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Abstract

In the design process of modern aircraft, a comprehensive analysis regarding flutter
stability and structural loads is imperative. Numerous points in the flight envelope,
different aircraft and loading configurations as well as many types of maneuvers
and external disturbances have to be considered. This leads quickly to millions
of simulation cases. Consequently, the analysis is complex and time consuming.
To solve this problem, the present thesis proposes a new approach based on the
robust performance analysis framework.

Parameter dependences and uncertainties of gust loads models are naturally
captured by linear parameter varying (LPV) and uncertain linear time invariant
(LTI) models. The performance of these models is then evaluated using the worst
case energy-to-peak gain. This performance metric is chosen because the maximum
peaks of the model outputs are most important in gust loads analysis. Assuming
that the gusts can be described by unit energy, this metric represents hence a
bound for maximum gust loads.

For the considered model types, an upper bound of the worst case energy-to-
peak gain can be computed by solving a convex optimization problem with infinite
dimensional linear matrix inequality constraints. Three techniques for dealing with
such constraints are reviewed and assessed in a benchmark. Further, the inclusion
of nonlinearities in the analysis by integral quadratic constraints (IQCs) is treated.
The focus is put on the analysis of saturated LPV systems by local IQCs.

According to the certification specifications for large aeroplanes, a set of “one-
minus-cosine” gusts must be considered for determining maximum gust loads. In
order to use the worst case energy-to-peak gain for doing this, a weighting filter
is designed s.t. all relevant gusts can be created with unit energy. Consequently,
the norm of the weighted gust loads model represents a guaranteed upper bound
for “one-minus-cosine” gust loads. In a comprehensive case study using models of
industrial complexity, LTI norm bounds are compared with conventional simulation
results. This study shows that the norm bound is not overly conservative and
that it serves as an excellent indicator for critical flight conditions. Based on these
results, the analysis is extended to LPV and uncertain gust loads models. Finally,
the design and the worst case analysis of a saturated gust load alleviation system
are presented.

All results show the effectiveness of this new approach, which allows to efficiently
identify critical flight points without the risk of missing a critical parameter
combination. Due to computational efficiency this approach is especially convenient
for multidisciplinary design optimizations.
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1 Introduction

Recent developments in the aircraft industry are primarily driven by the need for
fuel reduction in order to stay competitive. The enormous progress in doing this is
illustrated in Figure 1.1 for different aircraft categories (IEA 2009). For example,
the latest Airbus aircraft — the Airbus A350-900 (see Figure 1.2) — is promoted to
achieve a 25 % reduction in fuel consumption compared to predecessors. Another
example is the renewal of the Airbus A320. Its fuel consumption is now reduced
by 20 % with respect to the original version. A similar situation can be found at
Airbus’ main rival Boeing. The reasons for this development are an intensified price
competition, the increasing kerosene costs, and stricter environmental protection
regulations.

As stated in TEA 2009, this reduction of fuel consumption was achieved by
three major aspects. First, big progress in propulsion technology resulted in more
efficient engines featured by a higher bypass ratio. Second, latest computational fluid
dynamics (CFD) algorithms allow an optimization of the aircraft’s aerodynamics
which results in drag reduction. Third, the usage of lightweight construction, new
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Figure 1.1: Evolution of fuel consumption for different aircraft categories. The
error bar for each aircraft reflects varying configurations. (Figure adapted from
IEA 2009.)



2 1 Introduction

Figure 1.2: Airbus A350.!

materials, and computer aided optimization of the aircraft structure lead to a
reduction of the aircraft weight. While the aerodynamic optimization leads to wings
with high spans and high aspect ratios, the structural optimization results in more
flexible wings than in conventional designs. This means that latest aircraft feature
long and flexible wings which lead to an increased interaction of aerodynamics,
structural dynamics and flight dynamics. This interaction can result in higher
structural loads or even cause flutter. Consequently, the structural design plays
a key role towards more economical aircraft and a compromise between weight
reduction and safety must be found. For finding this compromise, the careful
identification of worst case gust loads is imperative.

1.1 Motivation

During the operation of an aircraft, various loads act on the aircraft which must
be borne by its structure. These loads are caused by maneuvers and external
disturbances. Especially for large and flexible aircraft, external disturbances in
terms of gusts and turbulence play an important role in sizing the structure. The
challenge in the analysis of these gust loads lies in the feedback interconnection
of the aerodynamic and structural model. Since the aerodynamic flow changes
rapidly during gust encounters, complex models for the unsteady aerodynamics
must be considered. This leads to models with several thousand states and outputs.
The required analysis can be even more complicated if an electronic flight control
system (EFCS) is part of the loop.

