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ABSTRACT:

During the last decades photogrammetric computer vision systems have been well established in scientific and commercial applica-

tions. Especially the increasing affordability of unmanned aerial vehicles (UAVs) in conjunction with automated multi-view processing

pipelines have resulted in an easy way of acquiring spatial data and creating realistic and accurate 3D models. With the use of multi-

copter UAVs, it is possible to record highly overlapping images from almost terrestrial camera positions to oblique and nadir aerial

images due to the ability to navigate slowly, hover and capture images at nearly any possible position. Multi-copter UAVs thus are

bridging the gap between terrestrial and traditional aerial image acquisition and are therefore ideally suited to enable easy and safe data

collection and inspection tasks in complex or hazardous environments. In this paper we present a fully automated processing pipeline

for precise, metric and geo-accurate 3D reconstructions of complex geometries using various imaging platforms. Our workflow allows

for georeferencing of UAV imagery based on GPS-measurements of camera stations from an on-board GPS receiver as well as tie and

control point information. Ground control points (GCPs) are integrated directly in the bundle adjustment to refine the georegistration

and correct for systematic distortions of the image block. We discuss our approach based on three different case studies for applications

in mining and archaeology and present several accuracy related analyses investigating georegistration, camera network configuration

and ground sampling distance. Our approach is furthermore suited for seamlessly matching and integrating images from different view

points and cameras (aerial and terrestrial as well as inside views) into one single reconstruction. Together with aerial images from a

UAV, we are able to enrich 3D models by combining terrestrial images as well inside views of an object by joint image processing to

generate highly detailed, accurate and complete reconstructions.

1 INTRODUCTION

The use of unmanned flying platforms for aerial data acquisi-

tion has increased enormously in recent years. Besides a vari-

ety of commercially sold multirotor- and small fixed-wing air-

craft models, there exists a committed community that designs

and builds a wide variety of do-it-yourself aircraft that find use in

various fields and applications. Typical fields of application reach

from agriculture and environmental monitoring, surveying tasks

for mining, archaeology or architecture as well as inspection and

assessment of objects that are difficult and dangerous to reach for

human operators.

Creating and visualizing realistic and accurate 3D models is be-

coming a central ambition of research in the field of geodetic

data acquisition. Especially photogrammetric methods and im-

age based measurement systems have been increasingly used in

recent years. These systems have become very popular, mainly

due to their inherent flexibility compared to traditional survey-

ing equipment. Photogrammetric methods can be roughly classi-

fied based on the data acquisition strategy into aerial and terres-

trial. Large-scale digital surface models are created from aerial

photographs while terrestrial images are used for detailed object

reconstructions of small and medium-sized close-range objects,

e.g. for architectural and archaeological 3D documentation and

preservation or mapping of quarry walls for blast design in open

pit mining (Moser et al., 2006).

While manned aerial photogrammetry is only economical for

large survey areas due to a high demand on resources, terres-

trial photogrammetry is limited to ground based camera posi-

∗Corresponding author.

tions, thus visibility problems may arise depending on the scene

geometry. Especially in mining or in cultural heritage reconstruc-

tion it is often not possible to access the object due to safety rea-

sons. In this context photogrammetry with Unmanned Aerial Ve-

hicles (UAVs) has recently emerged as a low-cost alternative to

traditional manned surveying as well as to terrestrial photogram-

metry. It helps to overcome geometrical constraints, closes the

gap between aerial and terrestrial photogrammetry and combines

the advantages of both. Multi-copter UAVs in particular, are able

to record highly overlapping images from almost terrestrial cam-

era positions to oblique and nadir aerial images due to the abil-

ity to navigate at very low airspeed, hover and capture images

at nearly any possible position. Low-cost and low-weight UAV

systems equipped with affordable high quality digital consumer-

grade cameras present a considerable potential for close-range

remote data acquisition in various fields of application (Rehak

et al., 2013). Together with an automated multi-view processing

pipeline, 3D reconstructions and dense point clouds from images

can be generated in a more flexible, faster and cheaper way and

can easily compete with point clouds from laser scans (Leberl et

al., 2010).

