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The spectral asymmetry of the wave energy distribution of dust particles during mode-coupling
induced melting, observed for the first time in plasma crystals by Couëdel et al. [Phys. Rev. E 89,
053108 (2014)], is studied theoretically and by molecular-dynamics simulations. It is shown that an
anisotropy of the well confining the microparticles selects the directions of preferred particle motion.
The observed differences in intensity of waves of opposed directions is explained by a nonvanishing
phonon flux. Anisotropic phonon scattering by defects and Umklapp scattering are proposed as
possible reasons for the mean phonon flux.

PACS numbers: 52.27.Lw 89.75.Kd

I. INTRODUCTION

Complex or dusty plasmas are weakly ionized gases
containing micron-size particles. In a laboratory radio-
frequency (rf) plasma, these particles are negatively
charged and thus repel each other. In rf discharge com-
plex plasmas, the particles are self-trapped in the plasma
[1–3]. Due to their strong interactions with the plasma
and with each other, they can form strongly coupled crys-
tals [4, 5], called plasma crystals. Complex plasmas are
ideal model systems for phase transitions [6, 7], transport
processes [8–11] and self-organization [12, 13]. In ground-
based experiments, the particles levitate in the plasma
sheath region above the lower electrode where they can
form a horizontal two-dimensional (2D) monolayer un-
der adequate experimental conditions [1–3]. Due to the
finite vertical confinement of the crystal, the monolayer is
not completely flat, allowing an out-of-plane wave mode
which has an optical dispersion relation in addition to
the two in-plane modes with acoustic dispersion.

The surrounding plasma strongly influences the
particle-particle interaction, making it anisotropic.
While the mutual repulsion of equally-charged particles
is ascribed to a Yukawa potential [14], an attractive com-
ponent stems from the plasma wake [15] which is formed
beneath every particle downstream of the ion flow. In
theory and simulations, the plasma wake is often mod-
eled as a pointlike effective charge below each particle
[16]. If the vertical particle confinement is small enough,
a mode-coupling instability (MCI) can occur in such a
model, coupling the out-of-plane mode to the longitudi-
nal mode [16, 17]. Near the intersection of the modes, the
unstable hybrid mode grows until the crystalline order
breaks. The experimental observations are in very good
agreement with the predictions of the model [18, 19].

In an ideal hexagonal lattice, the MCI is equally strong
in all three main directions of the crystal, reflecting its
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sixfold symmetry [19]. In Ref. [20], however, the insta-
bility was well pronounced dominantly in only one direc-
tion. A synchronization pattern of alternating in-phase
and anti-phase oscillations accompanied the asymmet-
ric triggering of MCI. Similar symmetry-breaking pat-
terns were observed in colloids on global [21] and inter-
mediate [22] scales. A lattice deformation was suggested
in Ref. [20] as a possible explanation for the symmetry
breaking, though it was experimentally difficult to study.
It was shown in simulations that the asymmetry of MCI
can be caused by an anisotropy of the horizontal confine-
ment [23]. Under adequate conditions, the instability can
be active only in the direction of the compression of the
crystal. The main conclusion was that for an appropriate
orientation of the anisotropy, MCI could be triggered in
two directions which leads to competing synchronization
patterns. If MCI is triggered in one direction, a single
pattern dominates. It was not possible, however, to ex-
plain a left-right asymmetry of opposed directions which
was also present in the spectra [23].

In theoretical treatments the presence of the finite hor-
izontal confinement of the crystal is often ignored. For
doing so there are certain arguments in addition to facili-
tating the theoretical description: (i) The horizontal con-
finement is known to be 100–200 times weaker than the
vertical confinement [24], allowing systems that are very
extended in the horizontal direction. (ii) ’Confinement-
free’ systems (so called Yukawa systems) of mutually re-
pelling particles are an excellent substitute to explain
many, sometimes very delicate effects observed in exper-
iments. (iii) The results obtained seem to be universal
and important for many applications.

Still, the simplification of an infinite plasma crystal is
not always justified. In the problem considered here the
finite confinement is explicitly taken into account. The
competition of the sixfold symmetry of the crystal lat-
tice and the radial symmetry of the horizontal confine-
ment leads to defects and inhomogeneities in the crystal.
The actual configuration of the confining fields affects the
structure of the microparticle cloud.

In this paper we would like to highlight and report on
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the physics of spontaneous breaking of spectral symme-
try of the wave energy distribution of an anisotropically
confined plasma crystal during the early stage of MCI.
This asymmetry plays an eminent role in the understand-
ing of the synchronization processes observed in exper-
iments [20] and simulations [23], and may give hints to
the connection to the recently discovered chimera states
that further fueled the interest in oscillator networks with
controllable eigenfrequencies, coupling and topology [25–
28].

The paper is organized as follows. In Sec. II, the nu-
merical algorithm and the simulation procedure are de-
scribed. In Sec. III, the spectral asymmetry of a simu-
lated complex plasma crystal is analyzed and compared
to a theoretical model. In Sec. IV, the origin of this sym-
metry breaking is investigated in detail. The anisotropic
phonon scattering by defects and the anisotropic Umk-
lapp scattering are identified as two possible mechanisms
introducing the asymmetry. Finally, in Sec. V, we con-
clude with a summary and discussion of our results.

II. SIMULATION PARTICULARS

A. Governing equations

Molecular-dynamics simulations have proven to be an
adequate tool to study and compare a wide range of
experimental conditions. In the simulations, the poten-
tial well that confines the particles is treated as a tun-
able parameter, allowing to control the lattice configu-
ration [29, 30], crystal stability [31, 32], and anisotropy
effects [23]. A parabolic confinement well is often used
to simulate a monolayer suspension [29, 30, 33–35]. To
model a monolayer extended in the xy plane, a highly
anisotropic three-dimensional confinement well, about
100 times stronger vertically than horizontally, is used
[23, 31, 32]. In addition, the horizontal confinement can
easily be made anisotropic as is explained below.

