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ABSTRACT:

In this paper a new approach is presented to predict maximum wind speeds using Gradient Boosted Regression Trees (GBRT). GBRT
are a non-parametric regression technique used in various applications, suitable to make predictions without having an in-depth a-priori
knowledge about the functional dependancies between the predictors and the response variables. Our aim is to predict maximum wind
speeds based on predictors, which are derived from a digital elevation model (DEM). The predictors describe the orography of the
Area-of-Interest (AoI) by various means like first and second order derivatives of the DEM, but also higher sophisticated classifications
describing exposure and shelterness of the terrain to wind flux. In order to take the different scales into account which probably
influence the streams and turbulences of wind flow over complex terrain, the predictors are computed on different spatial resolutions
ranging from 30 m up to 2000 m. The geographic area used for examination of the approach is Switzerland, a mountainious region in
the heart of europe, dominated by the alps, but also covering large valleys. The full workflow is described in this paper, which consists
of data preparation using image processing techniques, model training using a state-of-the-art machine learning algorithm, in-depth
analysis of the trained model, validation of the model and application of the model to generate a wind speed map.

1. INTRODUCTION

The strong linkage between geomorphologic parameters and wind
flux has been used to describe a broad range of phenomena in-
fluenced and driven by wind, like estimating the direction of an
unknown air pollution source (Antonić and Legović, 1999), map-
ping wind erosion risk and dust emission-deposition (Reiche et
al., 2012) or simulating snow redistribution and accumulation
(Winstral and Marks, 2002). Besides of ecologic applications,
the discrete description of wind flux and maximum wind speeds
is also a key parameter to estimate the risk of damages by wind,
Heneka (Heneka and Ruck, 2004) gives a detailed overview of
different loss functions based on maximum wind speeds.

Estimating wind speeds over complex terrain is a challenging
task, thus different methodical approaches exist to make such
predictions. The domain of meteorological models deals with
atmospheric boundary layers and the description of interactions
in the atmosphere to model the behaviour of airflows, detailed
application examples are given in (Hofherr and Kunz, 2010) and
(de Rooy and Kok, 2004). Using Computational Fluid Dynam-
ics (CFD) programs who solve the discrete Navier-Stokes equa-
tion are also suitable for simulating wind speeds, but preparing
such a simulation and running it is very resource demanding from
a computational point of view. The DEM needs to be trans-
formed into a volumetric mesh which represents the surface and
the boundary conditions of the simulation in a sufficient manner,
otherwise the air mass transportation would give no reliable re-
sults. Garcia and Boulanger (Garcia and Boulanger, n.d.) give
an example in using a CFD program for simulating low altitude
wind flow, using a SRTM dataset with an spatial extent of more
than 10000 km2, covering Mt. St. Helens (USA).
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Besides of these strict mechanical models which aim to simu-
late air flow, also general statistic techniques can be adapted for
making spatial predictions, different tools are found in the regres-
sion domain. The goal of regression analysis is to uncover func-
tional dependancies between a set of independent parameters and
a set of dependent variables. By using such techniques, it’s pos-
sible to make quantitative predictions with a known uncertainty
based on a set of random samples. As the strict functional model
is quite complex for wind speed prediction, it seems beneficial
to use techniques from the non-parametric regression domain.
Lehmann (Lehmann et al., 2002b) developed a software pack-
age called Generalized Regression Analysis and Spatial Predic-
tions (GRASP), which uses generalized additive models (GAMs)
to modell the spatial behavour of a broad range of phenomena. It
has been successfully used for different applications in ecolog-
ical modelling, keywords are vegetation mapping, biodiversity
and spatial species distributions (Cawsey et al., 2002, Lehmann
et al., 2002a, Overton et al., 2002, Ray et al., 2002, Zaniewski
et al., 2002). Besides of GAMs, also other non-parametric re-
gression methods have been used for making spatial predictions.
Leathwick (Leathwick et al., 2005) gave an example in using
multivariate adaptive regression splines (MARS) to predict the
occurance and density of fish populations in New Zealand fresh-
water system. They used a broad range of environmental vari-
ables like stream size, temperature and distance from the sea, the
probabilites of occurance were then used to produce maps for
New Zealands entire river network. A working guide to boosted
regression trees (BRTs) is given by Elith (Elith et al., 2008), the
use case is deals also with the distribution of a fish species in New
Zealands river network.

