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Abstract: Safe approach and docking to a non-cooperative, tumbling target satellite is one of the
main critical issues in on-orbit servicing missions. Knowledge of the inertia properties of the target
spacecraft is a prerequisite for many rendezvous and docking aspects. In this paper we propose
a method to estimate the center of mass and moments of inertia using optical sensor data. For
that, kinematic equations of motion and the conservation of the angular momentum are employed
to estimate the unknown quantities with least squares methods. Observability and limitations are
discussed and results gained from computer simulations involving different test cases are presented.
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1. Introduction

In on-orbit servicing missions, a service spacecraft approaches an non-cooperative, passive target
spacecraft in its orbit to perform service tasks. These can comprise lifetime extensions tasks like
takeover of orbit and attitude control, refueling, reparations or space debris removal actions like
safe deorbiting at the target spacecraft’s end of life [1, 2, 3, 4]. The rendezvous and capture of the
client spacecraft are critical phases in an on-orbit servicing mission and induce a large research area
on guidance, navigation and control [5, 6, 7, 8].

A typical non-cooperative target satellite is neither equipped with reflectors or markers which can
be used for relative navigation, nor has specially intended grasping/docking equipment for robotic
capture [5]. Furthermore, there is no communication between servicing and target satellite or
between ground station and target. Therefore, the status of the target has to be assumed as fully
unknown. This means that there is no information about the target’s pose (position and orientation)
and none about its inertia properties, which is necessary to propagate its state.

For a safe approach to and capture of the target, knowledge of the inertia properties is important.
For example, the motion of a possible grasping point on the target’s side has to be propagated for
planning a safe capture process. Further, having the target grasped, its motion has to be damped
which is not possible without any knowledge of its inertia properties. Consequently, we have to
determine the location of the center of mass of the body and its moments of inertia during a previous
inspection phase carried out at a safe distance. Fig. 1 shows a tumbling client satellite observed
during such an inspection phase with three different poses.

As the target is uncooperative, we cannot control its attitude during the inspection phase. This is
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Figure 1. Inspection phase during an on-orbit servicing mission: Observation of a tumbling target
from a safe distance for determination of its inertia parameters.

why existing approaches [9, 10, 11, 12] for in-flight estimation of the inertia parameters cannot be
applied. The main idea of those methods is to apply torque on the satellite using reaction wheels or
a robotic arm followed by an investigation of the induced rotational motion.

In the on-orbit servicing scenario, we need to make use of information which can be gained using
the available equipment on the service satellite only [13, 14]. Therefore, optical sensors such as
CCD or CMOS cameras or time-of-flight sensors like LIDARs (LIght Detection And Ranging)
mounted on the service spacecraft can be used. From a safe distance, the free-tumbling target
satellite is observed and the inertia properties of the unknown target can be estimated using the
processed sensor data. Processing the data of optical sensors, the position of the center of some
geometrical body frame of the target and its orientation can be measured. The center of mass may
not match with the geometrical center. One task is to determine the shift between geometrical center
and center of mass.

In this work, we assume that the target is freely rotating without any external torque acting on it. As
in [15], the center of mass and the moments of inertia can be determined using kinematic equations
and the conservation of angular momentum. As the angular momentum in an inertial reference frame
is constant but unknown, it is estimated together with the inertia tensor. By using a high number of
measurements of optical sensors gained during an inspection, least square problems are solved to
estimate the optimal center of mass and inertia parameters which best fit to the measurements.

In summary, the objective of this paper is to estimate the center of mass and the moments of inertia
of a non-cooperative, tumbling target using measurements of optical sensors mounted on the service
satellite.

Additionally to the approach presented in [15], we take constraints on the moments of inertia into
account to enforce positive diagonal entries in the inertia matrix. This induces a minimization
problem with inequality constraints which can be solved using the active set method for convex
quadratic programming [16]. In addition, singular value decomposition of matrices is applied to
overcome problems arising from numerical issues and errors. We investigate the performance of the
method, discuss limitations in the observability, and analyze the influence of e.g. the number of
measurements on the performance.
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Figure 2. Overview on the coordinate frames (x-axis: red, y-axis: green, z-axis: blue)

2. Methods and Theoretical Aspects

In this section, a method to estimate the center of mass and the moments of inertia of a tumbling
satellite is presented followed by an analysis of the observability of the quantities.