The equations of motion employed in simulations read
[19, 23]:

M r̈i +Mνṙi =
∑
j 6=i

Fji + Ci + Li, (1)

where ri is the position of the ith particle (i = 1 . . . N ,
N the total number of particles), M the particle mass
and ν the damping rate. The particle dynamics are gov-
erned by the mutual particle-particle interactions (Fji),
the external interactions which are enabling confinement
of the particle cloud (Ci), and a heat bath (Li).

To characterize the particle confinement, it is instruc-
tive to introduce the (isotropic) horizontal confinement
parameter Ωc as well as the strength p and the direction α
of the loading asymmetry. The strength of the vertical
confinement is characterized by Ωz. The external con-

FIG. 1: Pair correlation g(r) for horizontally compressed
crystals. (a) g(r) in the horizontal plane of the experimental
data of Ref. [20]. A central square of side length 13 mm was
considered at time t = 0. (b) The first peaks of g(r) shown as
solid circles. An ellipse (solid line) is fitted to the positions
of the peaks; its deviation from a circle (dashed line) can be
clearly seen. (c), (d): The same for the simulated data of
Run I (see Table I). Here, t = 0 corresponds to the starting
point of the Dynamical phase. In panel (c), the direction of
the angle of compression α is indicated by black arrows.

finement Ci = {Ci,x, Ci,y, Ci,z} then reads (cf. [23])

Ci,x = −MΩ2
cXi, Ci,y = −MΩ2

cYi, Ci,z = −MΩ2
zzi,

Xi = xi + p (xi cos 2α+ yi sin 2α) ,

Yi = xi + p (xi sin 2α− yi cos 2α) .
(2)

Horizontally, the simulated crystal can thus be domi-
nantly compressed under any angle α measured from the
x axis (see Fig. 1). For instance, at α = 0 the hori-
zontal confinement forces are distributed so that Ci,x =
−mΩ2

cxi(1+p), Ci,y = −mΩ2
cyi(1−p), and therefore the

confinement is (1 + p)/(1 − p) times ’stronger’ in x di-
rection than in y direction. It is also useful to define the
confinement frequencies parallel 2πf‖ = Ωc

√
1 + p and

perpendicular 2πf⊥ = Ωc
√

1− p to the direction of the
compression denoted by angle α.

Following Refs. [20, 23], the force exerted by particle j
(and its wake) on particle i is introduced as

Fji =
Q2

r2
ji

exp
(
−rji
λ

)(
1 +

rji
λ

) rji
rji

− q|Q|
r2
wji

exp
(
−
rwji

λ

)(
1 +

rwji

λ

) rwji

rwji

,

(3)

where Q < 0 is the particle charge, λ is the screening
length, rji = ri− rj and rwji

= ri− (rj − δez), where ez
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TABLE I: Parameters of the simulation runs.

Parameter Run I Run II

N 16384 10000
M (pg) 610 610
Q (e) −19000 −19000
ν (s−1) 1.26 1.26
λ (µm) 380 380
q/|Q| 0.2 0.2
δ/λ 0.3 0.3
α (◦) 30 0

Equilibration phase

fz (Hz) 23.0 22.0
f‖ (Hz) 0.145 0.19
f⊥ (Hz) 0.145 0.19

Deformation phase

fz (Hz) 23.0 22.0
f‖ (Hz) 0.156 0.20
f⊥ (Hz) 0.137 0.18

Dynamical phase

fz (Hz) 20.0 19.5
f‖ (Hz) 0.156 0.20
f⊥ (Hz) 0.137 0.18

is the (’vertical’) unit vector perpendicular to the mono-
layer plane. The pointlike wake charge q (0 < q < |Q|) is
located at a distance δ (δ < λ) below each particle. The
particle charges, the screening length and the wake pa-
rameters are considered as fixed in every simulation run
(see Table I).

The particles are also coupled to a Langevin heat bath
of temperature T = 300 K,

〈Li(t)〉 = 0, 〈Li(t+ τ)Lj(t)〉 = 2νmTδijδ(τ). (4)

δij is the Kronecker delta and δ(τ) is the delta function.
It is a commonly used approximation that allows one to
simulate the random excitations stemming from the gas
surrounding the particles [34, 35] (or plasma, as necessary
[30]).

B. Simulation procedure

The equations of motion (1) were integrated using the
Beeman algorithm with predictor-corrector modifications
[36, 37]. The code is parallelized using OpenMP. The ver-
tical confinement frequency was about two orders of mag-
nitude larger than the horizontal confinement frequen-
cies, leading to the formation of quasi-2D monolayers.

Every simulation run was divided into three main
phases characterized by three confinement frequencies
each, see Table I. The particles were initially positioned
on a hexagonal grid. During the Equilibration phase,
which is characterized by an anisotropic horizontal con-
finement and a large vertical confinement that prevents
the onset of MCI, the crystal was allowed to relax. The

competition of the hexagonal symmetry and the radial
confinement lead to the melting of the outer region of the
crystal, which then recrystallized to different domains di-
vided by strings of defects. The central region kept the
crystal structure. After equilibration, during the Defor-
mation phase, the horizontal confinement well was mod-
ified to a desirable anisotropic configuration while the
strong vertical confinement was kept untouched, and the
particle cloud was allowed to relax further. Finally, after
reaching the stable deformed configuration, the vertical
confinement was reduced in the Dynamical phase to trig-
ger the MCI. The temperature of the heat bath and all
other parameters were fixed in the simulation runs.