In this paper we present a case study to predict wind speeds us-
ing GBRTs. Regression Trees, often simultaneously refered as
Decision Trees, aim to approximate the unknown target function
by iteratively partitioning the feature space in piecewise constant
functions. The set of rules which defines the final model can be



Figure 1: Wheather stations of MeteoSwiss

visualized as tree, which makes the model easy to understand and
interpret. Introduced by Breiman (Breiman et al., 1984), over
the last decades a broad range of extensions was developed. An
in-depth description of the algorithm with practical examples is
given in (Hastie et al., 2001). Boosting is an extension of the
initial regression tree algorithm. Instead of creating a single tree,
boosting creates iteratively an ensemble of trees which aim to
minimize the residuals of the initial model. The final model con-
sists of a collection of trees, following a gradient-descent strat-
egy, where different loss functions (Mean Square Error, Absolute
Error, Huber Loss, etc. ) are possible.

As the prediction of the wind speed strongly relies on the earth
surface, a set of describing parameters is derived from the initial
DEM. Besides of first and second order derivatives like slope,
aspect and curvature, also a geomorphologic classification algo-
rithm for landform analysis is used. Introduced by Weiss (Weiss,
2001), the Terrain Positioning Index (TPI) distinguishes between
major landforms (hills, ridges, valley and others), which have an
impact on the near ground air mass transportation system. An
additional wind specific index based on DEM which provides
a numerical measure of the degree of wind shelter, the TOPEX
score, is also taken into account. A discussion of the TOPEX
score and other qualitative and quantitative methods to assess
topographic exposure is given by Chapman (Chapman, 2000).
Both TPI and TOPEX have in common that they give freedom
to the user about the maximum distance of height values to take
into account, which helps to adjust the algorithm to the specific
application.

2. AREA OF INTEREST, DATA

The study site is Switzerland, a mountainous region in the heart
of Europe. The diversified landscape includes mountains higher
than 4000 meters and steep canyons, but also farm land, lakes

and urban areas. The southern part of switzerland is dominated
by the alps, leading to a dynamic orography with more than 3000
mountains higher than 2000 meters. The DEM was recorded by
the SRTM mission and is provided with a spatial resolution of 30
meters (Farr et al., 2007). Having a representative set of wind
measurements is essential for the task. The Federal Office of Me-
teorology and Climatology MeteoSwiss maintains a network of
more than 200 weather stations. The data are conveniently acces-
sible via the online portal IDAweb at no charge for research. An
overview of the locations of the weather stations is given in fig-
ure 1, the height of the stations ranges from 203 to 3580 meters
above sea level (asl).

2.1 WHEATHER STATIONS

The 200 weather stations used for this work are fully automatic
and deliver wind speed and wind directions at an interval of 10
minutes. The station situated at the lowest altitude of 203 m asl
is placed in Magadino/Cadenazzo. The place is part of the can-
ton Tessin, and is less than 10 km from the famous lake Garda.
The highest station is placed at the Jungfernjoch in the canton of
Bern, at an altitude of 3580 m asl. The Jungfernjoch is a sad-
dle between the two mountains Jungfrau and Mönch, having the
famous mountain Eiger nearby. The average altitude of all sta-
tions is about 1032 m asl. The gust peak measuremens (one sec-
ond) are delivered in a day-wise granularity, the time span taken
into account starts in January 1981 and ends in September 2015.
From the listed measurements for each station the 98th percentile
(W98) was derived and then used for the evaluation.

