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In this paper I propose a classical optics experiment that results in a maximum violation of
a Bell-like inequality. The first part is concerned with the Bell-like inequality (the so-called
CHSH-inequality) itself. Its importance and its maximum violation in Quantum Mechanics
(QM) are discussed in detail by employing an abstract probability state concept in a 4-dim.
but classical event space. A T-matrix that represents the integral part of a corresponding
Green's function as well as a statistical operator that contains a negative quasi-probability
can be related to the corresponding quantum mechanical experiment. It is demonstrated
that the derivation and usage of the T-matrix and the Green's function is equivalent to
what is known from classical scattering theory. It is shown moreover that the negative
quasi-probability of the statistical operator may be interpreted as a sink of probabilities
related to two single events of the considered 4-dim. event space. A necessary condition
for the violation of the CHSH-inequality is derived and discussed afterwards. In the second
part of this paper I discuss a modification of the 4-dim. event space considered in the first
part. It is shown that a combination of conventional Rayleigh scattering with a Mach–
Zehnder setup would be able to put this modification into practice. Thus it becomes
possible to achieve a maximum violation of the CHSH-inequality, if formulated in terms of
intensities, on a pure classical way. The combination of classical light scattering with
correlation experiments such as proposed in this paper may open new ways to study and
to use the violation of Bell-like inequalities in modern optics.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

In 1964 J.S. Bell published his famous paper regarding
the just as well famous Einstein–Podolsky–Rosen (EPR)
paradox – a paradox that had been discussed since 1935
until Bell's paper purely on a philosophical level [1]. EPR is
concerned with the question if QM can be considered to be
a complete theory, or if we have to search for any hidden
parameters to complete it [2,3]. In his paper Bell derived
an inequality, formulated in terms of correlations, for a
certain class of experiments. He proved that this inequality
cannot be violated by any of such experiments or any
theory of local realism. The term “local” in this context
expresses the fact that there is no “spooky” action at a
distance between two distant measurement locations. And
lation of a Bell-like in
Radiat Transfer (2015
that a measurement is “realistic” means that the property
of an object we intend to measure can be related to this
object independent of whether we perform the measure-
ment or not. Or, in other words: “The moon is there even
when not being observed”. Today it is tacitly assumed that
any classical theory (Newtonian mechanic, Electro-
dynamic, etc.) belong to a theory of local realism. And,
moreover, the impossibility of any such theory to violate
Bell's inequality holds independent of whether there exist
hidden parameters or not. 5 years later, in 1969, J. Clauser,
M. Horne, A. Shimony, and R. Holt published an alternative
inequality – the so-called CHSH-inequality [4]. Since then
this inequality has become a much-cited relation. A first
experiment to demonstrate its violation in QM was put
into practice in 1982 by A. Aspect and co-workers. They
equality by a combination of Rayleigh scattering with a
), http://dx.doi.org/10.1016/j.jqsrt.2015.09.002i
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Fig. 1. Bell's box with only a primary quantum mechanical source.
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used polarization entangled photons to create a 4-dim.
event space [5]. Several other quantum mechanical
experiments have been developed in the meantime. They
are of growing importance not only for questions regard-
ing the foundations of QM but also in quantum informa-
tion theory (e.g., quantum cryptography and quantum
computing), and in quantum optics. Today, the violation of
the CHSH-inequality in QM is accepted among most of the
physicists as an experimental fact. It is assumed that this
violation expresses the non-local character of this theory,
and, more important, that it is exactly this non-local
character that makes QM essentially differ from our clas-
sical lines of thought. The following two representative
quotations are meant to emphasize this point of view:

Bell's theorem, which states that the prediction of
quantum theory cannot be accounted for by any local
theory, represents one of the most profound developments
in the foundation of physics [6].

Because quantum mechanics violates Bell's inequality,
it is in empirical disagreement with the family of local
physical theories [7]

These and similar quotations reflect the position that
the CHSH-inequality provides us with a bound of any
related correlation experiment if performed with a clas-
sical setup. However, there is still an ongoing discussion
regarding the possibility to violate Bell's inequality with a
classical experiment. In 2010 Borges et al. performed a
classical optics experiment that results in a maximum
violation of a Bell-like (or CHSH-like) inequality if for-
mulated in terms of intensities [8]. It is based on non-
separable spin-orbit modes of a laser beam. In what fol-
lows I propose an alternative classical optics experiment
that will also result in a maximum violation of the CHSH-
inequality.

In the first part of this paper the CHSH-inequality and its
maximum violation by a corresponding quantum mechan-
ical experiment are discussed. An abstract probability state
concept in a 4-dim. but classical event space is introduced
to this end. Using a T-matrix will allow us to describe the
experiment in terms of a basis transformation, as it is
known from classical scattering theory [11]. It turns out that
this T-matrix represents the decisive element of the inter-
action part of a corresponding Green's function. The exis-
tence of two sets of different basis vectors can be con-
sidered to be the result of two local and independent
interaction mechanisms described on the level of the initi-
ally introduced abstract probability states. A statistical
operator with negative quasi-probabilities can moreover be
related to this experiment. The existence and meaning of
such negative probabilities are other aspects of ongoing
discussions in QM [9,10]. Here it is shown that the negative
quasi-probabilities may be considered as a redistribution of
(always positive) probabilities related to each single event
of the 4-dim. event space. A necessary condition for the
violation of the CHSH-inequality is derived and discussed
afterwards. It is used as a proof that the classical counter-
part of the quantum mechanical experiment will never be
able to violate the CHSH-inequality.

The second part of this paper is concerned with the
description of a classical optics experiment that will result
in a violation of the CHSH-inequality if formulated in
Please cite this article as: Rother T. Violation of a Bell-like in
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terms of intensities. For this we have to discuss an
appropriate modification of the 4-dim. event space pre-
sented in the first part of this paper. It is finally shown that
a combination of conventional Rayleigh scattering with a
Mach–Zehnder setup would be able to accomplish this
modification on a pure classical way. Thus it is demon-
strated that it is questionable to relate the violation of Bell-
like inequalities exclusively to the realm of QM without
any reference to the experimental context. The violation of
Bell-like inequalities with such classical experiments is
moreover an indication that we have to revisit our
understanding of “non-local theories”. However, classical
correlation experiments such as performed in [8] or pro-
posed in this paper may open new ways to study and to
use the violation of Bell-like inequalities in modern optics.
Correlation measurements can be applied in a similar
manner as known from scattering experiments, for
example. i.e., the deviation from an initially given corre-
lation or a combination of correlations can be used to gain
information about the disturbance that causes this devia-
tion. The CHSH-inequality – especially if used with para-
meter sets resulting in a maximum violation – is just one
example that provides us with such an initial combination
of correlations.
2. CHSH-Inequality and its violation in QM

