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Fig. 1: Bipedal point-mass model runs in 3D based on Biologically Inspired Dead-beat (BID) control.

Abstract—
This paper introduces a Biologically Inspired Dead-beat

(BID) controller for bipedal running in 3D. The controller
runs in real-time, is extremely robust against perturbations and
allows for versatile running patterns. It is based on the encoding
of leg forces and CoM trajectories during stance as polynomial
splines, allowing for intuitive and primarily analytical controller
design. The performance of the control framework is tested in
various simulations for a bipedal point-mass model.

I. INTRODUCTION

Locomotion - as observed in nature - has always aroused
enthusiasm and curiosity in human spectators. From an
engineering point of view, gaited forms of locomotion -
once fully understood - promise highly increased mobility
of machines as compared to wheel-based locomotion.

The first efforts in robotic bipedal locomotion have been
put in the subdomain of bipedal walking. Over the decades,
the field of bipedal walking control has made major progress.
Alongside successes in passive dynamics walking [1], one of
the major breakthroughs has been the introduction of zero
moment point control [2], [3] for bipedal walking. More
recently, several successful walking control algorithms have
been presented, e.g. [4]–[10], to name but a few. Recently,
bipedal walking algorithms have reached a level that is close
to actual application in real-world scenarios. Most walking
algorithms attempt to keep the robot in a fully controllable
state, which facilitates the use of standard control methods.

In contrast, running and hopping by definition contain
partially uncontrolled states and are thus seen as challeng-
ing tasks. Running provides a number of assets such as
high achievable speed and efficiency. It has thus recently
been addressed by several research studies. Aside from few
exceptions such as [11]–[14], most running algorithms are
based on the spring-loaded inverted pendulum (SLIP) [15],
[16]. Dadashzadeh et al. [17] present a SLIP-based two-
level controller for running simulations of the ATRIAS robot.

The authors are with Institute of Robotics and Mechatronics, Ger-
man Aerospace Center (DLR), 82234 Wessling, Germany. E-mail:
johannes.englsberger@dlr.de

Vejdani et al. [18] introduce bio-inspired swing leg control
for running on ground with unexpected height disturbances.
Koepl and Hurst [19] control the stance phase impulse of a
planar SLIP model and achieve robust running.

Recently, Wensing and Orin [20] presented an algorithm
that computes periodic trajectories of the 3D-SLIP offline
and applies an offline computed linearized control law to
stabilize the virtual SLIP model around the periodic solu-
tions. The desired leg forces are passed to a whole-body
controller and bipedal running of a simulated humanoid
robot is achieved. Like many other methods, the SLIP-
based approach used for CoM planning and control in [20]
comes with two major drawbacks: Firstly, it requires offline
computation of periodic SLIP gaits which suffers from the
curse of dimensionality. Second, the motions are designed to
be periodic, which makes the design of non-periodic running
motions such as accelerating and turning a challenge.

These drawbacks are eliminated in this paper. We propose
a dead-beat controller, that is real-time capable, allows for
versatile running motions and is very robust against external
perturbations. It has been inspired by observations from
human running experiments (see Fig. 2) and uses polynomial
splines to encode the robot’s CoM motion and leg forces
during stance. Through the use of polynomials, the control
design process is very intuitive and comprehensible. One
major advantage of the algorithm is that both upcoming foot
target locations on the ground are predicted at all times,
which facilitates the design of appropriate foot trajectories.

The paper is organized as follows: Section II motivates
the use of polynomial splines to approximate observations
from human running experiments. Section III introduces our
planning and control framework. Section IV presents various
simulations for a bipedal point-mass robot with two mass-
less feet. Sections V and VI discuss the proposed control
framework’s assets and limitations and conclude the paper.

