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We present a comparative, theoretical study of the doping dependence of the critical temperature
TC of the ferromagnetic insulator-metal transitions in Gd-doped and O-deficient EuO, respectively.
The strong TC enhancement in Eu1−xGdxO is due to Kondo-like spin fluctuations on the Gd sites,
which are absent in EuO1−x. Moreover, we find that the TC saturation in Eu1−xGdxO for large
x is due to a reduced activation of dopant electrons into the conduction band, in agreement with
experiments, rather than antiferromagnetic long-range contributions of the RKKY interaction. The
results shed light on possibilities for further increasing TC .

PACS numbers: 71.30.+h, 75.20.Hr, 75.30.–m, 75.50.Pp

I. INTRODUCTION

The demand for ever increasing speed and integrabil-
ity of magnetic information storage devices as well as
other spintronics applications calls for materials that are
capable of transforming electronic or optical signals ef-
ficiently into magnetization and vice versa. Electron-
doped europium monoxide (EuO) is a promising candi-
date for this purpose, as it undergoes a simultaneous fer-
romagnetic (FM) and insulator-to-semimetal transition
[1], exhibiting an outstanding magneto-electric response,
including the strongest colossal magnetoresistance effect
known [2,3], magneto-optical effects [4–7], and a spin po-
larization of the conduction band of nearly 100 % in the
FM state [8,9]. Improved sample fabrication techniques
[10,11] and europium monoxide’s epitaxial integrability
into Si [9] and GaAs [12] structures have renewed and
intensified the interest in this material during the past
few years.

Stoichiometric EuO is a wide band gap semiconductor
with rocksalt structure. The local magnetic moments of
m = 7/2 µB situated in the Eu 4f shell constitute a pro-
totype Heisenberg ferromagnet, ordering ferromagneti-
cally at the Curie temperature of TC = 69 K. Their inter-
action is mediated by virtual excitations (hybridization)
of the tightly bound Eu 4f electrons into the spatially
more extended Eu 5d orbitals and an exchange between
the latter [13]. Upon electron doping the FM transition
is accompanied by a simultaneous insulator-to-semimetal
transition with a resistivity drop by 8 to 13 orders of
magnitude [8,14,15]. Raising the transition temperature
significantly is one of the major challenges involved in
bringing the extraordinary properties of doped EuO to
technological use.

Since early on, the general trend of TC being increased
by electron-doping has been associated with the forma-
tion of magnetic polarons [16,17], i.e., conduction elec-
trons dragging along a magnetic polarization cloud of
local Eu 4f moments. However, the experiments re-
veal more complex behavior. Gadolinium doping re-

places Eu by Gd atoms, leaving the lattice of magnetic
4f moments intact and donating one additional elec-
tron per Gd atom from the Gd 5d shell. In the doped
material, Eu1−xGdxO, TC increases to values between
120 K and 170 K for Gd concentrations in the range
of x = 0.04, . . . , 0.08 [5,18–22], depending on the sam-
ple quality, strain, and measurement conditions [22]. In-
variably, TC saturates for higher x. Oxygen defects in-
troduce two electrons per O defect, but only a weak
TC increase has been observed in bulk, Eu-rich EuO1−x

[2,3,14,15,23,24]. The TC increase reported in Ref. [25]
for EuO1−x may presumably be attributed [22] to the
presence of a large external magnetic field inherently nec-
essary for the SQUID measurement technique used.

The magnetic polaron theory alone cannot account
for the TC saturation at high Gd concentration nor for
the fact that O defects essentially do not raise TC , even
though they introduce twice as many carriers per impu-
rity as Gd doping. It has been proposed [26,27] that the
TC saturation might be understood in that, for increasing
conduction-band filling, the oscillatory RKKY interac-
tion [28–30] acquires increasingly antiferromagnetic (AF)
contributions due to the decreasing RKKY wavelength.
This requires, however, unrealistically high band filling.
On the other hand, Hall resistivity measurements indi-
cate [20] that the density of mobile charge carriers acti-
vated into the conduction band saturates in line with the
TC saturation, providing a phenomenological reason for
the limited TC increase in Eu1−xGdxO. In theoretical cal-
culations, treating the O vacancies in a static approxima-
tion, Sinjukow and Nolting [31] found no increase of TC in
EuO1−x for an appropriate choice of system parameters.
More sophisticated resummation techniques for the Gd
impurity potential in Eu1−xGdxO were able to correctly
describe a shallow maximum of TC as a function of Gd
concentration [32], but not the saturation of the mobile
charge carrier density [20. Recent ab initio calculations
[27,33] provided more quantitative results on the coupling
parameters and spectral densities, but did not lead to
a consistent understanding of all the experimental facts
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described above. Taking the local spin fluctuations on
Gd impurities into account, Arnold and Kroha [34] could
explain details of the magnetization behavior, the simul-
taneity of the insulator-semimetal transition and the TC