2.1. Preliminaries

We introduce the following coordinate systems:

Inertial Reference Frame (IRF): A world coordinate frame in which the Newton’s laws of motion
are valid. The motion of the target, considered as a rigid body, is observed and measured with
respect to the inertial reference system.

Body Fixed Coordinate Frame/ Body Frame (BF): A coordinate system fixed to the body. The origin
is defined fixed with respect to the body. For example, the origin can be set to the geometrical center
if the geometry of the rigid body is of simple nature, e.g. if it is cylinder- or cuboid-like.

Center of Mass Based Coordinate Frame (CMF): A coordinate system with the center of mass
being the origin. Its coordinate axes are parallel to those of the Body Fixed Coordinate System. For
example, for a homogeneous mass distribution, BF and CMF are identical.

For the ease of notation, the origin of the Body Frame is denoted as geometrical center of the body
in this paper. Fig. 2 visualizes the coordinate frames: The inertial reference frame is fixed. The
body and center of mass based frames are moving and rotating with the body.

We assume that N measurements of the following quantities are provided by an optical sensor and
its processing unit:
• The position ~p IRF

i ∈ R3, i = 1, . . . ,N, of the geometrical center of the body measured in IRF.
• The velocity~v IRF

i ∈ R3, i = 1, . . . ,N, of the geometrical center of the body measured in IRF.
• The orientation of the body given by a rotation matrix RBF

i,IRF ∈ R3×3, i = 1, . . . ,N, describing
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the rotation from IRF to BF.
• The angular velocity ~ω IRF

i ∈ R3, i = 1, . . . ,N, of the rotating body in IRF.

The pair (~p IRF
i ,RBF

i,IRF) measured at time ti is called pose. Processing data from sensors like cameras
or LIDARs typically provides a measurement of the pose only. The translational and angular
velocities~v IRF

i and ~ω IRF
i have to be determined by numerical differentiation from the position and

attitude.

Camera and LIDAR based pose estimation is a large research area [17, 18, 19, 20, 21, 14, 22]. Pose
estimation is thus beyond the scope of this paper; we assume that the above listed quantities are
given as measurements, and we will focus on the estimation of the inertia parameters.

2.2. Center of Mass Estimation

In this subsection, a method is proposed to compute the center of mass of a rigid body with respect
to its body frame. I.e. the translation from Body Fixed Frame to Center of Mass Based Frame is
determined. We use the method of Sheinfeld and Rock [15] with slight differences for center of mass
determination and consider the following kinematic equation for each measurement i ∈ {1, . . . ,N}:

~v IRF
i =~v IRF

CoM +~ω IRF
i ×~r IRF

i , (1)

where, as defined in Section 2.1., ~v IRF
i is the velocity of the geometrical center of the body and

~ω IRF
i is the angular velocity of the body in IRF. Both quantities are related to the i-th measurement.

Further,~v IRF
CoM is the unknown velocity of the center of mass expressed in IRF and~r IRF

i is the vector
in IRF pointing from the center of mass to the geometrical center. Let~rBF denote the constant
vector in BF, related to~r IRF

i by
~r IRF

i = (RBF
i,IRF)

T~rBF , (2)

where RBF
i,IRF describes the orientation of the body, i.e. the rotation from IRF to BF. The superscript

T denotes the transpose of a matrix. The constant vector~rBF can be expressed as

~rBF = ~pBF
0 −~pBF

CoM =−~pBF
CoM. (3)

The vector ~pBF
0 = (0,0,0)T is the position of the geometrical center (the origin of the body frame)

and ~pBF
CoM ∈ R3 is the unknown position of the center of mass where both vectors are expressed in

the body frame.