II. HUMAN RUNNING EXPERIMENTS AS MOTIVATION

The main idea in this paper is to design desired CoM
trajectories that produce approximately natural GRF profiles
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Fig. 2: Comparison of experimentally measured human leg
forces (blue/green) and polynomial approximations (red).

while fulfilling several boundary conditions. It is well known
that some physical template models, such as the SLIP, gener-
ate ground reaction forces (GRF) similar to the ones observed
in human running. The lack of closed form solutions for the
SLIP motivates us to find an alternative way of encoding
the leg force (Fleg, equivalent to GRF) which allows to find
closed form solutions to running. Figure 2 shows a typical
GRF profile that was recorded during a human running
experiment via force plate. The human GRF profiles can
be approximated quite well by a polynomial of order 2 in
the vertical direction and by a polynomial of order 3 in the
x−direction. Therefore, our original idea was to approximate
the leg force profile during stance via polynomials. The total
force FCoM acting on the CoM can be computed from leg
force Fleg and gravitational force Fg (see Fig. 3)

FCoM = Fleg +Fg = Fleg +m g . (1)

Here, m is the robot’s total mass and g = [0 0 −g]T denotes
the gravitational acceleration vector. The constant offset
between FCoM and Fleg in (1) and Newton’s 2nd law (CoM
acceleration ẍ= FCoM

m ) motivate us to use - during stance -
a 4th order polynomial to encode the vertical CoM position
z and 5th order polynomials to encode the horizontal CoM
positions x and y, as this correlates to 2nd and 3rd order
polynomials for the CoM accelerations ẍ, ÿ, z̈ and thus leg
forces. This polynomial encoding can be written as:⎡
⎣σ(t)

σ̇(t)
σ̈(t)

⎤
⎦=

⎡
⎣1 t t2 t3 t4 t5

0 1 2t 3t2 4t3 5t4

0 0 2 6t 12t2 20t3

⎤
⎦

︸ ︷︷ ︸⎡
⎢⎢⎣
tT

σ (t)
tT

σ̇ (t)
tT

σ̈ (t)

⎤
⎥⎥⎦

pσ , σ ∈ {x,y,z}

(2)
Here, tT

σ (t), t
T
σ̇ (t) and tT

σ̈ (t) denote the time-mapping row
vectors that - for a given time t - map the polynomial
parameter vectors pσ to CoM positions σ(t), velocities σ̇(t)
and accelerations σ̈(t). The last elements of the vectors
are greyed out to indicate that they are only used for the
horizontal directions, but not for the vertical one.

III. DERIVATION OF DEAD-BEAT CONTROLLER

A. Outlook on our approach for bipedal running control

Running is typically defined as a locomotion pattern,
which employs alternate flight and (single leg supporting)
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Fig. 3: Forces acting on robot’s center of mass (CoM)

stance phases. In this paper, we use a preview of the
upcoming two stance and flight phases, as shown in Fig. 4.
The desired relative apex and touch-down heights Δz apex,des

and ΔzTD,des are used as design parameters. They indicate
how high over the floor (at z f loor) the apex of the flight curve
(i.e. ż= 0) should be and at what CoM height the touch-down
(TD) is supposed to happen. Another design parameter, used
in this work, is the total stance time Ts, whereas the total
flight time Tf results from the boundary conditions chosen
in section III-C. To keep track of the current running state,
we use a state machine. It switches from flight to stance,
if the CoM is below zTD = z f loor +ΔzTD,des and the vertical
velocity is negative, and from stance to flight when the total
stance time is over. A timer provides the time in stance
ts ∈ [0,Ts] and the time in flight t f ∈ [0,Tf ]. They are reset
at state transitions and provided to the controllers.

Figure 5 shows a computation flow of the proposed
running algorithm, which will be derived in the next sections.