increase in Eu1−xGdxO.
In this paper we report a comprehensive, theoretical

study of the TC enhancement in electron-doped EuO, ex-
tending the model of Ref. [34]. Gd impurities as well as
O defects are treated dynamically as Anderson impuri-
ties hybridizing with the conduction band, however with
strong or moderate on-site repulsion, respectively, ensur-
ing the single or double occupancy of the Gd impurity
or O vacancy orbitals. The direct comparison of the two
cases shows that indeed the TC increase with Gd dop-
ing is caused by the Kondo-like spin fluctuations on the
Gd sites and the concatenated accumulation of impurity
spectral weight as well as conduction electron spectral
weight at the chemical potential. This dynamical many-
body effect drives the metallic transition, which, in turn,
enhances the polaronic FM coupling between the Eu mo-
ments. By contrast, on O vacancies the two defect elec-
trons form a spin-singlet, and local spin fluctuations are
absent, leading only to a moderate TC enhancement due
to a weak population of the conduction band. Moreover,
the theory explains that in Eu1−xGdxO the activation of
charge carriers into the conduction band decreases with
increasing doping concentration, in agreement with ex-
periments [20], leading to the saturation of TC . Includ-
ing explicitly the RKKY interaction in our theory, we find
that for all relevant temperatures T and doping concen-
trations (band fillings) its long-distance AF contributions
are negligible.

The paper is organized as follows. In Sec. II, we give
a detailed justification of our model for Eu1−xGdxO and
EuO1−x and describe the theory for its evaluation. The
results are shown and discussed in Sec. III. We conclude
in Sec. IV with a suggestion for a possible pathway to
further enhance the transition temperature in electron-
doped EuO.

II. THEORY

A. Model

The model Hamiltonian for Eu1−xGdxO as well as
EuO1−x reads,

H = H0 +Hcf +Himp . (1)

The conduction band, comprised of the hybridizing Eu
5d 6s orbitals, is described by

H0 =
∑

kσ

(εk − µ)c†
kσckσ , (2)

where c†
kσ is the conduction electron creation operator

and εk the conduction band dispersion. µ is the chemical
potential that fixes the total electron number (conduction

and impurity electrons). In undoped EuO, µ lies in the
gap below the conduction band. The lattice of Eu 4f
moments is described by a Heisenberg Hamiltonian and
a local coupling term between the Eu 4f moments and
the conduction electron spins,

Hcf = −
∑

〈i,j〉

JijSi · Sj − Jcf
∑

i

σi · Si . (3)

Here, Si is the 4f spin, mS = −7/2, . . . ,+7/2, and

σi =
1
2

∑

σσ′ c
†
iστ σσ′ciσ′ is the conduction electron spin

operator at site i. Jij > 0 is the direct exchange coupling
between the localized moments which is independent of
the conduction band occupation and therefore responsi-
ble for the Curie temperature of 69K in stoichiometric
EuO. Jcf is the exchange coupling between the 4f mo-
ment and the conduction electron spin σi at lattice site i.
The Gd impurities and O vacancies are described as An-
derson impurities with a single electron binding energy
Ed < 0 and a hybridization with the conduction band,
V ,

Hcd = (Ed − µ)
∑

{j}σ

d†jσdjσ (4)

+ V
∑

{j}σ

(

c†jσdjσ + d†jσcjσ
)

+ U
∑

{j}

d†j↑dj↑d
†
j↓dj↓ ,

where d†jσ is the electron creation operator in an impurity

or defect orbital at site j and {j} indicates a summation
over the randomly placed impurity sites. In the following
we will use the term impurity for both, Gd impurities
and O vacancies, unless stated otherwise. The impurity
number density will be denoted by nI . Gd carries one
extra electron in the 5d shell as compared to Eu. Hence,
Gd is in the strongly correlated regime with a strong
onsite repulsion U preventing double occupancy. Due to
stoichiometry, an O vacancy attracts two extra electrons
from the surrounding metal ions. Therefore, it is in the
weakly correlated regime, with double occupancy in the
ground state, i.e., a moderate onsite repulsion 0 < U ≪
|Ed|. The model, Eqs. (1)–(4), inherently incorporates
the RKKY interaction [28–30] via 2nd-order, non-local
perturbation theory in Jcf . Since, apart from RKKY
effects, only local self-energies will be important for the
following treatment of this paper, we here include the
RKKY Hamiltonian explicitly,

HRKKY =−
∑

(i6=j)

[

K
||
ij S

z
i S

z
j +K⊥

ij

(

Sx
i S

x
j + Sy

i S
y
j

)

]

. (5)

It is to be amended to the model Hamiltonian (1). A rec-
ollection of its derivation and the expressions for the cou-
pling constants are given in Appendix A, see Eqs. (A8),
(A9).