In the original work of Sheinfeld and Rock [15], a so-called feature point at location ~pBF
0 is tracked

by the sensor and~v IRF
i is the velocity of the feature point. Here, we track the geometrical center

of the body. Using camera data, one could use also a feature point on the body surface instead of
the center point, since visible features can be tracked well from camera images. Using LIDAR
data, however, the raw sensor data is a 3D point cloud from which the position of the body has to
be reconstructed. The motion of single features of the body can hardly be observed and tracked.
Therefore, the position of the geometrical center is computed from the 3D point cloud and some
geometrical information/model of the body. Therefore, the geometrical center, the origin of the
body frame, is used for ~pBF

0 .
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Inserting Eq. 2 and Eq. 3 in Eq. 1 we obtain for the i-th measurement:

~v IRF
i =~v IRF

CoM−~ω IRF
i ×

(
(RBF

i,IRF)
T~pBF

CoM
)
, (4)

The unknown quantities are~v IRF
CoM and ~pBF

CoM. Therefore, we set

~x :=

(
~v IRF

CoM

~pBF
CoM

)
∈ R6. (5)

The system of measurements Eq. 4 can be rewritten to the following matrix vector form

A~x =~b, (6)

where A ∈ R3N×6,~b ∈ R3N are defined by

A =

 Id −W IRF
1 (RBF

1,IRF)
T

...
...

Id −W IRF
N (RBF

N,IRF)
T

 , ~b =

 ~v IRF
1
...

~v IRF
N

 , (7)

where Id ∈ R3×3 is the identity matrix and W IRF
i ∈ R3×3 is defined by

W IRF
i =

 0 −ω IRF
i3 ω IRF

i2
ω IRF

i3 0 −ω IRF
i1

−ω IRF
i2 ω IRF

i1 0

 (8)

using the notation ~ω IRF
i = (ω IRF

i1 ,ω IRF
i2 ,ω IRF

i3 )T .

The linear system Eq. 6 is overdetermined as 3N� 6. Further, the matrix A and the right hand side
~b are based on measurements and are therefore affected by measurement noise. A solution~x ∈ R6

has to be found which solves the system Eq. 6 in the least squares sense, i.e. such that the l2-norm
of the error, i.e.

~x 7→ ‖A~x−~b‖2 = (A~x−~b)T (A~x−~b), (9)

is minimized.

Having determined a solution~x ∈ R6, the position of the center of mass ~pBF
CoM ∈ R3 is given by the

components 4-6 of the vector~x, cf. Eq. 5.

2.3. Inertia Estimation

2.3.1. Basic Method

The method to determine the inertia tensor of the body is based on the method proposed in [15]. In
the absence of external torques the angular momentum~h IRF in the inertial frame IRF is constant.
The angular momentum in the body frame~hBF

i at time ti, i ∈ {1, . . . ,N}, is defined as

~hBF
i = I~ω BF

i , (10)
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where I ∈R3×3 is the inertia tensor of the body which should be determined and ~ω BF
i is the angular

velocity expressed in the body frame corresponding to the i-th measurement. Using the relation
RBF

i,IRF
~hIRF =~hBF

i , we conclude
RBF

i,IRF
~h IRF = I~ω BF

i (11)

The angular momentum in IRF~h IRF = (h IRF
1 ,h IRF

2 ,h IRF
3 )T is not known and has to be estimated

together with I. Let Ii j, i, j = 1,2,3, denote the matrix entries of I. As I is symmetric, we define the
vector of unknowns as

~x =
(
I11, I12, I13, I22, I23, I33,h IRF

1 ,h IRF
2 ,h IRF

3
)T ∈ R9. (12)

Eq. 10 with Eq. 11 can be rewritten to the following linear system:

A~x =~0, (13)

where A ∈ R3N×9 is given by

A =

 ΩBF
1 −RBF

1,IRF
...

...
ΩBF

N −RBF
N,IRF

 (14)

with

Ω
BF
i =

 ω BF
i1 ω BF

i2 ω BF
i3 0 0 0

0 ω BF
i1 0 ω BF

i2 ω BF
i3 0

0 0 ω BF
i1 0 ω BF

i2 ω BF
i3

 . (15)

Eq. 13 should be solved in the least squares sense, i.e. the solution~x ∈ R9 should minimize

~x 7→ ‖A~x‖2 = (A~x)T A~x =~xT AT A~x. (16)

Minimizing this quadratic functional leads to a linear system

B~x =~0, (17)

with B = AT A ∈R9×9. As the right hand side is zero, B must have a rank of 8 such that a non-trivial
solution of the linear system exists. The solution is unique up to a multiplicative factor. This can
also be seen from the equation RBF

i,IRF
~h IRF = I~ω BF

i . If a pair (I,~h IRF) solves this equation, any
multiply of it will be another solution of the equation. Therefore, the angular momentum and the
inertia tensor can only be determined up to a multiplicative factor.

