Instrumentation and Sensors for CSP Performance Testing

Marc Röger, Bijan Nouri, Christoph Hilgert, Nicole Janotte, Eckhard Lüpfert

SolarPACES Task I Meeting Cape Town, 12.10.2015

Wissen für Morgen

Overview

- 1. Motivation
- 2. Measurement Approaches in a Parabolic Trough Plant
- 3. Description of Clamp-On Systems
 - I. Temperature
 - II. Mass Flow Rate
- 4. Application of Dynamic Performance Model (PDPM) in Andasol Loop
 - I. Parameterization
 - II. Validation
- 5. PDPM approach for solar field or subfields

1. Motivation Quantities to Measure for Thermal Performance

$$\eta_{th} = \frac{\dot{Q}_{th}}{\dot{Q}_{Solar}} = \frac{\dot{m} \cdot c_{p} (T_{out} - T_{in})}{A_{net} \cdot E_{b} \cdot \cos(\theta) \cdot \chi^{3/2}}$$

2. Measurement approaches

Measurement Approaches:

- (i) Standard plant instrumentation
- (ii) Embedded calibrated instrumentation
- (iii) Mobile heat unit with instrumentation and BOP
- (iv) Bypass with calibrated instrumentation
- (v) Mobile field laboratory ("Clamp On")

2. Measurement approaches (iv) Bypass (recommended)

Data independence +

Mounting effort / Leakage risk (if loop not prepared for bypass use)

2. Measurement approaches (v) Mobile field laboratory (recommended if no bypass flanges)

Contra

Calibration effort

Mounting effort (Time-consuming)

Pro

+

+

+

Flexibility

operation

Measurement accuracy

Data independence

No interference with plant

weather

protection

3. Clamp-On: Temperature

- Class-A Pt100 with 4 wire connection
- Good thermal coupling realized through brass block, thermal conductive paste and hose clamps (torque 15 Nm)
- Homogenized temperature in the direct environment of the sensor via brass block
- Reduction of environmental influences through copper shield and insulation

3. Clamp-On: Temperature

Remaining Uncertainty of ClampOn Temperature Measurem. After Correction

Inline Reference <i>T_{ref}</i> 2xPT100 redundant measurement of T_fluid	Uncertainty (<i>T</i> _{ref})	ClampOn <i>T_{co,w/}</i> with correction	Uncertainty (<i>T_{co,w}</i>) incl. systematic uncertainty of ClampOn method
100.67 °C	±0.16°K	100.72 °C	±0.34°K
150.83 °C	±0.18°K	150.61 °C	±0.43°K
200.45 °C	±0.21°K	200.19 °C	±0.49°K
250.52 °C	±0.26°K	250.22 °C	±0.50°K
300.58 °C	±0.28°K	300.81 °C	±0.54°K
350.78 °C	±0.31°K	350.55 °C	±0.60°K
390.95 °C	±0.33°K	390.78 °C	±0.62°K

- Uncertainty of ClampOn measurement is only doubled compared to inline PT100
- Uncertainty of ClampOn-measurement technique remain below 0.6 K.

3. Clamp-On: Temperature Temperature Correction ClampOn

- Correction reduces uncertainty significantly
- Dimensionless approach is being developed to correct clampOn temperature also for other fluids and ambient conditions Correction $\Delta \Theta_{P-f}$

$$\Delta \Theta_{P-f} = a_1 \cdot (Re + dm)^m \cdot (Pr + dn)^n \cdot \left(\Delta \Theta_{f-amb}\right)^p \cdot (Bi + dq)^q \cdot \left(\lambda_{Iso}/\lambda_f\right)^s \\ \cdot (\delta_P/d_i)^u \cdot (\delta_{Iso}/d_i + dv)^v$$

3. Clamp-On: Volume Flow

- Fluid flow measured via travel time differences of ultrasonic signals
- Ultrasonic signal is acoustically coupled to the pipe
- For T>200° C: Sensor heads thermally decoupled via wave injector from pipe
- Pipe geometry and material properties (pipe and HTF) included in calculation

3. Clamp-On: Volume Flow/ Mass Flow

Uncertainty of ultrasonic mass flow measurement remain 1.4% of mass flow rate

4. Parameterized Dynamic Performance Model (PDPM) applied in Andasol Loop

Modelling approach for parameter identification from test data for field performance prediction for given field parameters and ambient conditions.

100

$$\dot{Q}_{th} = \chi^{\frac{3}{2}} \cdot A_{net} \cdot E_{b} \cdot \cos(\theta) [\eta_{opt,0}] \cdot \kappa(\theta) \cdot f_{endloss} \cdot f_{shade} \cdot f_{focus} - C_{1} \cdot (T_{m} - T_{amb}) - C_{2} \cdot (T_{m} - T_{amb})^{2} - C_{3} \frac{dT_{m}}{dt}$$

with $\kappa(\theta) = 1 - \frac{b_1}{\theta} - \frac{b_2}{\theta}$

Residence time effects are considered through a CSTR
model (continuous stirred tank reactor)
Perfect mixing of fluid in each tank is assumed

coefficients	definition
η _{opt,0}	optical efficiency
b ₁ , b ₂	IAM coefficients
c ₁ , c ₂	thermal loss coefficients
с ₃	specific heat capacity coefficient

4. Parameterized Dynamic Performance Model (PDPM) Validation Data Set (Andasol Loop), forward approach

- Independant validation data set which was not used to identify parameters
- Good agreement: Deviation in integrated enthapy flow over plotted period: ~0.4%

5. PDPM approach for solar field or subfields

- Condensing all parallel loops into one average loop
- Only overall performance characteristics, no individual loop characteristics
- Target quantity: Thermal power of solar subfield, not of indivdual loops

THANK YOU for your attention.

THANK YOU

to the team.

Bijan Nouribijan.nouriChristoph Hilgertchristoph.hNicole Janottenicole.jano

bijan.nouri@dlr.de christoph.hilgert@dlr.de nicole.janotte@dlr.de Supported by:

on the basis of a decision by the German Bundestag

THANK YOU

for the support.

We gratefully acknowledge the financial support from the German Federal Ministry for Economic Affairs and Energy and DIN/DKE for the projects:

- STAMEP 0325472A.
- INS 1284.

marc.roeger@dlr.de DLR Qualification Marc Röger

Knowledge for Tomorrow