2.1. The quantum mechanical Bell's box and the 4-dim. but
classical event space

Let us start with a quite phenomenological description
of a quantum mechanical Bell's experiment by introducing
a “quantum mechanical Bell's box” (QBB). In its first level
of configuration our QBB consists of a box with three
compartments (see Fig. 1). In the center compartment we
have placed a source that emits two polarization entangled
photons (horizontally (h)- and vertically (v)-polarized
with respect to a fixed but arbitrary plane) into opposite
directions once we push the button. But we do not know
the state of polarization of the photon emitted in a certain
direction. i.e., we do not know if we have the combination
ðh; vÞ or ðv;hÞ with respect to the polarization of both
photons in a single event. The first term in the brackets is
related to the photon on the left-hand side, and the second
term is related to the photon on the right-hand side. It
should be emphasized that the h-or v-polarization repre-
sents the state of a photon but not the measurement
equality by a combination of Rayleigh scattering with a
), http://dx.doi.org/10.1016/j.jqsrt.2015.09.002i
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Fig. 2. Bell's box with the primary quantum mechanical source of Fig. 1
but now with two additional, local stochastic interaction modules
(polarization filters).
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value! This is sometimes confused in the literature even
though it is well-known already from classical electro-
dynamics. For the time being, the other two compartments
on the left- and right-hand side remain empty. A lamp is
mounted at each end of the box (lamp LA and LB) and
equipped with a detector that switches the lamp on if a h-
polarized photon is detected. The lamp remains switched
off otherwise. Thus we have the two measurement values
“yes” (lamp switched on) and “no” (lamp switched of) in
this experiment. There are in general 4 non-local mea-
surement pairs that establish a 4-dim. but classical event
space. These are “lamp LA on, lamp LB off: ðyA;nBÞ”, “lamp
LA off, lamp LB on: ðnA; yBÞ, “both lamps on: ðyA; yBÞ”, and
“both lamps off: ðnA;nBÞ”. After performing a multitude of
measurements with this first level setup of the QBB we
realize that there are just two possible events. These are
ðyA;nBÞ and ðnA; yBÞ. Let us further assume that the primary
stochastic source is prepared in such a way that each of the
two possible pairs of photons is emitted with the prob-
ability of 1=2. Employing an abstract probability state
concept, this experiment and its outcome can be described
in the following way:

If we relate the eigenvector

∣φ1〉¼ ð1;0Þ ð1Þ
to the local measurement value “lamp A/B on: (yA=B)”, and
the eigenvector

∣φ2〉¼ ð0;1Þ ð2Þ
to the local measurement value “lamp A/B off: (nA=B)”, then
we are able to characterize this first level QBB by the
abstract probability state

∣Φð0Þ
QBB〉¼

1ffiffiffi
2

p � ∣φ1;φ2〉� ∣φ2;φ1〉
� � ð3Þ

in the direct product space. Then, the scalar products

〈Φy;n∣Φy;n〉¼ pðy;nÞ ð4Þ

〈Φn;y∣Φn;y〉¼ pðn; yÞ ð5Þ
of the projections

∣Φy;n〉¼ ∣φ1;φ2〉 � 〈φ2;φ1∣Φ
ð0Þ
QBB〉 ð6Þ

∣Φn;y〉¼ ∣φ2;φ1〉 � 〈φ1;φ2∣Φ
ð0Þ
QBB〉 ð7Þ

provide us with the measured probabilities pðy;nÞ ¼
pðn; yÞ ¼ 1=2 of the two possible measurement values
ðyA;nBÞ and ðnA; yBÞ. Note that the scalar product of the two
vectors jf ; g〉 and jp; q〉 in the direct product space is
defined according to

〈g; f ∣p; q〉≔〈f ∣p〉 � 〈g∣q〉: ð8Þ
In a second level of configuration we insert two addi-

tional interaction modules into the so far empty com-
partments of the QBB. These modules are nothing but
polarization filters the photons on both sides are inter-
acting with. They are located at x¼þxw and x¼�xw on
the right- and left-hand side from the primary source
located at x¼0.The orientation of the polarization filters
with respect to a fixed plane can be continuously varied
between ½0;π� with corresponding rotating switches Dα

and Dβ . The local interactions become in this way
Please cite this article as: Rother T. Violation of a Bell-like in
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functions of the local parameters α and β. Finally, the
detectors of the lamps are replaced by new detectors
which act in such a way that the lamps are switched on if a
photon is detected, independent of its state of polarization.
The lamps remain switched off otherwise. This second
level configuration of our Bell's experiment is depicted in
Fig. 2. Now, all 4 possible measurement pairs can be
observed. Let us further assume that performing a large
number of experiments with different sets of the local
parameters α and β result in the following probabilities:

� probability pðy; yÞ=pðn;nÞ that both lamps are switched
on/switched off:

p y; yð Þ ¼ p n;nð Þ ¼ 1
2
� sin 2 α�β

� � ð9Þ

� probability pðy;nÞ=pðn; yÞ that just one lamp is switched
on and the other lamp remains switched off:

p n; yð Þ ¼ p y;nð Þ ¼ 1
2
� cos 2 α�β

� � ð10Þ

These probabilities can indeed be observed in corre-
sponding quantum mechanical experiments and can
therefore accepted to be a fact. It allows us to relate the
following abstract probability state to this second level
QBB:

∣ΦQBB〉¼ c11 � ∣φ1;φ1〉þc12 � ∣φ1;φ2〉

þc21 � ∣φ2;φ1〉þc22 � ∣φ2;φ2〉; ð11Þ
with the α and β dependent probability amplitudes

c11 ¼ c22 ¼
1ffiffiffi
2

p � sin α�β
� � ð12Þ

c12 ¼ �c21 ¼
1ffiffiffi
2

p � cos α�β
� �

: ð13Þ

The additional eigenvectors ∣φ1;φ1〉 and ∣φ2;φ2〉 are rela-
ted to the two additional measurement pairs ðyA; yBÞ and
ðnA;nBÞ. If α¼ β is chosen, then we end up with (3) as a
special case. This probability state is normalized to unity,
i.e., we have

〈ΦQBB∣ΦQBB〉¼ 1: ð14Þ
By the way, the same normalization holds obviously for
the probability state (3). The probabilities (9) and (10) can
equality by a combination of Rayleigh scattering with a
), http://dx.doi.org/10.1016/j.jqsrt.2015.09.002i
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then be calculated from the scalar products of the corre-
sponding projections