B. CoM dynamics during flight

During flight phases, the CoM cannot be controlled, i.e. it
follows its natural dynamics (parabolic path through space).
For a given time t, the CoM position x(t) = [x(t),y(t),z(t)]T

and velocity ẋ(t) = [ẋ(t), ẏ(t), ż(t)]T can be computed as

x(t) = x0 + ẋ0 t +g
t2

2
, (3)

ẋ(t) = ẋ0 +g t , (4)

where x0 and ẋ0 are the initial (t = 0) CoM position and
velocity. One typical task in running control is to achieve
a certain apex height. The apex is the highest point in the
ballistic flight curve, i.e. the vertical CoM velocity is zero
(żapex = 0). Using this condition and the current vertical CoM
velocity ż instead ż0 in the third row of (4), we find the
current time to apex Δtapex as

Δtapex =
ż
g

. (5)

If Δtapex is negative (true for ż < 0), then the CoM is already
on the descending path of the ballistic flight curve and thus
the time of apex is in the past. In the same way, we find the
remaining time until touch-down (TD) as

ΔtTD = Δtapex +

√
Δt2

apex +
2
g
(z− zTD) . (6)
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Fig. 4: Preview of upcoming flight and stance phases (planar
sketch) - used for design of boundary conditions.

Here, zTD = z f loor+ΔzTD is the CoM height, at which touch-
down (flight to stance transition) is previewed to happen. The
relative touch-down height ΔzTD is computed as

ΔzTD = min(ΔzTD,des, z− z f loor +
ż2

2g
−Δapex,TD,min) . (7)

That way, nominally the desired relative touch-down height
ΔzTD,des (design variable) is achieved, while for challenging
initial conditions or perturbations a minimum positive height
difference between apex and touch-down Δ apex,TD,min is
guaranteed and the solution of (6) is assured to be real.

During flight, for every current CoM state (x, ẋ), the
predicted touch-down position xTD = [xTD,yTD,zTD]

T and
velocity ẋTD = [ẋTD, ẏTD, żTD]

T is computed via (3) and (4)
by setting t = ΔtTD, x0 = x and ẋ0 = ẋ.

C. Vertical planning and boundary conditions

As mentioned above, the vertical CoM trajectory during
stance is encoded via a 4th order polynomial, i.e. it has
5 polynomial parameters. These can be derived using 5
boundary conditions. Fig. 4 graphically displays the used
preview of upcoming flight and stance sequences and the
corresponding boundary conditions. In this work, we make
use of four linear vertical boundary conditions:

• initial position equals TD position (z(ts = 0) = zT D)
• initial velocity equals TD velocity (ż(ts = 0) = żTD)
• initial acceleration is minus gravity (z̈(ts = 0) =−g), i.e.

vertical leg force is zero (see (1))
• final acceleration is minus gravity (z̈(ts = Ts) =−g), i.e.

vertical leg force is zero (see (1))

These boundary conditions can be combined to the boundary
condition vector bz, which can be linearly related to the
vertical polynomial parameter vector p z via⎡

⎢⎢⎣
zTD

żTD

−g
−g

⎤
⎥⎥⎦

︸ ︷︷ ︸
bz

=

⎡
⎢⎢⎣
tT
z (0)
tT

ż (0)
tT

z̈ (0)
tT

z̈ (Ts)

⎤
⎥⎥⎦

︸ ︷︷ ︸
Bz

pz . (8)

Here, Bz denotes the boundary condition mapping matrix.
The general solution of the linear system Bz pz = bz is

pz = pz,0 +rz p̃z . (9)
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,ẋ

vertical planning
(1st stance)
(Sec. III-C)

vertical planning
(2nd stance)
(Sec. III-C)

horizontal planning
(1st stance) (Sec. III-D)

horizontal planning
(2nd stance) (Sec. III-D)

force evaluation
(28), (1)

force projection
(29)

foot trajectory
generator

velocity input
(e.g. joystick,
see Sec. III-G)

robot
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Fig. 5: Computation flow of proposed controller.