Fully automated methods for image-based 3D reconstructions

originate in the field of image processing (Hartley and Zisser-

man, 2004) and have now been integrated in many, partly freely

available software packages (e.g. VisualSfM, Acute3D, Pix4D,

Agisoft PhotoScan, PhotoModeler, etc.). These methods are able

to calculate the intrinsic and extrinsic camera parameters as well

as scene structure represented as a (sparse) 3D point cloud from

an unordered set of images. Many of the mentioned 3D vision

methods show increasing robustness and result in high quality
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Figure 1: Automated processing workflow for geo-accurate reconstructions. Top row: Image set, sparse reconstruction, dense point

cloud and triangle-based surface mesh of a quarry wall in open pit mining.

and visually appealing models. However, the model uncertainty

of the reconstructions is not always clear and so they are of-

ten not directly suited for photogrammetric applications. In this

context, we present a user-friendly, fully automated processing

pipeline, able to integrate images taken with different cameras

in one single reconstruction and outputs an accurate georefer-

enced model with absolute geographic position and orientation

and predictable reconstruction accuracy (Figure 1). Automated

processes impose high demands on the quality and on the geo-

metric configuration of the images. Especially complex object

geometries require high overlap and a very dense image network

to guarantee completeness, which cannot be ensured by using ter-

restrial or aerial nadir images exclusively. Only a combination of

terrestrial and aerial viewpoints is able to guarantee completeness

of the model.

We present in this paper a fully automated end-to-end workflow

(Figure 1) to obtain precise and geo-accurate reconstructions es-

pecially for complex environments by the combined use of dif-

ferent camera platforms (aerial and terrestrial as well as inside

views). The following sections outline the workflow of our fully

automated multi-view reconstruction pipeline in more detail and

evaluate how to obtain geo-accurate reconstructions for complex

object geometries with high precision using UAVs in combination

with terrestrial images. In three typical scenarios and datasets on

surveying in open pit mining (Figure 4 and Figure 5) and archae-

ology (Figure 6) we show that highly accurate 3D reconstructions

can be achieved.

2 RECONSTRUCTION PIPELINE

In this section, we describe our fully automated multi-view pro-

cessing pipeline to reconstruct geo-accurate 3D models and cam-

era positions with input images captured with different cameras

at different scales and view points. The reconstruction pipeline

takes pre-calibrated images, groups them according to their in-

trinsic parameters and processes them to generate textured polyg-

onal surface models by performing the following steps:

• feature extraction and matching,

• Structure-from-Motion (SfM) / Aerial Triangulation (AT),

• geo-registration,

• meshing and texturing.

2.1 Structure-from-Motion

Calculation of the exterior camera orientations include feature ex-

traction and feature matching, estimation of relative camera poses

from known point correspondences and incrementally adding

new cameras by resection and computation of 3D object coordi-

nates of the extracted feature points. Camera orientations and 3D

coordinates of the object points are then optimized using bundle

adjustment.

For our method we assume pre-calibrated images, i.e. images

that have already been undistorted together with an initial guess

of the focal length. We use the calibration routine of (Daftry et

al., 2013). We group all input images into subsets sharing the

same camera and focal length in a preprocessing step. The group-

ing and assignment to an initial calibration and focal length is

performed according to meta information from specific tags pro-

vided with the image file (e.g. Exif information in JPEG or TIFF

images), or given by the user.

The first processing step in our pipeline is feature extraction on

every image in all subsets. A variety of methods exist for au-

tomated detection of feature points. The scale-invariant feature

transform (SIFT) (Lowe, 2004) proved to be very robust against

rotation, illumination changes and view point variations and scal-

ing. It is therefore ideally suited to match images automatically

from different view points, i.e. aerial images from a UAV and

terrestrial images as well as inside views of an object taken with

different cameras into one single reconstruction. The only pre-

requisite is that there is overlap between the images showing suf-

ficient texture and salient features that can be matched across the

views. Multi-copter UAVs are very flexible tools and therefore

perfectly suited for the purpose of reconstructing complex ob-

jects, because they are able to navigate very slowly or hover at

any possible position, thus recording images with high overlap

from almost terrestrial camera positions, oblique aerial photos to

traditional nadir looking images. The extracted features for all

images are then stored and further processed.

Matching of the extracted features is performed between all im-

ages and all subsets. Exhaustive comparison of all extracted fea-

tures in an unordered set of images between all possible pairs

requires a lot of computation time and is the most time consum-

ing step in every Structure-from-Motion pipeline. To speed up

the correspondence analysis in large data sets, methods based on

vocabulary trees are applied to achieve a rough pre-selection of

similar image pairs (Nistér and Stewenius, 2006, Sivic and Zis-

serman, 2003). The computation time for feature extraction and

matching can be additionally reduced through the extensive use

of graphics processing hardware (GPUs).