∣Φy;n〉¼ ∣φ1;φ2〉 � 〈φ2;φ1∣ΦQBB〉 ð15Þ

∣Φn;y〉¼ ∣φ2;φ1〉 � 〈φ1;φ2∣ΦQBB〉 ð16Þ

∣Φy;y〉¼ ∣φ1;φ1〉 � 〈φ1;φ1∣ΦQBB〉 ð17Þ

∣Φn;n〉¼ ∣φ2;φ2〉 � 〈φ2;φ2∣ΦQBB〉: ð18Þ

2.2. T-matrix, Green's function, and statistical operator of
the QBB experiment

Fig. 3 shows the general scheme that can be used to
describe this second level QBB experiment in terms of two
local interactions. h represents a horizontally polarized
photon emitted from the primary source into a certain
direction. Correspondingly, v represents a vertically
polarized photon emitted by the same source and at the
same time but into the opposite direction. The local events
on each side are ðnA=BÞ (“lamp A/B off”) and ðyA=BÞ (“lamp A/
B on”). Eigenvector ∣φ1〉 is again related to yA=B, and
eigenvector ∣φ2〉 to nA=B. We are now interested in a jus-
tification of the different probabilities of the 4 possible
event pairs ðyA; yBÞ; ðyA;nBÞ; ðnA; yBÞ, and ðnA;nBÞ. The two
substates before the additional interactions are given
according to (3) by

∣Φð0Þ
1 〉¼ 1ffiffiffi

2
p � ∣φ1;φ2〉 ð19Þ

and

∣Φð0Þ
2 〉¼ � 1ffiffiffi

2
p � ∣φ2;φ1〉: ð20Þ

The two local stochastic interactions on each side and the
resulting local probability amplitudes (the sine and cosine
functions in the square brackets in Fig. 3) may be obtained
by use of two local and unitary T-matrices which are
identical with the matrix of rotation,

Tα=β ¼Dα=β ¼
cos α=β � sin α=β
sin α=β cos α=β

 !
: ð21Þ
Fig. 3. Interaction scheme of Bell's experiment. h and v are the possible
states of polarization of the photons emitted by the primary source. nA=B

(“lamp A/B off”) and yA=B (“lamp A/B on”) are the local events measured
on each side in the experiment after the additional local interactions took
place. The corresponding local probability amplitudes are given in the
square brackets.

Please cite this article as: Rother T. Violation of a Bell-like in
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The amplitudes c10 and c20 of the local probability states
after the interaction are then the result of relation

c10

c20

 !
¼ Tα=β �

c1
c2

 !
ð22Þ

with c1 and c2 being the amplitudes of the local probability
states before the interaction (i.e., c2 ¼ �c1 ¼ 1=

ffiffiffi
2

p
,

according to (19) and (20)). This description is identical
with the description of the classical interaction of a line-
arly polarized plane wave with a polarization filter rotated
by an angle of α (or β) against the plane of linear polar-
ization. After the interaction, from (22) and the respective
T-matrices we get therefore the following local probability
states of the 4 two-dim. subspaces:

� local observation point A and h-polarization:

∣ϕ A;hð Þ〉¼ 1ffiffiffi
2

p � cos α � ∣φ1〉þ sin α � ∣φ2〉
� � ð23Þ

� local observation point A and v-polarization:

∣ϕ A; vð Þ〉¼ � 1ffiffiffi
2

p � � sin α � ∣φ1〉þ cos α � ∣φ2〉
� � ð24Þ

� local observation point B and h-polarization:

∣ϕðB;hÞ〉¼ cos β � ∣φ1〉þ sin β � ∣φ2〉 ð25Þ

� local observation point B and v-polarization:

∣ϕðB; vÞ〉¼ � sin β � ∣φ1〉þ cos β � ∣φ2〉: ð26Þ

Please, note that we have assigned the probability ampli-
tudes of the primary source to the local probability states
on the left-hand side. In the next step we pass on from
these local substates to the direct product states that
belong to the event pairs of both sides. This procedure is
accomplished separately for the upper and lower part of
Fig. 3. That is because these parts belong to successive time
steps in our experiment. In doing so, we get the following
two probability states in the direct product space:

∣Φ1〉¼ ∣ϕ A;hð Þ〉 � ∣ϕ B; vð Þ〉¼ 1ffiffiffi
2

p

� � cos α � sin β � ∣φ1;φ1〉þ cos α � cos β � ∣φ1;φ2〉
�
� sin α � sin β � ∣φ2;φ1〉þ sin α � cos β � ∣φ2;φ2〉

�
ð27Þ

(this state belongs to the upper part of Fig. 3), and

∣Φ2〉¼ ∣ϕ A; vð Þ〉 � ∣ϕ B;hð Þ〉¼ 1ffiffiffi
2

p

� sin α � cos β � ∣φ1;φ1〉þ sin α � sin β � ∣φ1;φ2〉
�
� cos α � cos β � ∣φ2;φ1〉� cos α � sin β � ∣φ2;φ2〉

� ð28Þ

(this state belongs to the lower part of Fig. 3). Now it is
straightforward to see that the superposition of both
substates results indeed into state (11) with amplitudes
(12) and (13). The same experiment can be described from
equality by a combination of Rayleigh scattering with a
), http://dx.doi.org/10.1016/j.jqsrt.2015.09.002i
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the alternative point of view of a basis transformation, as
we will demonstrate now.

We ask for the transformation matrix that transforms
the primary probability state (3) into the new probability
state

∣ΦQBB〉¼ cyy � ∣yA; yB〉þcyn � ∣yA;nB〉

þcny � ∣nA; yB〉þcnn � ∣nA;nB〉 ð29Þ
with probability amplitudes

cyy ¼ cnn ¼ 1ffiffiffi
2

p � sin α�β
� � ð30Þ

cyn ¼ �cny ¼
1ffiffiffi
2

p � cos α�β
� �

: ð31Þ

The new but so far unknown eigenvectors ∣yA=B〉 and ∣nA=B〉

are again related to the possible local measurements “lamp
A/B on” and “lamp A/B off”. Now, let us assume that these
eigenvectors are the result of a rotation of the local coor-
dinate system on the left- and right-hand side,

∣yA=B〉
∣nA=B〉

 !
¼Dα=β �

∣φ1〉

∣φ2〉

 !
; ð32Þ

caused by the two additional polarization filters. Dα=β
therein is again the matrix (21) of rotation. Thus we get