B. Selfconsistent theory

To evaluate this model, we follow and extend Ref. [34].
While the large spins of the 4f Heisenberg lattice can



3

0

0.05

0.1

0.15

0.2

0.25

0.3
A

cσ
(ω

)
T = 5 K
T = 50 K
T = 80 K
T = 100 K

σ = 

σ = 

Eu
1-x

Gd
x
O

-0.06 -0.04 -0.02 0 0.02 0.04
ω / D

0

0

50

100

A
dσ

(ω
)

T = 5 K
T = 50 K
T = 80 K
T = 100 K σ = σ =

FIG. 1: (Color online) Conduction band (upper panel) and
Gd impurity (lower panel) spectral density across the phase
transition in Eu1−xGdxO for x = 0.01. TC ≈ 95 K. Solid
curves represent the majority (σ =↑) and dashed curves the
minority (σ =↓) spin spectral density.

be treated in mean-field theory, it is essential to de-
scribe the Anderson impurities dynamically, in order to
account for their spin and charge fluctuations. The con-
duction electron selfenergy induced by the impurities will
be treated in a single-site approximation, i.e. it is given
by the full impurity T matrix times the impurity con-
centration nI . This is valid for dilute impurities, where
inter-impurity correlations are negligible. Writing the
(retarded, ω ≡ ω+ i0) conduction electron Green’s func-
tion as,

Gcσ(k, ω) =
1

ω + µ− εk − Σcσ(ω)
(6)

yields for the total conduction selfenergy,

Σcσ(ω) = nIV
2Gdσ(ω)− σJcf 〈S〉 , σ = ±

1

2
, (7)

where Gdσ(ω) is the full Green’s function of the impurity
electrons. The expectation value of the 4f spins is de-
termined in mean-field theory by (with β = 1/kBT , the
inverse temperature),

〈S〉 =

∑

7

2

S=− 7

2

Seβ(2J4f 〈S〉+Jcf〈σ〉)S

∑
7

2

S=− 7

2

eβ(2J4f 〈S〉+Jcf〈σ〉)S
, (8)

Here, the conduction electron magnetization 〈σ〉 is cal-
culated as,

〈σ〉 =
1

2

∫

dωf(ω) [Ac↑(ω)−Ac↓(ω)] , (9)

with Acσ(ω) = − 1
π

∑

k
ImGcσ(k, ω + i0) the spin-

dependent, interacting conduction electron density of
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FIG. 2: (Color online) Conduction band (upper panel) and O
vacancy (lower panel) spectral density across the phase tran-
sition in EuO1−x for x = 0.01. The bare O-defect parameters
are Ed = 0.0D0, U = 0 (double occupancy). TC ≈ 78 K.
Solid curves represent the majority (σ =↑) and dashed curves
the minority (σ =↓) spin spectral density.

states (DOS). J4f =
∑

j J0j is the effective mean-field
coupling of the Heisenberg lattice. The short-range
nature of Jij restricts the lattice summation essentially
to the nearest neighbors of site i = 0. The mag-
netic polaron effect [16,17] is incorporated in Eq. (8)
via the conduction electron magnetization 〈σ〉. For
later use, the conduction carrier density is given by,
nc =

∑

σ

∫

dωf(ω)Acσ(ω). The calculation of the local
impurity Green’s function Gdσ(ω) depends on whether
the impurity is in the strongly (Gd impurities) or the
weakly (O vacancies) correlated regime.

a. Gd impurities. We employ the auxiliary particle
technique in non-crossing approximation [35–37] to de-
scribe the spin and charge fluctuations in the Gd 5d or-
bitals. The limit U → ∞ is taken, for simplicity, in order
to prevent double occupancy. Since in Eu1−xGdxO the
DOS near the chemical potential is low or even vanishing,
the Kondo temperature of the fluctuating spin, TK , is far
below TC . The NCA is known to give reliable results for
energies above and down to somewhat below TK . In a
magnetic field it produces, in addition to the Zeeman-
split Kondo resonance, a spurious low-temperature sin-
gularity at the Fermi level for T < TK . However, since
TK ≪ TC in Eu1−xGdxO, the effect of this singularity is
negligible for the temperature range relevant here. The
NCA is also versatile enough to include an arbitrary en-
ergy dependence of the DOS. Therefore, it is the appro-
priate method for the present purpose [34]. The NCA
equations, adapted for the Eu1−xGdxO system with a
gapped DOS and a non-trivial chemical potential, are
given in Appendix B.
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b. O vacancies. The weak interaction on the O de-
fects, where spin fluctuations are negligible, can be ac-
counted for in the second-order perturbation theory in
U . The (retarded) O-defect electron Green’s function is
Gdσ(ω) = 1/ [ω + µ− Ed − Σdσ(ω)], and the correspond-