2.2 PREDICTOR VARIABLES

Based on the initial DEM several DEMS with a downsampled
spatial resolution were generated, using bi-cubic interpolation.
The spatial resolution steps are 30 m, 300 m, 600 m, 1000 m



(a) DEM, color encoding from black to white (min. to max. height) (b) TOPEX, color encoding from white to blue (min. to max. angle score)

Figure 2: Comparison of DEM (left) and derived TOPEX map (right)

and 2000 m. For each DEM, the first and second order deriva-
tives slope, aspect, profile and plan curvature were calculated.
An detailed description of the derivatives is given by Wilson and
Gallant (Wilson and Gallant, 2000). The landform classification
is based on the TPI using two kernel maps, one with 100 m inner
radius and 500 m outer radius, one with 100 m inner radius and
2000 m outer radius. In combination with a slope map a clas-
sification into 10 major landforms is done, the classes are like
suggested by Weiss (Weiss, 2001). The TOPEX score map is
calculated taking the height values in a range from 100 m to 2000
m in the eight major cardinal directions into account. Figure 2
shows a subset of the DEM and the corresponding TOPEX map.
An overview about the at least 7 different predictor groups and
the different scales is given in table 1.

As all predictors rely on the DEM and several predictors are avail-
able at different scales, orthogonality between the single predic-
tors becomes an issue. On the one hand, one descriptor at dif-
ferent scales could be useful to simulate different channelling
and deflection effects of wind flow, on the other hand introduc-
ing several correlated predictors into the model building process
will blow up the model without increasing the overall accuracy.
To overcome this problem, minimum one and maximum two de-
scriptors of each of the descriptor groups is used for the final
modelling. In the single descriptor groups the goal is to choose
the two predictors having the lowest Pearson correlation coeffi-
cient, as a restriction the correlation coefficient between variables
of one group must not exceed 0.75. This approach enforces to
add all relevant information to the model building process with-
out overwhelming it with a big group of orthogonal predictors.

Descripor Group Resolution Data class
Altitude 30, 300, 600, 1000, 2000 Numeric
Slope 30, 300, 600, 1000, 2000 Numeric
Aspect 30, 300, 600, 1000, 2000 Numeric
Planform Curvature 30, 300, 600, 1000, 2000 Numeric
Profile Curvature 30, 300, 600, 1000, 2000 Numeric
TOPEX 2000 Numeric
TPI 2000 Categoric

Table 1: Description of Stock Data attributes

3. METHODOLOGY

GBRTs is considered as an ensemble method, combining sev-
eral weak learners to a strong predictor. The term regression tree
names already the type of learner. Regression Trees are known

for their simplicity in interpretation, for being able to handle nu-
merical and categorical data, and for being able to fit complex
non-linear relationships and interactions between predictors. In
this examination for each geo-referenced wind measurement y a
set of predictor variables is derived from the DEM, denoted by x.
A regression tree is then an estimate f̂ of the functional depen-
dancy between the predictors x and the response y.

Regression trees aim to partition the feature space into piecewise
constant functions, also refered as regions. The description of
such a functional model by a single tree is given in equation 1. In
the final model each predictor x is linked to a region R, the lim-
iting borders of R are defined by the interval I . M is the number
of regions which corresponds to the number of split points of the
tree plus one (having binary split points) and c corresponds to
the constant response value predicted by the model. The building
of a single tree is an iterative process, at each node the predictor
variable and its value are chosen in order to minimize the over-
all error of the model. Depending on the nature of the problem
different loss functions can be used, like sum of squares, Huber
loss or others. The response value is than the average value of all
response values satisfying the rule set given by the tree.

f̂(x) =

M∑
m=1

cmI(x ∈ Rm) (1)

Gradient Boosting means that instead of growing one single re-
gression tree, several trees are modelled and added to a model,
where each new tree aims to minimize the residuals of the exist-
ing model. Equation 2 describes this process, where the model
Fm(x) at boosting step m consists of the model Fm−1(x) plus
the regression tree f̂ , which aims to minimize the residuals of
Fm−1(x). In most algorithm implemetations the number of trees
of the final model has to be specified by the user, but also a stop-
ping criterion would be possible.