∣yA〉¼ ð cos α; � sin αÞ ð33Þ

∣yB〉¼ ð cos β; � sin βÞ ð34Þ

∣nA〉¼ ð sin α; cos αÞ ð35Þ

∣nB〉¼ ð sin β; cos βÞ: ð36Þ
These 4 vectors are orthonormal among each other, i.e.,
they form a new basis in the considered 4-dim. direct
product space. Next, we introduce the T-matrix

T¼

〈yB; yA∣φ1;φ1〉 〈yB; yA∣φ1;φ2〉 〈yB; yA∣φ2;φ1〉 〈yB; yA∣φ2;φ2〉

〈nB; yA∣φ1;φ1〉 〈nB; yA∣φ1;φ2〉 〈nB; yA∣φ2;φ1〉 〈nB; yA∣φ2;φ2〉

〈yB;nA∣φ1;φ1〉 〈yB;nA∣φ1;φ2〉 〈yB;nA∣φ2;φ1〉 〈yB;nA∣φ2;φ2〉

〈nB;nA∣φ1;φ1〉 〈nB;nA∣φ1;φ2〉 〈nB;nA∣φ2;φ1〉 〈nB;nA∣φ2;φ2〉

0
BBBB@

1
CCCCA

¼

cos α � cos β � cos α � sin β � sin α � cos β sin α � sin β
cos α � sin β cos α � cos β � sin α � sin β � sin α � cos β
sin α � cos β � sin α � sin β cos α � cos β � cos α � sin β
sin α � sin β sin α � cos β cos α � sin β cos α � cos β

0
BBBB@

1
CCCCA:

ð37Þ
The new probability amplitudes (30) and (31) may then be
calculated from the primary probability amplitudes of
representation (3) by use of the relation

cyy
cyn
cny
cnn

0
BBB@

1
CCCA¼ T �

0
1=

ffiffiffi
2

p

�1=
ffiffiffi
2

p

0

0
BBB@

1
CCCA: ð38Þ

The T-matrix (37) is again a unitary matrix, i.e.,

Ttp � T¼ E ð39Þ
holds with E representing the 4�4 unit matrix. This
property ensures the conservation of the overall prob-
ability for this transformation process. Such a representa-
tion of the T-matrix in terms of scalar products of the new
and old basis vectors is already known from conventional
Please cite this article as: Rother T. Violation of a Bell-like in
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scattering theory. Regarding Mie scattering, for example,
the expansion of the primary incident plane wave in terms
of regular wave functions is transformed at the surface of
the sphere into an expansion in terms of outgoing wave
functions. This transformation results in a similar T-matrix.
Both the regular and outgoing wave functions form also
two different basis systems at the surface of the sphere
(see [11, Chapter 2], for example).

Now, it will be shown that the T-matrix (37) represents
the decisive element of the interaction part of a Green's
function that can be related to the quantum mechanical
Bell's experiment. It is moreover demonstrated that this
Green's function can be determined in close analogy to
what is known from classical wave scattering (see [11],
Chapter 4 therein, for example). For this purpose we
consider once again the two different sets of basis vectors
in the direct product space that is related to our 4-dim.
event space. For simplicity, let us abbreviate these basis
vectors by

∣Ξ1〉≔∣φ1;φ1〉; ∣Ξ2〉≔∣φ1;φ2〉

∣Ξ3〉≔∣φ2;φ1〉; ∣Ξ4〉≔∣φ2;φ2〉; ð40Þ

and

∣Ψ 1〉≔∣yA; yB〉; ∣Ψ 2〉≔∣yA;nB〉

∣Ψ 3〉≔∣nA; yB〉; ∣Ψ 4〉≔∣nA;nB〉: ð41Þ

The two expansions

D1 ¼
X4
i ¼ 1

∣Ξi〉〈Ξi∣ ð42Þ

and

D2 ¼
X4
i ¼ 1

∣Ψ i〉〈Ψ i∣ ð43Þ

in terms of dyadic products represent corresponding unit
operators in the considered direct product space. Next, let
us choose the following “ansatz” for the Green's function:

GB ¼ G0
BþGW

B ¼D1 � H jxwj�jxjð Þ
þD2 WBD1 � H jxj�jxwjð Þ: ð44Þ

Hð�Þ therein denotes the Heaviside function, and WB

represents the so far unknown interaction operator. þxw
and �xw denote the distance of the additional polarization
filters on the right- and left-hand side from the primary
source located at x¼0. The two parts of the Green's
function are thus describing the situation in front and
behind these interactions. Now, if applying one of the two
additional conditions

∑
4

i ¼ 1
⟨Ξi∣GB∣Ξi⟩

" #
jxjo jxw j

¼ ∑
4

i ¼ 1
⟨Ξi∣GB∣Ξi⟩

" #
jxj4 jxwj

ð45Þ

and

∑
4

i ¼ 1
⟨Ψ i∣GB∣Ψ i⟩

" #
jxjo jxwj

¼ ∑
4

i ¼ 1
⟨Ψ i∣GB∣Ψ i⟩

" #
jxj4 jxwj

ð46Þ

we are able to determine the interaction operator WB in a
straightforward way. Using (45), for example, we get from
equality by a combination of Rayleigh scattering with a
), http://dx.doi.org/10.1016/j.jqsrt.2015.09.002i
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(42) to (44)

X4
i;k ¼ 1

〈Ξi∣Ξk〉 〈Ξk∣Ξi〉¼
X4

i;k;l ¼ 1

〈Ξi∣Ψ k〉 〈Ψ k∣WB∣Ξl〉 〈Ξl∣Ξi〉:

ð47ÞWith the definition

WB½ �kl≔〈Ψ k∣WB∣Ξl〉; k; l¼ 1;…;4 ð48Þ
of the matrix elements of the interaction operator WB the
right-hand side of (47) may be rewritten into

X4
i;k;l ¼ 1

〈Ξi∣Ψ k〉 WB½ �kl〈Ξl∣Ξi〉: ð49Þ

Next, we take advantage of the fact that the transforma-
tion between the two sets of basis vectors is accomplished
by relation

ð∣Ξ1〉; ∣Ξ2〉; ∣Ξ3〉; ∣Ξ4〉Þ ¼ ð∣Ψ 1〉; ∣Ψ 2〉; ∣Ψ 3〉; ∣Ψ 4〉Þ � T ð50Þ
with T according to (37) (note that the basis vectors in
relation (50) are the elements of a “supervector”). Now, if
identifying the matrix elements WB½ �kl in (49) with the ele-
ments of the T-Matrix (37) the right-hand side of (47) reads

X4
i;l ¼ 1

〈Ξi∣Ξl〉 � 〈Ξl∣Ξi〉; ð51Þ

i.e., it becomes identical with the left-hand side. The fol-
lowing expression is therefore finally obtained for the
Green's function that can be related to the quantum
mechanical Bell's experiment:

GB ¼ ∑
4

i ¼ 1
∣Ξi⟩ ⟨Ξi∣ � H jxwj�jxjð Þþ ∑

4

i;k ¼ 1
T½ �ik � ∣Ψ i⟩ ⟨Ξk∣

� H jxj�jxwjð Þ: ð52Þ
The probability state of the primary source is on the other
hand given by

∣ρ〉¼ ∣ρ1〉þ ∣ρ2〉; ð53Þ
with

∣ρ1〉¼
1ffiffiffi
2

p � ∣Ξ2〉 ð54Þ

∣ρ2〉¼ � 1ffiffiffi
2

p � ∣Ξ3〉: ð55Þ

The probability state (29) with amplitude functions (30) and
(31) is then the result of

∣ΦQBB〉¼ GB∣ρ〉: ð56Þ
If jxjo jxwj we just get the probability state of the primary
source.