ing selfenergy reads, Σdσ(ω) = Σ
(1)
dσ (ω) + Σ

(2)
dσ (ω), where

Σ
(1)
dσ (ω) = πV 2Acσ(ω) + U

∫

dεf(ε)Ad−σ(ε) (10)

ImΣ
(2)
dσ (ω) = (11)

−U2

∫

dε1

∫

dε2 Adσ(ε1 + ω)Ad−σ(ε1 + ε2)Ad−σ(ε2)

× [b(ε1) + f(ε1 + ω)] [f(ε2)− f(ε1 + ε2)] ,

where f(ω) and b(ω) are Fermi and Bose distribution

functions, respectively, and ReΣ
(2)
dσ (ω) is given by the

Kramers-Kronig relation.
Long-range RKKY coupling. When the RKKY inter-

action is included, the 4f Heisenberg coupling is changed
to Jij → Jij +Kij . In the above equations this leads to
a modified mean-field coupling,

J4f =
∑

jn.n.0

J0j +
∑

j 6=0

K
||
0j . (12)

The lattice summation in the second term is carried out
over the fcc lattice of the EuO rocksalt structure. Note
that on mean-field level only the longitudinal RKKY
component contributes and can give FM as well as AF

contributions to the total coupling. K
||
0j involves non-

local Green’s functions (c.f. Appendix A) and, hence, the
band dispersion εk. For simplicity and since anisotropy
effects are not important in bulk EuO, we assume for the
RKKY interaction an isotropic dispersion which is con-
structed such [38] that it reproduces the bare conduction
DOS.
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FIG. 3: (Color online) Curie temperature vs. the doping con-
centration nI for Gd-doped and O-deficient EuO. Bare pa-
rameters for O vacancies: Ed = 0.0D0, U = 0. The blue
curve represents the behavior for Eu1−xGdxO including the
RKKY interaction, see text.
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FIG. 4: (Color online) Curie temperature vs. on-site Coulomb
repulsion U in EuO0.99 for various impurity level energies Ed.
It is seen that for more tightly bound defect electrons the TC

enhancement in EuOa−x is even weaker than for the param-
eter values of Fig. 3.

The system is subject to the doping condition that
the total density of charge carriers is ntot = nI for
Eu1−xGdxO and ntot = 2nI for EuOx. That is,

∑

σ

∫

dωf(ω) [Acσ(ω) + nIAdσ(ω)]− ntot = 0 . (13)

The selfconsistent set of equations (6)–(13), in the case
of Eu1−xGdxO amended by the NCA equations (B1)–
(B3), is solved by iteration, where in each iteration step
the chemical potential µ is adjusted so as to fulfill the
particle number constraint (13). Note that the RKKY

coupling strength K
||
ij , Eq. (A9), is also determined self-

consistently via the interacting conduction electron prop-
agators.

III. RESULTS

A. Parameter values

. For the numerical calculations below, we
choose a semi-elliptic DOS for the non-interacting

conduction band of stoichiometric EuO, N
(0)
cσ (ω) =

(2/πD0)
√

(ω − µ0 −D0)2/D2
0 − 1. The conduction

half-bandwidth is taken to be D0 = 8 eV, and the chemi-
cal potential of the undoped system lies in the gap below
the conduction band, µ0 = −0.02D0, consistent with ex-
periments [8]. All energies are measured relative to the
(interacting) chemical potential µ and are given in units
of D0. The mean-field Heisenberg coupling J4f (without
RKKY interaction) is chosen such that TC = 69 K is ob-
tained for undoped EuO. This yields J4f = 7 · 10−5D0

[34]. Jcf is much larger than J4f , because the overlap
between the neighboring Eu 4f orbitals is much smaller
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FIG. 5: (Color online) Longitudinal RKKY coupling K||(r)
for x = nI = 0.04 and various temperatures in Eu1−xGdxO.
The inset expands the AF region around two to four lattice
spacings a of the FCC lattice.