III. RESULTS

A. Pair correlations under loading asymmetry

In simulation Run I (see Table I), a monolayer of 16384
particles, each with a mass of M = 6.1 × 10−13 kg, was
formed during the Equilibration phase at f‖ = f⊥ =
0.145 Hz and fz = 23 Hz. The horizontal frequencies
were then changed to f‖ = 0.156 Hz parallel to direc-
tion α = 30◦ and f⊥ = 0.137 Hz perpendicular to it in
order to introduce an anisotropy corresponding to the
loading asymmetry of about p = 14%. Finally, in the
Dynamical phase, the vertical confinement was reduced
to fz = 20 Hz in order to start the instability, see Ref. [23]
for details.

The particle positions are analyzed in a window con-
taining about 800 particles near the center of the crystal
that showed synchronized motion. Both in experiments
and in simulations the first peaks of the radial pair cor-
relation function g(r) are split in two compared to the
expected peaks for an ideal hexagonal lattice [20, 23].
Indeed, from the 2D pair correlation function g(r) (see
Fig. 1) it can be seen that the distance to the nearest
neighbors is about 7 % smaller under an angle of 30◦ than
in the other two directions. The good agreement of exper-
iment and simulation demonstrates that the asymmetry
of g(r) can be attributed to an anisotropic compression
of the crystal in the horizontal plane.

B. Asymmetric energy distribution

The distribution of the fluctuation energy of the simu-
lated crystal (as well as in experiments [20]) is dominated
by the hot dots (HDs), moreover it is highly asymmetric.
To visualize the intensity of the particle current fluctu-
ations Ik,ω, it is instructive to average over a frequency
range around the hybrid frequency of the coupled longi-
tudinal and transversal modes fhyb = (16 ± 1) Hz. The
2D map of the averaged intensity Īk in the kxky plane is
shown in Fig. 2, top panel. As can be seen in this map,
HDs are apparent in only two of the three main directions
of the hexagonal lattice. The current fluctuation spectra
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FIG. 2: (Color online) Asymmetry of the MCI for compressed
crystals. Top panel: Intensity Īk of the velocity fluctuation
spectrum in the kxky plane for the simulated data of Run I
(see Table I), averaged over the interval 15 Hz < f < 17 Hz.
The white dashed line indicates the border of the first Bril-
louin zone. The dotted lines with angles of θ = 0◦, 54◦ mea-
sured from the x axis are shown to emphasize the symme-
try of the hot-dot locations. Middle panels: Velocity fluc-
tuation spectra as a function of k and f in the directions
θ = 0◦, 180◦, 54◦, 234◦. Bottom panels: Intensity of the fluc-
tuation spectra shown in the middle panels, averaged over
the range 15 Hz < f < 17 Hz indicated by the horizontal
lines. To compute the spectra, the first 25 s of the Dynamical
phase were used in a central region of the crystal containing
about 800 particles. Only longitudinal modes are shown. The
colorbars are in a logarithmic scale with base 10 in arbitrary
units.

Ik,ω are calculated from the Fourier transform of the par-
ticle currents [20, 38]. The border of the first Brillouin
zone (fBz) is calculated from the static structure factor
S(k) = N−1〈

∑
l,m e

ik·(rl−rm)〉, where the sum runs over
all pairs of particles, and the averaging is performed over
time. The HDs appear as regions of high intensity inside
the fBz.

Note that the HDs at θ ' 0◦ and θ ' 180◦ are slightly
brighter than the HDs at θ ' 54◦ and θ ' 234◦, see
Fig. 2, top panel. To further study the anisotropy of the
fluctuation spectra, in the middle panels of Fig. 2 the in-
tensity Ik,ω is shown as a function of the modulus of the
wave vector k and of frequency f in those directions. By
averaging the one-dimensional spectra over the frequency
range of interest (indicated as horizontal lines in the Fig-
ure) one can compare the intensities of the peaks, see
Fig. 2, bottom panels. It becomes apparent that the HD

intensities in the direction of the x axis (θ = 0◦, 180◦) are
more than a factor of two stronger than the intensities of
the HDs in the other direction (θ = 54◦, 234◦).

Also note that while the HDs on the x axis are nearly
equally bright, the HDs at θ = 54◦ and θ = 234◦ are
highly asymmetric, see Fig. 2, bottom panels. Strictly
speaking, the HD energy distribution is neither mirror
nor rotationally symmetric, indicating strong symmetry
breaking. All these results are in a very good qualita-
tive agreement with experimental observations [20, 23].
The character of asymmetry indicates the presence of the
dominant phonon flux in the ≈ 234◦ direction; see section
III D below.

C. Interaction range of the confined crystal

The anisotropy of the spectral intensity of the par-
ticle velocity fluctuations caused by the weakly angle-
dependent loading indicates that the MCI is sensitive to
a variation of the confinement strength [23]. The hor-
izontal confinement of the crystal is often assumed to
be insignificant in theoretical considerations, see, e.g.,
[17, 39]. On the contrary, the finiteness and symmetry
of the confinement have a great influence on the delicate
symmetry breaking effects.

The cluster density and its spatial distribution varies
with the strength of the horizontal confinement Ωc, mak-
ing the particle cluster internally inhomogeneous. It is
not difficult to examine the character of this deformation.
The confinement technique implemented in the simula-
tions, caging the particle cluster in a parabolic potential,
is actually well known, as well as the scaling laws con-
trolling the structure of such Yukawa-interacting particle
clusters, see, e.g., [29, 40, 41] and the references therein.
According to [29, 30, 42] at fixed particle charge (Q),
screening length (λ), and number of particles (N), the
following approximate relationships hold

c2l
Ω2
cRa

∝ a

R
∝
(
κcl
cq

)2

' const, (5)

where cl is the longitudinal sound speed, R the clus-
ter size, a the crystal constant, κ = a/λ the interaction

range, cq = |Q|/
√
Mλ, and a ’const’ to the right means a

function that rather weakly depends on κ. To the same
accuracy, from Eq. (5) it follows immediately that

Ωcκ
2 ' const, (6)

and the direct dependence of the cluster interaction range
κ on the confinement strength becomes apparent. The
large scale density distribution is readily studied more
rigorously, in analogy to [29, 43], by minimizing the clus-
ter interaction energy; see Appendix A for details.