Another but not less interesting point of view on the
QBB experiment can be provided in the following way:
Introducing the normalized probability states

∣ ~Φ1〉≔� cos α � sin β � ∣φ1;φ1〉þ cos α � cos β
�∣φ1;φ2〉� sin α � sin β � ∣φ2;φ1〉þ sin α � cos β � ∣φ2;φ2

ð57Þ

∣ ~Φ2〉≔ sin α � cos β � ∣φ1;φ1〉þ sin α � sin β
�∣φ1;φ2〉� cos α � cos β � ∣φ2;φ1〉� cos α � sin β � ∣φ2;φ

ð58Þ
Please cite this article as: Rother T. Violation of a Bell-like in
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∣ ~Φ3〉≔
1ffiffiffi
2

p � ∣φ1;φ2〉þ ∣φ2;φ1〉
� � ð59Þ

∣ ~Φ4〉≔
1ffiffiffi
2

p � ∣φ1;φ1〉þ ∣φ2;φ2〉
� � ð60Þ

will allow us to relate a statistical operator to the QBB
experiment. This operator reads

ρ̂ðQBBÞ≔
X4
i ¼ 1

pi � ∣ ~Φ i〉 〈
~Φi∣; ð61Þ

with weights pi given by

p1 ¼ p2 ¼ 1
2 ð62Þ

p3 ¼ �p4 ¼ 2 � cðα;βÞ; ð63Þ

and

cðα;βÞ ¼ sin α � sin β � cos α � cos β: ð64Þ

∣ ~Φ1〉 and ∣ ~Φ2〉 as well as ∣ ~Φ3〉 and ∣ ~Φ4〉 are again ortho-
gonal among each other. Moreover,

X4
i ¼ 1

pi ¼ 1 ð65Þ

holds for the weights. Note the negative weight (negative
quasi-probability) p4! The measured probabilities (9) and
(10) for any parameter configuration ðα;βÞ are then the
result of

pðy; yÞ ¼ 〈φ1;φ1∣ρ̂
ðQBBÞ∣φ1;φ1〉 ð66Þ

pðn;nÞ ¼ 〈φ2;φ2∣ρ̂
ðQBBÞ∣φ2;φ2〉 ð67Þ

pðy;nÞ ¼ 〈φ2;φ1∣ρ̂
ðQBBÞ∣φ1;φ2〉 ð68Þ

pðn; yÞ ¼ 〈φ1;φ2∣ρ̂
ðQBBÞ∣φ2;φ1〉; ð69Þ

as known from QM. Operator (61) may be called the “basic
Bell's operator” since it is related to a single experiment
with a fixed parameter configuration α and β. On the other
hand, if we have a classical mixture of N such experiments
(for different parameter configurations ðαk;βkÞ with
k¼ 1;…;N), and with classical weights rk,

PN
k ¼ 1 rk ¼ 1,

then we can relate the following statistical operator to the
mixture:

R̂ ¼
XN
k ¼ 1

rk � ρ̂ðQBBÞ
k ¼

XN
k ¼ 1

X4
i ¼ 1

rk � pðkÞi � ∣ ~ΦðkÞ
i 〉 〈 ~Φ

ðkÞ
i ∣: ð70Þ

Regarding the statistical operator (61) the question of the
linear independence of the normalized probability states
∣ ~Φ i〉 is of some importance. If this happens, then we are
able to represent any probability state of our 4-dim. event
space by a linear combination of these vectors. To prove
the linear independence we have to consider Grams'
matrix

G¼ 〈 ~Φ i∣ ~Φ j〉; i; j¼ 1;2: ð71Þ

Because of (57)–(60) this matrix is a symmetric ones
equality by a combination of Rayleigh scattering with a
), http://dx.doi.org/10.1016/j.jqsrt.2015.09.002i
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G¼

1 0 g1 g2
0 1 �g1 g2
g1 �g1 1 0
g2 g2 0 1

0
BBBB@

1
CCCCA; ð72Þ

with elements g1 and g2 given by

g1 ¼
1ffiffiffi
2

p � cos αþβ
� � ð73Þ

g2 ¼
1ffiffiffi
2

p � sin α�β
� �

: ð74Þ

Its determinant reads

det Gð Þ ¼ 8ffiffiffi
2

p � c α;β
� �

; ð75Þ

with cðα;βÞ according to (64). Thus we have to meet the
condition

cðα;βÞa0 ð76Þ
to ensure the linear independence of the vectors (57)–(60).
On the other hand, if

cðα;βÞ ¼ 0 ð77Þ
holds (this happens if we have ðα¼ 0 or π=2;βa0Þ or
ðαa0;β¼ 0 or π=2Þ), both weights p3 and p4 are identical
zero. We will see later that the probabilities resulting from
the two states ∣ ~Φ1〉 and ∣ ~Φ2〉 (i.e., if restricting the sum-
mation in (61) to

P2
i ¼ 1!) turn out to be the probabilities of

the classical counterpart of the QBB experiment. The two
states ∣ ~Φ3〉 and ∣ ~Φ4〉 can therefore be considered to
represent the interference contribution that results from
the superposition of the two substates (27) and (28). From
(61) we can see moreover that ∣ ~Φ3〉 acts as a “source state”.
I.e. it adds a certain amount to the probabilities pðy;nÞ and
pðn; yÞ calculated from the states ∣ ~Φ1〉 and ∣ ~Φ2〉. Contrary,
∣ ~Φ4〉 acts as a “sink state” since it removes the same
amount from the probabilities pðy; yÞ and pðn;nÞ calculated
from the states ∣ ~Φ1〉 and ∣ ~Φ2〉.