2.3.2. Improvements of the basic method

In practice, the matrix B = AT A will often be of rank 9 because of measurement noise and numerical
rounding errors in the computation. Therefore, computing A and using a black box solver for the
linear equation Eq. 17 will only deliver the trivial solution~x =~0. To overcome this problem arising
from noise and numerical rounding errors, the singular values of B should be analyzed and the
singular value closest to zero should be corrected and set to 0.
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Let B̃ be the corrected matrix with rank 8. We can reorder the rows in B̃ such that

B̃ =

(
b11 ~bT

1
~b1 Br

)
(18)

with b11 ∈R ,~b1 ∈R8, and Br ∈R8×8 which is of rank 8. Writing~x = (1,~xT
r )

T leads to the reduced
problem

Br~xr =−~b1 (19)

which has a unique solution. The solution space of B̃~x =~0 is

S = {λ (1,~xT
r )

T ∈ R9 : λ ∈ R}. (20)

So far, no restrictions on the solution space have been made. Solving the unconstrained problem,
the final inertia matrix could have negative diagonal entries. Therefore we consider the following
minimization problem with inequality constraints:

minimize q(~xr) =
1
2
~xT

r Br~xr +~bT
1~xr, subject to

(~xr) j ≥ 0 ∀ j ∈ J = {3,5}. (21)

Recall the definition of~x, the vector of unknowns, see Eq. 12. The first six components of~x and the
first five components of the reduced vector~xr are related to components of the inertia matrix. By
setting the first component of~x to 1, the scaling factor λ has to be positive, and the components 3
and 5 of~xr, which are related to I22/I11 and I33/I11, have to be positive as well.

A solution of Eq. 21 can be computed using an appropriate numerical optimization method. In the
results presented in Section 3., we used the active set method for convex quadratic programming
[16].

2.3.3. Summary of the Algorithm

The procedure for inertia estimation can be summarized as follows:
1. Compute the matrix A as defined in Eq. 14. Set B = AT A.
2. Compute a singular value decomposition B =USV T , where U and V are orthogonal matrices

and S is a diagonal matrix.
3. Let σ1 ≥ σ2 ≥ . . .≥ σ9 ≥ 0 denote the diagonal entries of S. Let S̃ denote the modified matrix

obtained from S by setting the smallest singular value to zero, i.e. σ9 = 0. Set B̃ =US̃V T .
4. Compute the solution~xr ∈R8 of the constrained quadratic problem Eq. 21 and set~x=(1,~xT

r )
T

which serves as a basic vector for the one-dimensional solution space.

2.4. Observability

There exist restrictions on the observability of the quantities to be estimated.

If the spacecraft rotates around one of its principal axes, the resulting angular momentum vector is
parallel to the angular velocity vector, cf. [23]. As an example, consider a cylindrical body which
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rotates around its symmetry axis. Without loss of generality, we assume the axis to be the x-axis of
the body system. In this case, the angular velocity ~ω BF = (ω BF

1 ,0,0)T ∈ R3 is an eigenvector of
the inertia matrix I and only one parameter can be observed from that motion.

Considering the estimation of the center of mass position, the matrices defined in Eq. 8 do not
have full rank if the body rotates for example around its x-body-axis. In this case, the linear system
Eq. 6 does not have a unique solution. Measuring N angular velocities, the dimension of the space
spanned by the angular velocity vectors must be equal to 3 such that the system is uniquely solvable.

This is why the full inertia properties and the center of mass can be determined only in the nutation
case, i.e. if the nutation angle, defined as the angle between~h and ~ω [23], is bigger than zero. If the
body rotates around one of its principal axis (pure rotation [23] ), some of the inertia parameters are
not observable.

An important fact is that the absolute value of the moment of inertia I cannot be estimated from
torque-free motions. Let~h IRF denote as above the angular momentum vector in the inertial reference
system. Only the vector (

I12

I11
,
I13

I11
,
I22

I11
,
I23

I11
,
I33

I11
,
h IRF

1
I11

,
h IRF

2
I11

,
h IRF

3
I11

)
∈ R8 (22)

can be observed. Thus, observing an unknown target which is freely tumbling in space, only the
relationship between the principal moments of inertia can be determined, not their absolute values.
This is in agreement with [24], where the authors also consider inertia ratios. Also in [15], only
the ratios of the moments of inertia could be determined. The scale factor (recall definition of the
solution space Eq. 20) can be found only when applying known forces and torques to the satellite
and observing its resulting motion [15]. This is not possible when observing a passive target satellite
from a safe distance which is freely tumbling without any external forces and torques acting on it.