Since the MCI threshold critically depends on the crys-
tal interaction range κ [19], relationship (6) makes the
critical vertical confinement Ωz,crit (below which the in-
stability is triggered) directly dependent on the horizon-
tal confinement strength. It has been shown in Ref. [23]



5

FIG. 3: (Color online) Symmetry of the MCI increment in
reduced kxky maps calculated for the theoretical model. In
(a), the increment is calculated for isotropic loading as in
Ref. [17]. In (b) and (c), there is an anisotropic loading of
strength p = 14% in the direction α = 0◦ and α = 30◦,
respectively. Panels (d) and (e) show the same as (b) and (c),
only with a nonzero phonon flux in x direction. See Table II
for the parameters of the calculation. The dashed and dotted
lines indicate the main crystallographic directions and the
first Brillouin zone boundary of the unperturbed lattice.

TABLE II: Asymmetry of the theoretical spectra. The lines
correspond to the different panels in Fig. 3. The parame-
ters Ωz/ΩQ and α were used to calculate the spectra. The
wave group-to-phase velocity ratio at the hot dots u/uHD,
the growth rate ratio of the twin hot dots δγ/〈γ〉 and the
hot-spot positions 〈kHDa〉 are calculated for the angles θ spec-
ified in the fourth row. The MCI increments are computed
assuming δ/λ = 0.33, q/|Q| = 0.3, κ = 1. Designations:

ΩQ = |Q|/
√
Mλ3, δγ/〈γ〉 = 2(γθ − γθ+π)/(γθ + γθ+π).

Panel Ωz/ΩQ α θ u/uHD δγ/〈γ〉 〈kHD〉a
a 4.15 0 0 0 0 3.06
b 4.2 0 0 0 0 2.86
c 4.2 π/6 0 0 0 2.94
d 4.2 0 0 0.28 0.09 2.87
e 4.2 π/6 0 0.25 0.17 2.94
e 4.2 π/6 π/3 0.32 0.09 2.98

that

δΩz,crit

Ωz,crit
≈ δΩc

Ωc
. (7)

Under the anisotropic loading, the horizontal confine-
ment strength as well as the crystal interaction range are
angle-dependent (elliptic-shaped, see Appendix B), and,

as a consequence, the MCI ignition becomes anisotropic.
Given the angular dependence of the crystal structure is
rather weak (see Fig. 1), the spectral anisotropy of the
MCI increment can be properly addressed by a modifi-
cation of the ’isotropic’ MCI theory relationships [17].
The results of such simple implementation are shown in
Fig. 3. Compared to the hexagonally symmetric HD
distribution in the case of isotropic loading [Fig. 3(a)],
the asymmetric loading [Figs. 3(b) and 3(c)] breaks the
hexagonal symmetry. For an appropriate orientation of
the loading direction α, the MCI is triggered in one di-
rection, and only one pair of HD appears [see Fig. 3(b)]
and a single oscillation pattern dominates. If the MCI
is triggered in two directions, there are two pairs of HD
and, therefore, two competing synchronization patterns.
These observations agree very well with the experiments
and simulations [20, 23].

The distributions of Figs. 3(a)–(c) explain fairly well
all simulated and observed anisotropy effects but the ro-
tational asymmetry of the measured spectra: The hot-
dot ’twins’ which are oriented in opposite directions one
to another have exactly the same intensity in the model.
This twofold symmetry is broken by adding a nonzero
flux as we discuss below.

D. Phonon flux

The anisotropy of the compression phonon spectrum
Ik,ω is directly related to the kinetic temperature gradi-
ent which is, in turn, proportional to the mean phonon
flux 〈u〉:

∇T
T

∣∣∣∣
ω=ωHD

∝ 〈u〉 =
〈q〉
E
,

〈q〉 =

∫
∆ω

dω

∫
dkxdky ω uNk,ω, u = ∂kω ,

E =

∫
∆ω

dω

∫
dkxdky ωNk,ω, ωkNk,ω = Ik,ω .

(8)

Here Nk,ω is the phonon number density, 〈q〉 is the mean
energy flux, E the total wave energy, u the phonon speed,
and ∆ω the MCI-resonance width. (Here, and further
on, ~ = 1 [44].) The distances of the HDs inside the fBz
from the origin are approximately the same, k ' kHD,
as well as the modulus of the phonon speeds |u| ' uHD.
The phonon speed directions and the HD intensities are
principally different, though, due to the anisotropy of the
MCI of the deformed crystal [23]. It results in a nonzero
energy flux, in distinction to the perfect crystals where
the flux is zero by symmetry of the MCI [17].

The main reason for a nonvanishing phonon flux in the
distribution of Ik,ω shown in Fig. 2 is the energy differ-
ence of the quasisymmetric HDs, the ’twins’. There are
only two such pairs of twins, one at θ ' 0◦ and θ ' 180◦,
the other at θ ' 54◦ and θ ' 234◦. Using Eq. 8, the re-
sulting phonon flux can be estimated from the spectrum
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FIG. 4: Compression wave group-to-phase velocity ratio
u/uph vs reduced wavenumber ka calculated for the two direc-
tions θ = 0◦, 60◦ [17]. For fig. 2: kHDa = 3.08, u/uph|θ=0 '
u/uph|θ= 1

3
π ' 14%.

shown in Fig. 2 as:

〈u〉
uHD

≈ − (0.06e1 + 0.13e2) ,
|〈u〉|
uHD

≈ 0.17 (9)

where e1,2 = u
u |θ=0, 13π

. The flux is normalized by the

phonon speed uHD which remains unknown in this ap-
proach. It must be approximated differently, see below.
The angle arg(〈u〉/uHD) = 223◦ is close to θ = 234◦ as
could be expected from Fig. 2.

