator based on DLR's 7-DoF Lightweight
Robot III (L WR-III). As demonstrator, an on-orbit servicing
scenario was set up with the Systems Tool Kit (STK) for
visualization and for feeding realistic orbit and
communication data into the data management via a
designated equipment handler (STK _ EQH). In the scenario,
a client satellite is to be captured autonomously by the
servicing satellite that features a 7-DoF dexterous
manipulator with a gripper. Figure 10 followed by Figure 9
depict the demonstrator architecture and the orbit simulation
environment, respectively. The avionics and robot control is
set up on an embedded, space-qualified e.Cube as relevant
target platform. Within an earlier investigation, scenarios
including successful robotic capture and the initiation of an
arm emergency retract triggered by an unexpected loss of
signal (LOS), were successfully perfonned [7]. This
demonstrated the on-board system's capabilities to cope
with autonomous nominal operations and failure
management. The setup was extended by the presented self
organizing map architecture in order to complement the
traditional FDIR mechanisms with advanced AI approaches.
At the current stage, the AI framework is located outside the
on board architecture for research purposes. However, after
further developing the current solution, it is planned to
integrate it into the framework. Based on the introduced AI
functionality, experiments with sensor failure during arm
operations have been conducted, including sensor outage
and drift, both leading to emergency routines after the
failure was discovered. In addition, nominal operations were
continued using estimated sensor data after sensor failure

Figure 9: STK orbit simulation of OOS scenario

shortly before capture.

Path planning for all capture trajectories of the robotic arm
was perfonned offline using a multi-body simulation tool
[49] and subsequently included as pre-planned sequences in
the mission planner. The escape trajectory for the arm
retract maneuver is represented by the inverse motion of the
approach. The realistic satellite simulation calculates orbit
position, communication times (acquisition of signal, loss of
signal) and lighting conditions and forwards them via UDP
to the STK equipment handler, the data is subsequently
stored in the data management. The on-board framework for
the experiments comprises all essential core components,
the data management (DM), event handler (EVH), 110
handler (lOH), mission timeline handler (MTH) and
Supervisor (SUV). As specific components a robot control
component (ROB_CTRL), equipment handler (ROB_EQH)
and mission planner (MPL) are implemented.

On the operator side, a graphical interface for creating PUS
commands (CmdGUI) and a tool that converts this input
into binary PUS packets are used. The 10H receives these
commands and routes them to the designated on-board
component. In the scenario the SUV is commanded to
initialize the complete on-board system and bring all

Figure 10: Deployment diagram of on-orbit servicing demonstrator setup

978-1-4799-1622-1115/$31.00 ©2015 IEEE 9

Satellite Simulation (Win) On-Board Framework (VxWorks embedded, Linux) Operator (Linux)

MATLAB/STK I/O Handler (IOH)Ev ent Handler
(EVH)

Mission Timeline
Handler (MTH)

STK Equipment
Handler (STK_EQH)

Robot Control
(ROB_CTRL)

Robot Equipment
Handler (ROB_EQH)

Mission Planner
(MPL)

CSV2PUS

CmdGUI

Superv isor (SUV)

Serv ice Interface
(SIF)

Data Management
(DM)

AI Framework (Win)

MATLAB Confidence
Estimation

sensor confidence

csv

status

task
plan csv

rob ctrl

cmd

cmd

rob joints, camera
estimation

raise
event

PUS
rob ctrl

sats pose, AOS, LOS

data

rob ctrl

data
cmd

cmd

Confidence and angle values for Joint 1
f��
U 60 L---1% �

150; ., �
log

5
45 58

Confidence and angle values for Joint 3

� 1���-----------::::::�
u 60 L---

� �

i"
� '6

20 15'0) 0; .,
., 10 �
� log .,
g> i '"

-10 5 '5

-200 10 15 20 25
time[sl

Confidence and angle values for Joint 6

f��
U 60,L---

ro �

60

g;so
'; h..-....-cO:::;::;O---�
g40 '"