The preliminary solution vector pz,0 is computed from the
boundary conditions via pseudo-inverse of B z as

pz,0 =BT
z (Bz B

T
z )

−1 bz . (10)

The nullspace base vector rz in (9) is chosen such that
Bz rz = 0 holds and thus the whole (one-dimensional)
nullspace of Bz is represented by the scalar variable p̃z. The
vector rz can be computed as

rz =

[−B−1
z,square bz, f inal

1

]
, (11)

where bz, f inal is the last column in Bz, while Bz,square

consists of all other columns.
With pz and (2), the vertical CoM position and velocity

at take-off (at the end of the stance phase) are computed as

zTO = tT
z (Ts) pz (12)

żTO = tT
ż (Ts) pz . (13)

Equation (8) encodes the four linear previously described
vertical boundary conditions. The fifth boundary condition
that we aim to fulfill is the apex height of the CoM during
the upcoming flight phase (see Fig. 4). Evaluating (5) for
ż = żTO and setting z0 = zTO, ż0 = żTO and t = Δtapex in (3,
third row), the apex height zapex can be expressed as

zapex = zTO +
ż2
TO

2g
. (14)

We are looking for a parameter vector p z that will result in
the desired apex height zapex,des, which can be computed as

zapex,des = z f loor +Δzapex,des . (15)

Combining (9), (12), (13) and (14) and setting
zapex = zapex,des results in

0 =
tT
ż rz

2g
p̃2

z +(tT
z rz +

tT
ż pz,0 tT

ż rz

g
) p̃z +

(tT
ż pz,0)

2

2g
− zapex,des

(16)



This is a quadratic equation in the unknown scalar vari-
able p̃z. It can be shown that the only valid solution (yielding
positive vertical take-off velocities) to (16) is

p̃z =
2 żTD − gTs−

√
g(gT 2

s − 4 żTD Ts + 8 (zapex,des − zTD))

4 T 3
s

.

(17)
Note: finally only (10), (11) and (17) are necessary as inputs
for (9), which computes the polynomial parameter vector p z

that fulfills all five desired vertical boundary conditions, i.e.
the four linear ones and the quadratic one.

D. Horizontal planning and boundary conditions

Newton’s 2nd law [ẍ, ÿ, z̈]T = 1
m [ fcom,x, fcom,y, fcom,z]

T says
that each component of the CoM’s acceleration only depends
on the component of the CoM force FCoM which points in
its corresponding direction. Thus, each spatial force compo-
nent can be derived independently. In our framework, the
derivation for the x- and y-component is equivalent. In all
equations in the following derivation, we will use the letter
χ to indicate horizontal quantities, i.e. χ ∈ {x,y}.

As in Sec. III-C, we choose - motivated by Fig. 2 - the
following four linear horizontal boundary conditions:

• initial position equals TD position (χ(ts = 0) = χTD)
• initial velocity equals TD velocity (χ̇(ts = 0) = χ̇TD)
• initial acceleration is zero (χ̈(ts = 0)= 0), i.e. horizontal

leg force is zero (see (1))
• final acceleration is zero (χ̈(ts = Ts) = 0), i.e. horizontal

leg force is zero (see (1))

Additionally, it is desirable to specify one more horizontal
boundary condition that specifies the horizontal travel (for
both horizontal directions x and y). One simple option would
be to specify the horizontal take-off velocity, which might be
used by a purely velocity-based controller. In this paper, we
present a slightly different approach: We derive the desired
CoM position at the second and third touch-down event (see
Fig. 4) from a virtual joystick input (see Sec. III-G) and use
them as boundary conditions. As compared to pure take-off
velocity control, this boundary condition is closer related to
CoM position control. It is thus expected to be more suitable
for our future running research topics (see Sec. VI). Since
the horizontal velocity during flight is constant (and equal to
the horizontal take-off velocity χ̇TO), we can propagate the
take-off state to the second touch-down state via

χTD,2,des = χTO+Tf χ̇TO = (tT
χ (Ts)+Tf t

T
χ̇ (Ts)) pχ , (18)

Here, Tf is obtained by setting z = zTO and ż = żTO in (5)
and (6). Note: zTO and żTO are computed from the vertical
polynomial parameter vector pz. Thus, the vertical boundary
conditions are solved before the horizontal ones (see Fig. 5).