Fm(x) = Fm−1(x) + f̂(x) (2)

The additive boosting process of adding new trees f̂(x) to the
existing model Fm−1(x) is explained in detail in equation 3. In
each boosting step, a new tree is appended to the present model
Fm−1(x). The new tree f̂(x) minimizes the loss function L
which is given as the sum of the residuals between the n re-



sponses yi of the training data and the predicted respone of the
present model Fm−1(xi) plus the new tree f̂(x).

Fm(x) = Fm−1(x) + argmin
f̂(x)

n∑
i=1

L(yi, Fm−1(xi) + f̂(x))

(3)

4. RESULTS AND DISCUSSION

As predictor for the final model, the DEM with 30 m spatial res-
olution was used. All down sampled versions had a correlation
coefficient higher than 0.8 to each other, therefore they would not
add any further information. From the slope maps the resolution
combination of 30 m and 1000 m has the lowest correlation coef-
ficient with 0.49, for the aspect maps the combination 30 m and
600 m resulted in the minimum correlation coefficient of 0.13.
For both profile and plan curvature the combination of 30 m and
2000 m spatial resolution give the lowest correlation coefficient
nearby zero. The TOPEX map and the TPI map are taken as is.

Figure 3(a) gives an overview of the influence of the single pre-
dictors in the final model. As expected, altitude and TOPEX are
the two predictors who contribute most to the final model. As
mountain peaks and ridges are in most cases not sheltered by
higher topographic entities in their neighbourhood, the influence
of this parameter seams obvious. Figure 4 shows the maximum
Wind Speed map, here we also see the strong influence of the
altitude, as the underlying landforms are clearly visible. Areas
which are sheltered by surrounding entities can easily be distin-
guished from unsheltered areas by the TOPEX score. Areas hav-
ing a high TOPEX score are less exposed to wind streams than
areas in open valleys, because of this we expect the lowest wind
speeds in such sheltered areas. The wind speed map proves this,
as the lowest wind speeds are measured and also predicted in the
submontane regions. Lakes have a TOPEX score nearby zero, the
large lakes like lake Geneva, Lake Constance and others appear
with a higher predicted wind speed than the bordering areas. Fur-
thermore the wind speeds on the surface of the water are almost
constant. This is not surprising, as the predictors stay constant
at this places. Aspect on two different scales is the next con-
tributing predictor. There is no clear and simple explanation of
this situation, but we consider northwest as the main wind direc-
tion. Two points lead us to this assumption. First, on the northern
hemisphere air masses following the pressure-gradient from the
equator to the poles tend to circulate in a clockwise direction, an
effect explained by the Coriolis force. Second, besides of this
global phenomenon the Mediterranean area is the setting for sev-
eral large scale wind systems. The Mistral is a strong, northwest-
erly oriented wind mainly occurring in the south of France and
influencing the Mediterranean area. The contributing air mass
regime affects also the western alps. A visual examination of the
wind map shows that ridges oriented to the northwest in general
show higher wind speeds, an observation which can be explained
by the two before mentioned meteorological phenomena. Slopes
and Curvatures are not the predictors having dominant influence
to the final model. As TOPEX scores can be considered as an
enhancement of slope measurements, probably in the final model
the slope values are just overruled by TOPEX scores, being the
superior predictor. The contribution of profile and plane curva-
ture to the main model is also low, but should not be neglected.
Both curvatures suite well for describing complex phenomena,
perhaps the different scales at which they were introduced into the
model should be reconsidered. Surprisingly the landform analy-
sis has the lowest impact in the final model. As landforms can

also be derived to a certain degree from the TOPEX score, prob-
ably the TPI is also outvoted like the slope values by the prime
predictor. Having in mind that in contrast to most other predictors
the TPI is just introduced on one scale into the model, this is still
to some degree implausible.