Adding a nonvanishing phonon drift to the theoreti-
cal model results in an asymmetric, direction-dependent
spectrum, see Figs. 3(d) and 3(e). Qualitatively (detailed
analysis will be published elsewhere) a weak nonzero
drift, say, along the main instability direction would re-
sult in a difference of the maximal phonon energy of
the order of δωh ≈ 2kHDu, where kHD is the HD (i.e.,

resonant) wave number, kHDa < kba = 2π/
√

3 ' 3.63.
Therefore, the resonant condition of the horizontal and
vertical mode crossing would be satisfied a bit earlier at
the ’hotter’ edge of the fBz:

δΩz,crit

Ωz,crit
≈ 2kHDu

ωHD
= 2ξHD

u

uHD
, (10)

where ξHD = (u/uph)HD is the compression wave group-
to-phase velocity ratio (see Fig. 4). In the vicinity of the
HDs, u� ωHD/kHD [17], therefore the magnitude of the
effect is not large, as expected.

IV. POSSIBLE ORIGIN OF SYMMETRY
BREAKING

The goal of this section is to properly address the ques-
tion where the spectral asymmetry stems from. To an-
swer this question it is necessary to thoroughly explore
the main features of the HDs: (i) the structure of the
velocity fluctuation spectra in reciprocal space, (ii) the

energy distribution inside of the HDs, and (iii) the main
dynamical processes responsible for the energy transport
between the HDs.

A. HD twins: the universality of the anisotropy
mechanism

To analyze the spectral asymmetry, a second crystal
with a more pronounced asymmetry is considered. The
simulation Run II was performed for a smaller number of
particles N = 10000, see Table I. While the larger crys-
tal of Run I equilibrates to a structure with large defect
lines around the center which reflect the sixfold symme-
try of the lattice, the smaller crystal forms a less homo-
geneous dislocation pattern. The loading direction was
set to α = 0◦ which selects only the HDs along the x axis
at a weak MCI [23]. In order to activate the MCI also in
the other directions, a smaller value of fz = 19.5 Hz was
used during the Dynamical phase of Run II.

In the beginning of the Dynamical phase, the parti-
cle kinetic energy grows exponentially with a relatively
small growth rate (see Fig 5, top panel). The fluctuation
energy of the monolayer starts to collapse, leading to the
emergence of multiple HDs (see Fig. 5, middle and bot-
tom panels). After about 4 s, the growth rate changes to
a larger value. At t ≈ 8 s, the high kinetic energy of the
particles leads to the breaking of the crystalline order.

The fluctuation spectrum reveals not only a pair of
HD twins at θ ' 0◦, 180◦ as in Ref. [23], a compara-
tively weaker pair at θ ' 56◦, 236◦ is also present (see
Fig 5). The HD twins of the weaker pair have very dif-
ferent intensities. This feature, in particular, is useful
to demonstrate the universality of the anisotropic MCI.
Figure 6 shows the intensities of the HDs at two differ-
ent time steps. The chirality of the fluctuation pattern
becomes apparent when comparing the respective twins
at θ = 0◦, 180◦ and θ = 56◦, 236◦.

B. Hot dot energy distribution

1. Hot dot core structure

Despite the asymmetry in the energy distribution be-
tween the HDs evidenced above, all HDs are equally,
though quite delicately, structured. The frequency-
averaged energy distribution Īk in the main directions
of the crystal consists of a core and a turbulent halo, as
can be seen in Fig 7. The core of the HD is well described
by a Gaussian:

Īk ∝ exp

(
− (k − kHD)

2

2µ2

)
. (11)

The core, by energy content, is the dominant part of
the HD, and, therefore, the width of the Gaussian core
µ = 〈δk2

HD〉
1
2 can be ascribed to the size of the HD in
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FIG. 5: (Color online) Time evolution of velocity fluctuation
spectra during the Dynamical phase of simulation Run II (see
Table I). Top panel: Kinetic energy as a function of time t
on a semi-logarithmic scale. The vertical dash-dotted lines
at t = 4 s and t = 8 s indicate the time intervals used for
the calculation of the spectra. The dashed lines correspond
to growth rates Ė/E = 0.17 s−1 and 1.1 s−1. Middle panels:
Intensity of the fluctuation spectra Īk for longitudinal (left),
transverse horizontal (center) and transverse vertical (right)
modes at t = 4 s, averaged over the frequency range 15 Hz <
f < 17 Hz and colorcoded on a logarithmic scale in arbitrary
units. The white dashed line indicates the border of the first
Brillouin zone. White dotted lines appear for the longitudinal
mode at angles of θ = 0◦, 56◦. Bottom panels: The same for
spectra calculated at t = 8 s. Note a weak hot-dot-induced
shear intensity in the transverse horizontal mode for t = 8 s.

FIG. 6: Intensities of fluctuation spectra in the main di-
rections of the crystal for the simulated data of Run II.
Top panels: Īk calculated at t = 4 s at the angles of
θ = 0◦, 180◦, 56◦, 236◦, averaged over the frequency inter-
val 15 Hz < f < 17 Hz. Only the longitudinal mode was
considered. Bottom panels: The same for a later time step
t = 8 s.

k space. Typically, it is µ = 0.2–0.4 mm−1, that is,
about 10–30 times smaller than the typical wave number
of phonons comprising the HD, µ � kHD ' 6 mm−1;
see Table III. It is a crucial feature of the MCI in the
weakly nonlinear regime. Such an islandlike distribution
of the wave energy helps a lot to simplify the description
of the wave dynamics. The gain of phonon energy is due
to MCI while the loss is due to diffusion activated by
phonon scattering [62]:

∂tĪk = γMCI
k Īk +D(k)∂2

k Īk , (12)

where γMCI
k is the MCI increment and D(k) is the diffu-

sion coefficient in k space. Assuming a uniform energy
gain, Īk ∝ exp(γt), where γ is the actual growth rate
of fluctuations, and making use of relationship (11), it is
easy to observe that

γ = γMCI
k +

D(k)

µ2

(
ξ2

µ2
− 1

)
, ξ = k − kHD . (13)

The excitation region is limited in size,

|k − kHD| ≤ ξmax = µ

√
1 +

γµ2

D(k)
, (14)

which is also in a fairly good agreement with theoretical
model (see Fig. 3).