Equation (18) - just like the previous four boundary
conditions - depends linearly from the horizontal polynomial
parameter vector pχ . The first five horizontal boundary
conditions can be combined in the boundary condition vector

p̃χ �= p̃∗χ p̃χ = p̃∗χ p̃χ �= p̃∗χ

xTDxTDxTD

z f loor

Fig. 6: Effect of p̃χ on force ray focusing (lines of action).

bχ that is linearly related to pχ via

⎡
⎢⎢⎢⎢⎣

χTD

χ̇TD

0
0

χTD,2,des

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
bχ

=

⎡
⎢⎢⎢⎢⎢⎣

tT
χ (0)
tT

χ̇ (0)
tT

χ̈ (0)
tT

χ̈ (Ts)

tT
χ (Ts)+Tf t

T
χ̇ (Ts)

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Bχ

pχ . (19)

Here, Bχ denotes the boundary condition mapping matrix.
The general solution of the linear system Bχ pχ = bχ is

pχ = pχ ,0 +rχ p̃χ . (20)

The preliminary solution vector pχ ,0 and the nullspace base
vector rχ are computed in the same way - i.e. via the
equivalents of (10) and (11) - as for the vertical direction.

As compared to the vertical direction, the horizontal
directions have one more polynomial parameter - and thus
one more degree of freedom (DOF) - available. This DOF,
which is represented by the remaining free variable p̃ χ in
(20), has an effect on the geometry of the leg force rays
in space (see Fig. 6). Our goal is to find the value for p̃ χ ,
which produces the best possible focusing of leg forces, such
that these are best feasible for finite-sized (or even point-)
feet. We will therefore try to minimize the mean square of
the deviation (integral over time) of the leg force ground
intersection points1 xint from their mean value xint .

To this end, we first compute the time-dependent intersec-
tion point xint = [xint ,yint ,z f loor] of the leg force Fleg (see
Fig. 3) with the floor. For a given time in stance t s, it’s
horizontal components χ int(ts) are found as

χint(ts) = χ(ts)− fleg,χ(ts)

fleg,z(ts)
(z(ts)− z f loor) (21)

= (tT
χ (ts)−

(tT
z (ts)pz − z f loor) t

T
χ̈ (ts)

tT
z̈ (ts)pz + g

)︸ ︷︷ ︸
dT (ts)

pχ .

Here, fleg,χ(ts) and fleg,z(ts) are the horizontal and vertical
components of the leg force F leg and z(ts) is the height

1Note: the intersection point of the leg force (originating from CoM) with
the ground is also known as Centroidal Moment Pivot point (CMP) [21].



of the CoM. Now, the horizontal components of the mean
intersection point xint = [xint ,yint ,z f loor] can be computed via

χ int =
1
Ts

∫ Ts

ts=0
χint(ts) dts =

1
Ts

∫ Ts

ts=0
dT (ts) dts︸ ︷︷ ︸
eT

pχ . (22)

Here, eT is a constant row vector. The deviation from the
mean value can be computed as

Δχint(ts) = χint(ts)− χ int = (dT (ts)−eT )︸ ︷︷ ︸
kT (ts)

pχ . (23)

The square of the deviation at a given time t s is

Δχ2
int(ts) = pT

χk(ts) k
T (ts)pχ = pT

χL(ts) pχ . (24)

In order to obtain the mean square of the deviation χ int,ms,
we once again integrate and insert (20) to achieve

χint,ms = pT
χ

1
Ts

∫ Ts

ts=0
L(ts) dts pχ = pT

χ M pχ (25)

= rT
χM rχ︸ ︷︷ ︸

α

p̃2
χ + 2 rT

χMpχ ,0︸ ︷︷ ︸
β

p̃χ +pT
χ ,0Mpχ ,0︸ ︷︷ ︸

γ

.