Established feature correspondences between images are then

used to estimate the relative camera orientations between pairs

of images. Geometric verification of the relative camera orienta-

tions is performed using the five-point algorithm (Nistér, 2003)

within a RANSAC loop (Fischler and Bolles, 1981). Once an
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initial image pair is found, new images are incrementally added

to the reconstruction using the three-point algorithm (Haralick et

al., 1991). The relative orientations between cameras can be rep-

resented in a graph structure, the so-called epipolar connectivity

graph. Images in the graph are represented by the nodes and the

relationships between them (based on common feature points and

overlap) are represented by the edges of the graph that correspond

to the relative orientations between cameras.

Camera orientations and triangulated 3D feature points are then

simultaneously refined by minimizing the reprojection error be-

tween the projected 3D point and its corresponding 2D feature

measurement in the image in a bundle adjustment step (Triggs et

al., 2000). Optimization in the bundle adjustment step is carried

out based on Google’s Ceres Solver for non-linear least squares

problems (Agarwal et al., 2012).

2.2 Automatic Georeferencing

Reconstructions created by purely image-based approaches like

the method described here are initially not metric due to the lack

of scale information in the images. A metric scale of the recon-

struction can be accomplished easily for example by one known

distance in the scene. This might be a distance measure between

two distinct points that is also easily recognizable in the digitally

reconstructed 3D model, or a known distance between two cam-

era positions.

However, in surveying applications in general, the absolute po-

sition of object points is important. In addition, we want the

created 3D model stored and displayed in position and orienta-

tion in its specific geographic context. This can be achieved by

a rigid similarity transformation (also 3D Helmert transforma-

tion (Watson, 2006) or 7-parameter transform) of the model into

a desired metric target coordinate system using at least 3 known

non-collinear point correspondences between model points and

points in the reference coordinate system (control points). A

more robust transformation result can be obtained by a larger

number of points and a robust estimation of the transformation

parameters for rotation, translation and scaling. The method of

least squares within a RANSAC loop (Fischler and Bolles, 1981)

improves clearly the registration quality of the model in the pres-

ence of noise and outliers.

2.2.1 Georegistration and GPS Alignment

Flying platforms for aerial data acquisition are often equipped

with a GPS receiver, that allows positioning of the aircraft

in flight, stabilization and, depending on the application au-

tonomous navigation between waypoints. Recording of GPS

data during the flight enables to track and monitor positions

and travelled distances of the UAV. It is then necessary to link

the recorded images to the corresponding position data and use

GPS information for georeferencing. This can be achieved by

synchronized timestamps of the images with the GPS signal.

Several professional products instead offer a direct interface

between on-board GPS receiver and camera to instantly assign

a GPS location to a captured image and store the information

in the meta data of the image file. Recorded information from

inertial sensors may also be available in the meta data, providing

additional information about the orientation of the aircraft at the

time of capturing the image, given by the rotation angles for roll,

pitch and yaw.

Position data stored for each image is now used to metrically

scale the previously calculated reconstruction and to transform

the model into a desired reference system. However, the quality

and accuracy of location data is not sufficient in most cases to

allow an accurate three-dimensional reconstruction and reliable

measurements in the scene solely based on GPS positions and

IMU data. Due to weight restrictions and a maximum payload

depending on the used aircraft, usually very small GPS receivers

are used that allow only limited accuracy, that is typically in the

range of 1-2 meters (Pfeifer et al., 2012). But, the accuracy is

sufficiently high for a rough positioning and metric scaling of the

image-based reconstruction because transformation parameters

can be estimated robustly when using a large number of images.

The more images, and consequently also one GPS position for

each of the images, the more robust the transformation gets. The

accuracy of the absolute positioning of the reconstruction might

be low, but the precision of the metric scaling is high enough, be-

cause relative position errors between GPS positions should get

better distributed and compensated, the larger the number of po-

sition measurements, i.e. the number of images is.

2.2.2 Constrained Bundle Adjustment with GPS and

Ground Control Points

Pure image-based approaches suffer from systematic errors.