than their overlap with the conduction wave functions.
From the spatial separation of the Eu 4f orbitals the ratio
Jcf/J4f is roughly estimated to give Jcf = 0.05D0, see
also Ref. [34]. This also determines the RKKY coupling
strength via Eq. (A9). We fix the bare parameters of a
Gd impurity such that for T = 0 and vanishing impurity
concentration its occupation is nd ≈ 1 and that the impu-
rity electron gets thermally activated in the experimen-
tally relevant temperature range. This yields, Ed = 0.0,
Γ := πV 2/D0 = 0.05D0, and U → ∞. Note that hy-
bridization and interaction substantially renormalize the
impurity level, Ed → Ẽd ≈ −0.02D0 (Haldane shift [39],
see also Fig. 1), so that nd ≈ 1 is realized in the nI → 0
limit. This also renders the TK of the impurity far below
TC , since in our system the DOS at the Fermi level EF

remains always Acσ(0) ≪ 1/D0. For O vacancies, in ab-
sence of more detailed information about their structure
other than double occupancy, we set the effective hy-
bridization Γ = 0.05D0, as for Gd, and perform a scan
of Ed ≤ 0 and U within the bound-state, weakly corre-
lated regime, see below. The RKKY interaction will be
included and discussed in Subsec. III C only.

B. Gadolinium impurities vs. Oxygen vacancies

Figures1 and 2 show the evolution of the conduction
band and impurity spectral densities across the phase
transition for low-doped Eu1−xGdxO and EuO1−x, re-
spectively. For both, Eu1−xGdxO and EuO1−x, in the
high-temperature insulating phase the spin degenerate
conduction DOS is comprised of a large, unoccupied band
and a small side band which is induced by the hybridiza-
tion with the impurity orbitals and is centered around
the impurity binding energy Ed, lying entirely below µ
and, therefore, not contributing to the conductivity. As
the temperature is lowered, in Eu1−xGdxO the impu-

0 20 40 60 80 100 120 140
T [K]

0

2

4

6

8

M
 / 

(µ
B
/2

) n
I
=0.001

n
I
=0.01

n
I
=0.02

n
I
=0.03

n
I
=0.04

n
I
=0.05

FIG. 6: (Color online) Total magnetization M = 〈S〉 +
〈σ〉 vs. temperature T for various doping concentrations in
Eu1−xGdxO with long range RKKY coupling (solid curves)
and without RKKY coupling (dashed curves).

rity spectrum accumulates spectral weight at the chem-
ical potential which eventually develops into a peak at
ω = 0 (Fig. 1). Below TC the spectral densities are split
into majority and minority bands. Our NCA calculations
show that this is due to local, Kondo-like spin fluctua-
tions in the Gd 5d orbitals [34]. Because of hybridization,
the conduction electron DOS develops spectral weight at
ω = 0 as well, and the side band merges with the main
conduction band. This drives the metallic transition and
simultaneously enhances, via the magnetic polaron effect
[c.f. Eq. (8)], the FM transition temperature as well.
In EuO1−x, the local spin fluctuation effect is absent.
Here, the metallic transition occurs only when the con-
duction side band is eventually broadened and shifted,
via hybridization with the O vacancy band enough to
gain overlap with the chemical potential (Fig. 2), lead-
ing to a much lower TC than in Eu1−xGdxO. In Fig. 3
the doping-dependent TC enhancement is compared for
magnetic Gd impurities and non-magnetic O vacancies
(black and red curves). Here, for O vacancies, U = 0
(double occupancy) and otherwise the same parameter
values as for Eu1−xGdxO are assumed. This allows for
a direct assessment of the importance of low-lying, lo-
cal spin fluctuations for the TC enhancement. The es-
sential role of on-site correlations as well as conduction
electron doping is further substantiated by Fig. 4, where
TC is shown for varying U and Ed values in EuO1−x: TC

is enhanced by repulsive onsite correlations (increasing
U) and is reduced by the dopant electrons more tightly
bound to the defect (more negative Ed).