To make a numerical example, let us consider the
data from Run II. The theory of Ref. [17] predicts
max

[
γMCI
k

]
' 5.26 s−1 for the parameter set of Run II.

The growth rate of the fluctuations can be approxi-
mated by the kinetic energy growth rate from Fig. 5.
Given the averaged HD size 〈µ〉 = 0.38 mm−1 and
γ = 0.17 s−1 at 0 s < t < 4 s, from relationships (13) and
(14) it follows immediately for the diffusion coefficient
D(k) ' 0.73 mm−2s−1 and for the size of the excitation
region ξmax ' 0.39 mm−1. In the period 4 s < t < 8 s,
given 〈µ〉 = 0.28 mm−1 and γ = 1.1 s−1, it yields a lower
value D(k) ' 0.33 mm−2s−1, which is not surprising con-
sidering the enhanced energy growth rate. The size of
the excitation region is estimated as ξmax ' 0.31 mm−1.

The growth rates γ can also be obtained for each HD
individually from the evolution of the fluctuation spec-
tra, the resulting values for D(k) and ξmax are shown in
Table III.

2. HD turbulent halo

The turbulent suprathermal halo, essentially an
isotropic feature associated with every HD, is well recog-
nizable in the log-log plot of Fig. 7 by an abrupt change in
the slope of the energy spectrum. The fluctuation energy
is power-law distributed in the halo, Īk ∝ |kHD − k|−n.
It is worth noting that the exponent deviates not much
from the value n ' 3 which is typical for frictional turbu-
lence [45–47]. It is natural to associate the appearance of
these quanta at least partly with the Umklapp scattering
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FIG. 7: Fine structure of the hot-dot energy distribution Īk
for different directions θ as a function of deviation from the
hot-dot center kHD − k. (a) Run I, t = 25 s of the Dynamical
phase, see Fig. 2. (b) Run II, t = 8 s of the Dynamical phase,
see Fig. 6. The cores of the hot dots are individually fitted to
Gauss distributions, the widths µ are collected in Table III.
The tails of the curves are fitted to a power law with exponent
n = 2.80± 0.08 (Run I) and n = 3.2± 0.2 (Run II).

of high-energy HD phonons. For quasiequilibrium situa-
tions such kind of scattering process is well studied, see,
e.g., Ref. [48]. Note that the halo intensifies with time at
the nonlinear stage of MCI.

C. Anisotropic phonon scattering by defects

By virtue of relationship (13), since the actual growth
rates γ and the core sizes µ are only slightly different
for HD twins (see Table III), the intensity asymmetry
might also stem from the anisotropic phonon diffusivity
governed, e.g., by anisotropic interaction of phonons and
dislocations, or by Umklapp processes that lead to a loss
of high-energy HD quanta. We start with an analysis of
the role of the defects.

1. Role of defects

Phonon scattering on defects, apart from nonlinear
phonon interactions and finite-size effects, is known as
one possible mechanism of energy redistribution between
the phonons and their anisotropic transport [49–51]. It is
also a well-known fact that the anisotropy of the thermal
conductivity is closely connected to the special features
of the phonon spectra determined by phonon scattering

TABLE III: Characteristics of the hot-dot energy distribu-
tion. The time-averaged growth rate γ = 〈İ/I〉 is calculated
from the velocity fluctuation spectra (see Figs. 2 and 6) for
the direction given in the second column. The hot-dot size in
k space, µ ≡ 〈δk2HD〉1/2, is obtained by using data of Fig. 7.
The size of the excitation region ξmax and the diffusion coef-
ficient D(k) in k space are estimated with Eqs. (13) and (14).
γ was calculated at t = 12.5–25 s (Run I) and t = 4–8 s (Run
II). The relative errors are 10% for γ, 5% for µ, 12% for ξmax

and 20% for D(k).

Run θ γ µ ξmax D(k)

(◦) (s−1) (mm−1) (mm−1) (mm−2s−1)

0 0.34 0.20 0.21 0.20
I 180 0.35 0.22 0.23 0.24

54 0.33 0.21 0.22 0.22
234 0.47 0.22 0.23 0.23

0 1.3 0.35 0.40 0.49
II 180 0.75 0.32 0.35 0.46

56 1.2 0.21 0.24 0.18
236 0.80 0.26 0.28 0.30

by oriented dislocations [52]. For instance, no interaction
occurs between the longitudinal wave and the dislocation
when an incident wave propagating in a direction parallel
or perpendicular to the Burgers vector [50]. If the phonon
flux is normal to the orientation of chains of dislocations,
the scattering is stronger [51].

The anisotropic heat transport in a plasma crystal has
been studied in Refs. [10, 11]. In our simulated crystals
phonon scattering by defects might be quite well pro-
nounced because the dislocation chains [53, 54] (or dis-
location ’scars’ [55]) that form during the Equilibration
and Deformation phases exhibit a preferred orientation
which tends to be perpendicular to the direction of domi-
nant loading. This is evidenced in Fig. 8 where snapshots
of the two simulation runs at the beginning of the Defor-
mation phase and of the Dynamical phase are shown.