2.3. The CHSH-inequality and its violation with the QBB
experiment

Now we are prepared to discuss the importance of the
CHSH-inequality for the QBB experiment. The following
correlation function can be defined using the probabilities
related to a fixed parameter set ðα;βÞ in our 4-dim. event
space:

Cðα;βÞ≔pðy; yÞþpðn;nÞ�pðy;nÞ�pðn; yÞ: ð78Þ
It was shown by Clauser et al. [4] that the inequality

Cðα;βÞ�Cðα;β0Þ
�� ��þ Cðα0;βÞþCðα0;β0Þ

�� ��r2 ð79Þ

must hold for any experiment that can be described by a
theory of local realism. For a moment we will left open
what precisely a “theory of local realism” means. This is
another aspect of an ongoing discussion about the nature
of QM. However, regarding the QBB experiment the mea-
sured probabilities (9) and (10) are identical with the
probabilities calculated theoretically by use of (66)–(69)
with the statistical operator given by (61)–(63). Thus we
Please cite this article as: Rother T. Violation of a Bell-like in
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get the correlation function

Cðα;βÞ ¼ � cos 2ðα�βÞ: ð80Þ
Then, if we consider the probabilities related the 4 differ-
ent parameter sets

α;β
� �¼ 0;

π
8

� 	
ð81Þ

α;β0� �¼ 0;
3π
8


 �
ð82Þ

α0;β
� �¼ π

4
;
π
8

� 	
ð83Þ

α0;β0� �¼ π
4
;
3π
8


 �
; ð84Þ

inequality (79) is obviously violated. We get 2 �
ffiffiffi
2

p
instead

of a value r2! One may ask: Hey, where is the problem?
We have an accepted experimental outcome - the prob-
abilities of the QBB experiment. And these probabilities result
in correlation functions that may violate an inequality for
certain parameter configurations. Isn't it simply an indication
that there must be something wrong with the derivation of
this inequality? Unfortunately, the problem is not that
simple. To get a better understanding of its importance
and how we have to change the experimental configura-
tion to violate this inequality with a classical optics
experiment we want to discuss first the classical counter-
part of the above described QBB experiment. Let us call it a
“classical Bell's box” experiment (a CBB experiment). A
simple but instructive classroom experiment with two sets
of differently coloured marbles that fits into the scheme
presented in Fig. 3 runs as follows:

A box Bp with one white and one black marble repre-
sents the primary stochastic source. Two additional boxes
Bw and Bb are filled with 17 white and three black marbles
(box Bw), and 17 black and three white marbles (box Bb).
This corresponds approximately to the probabilities of
sin 2 3π=8¼ cos 2 π=8� 0:85 and cos 2 3π=8¼ sin 2 π=8�
0:15 to draw a white or black marble out of the respective
box. These two additional boxes represent the local inter-
action on the right-hand side!

Now, if parameter set (81) is chosen, the experiment is
performed in the following way: we draw both marbles
blindly out of box Bp and put one marble on the left-hand
side and the other marble on the right-hand side on our
desk. The colour of the marble on the left-hand side is
already the result of this side since α¼0, i.e., since we have
no additional interaction on this side. To get the result on
the right-hand side requires an additional step. If the pri-
mary marble on the right-hand side is white, then we have
to draw another marble out of box Bw. Its colour is the
result on the right-hand side. But if the primary marble on
the right-hand side is black, then we have to draw another
marble out of box Bb. Its colour will then be the result on
the right-hand side. We repeat this procedure until we are
able to calculate the probabilities related to the colours of
the marbles on both sides within a sufficient accuracy.
Then we are able to calculate the correlation function
Cðα¼ 0;β¼ π=8Þ according to (78) but with “yes (y)” and
equality by a combination of Rayleigh scattering with a
), http://dx.doi.org/10.1016/j.jqsrt.2015.09.002i
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“no (n)” in the probabilities replaced by “white (w)” and
“black (b)”).

If parameter set (82) is chosen, the experiment runs as
follows: the first step to get the result on the left hand side
is as before. But, now, if the primary marble on the right-
hand side is white, then we have to draw another marble
out of box Bb. Its colour is the result on the right-hand side.
On the other hand, if the primary marble on the right-
hand side is black, then we have to draw another marble
out of box Bw. This colour will then be the result on the
right-hand side. We repeat this procedure again until we
are able to calculate the probabilities within a sufficient
accuracy. Then we are able to calculate the correlation
function Cðα¼ 0;β¼ 3π=8Þ.

These are the experiments for the two parameter sets
(81) and (82). We can proceed in a similar way if the local
parameter α on the left-hand side is non-zero. The only
thing we have to do is to fill two additional boxes on the
left-hand side with an appropriate number of black and
white marbles to meet the probabilities of the local
interaction on this side. However, since α¼ π=4 for the
two sets (83) and (84) sin 2 α¼ cos 2 α¼ 1=2 holds. Only
one additional box with one white and one black marble is
therefore needed in this case on the left-hand side.

Performing this experiment (500 single measurements
for a given parameter set ðα;βÞ are sufficient to get a quite
accurate probability, as me and my family discovered at
several rainy weekends) it turns out that the probabilities
related to the 4 events (w, w), (w, b), (b, w), and (b, b) (i.e.,
the colours of the marbles on both sides) are given by

p w;wð Þ ¼ p b; bð Þ ¼ 1
2

� sin 2 α � cos 2 βþ sin 2 β � cos 2 α
� 	

ð85Þ

p w; bð Þ ¼ p b;wð Þ ¼ 1
2

� cos 2 α � cos 2 βþ sin 2 β � sin 2 α
� 	

: ð86Þ

But these probabilities follow also from the two states (27)
and (28) if calculating the probabilities from each state
separately, and by adding the corresponding probabilities
afterwards. Alternatively, we can restrict the summation in
the statistical operator (61) to

P2
i ¼ 1, as already men-

tioned. Once we accept these probabilities as an experi-
mental fact of the CBB experiment, from (78) we can cal-
culate the corresponding correlation function to get

Cðα;βÞ ¼ � cos 2α � cos 2β: ð87Þ

But with this correlation function we would never be able
to violate the CHSH-inequality (79). The proof runs as
follows:

Due to definition (78)

Cðα;βÞ
�� ��r1 ð88Þ

holds for any parameter set ðα;βÞ. It holds also if the
probabilities in (78) are replaced by corresponding nor-
malized intensities. That is exactly what we intend to do in
the classical optics experiment that is described in the
second part of this paper. Next, let us express the
Please cite this article as: Rother T. Violation of a Bell-like in
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difference between the two functions Cðα;βÞ and Cðα;β0Þ
by