C. RKKY interaction in Eu1−xGdxO

We now study the influence of the long-range RKKY
interaction on the phase transition in Eu1−xGdxO. For
short Fermi wavelength, the RKKY interaction might
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make an AF contribution to the total coupling and, thus,
lead to the experimentally observed saturation of TC

[5,18–22], as has been suggested in Ref. [26]. In order to
analyze the possible influence of the RKKY interaction
on the saturation at high doping concentration, we now
adjust the value of Jcf such that the theory including

RKKY reproduces the previous results without RKKY
interaction (Sec. III B) in the low-doping regime, and
will compare the results at high doping. This yields the
new value Jcf = 0.0405D0. The RKKY coupling K ||(r),
selfconsistently calculated for the interacting system, is
displayed in Fig. 5 as a function of distance r for a typical
Gd doping concentration of nI = 0.04 over the complete,
relevant T range. It shows weak AF behavior only in
the range of about 2 to 4 FCC lattice constants. The re-
sulting total magnetization M is shown in Fig. 6. While
the FM magnetization is even enhanced by K || below the
transition, it does not substantially alter TC , especially
for higher doping. This is plausible, because the RKKY
interaction is not active for T > TC (empty conduction
band), but its long-range, overall FM behavior enhances
M once the band is populated for T < TC . Such enhance-
ment of the FM coupling by an RKKY-like interaction is
consistent with recent experiments on EuO doped with
non-magnetic La atoms [40]. Fig. 3 directly compares TC

with and without RKKY coupling (blue and black curves,
respectively) in our calculation. It is seen that including
the RKKY interaction and reducing the direct exchange
coupling to Jcf = 0.0405D0 not only reproduces the TC

behavior at small nI (by construction), but also does
not change the behavior for the largest nI considered.
For the small band fillings relevant in Eu1−xGdxO the
effects of the RKKY interaction are essentially doping
independent and can be absorbed in a proper choice of
Jcf , at least as far as TC in bulk systems is concerned.
We conclude that the experimentally observed TC sat-
uration behavior in Eu1−xGdxO for large nI cannot be
attributed to the RKKY interaction. Note that ab ini-

tio calculations [27,33] presumably overestimate the anti-
ferromagnetic contributions from the RKKY interaction,
because they do not take the Kondo-like spin fluctuations
on the Gd sites and the resulting accumulation of spec-
tral weight at the chemical potential into account. As a
consequence, the RKKY wavelength comes out too short
and, hence, its antiferromagnetic contributions too large.
This may be the origin why these calculations overesti-
mate the decrease of TC for large doping concentration
as compared to experiments [20,21].

D. Dopant activation and TC saturation

In Fig. 7 we show the charge carrier concentration in
the conduction band nc (number of carriers per lattice
unit cell; inset) as well as the dopant activation nc/nI as
a function of impurity concentration nI at the lowest tem-
perature considered, T = 5 K, similar to Ref. [20]. For
low doping the impurity spectral weight Adσ(ω) (both,
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FIG. 7: (Color online) Dopant activation nc/nI for Gd doped
and O deficient EuO at the lowest temperature considered,
T = 5K. The carrier concentration nc is shown in the inset.

σ =↑, ↓) is almost entirely shifted above EF at this tem-
perature, as can bee seen from Figs. 1, 2, lower panels,
so that the impurity level is completely emptied into the
conduction band. Consequently, the dopant activation is
nc/nI = 1 (Gd) or nc/nI = 2 (O vacancies) up to a dop-
ing concentration of about nI = 0.01 (Fig. 7). For higher
nI , the impurity contribution to the conduction electron
selfenergy, Eq. (7), gets increasingly enhanced by the dis-
order. Via the Kramers-Kronig relation for the real part
of Σcσ(ω) this implies a downward shift of the conduc-
tion side band and, connected with it, a downward shift
of the impurity band below EF . This is seen in Fig. 8.
It results in a re-population of the impurity levels and a
crossover to a reduced nc/nI , as seen in Fig. 7. Note that
the description of the Gd impurities as Anderson impu-
rities with spin fluctuations is crucial for the downward
shift of the impurity levels. The reduction of the dopant
activation nc/nI is in agreement with the experimental
findings of Ref. [20]. Note that in Ref. [20] a reduced
dopant activation is also found in the limit of small nI .
Presumably this is, because their Hall measurements de-
termine the mobile carrier density n only. However, for
small impurity concentration, part of the electrons in the
conduction band will be bound around the impurity lo-
cations. However, all electrons in the conduction band,
given by nc, contribute to the electron-enhanced mag-
netic coupling. Comparing the doping dependence of nc

in the inset of Fig. 7 with TC in Fig. 3 shows that the
latter follows the behavior of nc. Displaying now TC

(same data as in Fig. 3) as a function of the carrier con-
centration nc in Fig. 9 shows that it grows essentially
linearly with nc, showing only a slightly decreasing slope
for the highest nc. Note that the highest carrier concen-
tration of nc ≈ 0.04 appears experimentally achievable,
while the corresponding doping concentration of nI = 0.4
is not, due to stability reasons of the crystal structure.
The saturation-like behavior of TC for large nI doping
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FIG. 8: (Color online) Majority spectral densities for conduc-
tion electrons (upper panel) and impurity electrons (lower
panel) in Eu1−xGdxO at T = 5 K for various impurity con-
centrations nI . The figure shows the downward shift of the
impurity levels with increasing nI .

is, therefore, to be considered a consequence of the re-
duced dopant activation for large doping, in complete
agreement with the conclusion of Ref. [20].