30

-70

C>
Q)
�
Q)
0) -90 c
ro

Confidence and angle values for Joint 2

f��
U 60 L---

20
60

�50 150; ., 0> � .,
"0 10 9 "<;'40
0> i" c: � '" 30 5 '6

Confidence and angle values for Joint 5

f��
U 60 L---

� �

15 15'0) 0; .,
., 5 �
� log .,
g> -5 i '" 5 '6

Confidence and angle values for Joint 7
f��
U 60 L---

20 0 20

175
!
"<;, 150
0>
c: '"

20

-11%���5 ���10�� --1� 5�---2�O---��25��--3�0 ��3� 4���40-=�--4� 5--=�

time [5]
Figure 11: Joint angle trajectory for all 7 joints. The confidence (in magenta) with a horizontal line marking 80%
threshold (upper part). The measured joint angle (blue) is depicted together with the estimated (red) and correct

(green) values. The difference between correct and estimated is colored in cyan with a separate scale.

978-[-4799-1622-1115/$31.00 ©20[5 IEEE 10

components into their required state. The SUY reads the
STK and sensor confidence data from the data management
and triggers the MPL upon AOS to plan and initiate the
autonomous satellite capture maneuver. The plan is stored in
the mission timeline and subsequently executed through the
robot control component. For the control of a real robot,
ROB CTRL would interface with the actual hardware via a
robot equipment handler that implements the specific robot
interface, e.g. EtherCA T or SERCOS. In the case of the
demonstrator scenario, ROB _ EQH simply forwards its input
to the STK _ EQH component which sends the planned joint
values of the dexterous manipulator to the orbit simulation
and the AI framework. AOS, LOS and confidence threshold
violation events are triggered by the EQH _ STK and
subsequently processed by the event handler. The SUY as
configured receiver processes these events and acts
accordingly. In the case of unexpected sensor outage or
drift, the autonomous capture maneuver is aborted and an
emergency arm retract maneuver is triggered. In another
scenario, shortly before capture the faulty sensor is ignored
and the estimated value forwarded to the robot control
component.

Demonstration Results

Several pre-planned trajectories for the autonomous target
capture were executed with the robot sensor confidence
analysis in the loop. Table 1 summarizes the mean error and
computation time for multiple options. While larger maps
result in a higher accuracy with a mean error below 2.S
degrees between estimated and true joint angle, the
computational time increased accordingly. The best results
were achieved using maps of the size of SOxSO together with
the method of gradient descent and filtering. Interestingly,
the mean error using gradient descent and filtering is smaller
than the brute force variant, which is due to the interpolation
effect realized by this combination. Although the AI
computation does not comply with the real-time interval of
the robot control, it yields a robust measure of the actuator
sensor health that could be integrated into the control loop.

Table 1: Estimation error and processing time

Map size # of maps method mean mean compo
error ['] time [ms]

brute force 4 .52 1263
50x50 128 -

grad . desc. 3 . 2 1 349

brute force 3 .05 4373
100xlOO 128 -

grad . desc. 2 .46 872

During the capture scenarios, the following types of sensor
fai lures have been investigated. In the case of a hard failure

the sensor stops working at a given time, returning only
zero. This can be due to communication or electrical
problems. A bias failure makes the sensor stuck at its
current value, having a constant output after this time.
Hardware or communication problems can cause this
behavior. Temperature or calibration Issues can cause a

978-1-4799-1622-1115/$31.00 ©2015 IEEE 1 1

sensor drift, which adds a constant term to the output
increasing in time. In the case an outlier failure occurs the
sensor output jumps to a specific value in short peaks. This
can be caused by a poor connection or other electrical
problems. This failure is only a temporary problem, the
sensor continues working properly afterwards.