We experienced that especially for a few datasets showing long

elongated, large-scale scenes our pipeline resulted in large errors

up to a few meters due to a deformation of the whole image block

introduced in the bundle adjustment. Depending on the control

point locations from the georegistration step, the errors drift away

from those fixed points and cause this ”bending”-effect shown in

Figure 2 and 3. Observed camera block deformations are very

often caused by incorrectly estimated radial distortion parameters

of the camera. As a consequence the reprojections of 3D points

onto the image plane are not correct and thus cause wrong error

measures in the bundle adjustment process. Furthermore, the

reprojection error as the sole evaluated error measure has impact

on many independent parameters (3D positions of the object

points as well as intrinsic and extrinsic camera parameters).

Errors can be passed back and forth during the optimization and

camera positions may undergo large changes.

Figure 2: Illustration of the ”bending”-effect (top). Camera po-

sitions and 3D points drift away from fixed control points due

to systematic errors. The surveying area in this example has an

extent of about 2.1 × 0.6 kilometers. Images were taken with

a senseFly eBee fixed-wing drone at a constant flying height of

85 meters above ground level. Errors caused by the bending in

this dataset resulted in positional shifts of 3D points and camera

positions of up to 8 meters in altitude from their measured GPS

position (bottom).

These systematic errors causing a deformation of the image block

can be avoided by either a more accurate initial camera calibra-

tion or by adding external constraints in the bundle adjustment.

For photogrammetric applications, we therefore use (roughly)

known GPS positions of the cameras determined by an on-board

GPS receiver and fixed control points to allow for camera self-

calibration within the optimization.

Georegistration of the reconstruction as described in the previ-

ous subsection alone does not solve this issue. The model de-

formations are still present due to the shape-preserving character

of the transformation. Instead, after rough georegistration and

GPS-alignment, we use known GPS locations of the images in

the bundle adjustment to constrain the positions of the cameras

and to reduce an initial distortion of the image block. We do
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Figure 3: Results of the photogrammetric reconstruction without (left) and with additional GPS positions in the bundle adjustment

(right). The direct comparison shows the reduction of the initially clearly visible distortion of image block and object points.

that by calculating the deviations of the calculated camera posi-

tions from the Structure-from-Motion result and penalize in the

optimization step the deviation to their measured GPS positions.

The influence of the deviation between the measured position is

weighted by a Huber-error function (Huber, 1964). The camera

positions can move only within a certain range around their mea-

sured positions and thus, are softly linked to their measured GPS

positions. This leads to smaller residuals on the one hand, and

on the other a direct transition from the model coordinate system

into a desired geographic reference system can be accomplished

simultaneously.

In addition, ground control points (GCPs) may also be used to

correct distortions or a small geographic misalignment of the

model and to tie the reconstruction to a certain geographic po-

sition. Besides camera positions and 3D points we therefore use

the GCPs also for self-calibration in the bundle adjustment step

and optimize common intrinsic camera and distortion parameters

for each camera group.

GCPs signal points that are usually easily recognizable natural

or artificial landmarks in the scene. Their position is known and

for example determined by means of conventional survey meth-

ods or DGPS (Differential Global Positioning System) with high

accuracy. For this purpose, the bundle adjustment is extended to

the use of control points and their corresponding image measure-

ments. The additional information can be seamlessly integrated

into the reconstruction process. The reprojection error between

the image measurements and projected control points is addition-

ally weighted and penalized in the bundle adjustment in a similar

way to the mass of natural features obtained by the SIFT keypoint

detector. Important in this case is an appropriate weighting of the

residual reprojection errors of the GCPs compared to the SIFT-

generated points. Usually, low number of GCPs (around a couple

of dozen) is confronted with a large number of natural feature

points (hundreds of thousands or millions of points).

Integrating both mechanisms (using ground control points and

GPS positions of the cameras) distributes the residual errors

equally over all cameras and object points and allows for 3D re-

constructions with very low geometric distortions. Furthermore,

in the case of regular camera networks we experience that an ad-

ditional cross flight and images taken at different distances to the

object help to stabilize the intrinsic camera parameters. 2D im-

age measurements, feature matches across overlapping images

and triangulated 3D points are then better constrained. This leads

to a more robust self-calibration result and furthermore to a more

stable image block and increased point position accuracy even for

very large, elongated surveying areas (Figure 2 and 3).

2.3 Surface Reconstruction and Texturing

The results of the previous steps so far are the external orien-

tations of the cameras, optimized intrinsic camera parameters

and a 3D point cloud from triangulated object feature points.