IV. CONCLUSION

We have performed a detailed comparison of the
FM insulator-metal transitions in Eu1−xGdxO and in
EuO1−x, respectively, using a model that treats the
dopant impurities as Anderson impurities in the strongly
(Gd) or weakly (O vacancies) correlated regime, and that
had previously provided a detailed description [34] of ex-
perimental magnetization, resistivity and total conduc-
tion band polarization data. Our results show that for a
significant, doping-induced TC enhancement a coopera-
tion of two effects is necessary, (1) Kondo-like, low-energy
spin fluctuations accumulating impurity as well as con-
duction spectral weight at the Fermi energy and (2) ef-
ficient population of this low-lying spectral weight and
subsequent enhancement of the FM interaction between
the 4f moments mediated by the conduction electrons.
In addition, our calculations provide evidence that the
tendency of TC to saturate for high doping concentra-
tions is not due to AF contributions of the RKKY in-
teraction but rather due to a limitation of the dopant
electron activation into the conduction band, confirming
experimental results [20]. Hence, an increase of TC be-
yond the presently achievable values may be possible, if
only the conduction band can be populated in a more
efficient way. This is in line with recent pump-probe ex-
periments [7] where enhanced FM coupling was achieved
by photodoping into the conduction band [41]. The com-
bination of all these findings point to a possible pathway
to further enhancement of TC : the magnetic impurities
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FIG. 9: (Color online) Curie temperature vs. carrier con-
centration nc in the conduction band for Gd-doped and O-
deficient EuO. (Inset) Semilogarithmic plot of the data.

generating low-energy spin fluctuations and the charge-
doping impurities need not necessarily be of the same
type. More efficient carrier doping may be achievable by
using different types of donor atoms (with impurity levels
closer or above the Fermi energy) in addition to Gd, or
by carrier coupling at interfaces in heterostructures.
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Appendix A: RKKY interaction in paramagnetic

metals and semimetals

In this appendix we derive the expressions for the
RKKY interaction, allowing for an arbitrary magneti-
zation of the conduction band and then specializing for
the paramagnetic case (vanishing magnetization) and the
semimetallic case (complete magnetization). The inter-
action Hamiltonian between localized spins Si at sites i
and the conduction electron spins reads,

Hcf = −Jcf
∑

i

Si · si , (A1)

where si = 1/2
∑

σσ′ c
†
iσσciσ′ is the conduction electron

spin operator at site i and σ = (σx, σy , σz) the vector
of Pauli matrices. Evaluating the time evolution of the
conduction electrons in the presence of another localized

spin Sj according to exp[−
∫ β

0
dτHcf (τ)] in first order

of the spin coupling Jcf and tracing out the conduction
electron degrees of freedom, one obtains in the static limit
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(ω = 0) the RKKY interaction operator between the local
spins Si and Sj ,

HRKKY
ij = −J2

cf 〈(Si · si)(Sj · sj)〉c |ω=0 . (A2)

Here 〈(. . . )〉
c
:= trc{e

−βH(. . . )}/ZG denotes the thermal
trace over the conduction electron Hilbert space. Using
Wick’s theorem, it can be written as,

HRKKY
ij =−

J2
cf

4

∑

α,β=x,y,z

∑

σσ′

Sα
i σα

σσ′σ
β
σ′σ S

β
j Π

σσ′

ij (0),

(A3)

where Πσσ′

ij is the conduction electron density propagator
between the sites i and j as depicted diagrammatically
in Fig. 10. It has the general form,

Πσσ′

ij (iω) = −
1

β

∑

εn

Gji σ(iεn + iω)Gij σ′(iεn) . (A4)

In the static limit it reads,

Πσσ′

ij (0) = −

∫

dε f(ε) × (A5)

[Aij σ(ε)ReGij σ′(ε) +Aij σ′(ε)ReGij σ(ε)] ,

where Aij σ(ε) = −ImGij σ(ε + i0)/π. Performing the
spin contractions in Eq. (A3) and defining the longitu-
dinal and the transverse polarization functions, respec-
tively, as

Π
||
ij(0) =

1

2

∑

σ

Πσσ
ij (0) (A6)

= −
∑

σ

∫

dε f(ε)Aij σ(ε)ReGij σ(ε)