Figure 1 1 depicts an exemplary plot with the joint angle
trajectory for all seven joints of the manipulator. Several
failures have been introduced in joint 4 during the approach
maneuver. After I Ss, three successive peaks in the measured
signal can be observed, representing a simulated outlier
failure. Those are detected immediately as the confidence
drops below the defined 80% threshold. Furthermore the
estimated angle indicated in red is not influenced by these
failures. A few seconds later starting at t\=24.Ss the joint
experiences a drift failure resulting in a decrease of
confidence, which is finally breaking the threshold 2.9s later
at 12=27.4s. Similar to the peaks, the estimated angle is not
affected, continuously following the correct value of the
joint angle. The confidence of the remaining six joints was
not affected. Further tests with realistic noise both in the
camera estimation and the joint sensors lead to almost no
loss in precision. The offline experiments and conducted
scenarios showed that the SOM AI FDIR approach is a
feasible and robust method for detecting robot sensor
failures during autonomous maneuvers. Moreover, nominal
operation could be continued based on estimated sensor
values. Thus, temporary sensor fluctuation, outliers and
peaks do not lead to an unnecessary abortion of the current
operation, adding robustness to the space-robotic system.
However, the computation time is still relatively high and
has to be optimized in future implementations in order to
minimize the reaction time of the system. The given amount
of data for the chosen method results in approx. 30MB of
memory space, which is a feasible requirement for modem
on-board computers such as the Airbus e.Cube.

6. CONCLUSION AND FUTURE WORK

The presented architecture follows an integrated approach
required for safely operating future robotic spacecraft where
the satellite becomes a space robot. In addition to the robust
and tested core framework, a combination of classic system
FDIR and an advanced AI approach for robot failure
detection were developed and successfully demonstrated.
Together with the frameworks data-centric approach,
event/action mechanisms, mission planning and scheduling,
supervision and control, a high degree of mission autonomy
and failure robustness could be achieved. The AI approach
showed good robustness with respect to joint failure
detection, even if significant sensor noise was present.
Furthermore, estimated sensor values could be used as
replacement for the faulty sensor to be fed into the robot
control system, allowing continuous nominal operation if
appropriate. A significant strength of the presented AI
method is that it can also be trained during the mission. It is
quite flexible and can be quickly adapted to different
hardware properties. The demonstrator showed that the

architecture is a promising candidate for robotic on-orbit
servicing spacecraft.

Further investigations should be made in order to improve
the method in terms of precision and speed. For example,
this can be achieved by adding further information from
redundant sensors. After fully integrating the presented AI
into the on-board framework, it should be further tested with
a hardware-in-the-Ioop (HIL) system, e.g. DLR's DEOS
Sirn facility. Finally, by introducing artificial intelligence
techniques with partly non-deterministic behavior in the
space domain, the development of a suitable verification and
validation process becomes a big challenge with respect to
the current requirements in the space industry. In this
context, it might be a future path to allow a specific but
controlled degree of uncertainty and non-deterministic
behavior while gaining a significant advance in autonomy
capabilities and robustness, especially when it comes to the
operation of complex space robotic systems.

7. ACKNOWLEDGEMENTS

Part of the presented research was funded by the Space
Management of the German Aerospace Center (DLR) with
federal funds from the Federal Ministry of Economics and
Technology in accordance with the parliamentary resolution
of the German Parliament (Grant No. 50RA I I I 0).

REFERENCES

[1] Mohan, S. and D.W. Miller, SPHERES
Reconfigurable Framework and Control System
Design for Autonomous Assembly, in AIAA
Guidance, Navigation, and Control Conference. 2009:
Chicago, USA.