Stereo (Hirschmueller, 2005) or multi-view methods (Irschara et

al., 2012, Furukawa and Ponce, 2009) are common approaches

to densify the initial point cloud and to increase the number of

3D points. For better visualization, we generate a closed surface

model from the point cloud using a method described in (Labatut

et al., 2007) based on 3D Delaunay triangulation and graph cuts.

The method produces watertight triangle meshes from unstruc-

tured point clouds very robustly even in the presence of noise and

gross outliers in the raw 3D sample points. The meshes can then

be textured (Waechter et al., 2014) from the input images to gen-

erate a photorealistic representation of the scene.

3 DATA ACQUISITION

To evaluate the presented workflow and the achieved accuracy,

several image flights were carried out to record datasets typical

for mining and archaeological applications.

For our investigations we chose different test sites: One is located

at the ”Styrian Erzberg”, another one is a small gravel pit situated

in Upper Austria and we recorded an archaeological excavation

in Turkey as well. The first two sites are equipped with a dense

network of ground truth points to assess the quality of reconstruc-

tion by a point-wise comparison.

Point signalling is mainly done with binary coded, individually

identifiable fiducial markers (Rumpler et al., 2014) printed on

durable weather proof plastic foil. In addition non coded, red

circular targets are used to densify the reference network in cer-

tain parts. Different subsets of the points are then used as ground

control points (GCPs) for automated georeferencing, and others

are used as check points (CPs) to evaluate the achieved accuracy.

All reference points were conventionally surveyed using a Trim-

ble S6 total station with an average precision of 10 mm for 3D

point surveying without prism.

We used different platforms and cameras to acquire each of the

datasets. One is a Falcon 8 octocopter by AscTec, equipped with

a Sony NEX-5N digital system camera. The second flying plat-

form is a senseFly eBee, a small fixed-wing UAV with a Canon

IXUS 127HS compact camera. The main advantages of multi-

copters are its flexibility, the ability to fly at very low airspeed

to record datasets with high overlap, hover and observe objects

from any possible position, even very close to an object to cap-

ture images at a very high level of detail. The fixed-wing UAV,

however, is able to fly and survey large areas in short time with

certain details not been detected due to the in general larger fly-

ing altitude and higher airspeed. In addition we use a Canon EOS

5D full-frame digital SLR and a consumer-grade Panasonic com-

pact camera for terrestrial images in areas, where highly detailed

results or views from the inside of the object are required or an

airborne mission cannot be performed. A compiled summary of

camera specifications for detailed information on the cameras and

sensors used is given in Table 1.

To guarantee a certain accuracy, a desired image overlap and min-

imum ground sampling distance has to be defined beforehand.
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Based on Equation 1 and 2 for nadir image acquisition in aerial

photogrammetry,

PixelSize =
SensorWidth [mm]

ImageWidth [px]
, (1)

GSD =
PixelSize [mm

px
] ∗ ElevationAboveGround [m]

FocalLength [mm]
,

(2)

we estimate a maximum flying height above ground and imaging

distance to the object, respectively. To enable analysis of which

parameters influence the reconstruction accuracy we oversample

the scenes and record images with about 90% overlap in previ-

ously defined distances and heights from the object.

Apart from the imaging distance, the baseline between particu-

lar cameras has a strong influence on the triangulation geometry

and ray intersection. Especially for the canonical stereo configu-

ration with parallel optical axes, the distance to baseline ratio is

a good parameter to quantify the quality of a camera network.

Small baselines lead to small triangulation angles and to high

depth uncertainty. But to enable feature matching, high image

overlap and intersection angles below 30◦ are optimal (Zeisl et

al., 2009).

3.1 Styrian Erzberg

The Styrian Erzberg is the biggest iron ore open pit mine in cen-

tral Europe. Our test site represents one quarry wall, which is

about 24 m high and 100 m long with the typical geometry of

an open pit hard rock mine. It is equipped with 129 reference

points with known ground truth positions. 45 are realized as fidu-

cial markers on the top and bottom of the wall and on the ad-

jacent benches and are used as temporary GCPs. Additionally,

the wall is equipped with 84 circular targets, which are used to

evaluate the reconstruction accuracy. This dense network (see

Figure 4) enables an extensive evaluation of accuracy and allows

us to quantify systematic deformations of the image block and

reconstructed 3D geometry.