Π⊥
ij(0) =

1

2

∑

σ

Πσ−σ
ij (0) (A7)

= −
∑

σ

∫

dε f(ε)Aij σ(ε)ReGij −σ(ε) ,

one obtains the RKKY interaction Hamiltonian,

HRKKY =
∑

(i,j)

HRKKY
ij (A8)

= −
∑

(i,j)

[

K
||
ij S

z
i S

z
j −K⊥

ij

(

Sx
i S

x
j + Sy

i S
y
j

)

]

where the sum runs over all (arbitrarily distant) pairs of

localized spins Si and Sj , and

K
||
ij =

1

2
J2
cfΠ

||
ij(0) , K⊥

ij =
1

2
J2
cfΠ

⊥
ij(0) , (A9)

are the longitudinal and transverse RKKY couplings, re-
spectively. As seen from Eqs. (A8) and (A9), the RKKY

σ´
Jcf Jcf

b)ε + ω

ε

σ

FIG. 10: Diagram for the spin-dependent conduction elec-

tron polarization function Πσσ′

ij (ω), generating the RKKY in-
teraction. The solid lines represent conduction electron prop-
agators.

interaction is in general anisotropic for a magnetized con-
duction band.

We now present explicitly the expressions for the spe-
cial cases of a paramagnet and of a semimetal. For a
paramagnetic conduction band we have Gij σ = Gij,−σ

independent of spin. Hence, the RKKY coupling is
isotropic, and we have the paramagnetic RKKY Hamil-
tonian,

HRKKY
PM = −

∑

(i,j)

KPM
ij Si · Sj , (A10)

with

KPM
ij = −

J2
cf

2

∑

σ

∫

dε f(ε)Aij σ(ε)ReGij σ(ε) . (A11)

For a semimetal, i.e., for a completely spin-magnetized
conduction band with majority spin σ =↑ we have
Aij ↓(ε) = 0, and the semimetallic RKKY Hamiltonian
reads,

HRKKY
FM = −

∑

(i,j)

[

K
FM ||
ij Sz

i S
z
j (A12)

+KFM ⊥
ij

(

Sx
i S

x
j + Sy

i S
y
j

)]

,

with

K
FM ||
ij = −

J2
cf

2

∫

dε f(ε)Aij ↑(ε)ReGij ↑(ε) (A13)

KFM ⊥
ij = −

J2
cf

2

∫

dε f(ε)Aij ↑(ε)ReGij ↓(ε) . (A14)

The missing spin summation in Eqs. (A13), (A14) as
compared to Eq. (A11) indicates that in the completely
magnetized band only the majority spin species con-
tributes to the coupling. Note, however, that the trans-
verse coupling JRKKY

FM⊥ ij is still non-zero even in the ferro-

magnetically saturated case because of virtual (off-shell)
minority spin contributions represented by the real part,
ReGij ↓(ε) in Eq. (A14). The Curie temperature TC ,
where the band magnetization vanishes, is controlled by
the paramagnetic RKKY coupling, Eq. (A10), while far
below TC the carrier concentration nC is determined by
the semimagnetic RKKY coupling, Eq. (A12).
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Appendix B: NCA equations

The selfconsistent NCA equations for the pseud-
ofermion (f) and slave boson (b) self-energies read
(ω ≡ ω + i0)

Σfσ(ω)=V 2

∫

dε[1− f(ε)]Acσ(ε)Gb(ω − ε) (B1)

Σb(ω)=V 2
∑

σ

∫

dεf(ε)Acσ(ε)Gfσ(ω + ε) , (B2)

with the auxiliary particle Green’s functions,
Gfσ(ω) = 1/ [ω + µ− λ− Ed − Σfσ(ω)] and
Gb(ω) = 1/ [ω − λ− Σb(ω)], respectively. λ is a
positive parameter, taken to λ → ∞ in order to effect

the constraint on the auxiliary particle number operator,
∑

σ f
†
σfσ + b†b = 1. Note that these NCA equations

are coupled to the equations (6)–(9) for the interacting
conduction electrons via the common chemical potential
µ and via the conduction electron DOS of the interacting
system in presence of a dilute, but finite impurity con-
centration, Acσ(ε). The Gd impurity electron Green’s
function is obtained from Gfσ, Gb as,

Gdσ(ω) =

∫

dε

eβε
[

Ab(ε)Gfσ(ε+ ω)−Afσ(ε)G
∗
b (ε− ω)

]

.

(B3)

For an efficient and accurate method for numerically solv-
ing the set of equations (B1)–(B3) see Ref. [42].
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