Here, α , β and γ denote scalar quantities. Theoretically,
differentiation of (25) would yield the optimal value p̃ ∗

χ that
minimizes χint,ms. In practice, however, the integrals in the
above equations would be extremely hard to solve due to
the non-linearities in (21) and thus, solving for the analytic
expressions of α , β and γ would be inefficient. Thus, we
will use a trick: Knowing the structure of (25), we will - via
discretization of evaluation time and three arbitrary choices
for p̃χ (in this work, we chose −1, 0 and 1) - numerically
derive three supporting points for (25), which allow us to
solve for the unknown parameters α , β and γ . Therefore, -
for each of the three arbitrary choices for p̃ χ - we evaluate
all preceding equations for a discrete set of n evaluation
times. These can be combined in an evaluation-time vector
ts,eval = [ts,0, ...ts,n] that is evenly distributed along the range
[0,Ts]. That way, the numeric results of equations (21), (23)
and (24) become corresponding evaluation vectors (with n
elements), while the integrals in (22) and (25) turn into sums.
Note: pχ is computed via (20) and our arbitrary choices
for p̃χ ∈ {−1,0,1}. That way, we achieve numeric approx-
imations ε−1 = χ̂int,ms(p̃χ =−1), ε0 = χ̂int,ms(p̃χ = 0) and
ε1 = χ̂int,ms(p̃χ = 1) for χint,ms. As announced above, we can
now solve (25) for the unknown parameters α , β and γ:

α̂ =
ε1 + ε−1

2
− ε0 β̂ =

ε1 − ε−1

2
γ̂ = ε0 . (26)

With these approximations of α , β and γ we compute the
optimal p̃χ that minimizes χint,ms via differentiation of (25):

p̃∗χ =
−β̂
2 α̂

=
ε−1 − ε1

2 (ε−1 + ε1 − 2 ε0)
. (27)

Finally, setting p̃χ = p̃∗χ , we evaluate (20) which results in
the horizontal polynomial parameter vector p χ that respects
all desired horizontal boundary conditions and leads to the
best possible leg force focusing.

Note: the quality of this numerical approximation of α ,
β and γ depends on the number of evaluation times n. We
found that for a choice of about n≥ 10, the root mean square
of the ground intersection point (

√χint,ms) has sufficiently
converged as compared to n → ∞.

E. Foot placement

The basic modules of legged locomotion algorithms are
typically one that handles the robot’s CoM and another one
that controls the foot placement. In the previous section, we
derived the mean intersection points x int of the leg forces
with the ground. These are used as foot targets and are
updated online. Note that for discontinuous perturbations,
these foot targets may jump. Due to the 2-step-preplanning,
both future foot targets are known at all times, such that
foot trajectory generation is facilitated. In this work, we
implemented the foot reference trajectories as polynomial
splines. The use of more sophisticated foot trajectories, as
e.g. proposed in [18], is part of our future research.

F. State feedback control

In the nominal case (no perturbations), the force profiles
and foot target locations as derived in the previous sections
assure that after the first stance phase all desired bound-
ary conditions from sections III-C and III-D are perfectly
fulfilled (dead-beat control). Therefore, planning once per
step (typically at take-off) or even pre-planning a whole
sequence of upcoming steps and according leg force profiles
would be sufficient. Yet, since in the real world we have to
expect perturbations, we propose a feed-back control method,
which is based on the continuous re-planning of the desired
contact forces (and corresponding polynomial parameters)
throughout flight phases. Therefore, based on the current
CoM state (x, ẋ), the previewed CoM touch-down state
is updated by inserting the remaining time to touch-down
ΔtTD from (6) in (3) and (4). This continuous re-planning
is facilitated by the very low computational demand of the
proposed algorithm. In case of perturbations, we observe
very high robustness of the controller (see Sec. IV).