3. Results

3.1. Generation of Test Data

The motion is generated by solving the quaternion differential equation and Euler equation for a
given orientation and angular velocity at time t = 0, cf. [23]. The quaternion differential equation is

d
dt
~q IRF =

1
2

Ω(~ω IRF)~q IRF , (23)

where Ω(~ω IRF) ∈ R4×4 is defined as

Ω(~ω IRF) =


0 ω IRF

3 −ω IRF
2 ω IRF

1
−ω IRF

3 0 ω IRF
1 ω IRF

2
ω IRF

2 −ω IRF
1 0 ω IRF

3
−ω IRF

1 −ω IRF
2 −ω IRF

3 0

 . (24)

In the absence of external torques, the Euler equation is given by

I
d
dt
~ω IRF =−~ω IRF × (I~ω IRF). (25)
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Figure 3. Measurements of Euler Angles [deg] (left) and Angular Velocity [deg/s] (right) for Test 1

Again, considering the Euler equation, any multiply of an inertia matrix I solves the equation with
the same angular velocity ~ω IRF . Observing torque-free motions, the moments of inertia can be
determined only up to a multiplicative factor.

The ordinary differential equations are solved applying the explicit Euler scheme with a time step
size of 0.004s. Measurements are simulated and taken every 0.1s by adding Gaussian noise to the
real values.

The velocity of the geometrical center in the inertial frame is computed using the kinematic equation

~v IRF =~v IRF
CoM−~ω IRF ×

(
(RBF

IRF)
T~pBF

CoM
)
, (26)

where RBF
IRF is the rotational matrix corresponding to the quaternion~q IRF and~v IRF

CoM is the velocity
of the center of mass in the inertial reference frame. The position of the geometrical center in the
inertial frame is obtained by numerical integration. The measurements are computed by adding
again Gaussian noise.

Test values for the inertia tensor I and the position of the center of mass in the body system ~pBF
CoM

are chosen for different experiments and compared with the estimated values.

3.2. Experiments

3.2.1. Test 1 - First demonstration

For a first test, a rotation (cp. Fig. 3) is generated as described in Section 3.1. The figure
presents measurements of the Euler angles of the rotation (convention 123) and measurements
of the angular velocity ~ω IRF(t), t ∈ [0,T ] with T = 100s. The initial angular velocity is set to
~ω IRF(0) = (0,10,15)T degrees per second. Since the observation time is 100s this results in 3−4
full rotations. The position of the center of mass in the inertial reference frame are set to a constant
value and its velocity to zero.

For this experiment, the center of mass is the geometrical center of the body, i.e. its position in the
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body system is ~pCoM = (0,0,0)T . The true inertia matrix for this test is set to

I =

 34.1667 0 0
0 346.6667 0
0 0 354.1667

 . (27)

As we can determine the moments of inertia only up to a multiplicative factor, we project the vector
~I := (I11, I12, I13, I22, I23, I33) ∈ R6 to the sphere S =

{
~x ∈ R6 : ‖~x‖= 1

}
. The resulting vector is

~Inorm = (0.0688,0,0,0.6978,0,0.7129)T . (28)

For simulating measurements, noise is added to the real data. For this test we use as standard
derivative of the noise 1e−2 rad/s for the angular velocity and 1e−2 for the quaternion noise, and
1e−2 m/s for the velocity measurement of the translational motion of the geometrical center. The
noise values correspond to experience with real measurement noise using rendezvous sensors like
cameras [21].

The center of mass is estimated as described in Section 2.2. For this, N = 1000 measurements taken
every 0.1s are considered. The resulting estimation of the position of the center of mass in the body
frame is

~pBF
CoM = (−0.00311,0.00020,−0.00033)T . (29)

Therefore, the position of the center of mass has been estimated up to approximately 3 mm accuracy.