The final model consists of 1800 trees, figure 3(b) shows the de-
crease in deviance of the model for each added tree to the final
model. 70 percent of the 200 weather stations were used for the
training of the model (blue line), the remaining 30 percent were
used for control purposes. By adding too many trees to the model,
variance will decrease too much and over fitting will occur. In the
example, after 1800 iterations no real gain can be expected from
adding more trees. To prevent such a behavior during the model
building process, different regularization techniques are used. We
introduced the four restricting parameters maximum tree depth,
number of samples per leaf, learning rate and subsampling to
lead the model building into the right direction. The maximum
tree depth was binded to three, building a large number of trees
with low depth is a general technique to avoid over-fitting. The
influence of single and not representative outliers in the set of
random samples should be minimized. This can be ensured by
giving a minimum number of samples per leaf for the tree grow-
ing process. We have decided to have at least ten samples per
leaf, as we’re convinced that making a split leading to leafs with
less then ten samples would lead to an unrepresentative response
function. The learning rate, which can be considered as a weight-
ing factor for each single tree, is 0.001. As the methodology of
GBRT is to some degree comparable with the method of steepest
descent, this factor can be considered as a factor lowering the step
length whilst not influencing the step direction. The big number
of 1800 trees in combination with the low learning rate ensures
a quite moderate decrease in the model error leading towards the
optimal combination of regularization parameters. By introduc-
ing stochasticity into the model building process, variance and
bias of the final model can also be minimized. Subsampling is a
common technique to introduce stochasticy by just taking a ran-
dom subsample of the training data sets per boosting iteration
into account. We used just 50 percent of the available training
data sets per boosting iteration. Table 2 gives an overview of the
mentioned and used regularization parameters.

Attribute Value
Maximum Tree Depth 3
Minimum Samples per Leaf 10
Learning Rate 0.001
Subsampling Rate 0.5

Table 2: Regularization Parameters

The final model has a RMSE of 3.28 and a coefficient of determi-
nation of R2 = 0.78.

5. CONCLUSIONS AND FUTURE WORK

A new approach for predicting wind speeds using GBRT is pre-
sented. We see that GBRT in conjunction with established DEM
based predictors are capable to model the complex behaviour of
wind streams over a large mountainous area. The results are reli-
able within a given accuracy.

Besides of the used predictors, more domain-related predictors
could be integrated into the model. A quite simple examples is
the Terrain Ruggedness Index, which quantifies topographic het-
erogeneity (Riley et al., 1999). Besides of the geomorphometric
operators, also more sophisticated indexes inspired by ray-tracing
could be added. Openness is such a parameter, which expresses



(a) Relative Predictor Influence (b) Deviance over Boosting Steps

Figure 3: Model Description

the degree of dominance or enclosure of a location on an irregu-
lar surface like a DEM (Yokoyama et al., 2002). Another quite
promising approach would be to add indexes which make use of
flow routing algorithms. Lindsay and Rothwell (Lindsay and
Rothwell, 2008) introduced the Channelling and Deflection In-
dex (CDI), a sophisticated algorithm which leaves the ray-tracing
domain and makes also usage of multiple flow direction (MFD)
algorithms to simulate the complex behaviour of air streams. Dif-
ferent possible MFDs are named, probably the most promising
for future investigations is D∞ (Tarboton, 1997).

Tuning the parameters of the GBRT is a iterative and subjective
task. Finding the optimal parameter set and handling the trade-
offs between number of trees, learning rate, tree depth and others
needs to be carried out by an experienced operator. Grid search
can be adopted to test a certain number of possible combinations
of different parameters, pointing to an optimal set with respect
to a given loss function. Techniques like global optimization do-
main would probably lead to better results, for example evolu-
tionary algorithms or genetic algorithms.
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