Ray-Tracing Software Comparison for Linear Focusing Solar Collectors

Tiago Osório¹, Pedro Horta¹, Marco Larcher², Ramón Pujol-Nadal³, Julian Hertel³, De Wet van Rooyen⁴, Anna Heimsath⁴, Simon Schneider⁵, Daniel Benitez⁵, Antoine Frein⁶ and Alice Denarie⁶

¹ST Renewable Energies Chair, University of Évora (UEvora), Portugal, ²Institut für Solartechnik (SPF), Switzerland, ³University of the Balearic Islands (UIB), Spain, ⁴Fraunhofer Institute for Solar Energy Systems (ISE), Germany, ⁵German Aerospace Center (DLR), Germany/Spain, ⁶Politecnico di Milano (POLIMI), Italy.

Participants and software tools in the study

Within IEA/SHC Task 49 a comparison between Ray-**Tracing software tools was conducted:**

Participant	Software	Licence	Simulation		
UEvora	Tonatiuh	Open-source	PTC, LFC		
SPF	OptiCAD	Commercial	PTC		
UIB	OTSun	In-house	PTC, LFC		
ISE	Raytrace3D	In-house	PTC, LFC		
DLR	STRAL	In-house*	PTC		
DLR	SPRAY**	In-house*	PTC		
POLIMI	SolTrace	Open-source	LFC		
*copy available on license-fee **experimental features for PTC RT					

- 1. Description of the software features regarding sun model, real materials, surface errors, angular variation of optical properties and refraction model
- 2. Simulations of two exemplary cases, a PTC and a LFC with predefined conditions: geometry, sun model and material properties

Simulation cases

Simulation options

	ΡΤΟ	LFC	(
Geometry	5.8 m width parabola	16 parabolic heliostats (0.75 m)	-
	1.71 m of focal length	7.4 m height	
Secondary		CPC: $\theta a = 48.39$ °; ht = 41 mm	_
Receiver tube	35 mm absorber radius		
	62.5 mm outer radius	s and 5 mm thickness glass tube	Sc
Collector length		12 m	Т
Materials	reflector: $\rho = 0.935$; absorber: $\alpha = 0.955$;		
		0.25 0.0(5 1.52)	U

Options taken in each simulation – restricted by the software features – to meet the proposed conditions

Software	Sun model	Materials	Reflector	Optical properties
			surface error	angular variation
Tonatiuh	Buie 5%	Real	Univ. normal dist.	No
OptiCAD	3 mrad Gauss	Real	Univ. normal dist.	Yes

Results and Conclusions

O<u>Software features</u>: the main differences were in the degree with which each software could model the angular dependency of the material optical properties <u>Physical models</u>: refraction on the glass tube is not modeled in the same way by the different tools **Conclusions:** although good agreement was obtained it was clear that different modeling options by different software tools produce different optical efficiency values and IAM curves