Figure 4: The reference point network allows an extensive ac-

curacy evaluation. Markers (right) indicating GCP positions are

shown in green, circular targets (left) for quantitative evaluation

are in red.

Due to complex geometry and steep slopes at the test site, we used

the AscTec Falcon 8 octocopter for image acquisition. Using the

octocopter we were able to approach and hold any possible cam-

era position, enabling the opportunity to acquire images under

stable conditions for our further investigations. All together 850

images were recorded in different flying altitudes, view angles

and distances to the object with a mean GSD of 1.5 cm.

3.2 Gravel Pit

Our second test site is a small gravel pit situated in Upper Aus-

tria. As shown in Figure 5 the scene includes the actual pit as

well as the surroundings and covers an area of about 0.43 km2.

Reference points are temporarily signalled in the same manner as

described for the Erzberg dataset and are evenly distributed over

the whole site. 27 control points are realized as fiducial markers

and 19 as red circular targets. Additionally a small part of the pit

was scanned at high level of detail (4 points per m2) using the

autonomous scan function of a Trimble S6 total station.

Figure 5: Colored model of a gravel pit with surroundings.

Images were recorded using a senseFly eBee fixed-wing UAV in

different flying altitudes (75, 100 and 140 m). Due to camera

specifications and higher elevation above ground the mean GSD

is about 3.5 cm in this test scenario. The dataset consists of 533

images in total with an overlap within each altitude held constant

at 70%. The resulting 3D model (Figure 5) includes more than

400 million points and represents the scene at a level of detail not

achievable with manual surveying methods.

3.3 Turkey

Our last test site is an archeological excavation in Turkey. The site

shows complex geometry with arches, partly collapsed chambers

and walls. We used an AscTec Falcon 8 for aerial image acqui-

sition, together with terrestrial images in areas which could not

be observed from the air (Figure 6). The terrestrial images were

Figure 6: Image acquisition with an AscTec Falcon 8 octocopter

for archaeological site documentation and reconstruction.

recorded from the inside and outside of the object with a Canon

EOS 5D DSLR with a 24 mm wide angle lens for high resolution

terrestrial images and a small consumer-grade Panasonic DMC-

TZ22 zoom camera.

We took 5.014 images within four days in total with all three

cameras, giving 38.4 GB of raw image data. Aerial images were

captures in a classic raster flight pattern with cross flights in two

different heights (40 and 90 meters above ground with mini-

mum overlap of about 80%) and in a hemisphere flight around

the object with tilted camera to ensure enough overlap with ter-

restrial images for automated matching. We were able to align

4.722 images fully automatic into one single reconstruction of

the site. Seven markers as ground control points were used to

georeference the model. An overview image of the reconstruc-

tion together with detail views of the object are presented in Fig-

ure 7.

4 EVALUATION AND RESULTS

In this section we analyze the performance of the presented work-

flow. For photogrammetric applications the accuracy of recon-

structed object points is of prime interest. Thus we perform
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Platform Camera Sensor type Sensor dimensions Resolution Focal length Pixel size

AscTec Falcon 8 Sony NEX-5N APS-C CMOS 23.4× 15.6mm 4912× 3264 24mm 4.76µm
senseFly eBee Canon IXUS 127HS 1/2.3" CMOS 6.16× 4.62mm 4608× 3456 24mm 1.35µm

Terrestrial Canon EOS 5D full-frame CMOS 36.0× 24.0mm 4368× 2912 24mm 8.24µm
Terrestrial Panasonic DMC-TZ22 1/2.3" CMOS 6.2× 4.6mm 4320× 3240 24mm 1.44µm

Table 1: Camera and sensor specifications.

Figure 7: Rendered views from an automatically reconstructed

and textured 3D model of an archaeological excavation site in

Turkey, obtained from 4.722 terrestrial and aerial images cap-

tured with 3 different cameras from the air and from the ground.

a point-wise comparison of reconstructed object points to cor-

responding, clearly identifiable 3D reference point coordinates

as already described in section 3. We investigate what are the

relevant parameters determining accuracy in general and try to

answer the following questions: How does accuracy increase

with the use of external information in the reconstruction process

given by ground control points and, how many control points are

necessary to achieve satisfactory results with respect to absolute

position accuracy and how should they be distributed.

Figure 8 shows the absolute point error for each check point of

the Erzberg dataset, where a mean accuracy of less than 2.5 cm is

reached using all 850 images and GCP constrained bundle adjust-

ment. For the gravel pit dataset an overall accuracy of 14 cm can

be achieved, primarily due to a higher flying altitude, a different

camera with lower resolution (see Table 1) and different camera

network.