[2] Stoll, E., Jaekel, S., Katz, J., Saenz-Otero, A. and
Varatharajoo, R. (20 12), SPHERES interact-Human
machine interaction aboard the International Space
Station. J. Field Robotics, 29: 554-575. doi:
1 0. 1 002/rob.2 14 19

[3] Diftler MA, Ahlstrom TD, Ambrose RO, Radford NA,
Joyce CA, De La Pena N, Noblitt AL. Robonaut 2 -
Initial Activities On-Board the ISS. 20 12 IEEE
Aerospace Conference, Big Sky, MT. 20 12 : pp. I - 12.
DOl: 1 0. 1 1 09/AER0.20 12.6 187268.

[4] Zacharias, F and Leidner, D and Schmidt, F and Borst,
C and Hirzinger, G (20 l O) Exploiting Structure in
Two-armed Manipulation Tasks for Humanoid Robots.
the IEEE International Conference on Intelligent
Robots and Systems (lROS), Taipei, Taiwan.

[5] Hirzinger, G., et aI., DLR's robotics technologies for
on-orbit servicing. Advanced Robotics, 2004. Special
Issue Service Robots in Space: p. 1 39-1 74.

978-1-4799-1622-1115/$31.00 ©2015 IEEE 12

[6] Biesiadecki, J.J.; Maimone, M.W., "The Mars
Exploration Rover surface mobility flight software
driving ambition, " IEEE Aerospace Conference
(2006), doi: 1 0. 1 1 09/AER0.2006. 1655723

[7] Jaekel, S. et aI., Robust and Modular On-Board
Architecture for Future Robotic Spacecraft, Aerospace
Conference, 20 14 IEEE, Big Sky, MT, USA (March
20 14)

[8] Windsor, J., Hjortnaes, K. : Time and space partitioning
in spacecraft avionics. In: Proc. 3rd IEEE Int. Conf. on
Space Mission Challenges for Information Technology
(SMC-IT 2009). pp. 1 3 {20. Pasadena, CA, USA (Jul
2009)

[9] Rushby, J. : Partitioning in avionics architectures:
Requirements, mechanisms and, assurance. NASA
Contractor Report CR -1 999-20934 7, SRI International,
California, USA (Jun 1 999)

[1 0] Seyer, R., Siemers, c . , Falsett, R., Ecker, K., Richter,
H.: Robust partitioning for reliable real-time systems.
In: Proc. 18th Int. Parallel and Distributed Processing
Symp. pp. 1 1 7 { I22 (Apr 2004)

[1 1] Watkins, c . , Walter, R.: Transitioning from federated
avionics architectures to Integrated Modular Avionics.
In: Proc. 26th IEEE/AIAA Digital Avionics Systems
Conf. (DASC 2007). Dallas, Texas, USA (2007)

[12] AEEC: Avionics application software standard
interface, part 1 - required services. ARINC
Specication 653PI -2 (2006). Part 2 - extended
services. ARINC Specication 653P2-1 (2008)

[13] D. Kum et al : "AUTOSAR migration from eXlstmg
automotive software, " International Conference on
Control, Automation and Systems, ICCA (Oct. 2008)

[14] Hodson, R., Tak Ng, T. : Avionics for exploration. In:
NASA Technology Exchange Conference, Galveston,
TX, USA. (Nov 2007)

[1 5] Wander, T., Forstner, R., Innovative Fault Detection,
Isolation and Recovery Strategies On-Board
Spacecraft: State of the Art and Research Challenges,
German Aerospace Congress (20 12)

[1 6] Henry, D., Sirnani, S. and Patton, R., Fault
Detectionand Diagnosis for Aeronautic and Aerospace
Missions, in Fault tolerant flight control: A benchmark
challenge, Berlin: Springer Verlag, pp. 91-128 (20 l O)

[17] Morgan, P. S., Fault protection techniques in JPL
Spacecraft, in Proceedings of the First International
Forum on Integrated System Health Engineering and
Management in Aerospace, ISHEM (2005)

[18] Olive, X., FDI(R) for satellites: How to deal with high
availability and robustness in the space domain?,
International Journal of Applied Mathematics and
Computer Science, vol. 22, no. 1 , pp. 99-107 (20 12)