The moments of inertia are estimated as described in Section 2.3. The singular values of the matrix
B are determined as

Σ = {358.4657,334.6122,333.7640,31.3929,28.0363,8.9168,5.7866,0.6387,0.0427}. (30)

The smallest singular value 0.0427 is reset to 0, such that the modified matrix B̃ has rank 8. To find
a basis vector of the solution space of B̃~x = 0, we set as described above~x1 = 1 and compute the
reduced vector~xr ∈ R8. The solution of Eq. 21 is

~xr = (−0.0149,−0.0110,10.6631,0.0063,10.9355,−0.0047,1.8568,2.8642)T . (31)

Recall that the first six elements of ~x = (1,~xT
r )

T ∈ R9 are the moments of inertia; the last three
elements are the components of the angular momentum. The resulting inertia written as 6D vector
is thus

~Iest = (1,−0.0149,−0.0110,10.6631,0.0063,10.9355)T . (32)

In order to compare the result with~Inorm, we normalize it

~Iest
norm :=~Iest/‖~Iest‖= (0.0653,−0.0010,−0.0007,0.6966,0.0004,0.7144)T . (33)

The estimation error is

~Iest
norm−~Inorm = (−0.0035,−0.0010,−0.0007,−0.0012,0.0004,0.0015)T . (34)
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Figure 4. Measurements of Euler Angles [deg] (left) and Angular Velocity [deg/s] (right) for Test 2

3.2.2. Test 2 - Influence of the observation time

We used the same test data as in Test 1, but use only the first N = 100 measurements, which
correspond to T = 10 seconds observation time. This results in less than a half rotation. Fig. 4
shows the measured orientation and angular velocity.

The center of mass is estimated as

~pBF
CoM = (−0.0021,0.1257,0.1688)T . (35)

Concerning the position of the center of mass there is a high estimation error of 12.6 cm and 16.9 cm
in the y- and z-component. Considering the data plotted in Fig. 4, the angular velocity changes
only slightly in the 10 seconds of observation. Considering the data of the first test (see Fig. 3), the
angular velocity is oscillating. After 50 seconds the angular velocity is approximately equal to the
initial value of ~ω IRF(0) = (0,10,15)T deg/s. Thus, the observation time has to be sufficiently long
such that the estimation errors are in an acceptable range (e.g. mm range). This also matches with
theoretical considerations: The nutation frequency [23] in rad/s is

Wn =

√
(I11− I33)(I22− I33)

I11I22
~ω IRF(0)3 = 0.1178. (36)

The corresponding time is

Tn =
2π

Wn
= 53.3167. (37)

The observation time should be once or twice the time interval of one full nutation Tn such that all
parameters can be observed.

Considering the computed singular values of B for N = 100, it can be seen that the matrix is close
to a matrix of rank 5 as there are 4 singular values close to zero.

Σ = {37.7896,36.9529,34.7566,0.2883,0.1841,0.0071,0.0066,0.0030,0.0026}. (38)
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Adapting only the smallest eigenvalue to enforce rank 8 leads to the following estimation of the
normalized inertia:

~Iest
norm = (0.9731,0.0010,0.0619,0.0201,−0.0007,0.2211)T . (39)

This results in a high estimation error of

~Iest
norm−~Inorm = (0.9043,0.0010,0.0619,−0.6777,−0.0007,−0.4918)T . (40)

Another experiment using the same test data with T = 300, i.e. with N = 3000 measurements, is
performed. The center of mass is estimated as

~pBF
CoM = (−0.00043,0.00111,0.00029)T . (41)

The estimated, normalized inertia is

~Iest
norm = (0.0727,0.0005,0.0004,0.6988,−0.0006,0.7116)T . (42)

This results in an estimation error of

~Iest
norm−~Inorm = (0.0039,0.0005,0.0004,0.0010,−0.0006,−0.0013)T . (43)

Comparing these results with those of N = 1000, the accuracy could not be significantly improved.
Therefore, a longer observation is not necessary. It may be advantageous only if the measurement
noise is higher. In this case, collecting more data could improve the estimation result.

To investigate this, we use again the same test data as in Test 1 but increase the measurement noise
by a factor of 5. We compare the results gained for N = 1000,5000 and 10000 measurements.
Table 1 shows a comparison of the absolute error of the center of mass position estimation and the
inertia estimation. This demonstration shows that by adding more measurements the accuracy can
be increased. However the bigger the noise, the more measurements need to be taken in account
and the computational effort increases.