If the dislocation pattern inside the crystal is random,
the wave is only expected to be attenuated through dif-
fusive scattering. If, however, the pattern is asymmetric,
phonon scattering can lead to a broken parity symmetry.
To measure the asymmetry in the dislocation pattern,
we calculate the center of mass Rd = 〈r7〉, where r7 are
the positions of the sevenfold defect cells. The apparent
defects at the very border of the crystal are not consid-
ered for the calculation. Magnitude and argument of this
vector are indicated in Table IV for the defect patterns
shown in Fig. 8. It can be seen that both values change
drastically during the Deformation phase of Run I. Still,
the magnitude |Rd| stays relatively small. Despite the
smaller crystal size in Run II, the value of |Rd| is larger,
indicating a more pronounced inhomogeneity of the dis-
location pattern.
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FIG. 8: (Color online) Asymmetric dislocation pattern of the
compressed crystals. Shown is the crystal of simulation Run
I at the beginning of the Deformation phase (a) and at the
beginning of the Dynamical phase (b). The dashed square is
magnified by a factor of 10 in (c). The particle positions are
shown as gray dots, and the Voronoi cells of the fivefold and
sevenfold defects are shown in red (dark gray) and green (light
gray), respectively. In (c), the dipoles d as defined in the text
are also shown as white arrows. Note an apparent trend of
dislocation chains to align transversally to the compression
direction α, which is indicated by arrows in (b). (d)–(f): The
dislocation patterns for Run II.

2. Polarized dislocation patterns

When considering the influence of defects, it is impor-
tant to note that their positions in the monolayer follow
certain patterns closely connected to the external con-
finement. Every dislocation consists of a coupled pair
of sevenfold and fivefold cells. It is characterized by the
Burgers vector b, whose orientation defines the disloca-
tion gliding direction [56], or, equivalently, by the disloca-
tion dipole vector, traditionally introduced as d = r7−r5

[57], where r7,5 are the positions of the centers of the sev-
enfold and fivefold defect cells. For a single dislocation
in an otherwise ideal lattice, d = b×ez. Any applied ex-
ternal force with a nonzero component along the Burgers
vector (transversal to the dipole vector) causes disloca-
tion glide [56]. (Dislocation transversal creep is much less
probable). For both Run I and Run II, the slip events
are rare and the dislocation patterns are quasistationary
even during the Dynamical phase.

A curious peculiarity is evident at close observation of
the dislocation pattern: The majority of the dislocation
pairs are ordered in such a way that their fivefold compo-
nents are located closer to the cluster center than their
sevenfold counterparts [see Figs. 8(c) and 8(f)]. The sys-
tem of dislocation dipoles is therefore polarized by the
external confinement. To quantify this effect, the global
polarization is calculated as D =

∑
d, where the sum is

TABLE IV: Center of mass Rd and polarization D of the dis-
location patterns shown in Fig. 8. See text for the definitions.

|Rd| arg(Rd) |D| arg(D)
Run Phase (mm) (◦) (mm) (◦)

I Deformation 0.57 110 1.0 354
I Dynamical 1.3 19 5.6 14
II Deformation 1.3 81 5.7 76
II Dynamical 1.1 90 4.3 169

performed over all polarization vectors d. We follow a
rather simple rule for counting the polarization vectors.
In chains of more than two defects, going radially out-
ward, each sevenfold defect is connected to at most one
fivefold defect. In cases where there are more fivefold
defects than sevenfold defects, as in the upper part of
Fig. 8(f), the outmost defect is thus not considered. The
magnitude and argument of D are shown in Table IV. |D|
much increases during the Deformation phase of Run I.
Similar to the development of |Rd|, the magnitude of the
average polarization slightly decreases from an initially
relatively large value during the Deformation phase of
Run II.

D. Asymmetric Umklapp scattering

If the crystal is perfect, without defects or strains in its
structure, the scattering of phonons will only be caused
by three-phonon processes in which two phonons coalesce
to give one, or one splits up to give two [58, 59]. Such
nonlinear phonon scattering can be described by inte-
gral equations (see, e.g., [44]) which take into account
the Umklapp processes, or U-processes, that result from
the periodicity of the lattice [58, 59]. Three-phonon U-
processes are known as the main intrinsic thermalresis-
tive processes in crystals [60]. They are apparently im-
portant and unavoidable during MCI in a plasma crystal
because this instability generates phonons dominantly in
the very proximity of the fBz boundary [17]. For in-
stance, in Fig 2, the energy of the wave fluctuations is
concentrated at kHDa > kba/2, which is close to the fBz

boundary kba = 2π/
√

3. The second harmonic must be
expected at ksa ' 2kHDa−2kba < 0, that is, in the oppo-
site direction due to a U-process. The high-energy fun-
damental phonons, when coalesce, should formally dis-
appear. On the other hand, elimination of high-energy
phonons by Umklapp processes can be well compensated
by the generation caused by the MCI.

The U-processes are less important at the initial stage
of the instability since U-processes are three-wave inter-
actions leading to the generation of second harmonics,
hence, they are at least of the second order by perturba-
tion amplitude [61]. At this stage, the anisotropic scat-
tering by dislocations could be the only cause of spectral
asymmetry.

Further on, at the weakly nonlinear stage of MCI, U-



10

scattering intensifies and, in analogy with [48], scattering
of HD phonons caused by U-processes leads mainly to the
relaxation of their distribution function, that is, to an
effective nonlinear damping. The phonon fluxes of two
hot-dot twins are not negligible, though mainly counter-
directed. An important contribution to the phonon drift
is thus only possible if the spectral pattern is asymmetric.

V. CONCLUSION

The main features in the particle current fluctuation
spectra (which are also observed in experiments [20])
were reproduced by a simple theoretical model incor-
porating the angle-dependence of the crystal interaction
range. An anisotropic confinement of the crystal en-
hances the MCI increment in the direction of the com-
pression and leads to hot dots of different intensities. The
broken left-right symmetry of pairs of hot dots (twins)
was reproduced by taking into account a nonvanishing
phonon flux.