Cðα;βÞ�Cðα;β0Þ ¼ Cðα;βÞ � 17Cðα0;β0Þ� ��Cðα;β0Þ
� 17Cðα0;βÞ� �¼ Cðα;βÞ�Cðα;β0Þ
7 Cðα;βÞ � Cðα0;β0Þ�Cðα;β0Þ � Cðα0;βÞ� �

: ð89Þ
This is obviously an identity only if

Cðα;βÞ � Cðα0;β0Þ�Cðα;β0Þ � Cðα0;βÞ ¼ 0: ð90Þ
I.e., if this condition holds (89) represents nothing but
adding a “nutritious zero” to the difference of Cðα;βÞ and
Cðα;β0Þ. Taking the inequality

a�b
�� ��r aj jþ b

�� �� ð91Þ
into account we thus get from (89)

Cðα;βÞ�Cðα;β0Þ
�� ��r Cðα;βÞ � 17Cðα0;β0Þ� ��� ��þ Cðα;β0Þ

��
� 17Cðα0;βÞ� ���: ð92Þ

The expressions inside the brackets on the right-hand side
are always Z0, according to (88). Therefore we can also
write

Cðα;βÞ�Cðα;β0Þ
�� ��r Cðα;βÞ

�� �� � 17Cðα0;β0Þ� �þ Cðα;β0Þ
�� ��

� 17Cðα0;βÞ� �
: ð93Þ

From this expression and from (88) the inequality

Cðα;βÞ�Cðα;β0Þ
�� ��r27 Cðα0;β0ÞþCðα0;βÞ� �

r2� Cðα0;β0ÞþCðα0;βÞ
�� �� ð94Þ

follows in a straightforward way. Now it becomes clear
that our CBB experiment can never violate the CHSH-
inequality since condition (90) holds for its correlation
function (87). But the correlation function (80) of the QBB
experiment clearly violates condition (90). Especially the
4 parameter sets (81)–(84) result in a maximum violation.
Thus we have found the necessary condition

Cðα;βÞ � Cðα0;β0Þ�Cðα;β0Þ � Cðα0;βÞa0 ð95Þ
to violate the CHSH-inequality. To emphasize the essential
difference between the QBB- and CBB experiment I want
to state once again that the former experiment requires
the superposition of the two states (27) and (28) before
calculating the probabilities. This superposition provides
an additional interference contribution that is already
known from the quantum mechanical double-slit experi-
ment. Regarding this experiment we get the typical
interference pattern of the double-slit even if sending the
quantum particles (photons or electrons, see [12] for
example) one after another through the double-slit. Con-
trary, in the CBB experiment the probabilities are calcu-
lated separately from each state and added afterwards.
Thus we have a further confirmation of Feynman's state-
ment: “I will take just this one experiment, which has been
designed to contain all of the mystery of quantum mechanics,
to put you up against the paradoxes and mysteries and
peculiarities of nature one hundred per cent. Any other
situation in quantum mechanics, it turns out, can always be
explained by saying: You remember the case of the experi-
ment with the two holes? It's the same thing” [13]. But it is
not the superposition itself that seems a mystery from our
classical lines of thought. Superposition is already a known
equality by a combination of Rayleigh scattering with a
), http://dx.doi.org/10.1016/j.jqsrt.2015.09.002i
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effect from classical field theories. It's rather the aspect
that we have to superpose two abstract probability states
that belong to different situations in our QBB experiment
which do not exist at the same time. Contrary, the super-
position of two classical fields necessarily requires the
existence of the fields in a certain volume of space at the
same time.

Now, let us see how we have to modify the scheme of
the 4-dim. event space considered so far to violate the
CHSH-inequality with a classical optics experiment.
3. Violation of the CHSH-Inequality with a classical
optics experiment

3.1. Modification of the 4-dim. event space related to Bell's
experiment

Fig. 4 shows the modification of the scheme of Bell's
experiment represented in Fig. 3. We will first discuss the
upper branch of Fig. 4. A primary source generates a lin-
early polarized plane wave with amplitude E0. After the
first interactionW1ðαÞ a part of this plane wave propagates
horizontally polarized and with amplitudes given in the
square brackets along the two directions a0 and b0. After
the second interaction W2ðβÞ we have a horizontally and a
vertically polarized part along both directions with
amplitudes given in the square brackets. The coherent
superposition of the respective parts will allow us to
measure the two intensities Ihh and Ihv. The same proce-
dure holds for the lower branch of Fig. 4 except that we
have a vertically polarized plane wave after the first
interaction. In this way we will be able to measure the two
intensities Ivh and Ivv after the second interaction. These
4 intensities are now the measurement values of a 4-dim.
event space. We may represent the finally superposed
Fig. 4. Scheme of a classical optics experiment with two successive
interactions W1ðαÞ and W2ðβÞ. The horizontally and vertically polarized
subfields after the interactions are coherently superposed, and the
intensities Ihh, Ihv, Ivh, and Ivv are measured afterwards.
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fields in a corresponding direct product space by

∣Φ1〉¼ E0
� cos ðα�βÞ � ∣φ2;φ1〉þ sin ðα�βÞ � ∣φ2;φ2〉
� � ð96Þ

and

∣Φ2〉¼ E0
� sin ðα�βÞ � ∣φ1;φ1〉þ cos ðα�βÞ � ∣φ1;φ2〉
� �

: ð97Þ
∣φ1;φ1〉 is the basis vector that represents the vertically
polarized state of the field after the second interaction if
we have a vertically polarized part after the first interac-
tion. Correspondingly, ∣φ1;φ2〉 is the basis vector that
represents the horizontally polarized state of the field after
the second interaction if we have a vertically polarized
part after the first interaction, etc. Thus we obtain the
intensities

Ihh ¼ Ivv ¼ E20 � sin 2ðα�βÞ ð98Þ

Ihv ¼ Ivh ¼ E20 � cos 2ðα�βÞ; ð99Þ
from the scalar products of the projections of (96) and
(97), as demonstrated in Section 2.1. If calculating the
correlation function according to

C α;β
� �¼ 1

It
� Ihhþ Ivv� Ihv� Ivhð Þ ð100Þ

with the total intensity It given by

It ¼ Ihhþ Ihvþ Ivhþ Ivv ¼ E20 � cos 2ðα�βÞ ð101Þ
we end up with

Cðα;βÞ ¼ � cos 2ðα�βÞ: ð102Þ
This correlation function results again in a maximum
violation of the CHSH-inequality if the four different
parameter configurations (81)–(84) are considered.
Fig. 5. Classical optics experiment related to the scheme of Fig. 4. It
consists of a Rayleigh scatterer that combines two Mach–Zehnder
interferometers.