[19] Codetta-Raiteri, D. et aI., ARPHA: a software
prototype for fault detection, identification and
recovery in autonomous spacecrafts," Acta Futura, vol.
5, pp. 99-1 l O (20 12)

[20] Space engineering: Spacecraft on-board control
procedures, ECSS-E-ST-70-0 1 C (20 l O)

[2 1] A. Zolghadri, "Advanced model-based FDIR
techniques for aerospace systems: Today challenges
and opportunities," Progress in Aerospace Sciences
(20 12)

[22] Lakey, D. T. et aI., Multi-Mission End-to-End OBCP
Configuration Control, 12th International Conference
on Space Operations, SpaceOps (20 12)

[23] Shafer, G. : A Mathematical Theory of Evidence,
Princeton University Press, Princeton, N.J (1 976)

[24] Muscettola, N., Nayak, P., Pell, B., Wiliams, B. :
Remote Agent: to boldy go where no AI system has
gone before. Artificial Intelligence, vol. l O3, no. 1 -2,
pp. 5-47 (1998)

[25] Meyer, c . , Zakrajsek, J, : Rocket Engine Failure
Detection Using System Identification Techniques. In:
NASA Contractor Report (185259). Sverdrup
Technology, Inc., Lewis Research Center Group,
Brook Park, OH, USA (Jun 1990)

[26] Guo, T., Nurre, J. : Sensor Failure Detection and
Recovery by Neural Networks, National Aeronautics
and Space Administration, Lewis Research Center.
Cleveland, OH, USA (1991)

[27] Tinos, R., Terra, M.: A Fault Detection and Isolation
System for Cooperative Manipulators. In: Revista
Controle & AutomacoIVol. l 9 noAIOutubro (Nov, Dez
2008)

[28] Holsti, N., Paakko, M.: Towards Advanced FDIR
Components. Space Systems Finland Ltd., Espoo, FIN

[29] Wu, Y., Ren, Z., Zeng, Z.: Fault diagnosis method
based on D-S evidence theory. In: Prognostics and
Health Management Conference: PHM ' 1 0 (20 1 0)

[30] Sturm, J., Plagemann, c . , Burgard, W.: Adaptive Body
Scheme Models for Robust Robotic Manipulation.
Albert-Ludwigs- University, Freiburg, Germany

978-1-4799-1622-1115/$31.00 ©2015 IEEE 1 3

[3 1] Falcoz, A., Henry, D., Zolghadri, A. : Robust Fault
Diagnosis for Atmospheric Reentry Vehicles: A Case
Study. Systems, Man and Cybernetics, Part A:
Systems and Humans, IEEE Transactions on, vol. 40,
no. 5, pp. 886-899 (20 1 0)

[32] Patton, R. J., Uppal, F. J., Simani, S., Polle, B. : Robust
FDI applied to thruster faults of a satellite system.
Control Engineering Practice, vol. 18, no.9, pp. 1 093-
1 1 09 (20 1 0)

[33] Schumann, J., Mengshoel, 0 . , Mbaya, T.: Integrated
Software and Sensor Health Management for Small
Spacecraft. In: 4th lEE Int. Conf. on Space Mission
Challenges for Information Technology. (20 1 1)

[34] Serrano, N. : A Bayesian Framework for Landing Site
Selection during Autonomous Spacecraft Descent. In:
IEEE/RSJ: Int. Conf. on Intelligent Robots and
Systems (2006)

[35] Ricks, B., Mengshoel, 0 . : Methods for Probabilistic
Fault Diagnosis: Electrical Power System Case Study.
Silicon Valley Campus, Paper 60 (2009)

[36] Guiotto, A., Martelli, A., Paccagnini, C.: SMART
FDIR: Use of Artificial Intelligence in the
Implementation of a Satellite FDIR. In: Data Systems
in Aerospace (2003)