Figure 8: Using all 850 images and all available GCPs in the

constrained bundle adjustment, a mean measurement uncertainty

of 2.45 cm is reached (Rumpler et al., 2014).

For a better understanding of block stability and accuracy we in-

vestigate in the following relevant parameters influencing the re-

construction quality. For this purpose, a high oversampling of the

scene was performed, as already described in section 3. Param-

eters with large impact on accuracy are, besides image overlap

and triangulation angle, foremost the ground sampling distance

determined by image resolution and imaging distance to the ob-

ject and the distance to baseline ratio given by the camera net-

work. In order to quantify the influence of these parameters and

to give guidelines for image acquisition, a systematic parameter

analysis is carried out based on different subsets of the previously

described datasets.

4.1 Georegistration

One of the most important and critical steps with respect to the

absolute position accuracy in the presented workflow is georeg-

istration. Because of the fact that results of a Structure-from-

Motion pipeline are initially in a local euclidian coordinate sys-

tem, georegistration or at least scaling has to be done everytime,

regardless of how images are recorded. As already mentioned,

accurate georegistration is possible by integrating GCPs in the

bundle adjustment. The number of points and their spatial distri-

bution within the scene strongly affects the achievable accuracy.

Figure 9 clearly shows that the error decreases with an increasing

number of GCPs, but it is also apparent that even a small num-

ber of seven or eight GCPs is sufficient to get good results. In

our three case studies adding more GCPs does not necessarily

improve the result with respect to the overall accuracy.

Figure 9: The best overall accuracy can be reached with 7 or 8

GCPs. A higher number is not necessarily needed for accuracy

reasons.

Regarding the spatial distribution, the GCPs should be evenly dis-

tributed over the whole scene, especially concerning the height-

component. Height tie points are at least as important as control

points of position. If for example all GCPs are along one row sys-

tematic deformations can be observed, because the reconstruction

can tilt around that axis. Moreover, in contrast to traditional bun-

dle adjustment approaches (Kraus, 1994), control points should

be situated not entirely at the boundaries of the scene, because of

less image coverage and a weak triangulation network. To guar-

antee a desired accuracy the used ground control point should be

robustly detected in at least 10 images.

Our investigations also show that georeferencing using GPS in-

formation of the aircraft exlusively without any additional posi-

tion constraints is not sufficient for surveying tasks with respect

to the absolute pose of the reconstruction. Indeed, integrating a

large number of camera positions in the reconstruction process

mitigates systematic deformations of the image block and might

result in highly precise metric scaling, but it is not possible to

achieve absolute position accuracies below the meter range due

to the high uncertainty of the small on-board GPS sensors on

UAVs.
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4.2 Number of Observations

(Rumpler et al., 2011) shows in a synthetic simulation on a reg-

ular aerial flight pattern that accuracy increases with a higher

number of image measurements and with increasing triangula-

tion angles. Figure 10 derived from the Erzberg dataset including

oblique views shows as well, that the mean object point error

decreases with increasing total number of images used for the re-

construction. But it is also obvious, that there is a fast saturation

in accuracy improvement within larger datasets.

Figure 10: Error curve for different image subsets. With increas-

ing total number of images used for the reconstruction, the mean

point error decreases.

Thus, a higher number of images in the dataset leads to an ac-

curacy improvement, but considering the number of image mea-

surements per reference point does not necessarily reduce the er-

ror, as already shown in (Rumpler et al., 2014). In contradiction

to synthetic results of (Rumpler et al., 2011), it is not possible to

exemplify the achievable accuracy alone on the number of used

images or observations for unordered and oblique datasets. The

changing camera configuration influences feature matching, tri-

angulation angle and ray intersection geometry, and from this we

argue, opposing to (Fraser, 1996), that not every additional image

measurement necessarily leads to an improvement in accuracy in

practice with real world image data.

4.3 Camera Network and Resolution

We have shown that the influence of geometric configuration

of the multi-view camera network on the resulting accuracy is

higher than the influence of redundancy in image acquisition. In

this section we present further investigations on the influence of

camera network and resolution and compare a terrestrial dataset

with different aerial networks for the Erzberg scene.