equality by a combination of Rayleigh scattering with a
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3.2. A combination of Rayleigh scattering with a Mach–
Zehnder interferometry

How can we put a corresponding experiment into
practice? A possible configuration is shown in Fig. 5. It is
a combination of a Rayleigh scattering process with two
Mach–Zehnder interferometers. A detailed description
of the phase dependencies in the proposed Mach–
Zehnder setup can be found in [14], for example. The
first interaction process, i.e., the Rayleigh scattering
process (RS), depends on the parameter α. Within the
Mach–Zehnder setup we have a second interaction
process by differently rotating the plane of polarization
of the subfields along each path. But all 4 rotations are
characterized by the same parameter β. We will denote a
linearly polarized plane wave as “horizontally polarized”
if its E-vector is oscillating in the x–z-plane, and “verti-
cally polarized” if it is oscillating perpendicularly to this
plane, i.e., if it is oscillating in y-direction. The RS is
located at the origin of the coordinate system. A linearly
polarized plane wave E

!
iðαÞ propagates along the posi-

tive y-axis and impinges on the RS. Its plane of polar-
ization forms an angle of α with the x-axis. According to
Rayleigh scattering (see, e.g., [15]) we then have the
following two components of linearly polarized fields
traveling along the positive and negative x-direction (i.e.
traveling along path b and b0):

� path b:

∣ψb〉¼ E0 � sin α � ∣ẑ〉 ð103Þ

� path b0:

∣ψb0 〉¼ E0 � sin α � ∣ẑ〉: ð104Þ

On the other hand, the components of the fields traveling
along the positive and negative z-direction (i.e. traveling
along path a and a0) are given by

� path a:

∣ψa〉¼ E0 � cos α � ∣x̂〉 ð105Þ

� path a0:

∣ψa0 〉¼ E0 � cos α � ∣x̂〉; ð106Þ

with ∣x̂〉 and ∣ẑ〉 being the unit vectors in x- and z-direc-
tions. After changing the horizontal polarization along
path a and b into a vertical polarization by the two half-
wave plates PV we have

� path b:

∣ψb〉¼ E0 � sin α � ∣ŷ〉 ð107Þ

� path a:

∣ψa〉¼ E0 � cos α � ∣ŷ〉: ð108Þ
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Regarding the polarization along path a; b; a0 and b0 we are
now in a state that corresponds to the α-dependent
splitting after the first interaction W1ðαÞ of Fig. 4.

Next, let us proceed with path a and b. With the two
half-wave plates PaðβÞ and PbðβÞ the vertical polarization
of each subfield is again rotated in such a way, that the
superposition of

� path a:

∣ψa〉¼ �E0 � cos α � sin β � ∣ŷ〉
þE0 � cos α � cos β � ∣x̂〉 ð109Þ

� path b:

∣ψb〉¼ E0 � sin α � cos β � ∣ŷ〉
þE0 � sin α � sin β � ∣x̂〉 ð110Þ

can be accomplished in the lower beam splitter BS but into
the direction of detector D1. To this end, corresponding
phase shifts by π, that may caused by the beam splitter as
well as by the reflecting mirrors, have to be considered in
the rotation of the plane of polarization of each subfield
along path a and b. Then, with detector D1ðv;hÞ, we are
able to measure the intensities

Ivh ¼ E20 � cos 2ðα�βÞ ð111Þ
and

Ivv ¼ E20 � sin 2ðα�βÞ ð112Þ
of the vertically and horizontally polarized components of
the superposition.

The behaviour along path b0 and a0 can be described in a
similar manner with the difference that we have already
horizontally polarized subfields as the initial states. The
plane of polarization of these two subfields are then
rotated with the two half-wave plates Pa0 ðβÞ and Pb0 ðβÞ in
such a way, that the superposition of

� path a0:

∣ψa0 〉¼ E0 � cos α � cos β � ∣ŷ〉
�E0 � cos α � sin β � ∣x̂〉 ð113Þ

� path b0:

∣ψb0 〉¼ E0 � sin α � sin β � ∣ŷ〉
þE0 � sin α � cos β � ∣x̂〉 ð114Þ

can be accomplished in the upper beam splitter BS but into
the direction of detector D2. The corresponding phase
shifts by π, that may caused by the beam splitter as well as
by the reflecting mirrors in the upper Mach–Zehnder
interferometer, must again be taken into account in the
rotation of the plane of polarization of each subfield along
path a0 and b0. Then, with detector D2ðv;hÞ, we are able to
equality by a combination of Rayleigh scattering with a
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measure the intensities

Ihv ¼ E20 � cos 2ðα�βÞ; ð115Þ
and

Ihh ¼ E20 � sin 2ðα�βÞ ð116Þ
of the vertically and horizontally polarized components of
the superposition. Finally, calculating the correlation
function from these four intensities according to (100) and
(101) provides us with expression (102). However, if we
measure these four intensities right after the four half-
wave plates PaðβÞ, PbðβÞ, Pa0 ðβÞ, and Pb0 ðβÞ, then, after
normalization, we would end up with intensities that are
identical with the classical probabilities (85) and (86). It
should be also mentioned that due to the normalization of
the finally measured intensities, the reflecting mirrors in
the two Mach–Zehnder interferometers may be replaced
by unpolarizing beam splitters. But all these beam splitters
must be characterized by the same ratio of the reflected
and transmitted intensities.
4. Conclusion

An abstract probability state description in a 4-dim.
direct product space was introduced to discuss the differ-
ence between a typical quantum mechanical Bell's
experiment and its classical counterpart. This difference
could be traced back to the superposition of two substates
before the calculation of the related probabilities in the
former experiment. Contrary, the probabilities of its clas-
sical counterpart must be calculated from each substate
separately and added afterwards. A T-matrix and a Green's
function as well as a statistical operator can be defined in
this 4-dim. product space that allow the description of
both experiments from different point of views. The
Please cite this article as: Rother T. Violation of a Bell-like in
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negative weight or quasi-probability of the statistical
operator acts as a sink of probabilities related to two of the
single events in the considered 4-dim. event space.
Moreover, a necessary condition to violate the CHSH-
inequality was derived and applied to both experiments.
Thus it was proven that the CHSH-inequality can never be
violated by the classical counterpart of the quantum
mechanical Bell's experiment. It was then shown that the
violation of the CHSH-inequality with a classical optics
experiment requires a modification of the 4-dim. event
space, and that this modification may be put into practice
with a Rayleigh scattering process that connects two
Mach–Zehnder interferometers.
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