Table 1. Comparison of the performance dependent on the number of measurements

Number of Meas. 1000 5000 10000
Error ~pBF

CoM 0.0018 0.0003 0.0002
0.0238 0.0075 0.0050
0.0115 0.0093 0.0013

Error~Inorm 0.0617 0.0507 0.0276
0.0321 0.0044 0.0000
0.0123 0.0009 0.0000
0.0282 0.0127 0.0110
0.0090 0.0078 0.0001
0.0387 0.0196 0.0142
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Figure 5. Measurements of Euler Angles [deg] (left) and Angular Velocity [deg/s] (right) for Test 3

3.2.3. Test 3 - Non-diagonal inertia matrix and center of mass deviation

In another experiment we consider an inertia matrix of the form

I =

 121 0.4 0.3
0.4 109 4.5
0.3 4.5 106

 . (44)

The non-diagonal entries are now non-zero. Rewritten as a 6D vector and projected to the sphere
S , we obtain

~Inorm = (0.6225,0.0021,0.0015,0.5608,0.0232,0.5454)T . (45)

Further, we consider a center of mass which is not the geometrical center of the body. Its position
with respect to the body frame is

~pBF
CoM = (0.8,0.3,0.05)T . (46)

For simulating measurements, noise as in Test 1 is added to the real data; the measurements are
shown in Fig. 5. As the period is longer for this experiment, we observed the motion for 400
seconds. The center of mass position is estimated as

~pBF
CoM = (0.79544,0.29843,0.04971)T (47)

which is again accurate up to an error of about 5 mm. The estimated moments of inertia normalized
to 1 are

~Iest
norm = (0.6218,0.0027,0.0008,0.5599,0.0220,0.5472)T . (48)

This results in an estimation error of

~Iest
norm−~Inorm = (−0.0007,0.0006,−0.0007,−0.0009,−0.0012,0.0018)T . (49)
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4. Discussion

The center of mass can be estimated with an accuracy of a few millimeter. The error of the
normalized moments of inertia is of magnitude 1e−3.

The observation time plays a critical role. If the overall time frame is too short, the resulting
equations cannot be solved as there are not enough linear independent measurements. Concerning
the center of mass computation for instance, the term W IRF

i (RBF
i,IRF)

T will change only little and the
involved matrix A in Eq. 7 will be close to a singular matrix.

The full set of parameters can only be observed in the nutation case, not from pure rotation, cf.
Section 2.4.. One or two complete periods of rotation and of the resulting nutation of the target have
to be observed, cf. Section 3.2.

Beyond that, the number of measurements influence the accuracy especially if the measurement
noise is high. In this case, additional measurements are necessary to improve the estimation based
on a least squares optimization.

We therefore recommend to include an inspection phase in an on-orbit servicing mission which takes
sufficiently long dependent on the period of the angular velocity and dependent on the magnitude of
the measurement noise.

No significant correlation can be noted concerning the performance of this method and the position
of the center of mass or the symmetry of the body. Test 3 showed that also non-diagonal, more
complex inertia tensors can be estimated with the same performance as in Test 1 where the inertia
matrix was diagonal. Also no influence of the distance of the mass center from the geometrical
center has been noticed.

5. Conclusion

We presented a method for estimating the center of mass position and the moments of inertia of a
freely tumbling, passive satellite. The method uses processed data from optical sensors like cameras
or LIDARs. The estimation is based on kinematic equations and the conservation of the angular
momentum and leads to least squares problems. Concerning the estimation of the inertia tensor, we
solve a constrained least squares problem to ensure positive diagonal values of the inertia matrix.
Additionally, we proposed to analyze the singular values of the involved matrices to avoid numerical
problems concerning the rank of matrices caused by measurement noise and numerical rounding
errors.

Further, we analyzed the accuracy of the estimations. Besides noise, the accuracy is mainly
dependent on the duration of the observation compared to the period of the rotation and nutation of
the observed body.

An important application of the methods presented in this paper are on-orbit servicing missions
where a service satellite approaches a non-cooperative target satellite whose center of mass and
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inertia parameters are unknown. For a safe approach and docking to the target, we recommend to
include an inspection phase where the satellite is observed from a safe distance and the unknown
inertia parameters are estimated as described in this work.

A next step in this research is the use of real sensor data from cameras or LIDARs in a hardware-in-
the-loop framework. This will result in a more realistic scenario with non-artificial measurement
noise.
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