The desired three-dimensional force acting on the CoM
can be computed for a given time in stance t s as

FCoM,des(ts) = m

⎡
⎣tT

ẍ (ts) px

tT
ÿ (ts) py

tT
z̈ (ts) pz

⎤
⎦ (28)

The corresponding desired leg force F leg,des is found by
reordering (1). The polynomial parameters were chosen to
result in the best achievable focus of the leg forces with the
ground. Yet, for physical robots the desired leg forces may
not be achievable. One obvious example is when the robot
is modeled as point-mass with point feet (as used in the
simulations presented in Sec. IV). In that case, the leg force
is constraint to point along the direction of the vector u x, f

(unit vector pointing from CoM to point foot). As the other
two spatial directions are unactuated, the desired leg force
Fleg,des has to be projected to the feasible direction:

Fleg, f = ux, fu
T
x, fFleg,des . (29)
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Fig. 7: Force profiles during running simulations.

The feasible leg force Fleg, f can be commanded to the point-
mass point-foot model. For robots with finite sized foot or
angular inertia, this kind of projection may be unnecessary.

G. Steering interface

In this paper, we use a rather position based approach to
specify the desired horizontal travel. Higher level controllers
are provided a joystick-like interface with three inputs:
the desired horizontal velocities ẋ joystick and ẏ joystick and a
yaw rate ϕ̇ joystick. The latter can be seen as the angular
velocity of the robot’s virtual hip. The joystick velocities are
integrated and result in (sway-free) nominal CoM positions
and orientations. Assuming constant joystick velocities, these
can (knowing the required touch-down times from Sec.
III-C) be extrapolated forward to nominal CoM positions
and orientations at the moments of anticipated touch-downs.
These nominal trajectories are sway-free, i.e. the CoM shift
from left to right foot - required to avoid collisions between
the feet - are not considered yet. To create side-wards
swaying of the CoM, we design the touch-down positions
xTD,2 and xTD,3 (see Fig. 4) to be at a constant horizontal
offset Δxcom,TD (used as design parameter) from the nominal
CoM position in the direction of the virtual hip (left or right).
These were used as boundary conditions in Sec. III-D.

IV. SIMULATIONS

To test the performance and robustness of the proposed
control framework, we performed numerous simulations. The
robot model used in this work consists of a point-mass with
two massless point-feet. The desired leg forces are projected
via (29) to perfectly comply with the point-foot constraint.
For all shown simulations, the chosen design parameters
were m= 50kg, Δzapex,des = 1.1m, ΔzTD,des = 1m, Ts = 0.15s,
Δxcom,TD = 0.06m and Δapex,TD,min = 0.05m.

Figure 7 shows a set of typical force profiles. In the shown
example, the robot first accelerates forward, then backward
and then switches to a periodic gait.

Figure 8 shows our controller’s tracking performance for
varying joystick inputs (see Sec. III-G). Overall, the con-
troller shows very accurate tracking performance. The higher
deviations during some phases are caused by continuously
changing joystick inputs, since our steering interface assumes
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Fig. 8: Tracking performance when steered by joystick input.

constant steering rates. These deviations might be erased by
the use of a different steering interface.

Figure 9 shows the results of a robustness examination for
three different constant external forces. From top to bottom,
the figure shows phase plots for three simulations. Each
simulation was setup in the following way: no perturbation
during the first 4 seconds, then 4 seconds of constant
force acting (magnitude: -50N (corresponding to ≈ 10%
of the robot’s mass (here 50kg)), force direction: purely
x, y and z, respectively), followed by 4 seconds of no
perturbation. Here, Δx = x− x joystick and Δy = y− y joystick

denote the errors w.r.t. the nominal horizontal CoM position
x joystick = [x joystick,y joystick]

T as provided by the joystick (see
Sec. III-G). The stars denote the initial states. The phase plots
show that for perturbed and unperturbed phases, the system
very quickly converges to corresponding limit cycles. Note:
the perturbation force magnitudes in the shown simulations
were kept comparably low in order to increase readability of
the plots. In other simulations, we increased the continuous
unknown lateral perturbation force to 10.000N (i.e. 200 times
the robot’s weight), while still running successfully. The
resulting leg length of up to 78m is unrealistic, but the
simulation shows the high robustness of the controller. The
maximum continuous vertical (downward) force the robot
could bear was about 750N (i.e. 1.5 times robot’s weight).
For higher forces, it would finally collide with the ground.