The ground sampling distance, or resolution respectively, has a

strong influence on the achievable accuracy. The uncertainty of a

point in 3D increases with increasing distance to the camera, thus

images that are further away introduce larger errors. First, this is

because of lower ground sampling distance, and thus, lower level

of detail in the images. Secondly, the influence of localization er-

rors on the reconstruction uncertainty increases with point depth.

Image noise is approximately constant for all images, however,

the resulting positional error increases with larger distances due

to a larger angular error due to smaller triangulation angles (cp.

Equation 3 with b being the baseline, f the focal length, d the

disparity and z the the point depth.).

ǫz ≈

bf

d
−

bf

d+ ǫd
≈

z2

bf
, (3)

Figure 11 shows the mean error for all targets of the Erzberg dat-

set with respect to the different subsets. It clearly shows that the

viewing angle has to be carefully adapted to the object geom-

etry. Using exclusively vertical images, the steep wall is shad-

owed and the mean error increases to 17.1 cm. The smallest er-

ror is achieved using a combination of different views (vertical,

horizontal and oblique), which is only possible by using a multi-

copter UAV. Because of the adjustable camera angle and low air-

speed, images can be always optimally adapted with respect to

the surface geometry and a high overlap and level of detail can be

achieved easily.

Figure 11: Adjustable camera angle, low airspeed and high image

overlap using a multi-rotor UAV for image acquisition enables

optimal results.

It is apparent that pure terrestrial photogrammetric systems are

not that flexible compared to data acquisition with UAVs. Due to

imaging positions bound to ground level it is mostly not possi-

ble to observe the object completely or from a certain distance or

view point, due to geometric or safety reasons, especially in haz-

ardous environments. The combination of different distances and

image resolutions also affects the achievable accuracy positively.

Images taken further away mitigate the error propagation within

the first row, they help connecting the camera network over longer

tracks and the image block is stabilized. In general, flying at dif-

ferent altitudes is a common approach in airborne photogramme-

try, to optimize the intrinsic camera parameters, which further-

more also results in better reconstruction accuracy. We advocate

the joint processing of views from different view points and espe-

cially to combine various platforms, aerial as well as terrestrial,

which can considerably enhance the quality of the reconstruction

and completeness of the model. We recommend the usage of

multi-rotor UAVs for a flexible way of creating highly accurate

reconstructions of complex geometries.

5 CONCLUSION

We presented an automated image-based reconstruction work-

flow to generate detailed and geo-accurate 3D models of com-

plex scenes from unordered multi-view datasets, captured with

different aerial imaging platforms and multiple terrestrial cam-

eras. In two typical scenarios in open pit mining and one dataset

from an archeological excavation we demonstrated that our sys-

tem produces highly accurate and complete models of the scene,

integrating aerial and terrestrial views into one single reconstruc-

tion. Low and equally distributed mean point position errors are

achieved when integrating additional external constraints (ground

control points and measured GPS positions of image locations)

in the bundle adjustment to avoid systematic deformations and

bending of the reconstruction due to an initially inaccurate cam-

era calibration.

We showed that one of the most prominent parameters strongly

impacting accuracy is, besides image overlap given by the cam-

era network, foremost the ground sampling distance determined

by image resolution and imaging distance to the object. Images
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taken further away cause larger errors, but when using only im-

ages taken from a very close view point to the object, the recon-

struction is more affected by drift and distortions. Combining im-

ages taken at different distances, view points and viewing angles

stabilizes the image block and mitigates the error propagation.

We suggest a combined use of different imaging platforms, espe-

cially for complex geometries and advocate the joint processing

of aerial and terrestrial views to enhance the quality and com-

pleteness of the reconstruction.

Although many investigations and concepts discussed in this pa-

per including bundle block adjustment approaches, camera self-

calibration or optimal distribution of control points are well

known in photogrammetric literature for decades, we presented a

best practice example for different use cases, engineered to state-

of-the-art performance.

We are able to directly and seamlessly integrate various cameras

and view points into one single photogrammetric reconstruction

process, as long as sufficient overlap between the different image

subsets can be ensured. Especially the use of multi-copter UAVs

enables the recording of highly overlapping image datasets due

to the ability to navigate at very low airspeed, hover and cap-

ture images at nearly any possible position. These aircrafts close

the gap between terrestrial close range and aerial photogramme-

try and are therefore flexible enough and ideally suited to enable

easy and safe data acquisition in complex or hazardous environ-

ments.
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