Two possible explanations for such a mean phonon flux
were presented. The first one is the Umklapp process
resulting in a turbulent power-law distributed halo sur-
rounding the hot dots. Phonon scattering by defects was
presented as a second mechanism producing a phonon
flux. The analysis of the dislocation pattern showed that
most pairs of fivefold and sevenfold defects are ’polarized’
such that their fivefold components are located closer to
the cluster center. Simple measures relying on the center
of mass and dipole moment of the defect pattern were
proposed to quantify the influence of this effect. A more
detailed analysis of the structure of the defect chains will
be necessary for further insights.

It depends mostly on the symmetry of the hot-dot posi-
tions in the first Brillouin zone whether the total phonon
drift caused by Umklapp processes cancels or not. For
a highly ordered hot-dot pattern (see Fig. 2) this is cer-
tainly the case, and the nonvanishing phonon drift orig-
inates mainly from an anisotropic scattering by disloca-
tions rather than Umklapp processes.

For a less symmetric pattern of hot dots (see Fig. 5),
the situation is not that simple. The hot-dot twins are
not only different in their energy content, but they are
also positioned asymmetrically in the first Brillouin zone.
Umklapp scattering may thus be another reason for the
systematic phonon drift in Run II. The different growth
rates of the kinetic energy observed in Fig. 5 may hint
towards a transition from an initial regime where the
phonon flux is dominated by scattering on defects to a
regime where three-body Umklapp scattering plays an
important role. Analyzing higher harmonics of the hot
dots may give additional insights, it will be subject to
further studies.

To conclude, we have analyzed the spectral asymme-
try of compressed plasma crystals. The finiteness of the
crystal was explicitly taken into account, since it has an
impact on the hot-dot positions in reciprocal space and

enables the formation of an ordered dislocation pattern.
Both effects can explain the spectral asymmetry observed
in experiments and simulations.
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Appendix A: Interaction energy minimization

The energy of the two dimensional N -particle ’cold’
cluster (assuming the infinitely strong vertical confine-
ment) in a parabolic well is

W =
1

2
Q2

N∑
i 6=j

R−1
i,j exp

(
−λ−1Ri,j

)
+

1

2
MΩ2

c

N∑
i

r2
i ,

(A1)
where Ri,j = |ri − rj |, i, j = 1 . . . N , N the number
of particles. To minimize the cluster energy, one has
to consider the system of N equations δriW = 0, i =
1 . . . N , which can be solved numerically provided that
N is not too large. Equation (A1) can be significantly
simplified in the mean-field approximation. The sums
over particle positions are replaced by integrals over the
particle number density per unit area, n(r), where the
integration is performed over the cluster area Sc [29]:

W = Wint +Wext,

Wint =
1

2
Q2

∫
Sc

dr′drn(r′)n(r)R−1 exp
(
−λ−1R

)
,

Wext =
1

2
MΩ2

c

∫
Sc

drn(r)r2,

N =

∫
Sc

drn(r).

(A2)
In order to validate relationship (6), it is enough to con-
sider a uniform number density distribution,

n(r) =

{
〈n〉 for r ≤ Rc

0 for r > Rc
, (A3)

where Rc is the cluster radius and 〈n〉 ∝ a−2 the mean
cluster number density. Under this assumption, one ob-
tains

N = 〈n〉Sc, Wext =
1

4π
MNScΩ

2
c . (A4)



11

To calculate Wint, let us recall the useful relationship:

R−1 exp
(
−λ−1R

)
= λ

∫ ∞
0

kdk√
1 + k2λ2

J0 (kR) ,

J0 (kR) = J0 (kr) J0 (kr′) + 2

∞∑
s=1

Js (kr) Js (kr′) cos(φ),

R =
√
r2 + r′2 − 2rr′ cos(φ),

(A5)
where Js is the Bessel function. Then

Wint =
q2N2

λ
F (ξ), F (ξ) =

∫ ∞
0

2ξdk

k
√

1 + ξk2
J2

1 (k),

(A6)
where ξ = Sλ/Sc, Sλ = πλ2. For large cluster (as nor-
mally the case in experiments and simulations) ξ � 1,

therefore F (ξ) ' ξ, Wint ' q2N2

λ ξ, and the total cluster
energy is

W = Wext +Wint =
1

4π
MNScΩ

2
c +

q2N2

λ

Sλ
Sc
. (A7)

The total energy W as a function of Sc has a minimum
at

Sc = 2Sλ
√
N

Ωq
Ωc
, (A8)

if all other parameters are kept fixed. Since Sc/Sλ ∝ κ2

we have κ2 ∝ Ω−1
c , restoring Eq. (6).

Appendix B: Squeezed cluster: Eccentricity of the
structure

Let us consider the slightly deformed crystal assuming
an elliptic-shaped confining well:

Ωc = Ωc(θ) = Ωc,0
√

1 + p cos(2θ), p� 1, (B1)

with p as an asymmetry measure and an eccentricity:

e2
c =

2p

1 + p
≡ 1−

Ω2
c,min

Ω2
c,max

, (B2)

By virtue of Eq. (6), the crystal interaction range is also
weakly angle-dependent:

κ = κ(θ) =
κ0

4
√

1 + p cos(2θ)
. (B3)

The eccentricity of this distribution is

e2
κ = 1−

κ2
c,min

κ2
c,max

≡ 1− Ωc,min
Ωc,max

. (B4)

In Eqs. (B1) and (6), Ωc,0 and κ0 are angle-independent
constants. They can be related to the ’unperturbed’ crys-
tal. For instance, for a pure shear deformation a con-
straint

2πκ2
p=0 =

∫ 2π

0

κ2(θ)dθ = κ2
0

∫ 2π

0

dθ√
1 + p cos(2θ)

. (B5)

allows one to obtain the interaction range κ0 = κ0(p) for
any given asymmetry parameter p through κ2

p=0 of the
unperturbed crystal.
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