V. DISCUSSION

The trajectory generation and control method described in
this paper yields leg force profiles that are independent of
the specific hardware design of some particular robot, i.e. the
method is generic. The proposed control framework might
be used to identify required actuator characteristics for the
design of new robots. On the other side, if a specific robot
with its predefined hardware limitations and kinematics is to
be controlled, other approaches such as optimal control may
be required to assure feasibility and good performance.
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ẋ

ẋ
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In our control framework, impact-free state transitions are
assumed (compare Fig. 2). The impact losses in real systems
will cause perturbations. Anyhow, due to its high robustness,
we expect good performance of the controller.

Regarding required leg stiffness, we find rather linear stiff-
ness profiles for slow running and more and more degressive
non-linear profiles for faster running (see Fig. 10). These
degressive stiffness profiles lead to lower maximum leg-force
absolutes and are in good accordance with the observations
from [22] and [23]. Figure 11 shows the correlating force
profiles (for Ts = 0.15s); note: here, Fy was set to zero (no
sideward CoM sway) for better readability. Due to the linear
independence of the spatial directions, the vertical force Fz

is equal for all horizontal running speeds. Also note: up to a
certain running speed (in the shown example about 10m/s),
the maximum in the force magnitude |F leg| is unchanged.

The force profiles as derived in sections III-C and III-D
nominally lead to perfect tracking after just one stance
phase (deadbeat control), i.e. the controller is nominally
perfectly stable. In case of actuation limitations, the control
commands may have to be adjusted (e.g. via (29) for point-
mass point-feet robots), such that stability can no longer be
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Fig. 11: Comparison of force absolutes for different speeds.

guaranteed. Yet, our simulations show the high robustness of
the controller even in case of constraints.

Figure 12 shows how far the force intersection point
χint(ts) deviates from the mean intersection point χ int (i.e.
the stance foot position). In the shown simulation, the robot
starts at zero speed and then runs at 2 m

s . The stance time is set
to 150ms. The initial range of deviation is about 22mm, while
for stationary running it is about 6mm. This shows that the
original (non-projecting) method is well applicable for small-
footed robots and that (29) typically has minor influence.

As mentioned before, the proposed algorithm is real-time
capable. In our Matlab/Simulink simulation setup, for a
sampling time of 1ms, we were able to compute a bit more
than 1000 time steps per second. On a real-time operation
system, we expect even shorter computation times.

Note: the proposed control framework might almost be
called a closed-form solution to running. Only the analytical
expressions in the second part of Sec. III-D are so complex,
that it is more efficient to solve them numerically.

Note: The algorithm proposed in this paper may also be
applied to the problems of hopping and jumping. We also
expect that quadrupedal gaits such as galloping and trotting
can be achieved by minor extensions of the algorithm.
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projection (29) is not activated. Along the time-axis, the
stance phases are pieced together. Stance time was 150ms.

VI. CONCLUSION AND FUTURE RESEARCH TOPICS

In this paper, we proposed a new biologically inspired al-
gorithm for force-based bipedal running in 3D. The proposed
controller has dead-beat properties, i.e. in the nominal case it
reaches the desired boundary conditions after just one stance
phase. The controller facilitates agile and versatile running
and is very robust against external perturbations. In a next
step, we will embed the proposed controller into a QP-based
whole-body controller (similar to [20]) to achieve running
with more complex robot models. Additionally, we want to
extend the algorithm to running on stepping stones, jumping
over and onto obstacles and running on uneven terrain. Also,
we want to control the planar physically compliant robot that
our group is currently designing.
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