[37] Ploen, S., Seraji, H., Kinney, c.: Determination of
Spacecraft Landing Footprint for Safe Planetary
Landing. Aerospace and Electronic Systems, IEEE
Transactions on, vol. 45, no. 1 , pp. 3-16 (2009)

[38] Zotes, Z., Pen as, M.: Intelligent satellites control based
on fuzzy logic in the Earth-Moon Libration point. In:
Intelligent Systems and Knowledge Engineering
(lSKE), 20 1 0 Int. Conf. on (20 1 0)

[39] Meskin, N., Khorasani, K. : Fault detection and
isolation: Multi-vehicle unmanned systems. New
York: Springer (20 1 1)

[40] Cayrac, D., Dubois, D., Prade, H. : Handling
uncertainty with possibility theory and fuzzy sets in a
satellite fault diagnosis application: Fuzzy Systems. In:
IEEE Transactions on, Fuzzy Systems, vol. 4, no. 3 ,
pp. 25 1-269 (1996)

[41] Seraji, H., Serrano, N. : A Multisensor Decision Fusion
System for Terrain Safety Assessment. IEEE
Transactions on, vol. 25, no. 1 , pp. 99-lO8 (2009)

[42] Reppa, V., Tzes, A. : Fault Detection based on
Orthotopic Set Membership Identification for Robot
Manipulators. In: Proc. 1 7th IFAC World Congress,
The international Federation of Automatic Control (Jul
2008)

[43] Kohonen, T. : Self-Organizing Maps. Springer Series in
Information Sciences, Vol. 30, Springer, Berlin,
Heidelberg, New York, Third Extended Edition (200 1)

[44] Shin, J-H., Lee, J-1.: Fault Detection and Robust Fault
Recovery Control for Robot Manipulators with
actuator Failures. In: Proc. IEEE Int. Conf. on
Robotics & Automation, (May 1 999)

[45] Fusco, F., Gallerini, R.: European Robotic Arm: The
Problem of Preventing Collisions.

[46] Eng, G.K. : Malay Speech Recognition using Self
Organizing Map and Multilayer Perceptron. In: Proc of
the Postgraduate Annual Research Seminar (2005)

[47] Vesanto, 1. : Clustering of the Self-Organizing Map. In:
IEEE Transactions of Neural Networks, Vol. 1 1 (2000)

[48] Sellmaier, F. et aI., On-orbit Servicing Missions at
DLRlGSOC, in 6 1 st International Astronautical
Congress, Prague, Czech Republic (20 1 0)

[49] Lampariello, R., Hirzinger, G., "Generating Feasible
Trajectories for Autonomous On-Orbit Grasping of
Spinning Debris in a Useful Time", accepted
IEEE/RSJ International Conference on Intelligent
Robots and Systems 20 1 3 (IROS 13), Tokyo, Japan,
November 20 13 .

BIOGRAPHY

Steffen Jaekel studied Mechanical

Engineering and Aerospace

Engineering at Technische Universitdt

Miinchen (TUM) and as a visiting

student at Massachusetts Institute of

Technology (MIT). He received his MS.

degree in 201 1 from TUM Within his

Ph. D research at the German
Aerospace Center (DLR) he currently

works in the field of space robotics with special focus on on

orbit servicing (OOS), failure detection, isolation and

recovery (FDIR) techniques and robust embedded avionics

architectures. Currently, he is actively involved in in
multiple projects supporting the German on-orbit servicing

mission DEOS.

Bastian Scholz studied Aerospace

Computer Science at Julius

Maximilians Universitdt Wiirzburg

(JMUW) and Luled Tekniska

Universitet (LTU). He received his

B.Sc. degree from JMUW in 2010 and

will continue his studies in order to
achieve the degree of MSc. in 2015.
He currently works in the field of

artificial intelligence focused on FDIR methods for space

robotics.

978-1-4799-1622-1115/$31.00 ©2015 IEEE 1 4