1Figure 1.2 is taken from http://www.airbus.com/galleries/photo-gallery/dg/idp/48675-
a350-xwb-route-proving-front-shot (on July 20, 2015) with permission of Airbus S.A.S.
and BocKFILM GmbH (© S. Pam).


http://www.airbus.com/galleries/photo-gallery/dg/idp/48675-a350-xwb-route-proving-front-shot
http://www.airbus.com/galleries/photo-gallery/dg/idp/48675-a350-xwb-route-proving-front-shot
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In order to ensure the safe operation of an aircraft, the certification authorities
state precise regulations how this aeroelastic analysis has to be performed (EASA
(CS-25; FAA FAR-25). In principle, three aspects have to be considered. During
the flutter analysis, the stability of the aeroelastic interconnection is examined.
Next, the expected maximum loads acting on the structure during maneuvers
are computed. Finally, the response of the aircraft on turbulence and gusts are
examined. The regulations require the consideration of two types of excitation:
“one-minus-cosine” gusts and continuous turbulence. In the first case, an aircraft
model is excited with a discrete “one-minus-cosine” gust profile and the model
outputs, e.g., the wing root bending moment or the vertical acceleration, are
computed. Next, the trim loads are superimposed and the procedure is repeated for
several gust lengths. Moreover, the complete process has to be performed for lots
of flight points such that the entire design envelope (defined by velocity, altitude,
loading etc.) is covered. Finally, the maximum and minimum peak of every output
for all these simulations define the limit loads due to discrete gusts. The other type
of excitation — namely continuous turbulence — considers the stochastic nature of
turbulence. Here, the von Karman wind turbulence model describes the aircraft
excitation and the results are evaluated by stochastic means. The limit loads are
derived from the root mean square (RMS) value of the model response.

Because of the huge parameter space representing the aircraft envelope and
many uncertainties, millions of cases have to be considered during the flutter and
loads analysis. The conventional analysis is hence extremely time consuming. Con-
sequently, it is unattractive during the aircraft pre-design and optimization stage.
To reduce the numerical burden during a multidisciplinary design optimization,
it is common practice to consider only an agreed set of worst case conditions.
However, especially in combination with an EFCS, this set might not contain the
actual worst case. Consequently, there is a need for robust and reliable algorithms
for the identification of these scenarios.

Since the early eighties, a mathematical framework has been developed for the
analysis of uncertain systems. This framework includes the structured singular
value analysis (¢ analysis) which allows the robust stability analysis of systems with
structured uncertainties. Because the parameter dependences and uncertainties of
aeroelastic models are naturally captured by this model type, the p analysis allows
to efficiently compute guaranteed worst case flutter bounds (Lind and Brenner,
1999; Borglund, 2004). The robust analysis framework has hence proved useful for
flutter analysis.

Another methodology of this framework is the robust performance analysis.
This method evaluates the performance of linear parameter varying (LPV) and
uncertain linear time invariant (LTI) systems by input-output norms which can be
efficiently computed. The most common norm is the worst case energy-to-energy
gain (also known as Ho. norm). However, for gust loads analysis the worst case
energy-to-peak gain is more promising. The reason is that this metric represents



4 1 Introduction

a guaranteed bound on the peaks of the model outputs due to any disturbance
with unit energy. Assuming that the gusts can be described by unit energy, the
worst case energy-to-peak gain represents hence a guaranteed upper bound for
the maximum peak loads which is the most interesting quantity in gust loads
analysis. It is further possible to include nonlinearities such as saturation into the
analysis by latest results within the integral quadratic constraint (IQC) framework.
Consequently, the robust performance analysis framework has great potential to
improve the gust loads analysis process.

1.2 Contributions

The main goal of this thesis is to investigate to which extent the robust performance
analysis framework can be used for gust loads analysis. This requires a careful
review of existing robust performance analysis methods. Because most of the
existing methods focus on the worst case energy-to-energy gain, it is necessary to
adapt existing methods for the worst case energy-to-peak gain. After elaborating
the required theory, the gust loads analysis problem has to be expressed in a way
which is suitable for robust performance analysis. In this thesis, the following
notable contributions are made in order to achieve the aims of this work.

e To compute worst case gains, a convex optimization problem with infinite
dimensional linear matrix inequality (LMI) constraints has to be solved.
Several methods to tackle these constraints are described in the literature
but there is a lack of a neutral comparison of them. To fill this gap, three
methods are reviewed and assessed in a benchmark. This contribution is
partially published in Knoblach et al. (2013).

e An iterative procedure for the low conservative, worst case analysis of
saturated LPV systems is proposed. The procedure is based on the analysis
of uncertain LPV systems using IQCs (Pfifer and Seiler, 2014a) and on
the notion of local IQCs (Summers and Packard, 2010). However, both
works focus on the worst case energy-to-energy gain while this thesis treats
the energy-to-peak gain. The effectiveness of the proposed procedure is
demonstrated using a simple aeroservoelastic system. Preliminary results
on this contribution are recently published in Knoblach, Pfifer, and Seiler
(2015).

e The most important contribution of this thesis is the improvement, in terms
of efficiency and reliability, of the gust loads analysis process by means
of the robust performance analysis framework. It is shown that the worst
case energy-to-peak gain allows for computing not overly conservative but
guaranteed upper bounds for “one-minus-cosine” gust loads. This worst
case analysis can be extreme efficiently performed and lasts less than 6 %
of the time for alternatively required simulations. Additionally, worst case
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gusts are computed and physically interpreted. In Knoblach (2013b) and
Knoblach (2013a), preliminary, comparable results using a simpler model
with only two outputs are published.

Based on the worst case analysis results, critical flight points are identified
next. Simulation results for these flight points are then used for computing
lower bounds for the worst case loads.

e The effectiveness and versatile possibilities of the developed analysis process
are demonstrated at several examples:

— The considered gust loads models are naturally represented by LPV
models w.r.t. the flight envelope. An LPV performance analysis allows
hence to compute guaranteed bounds for gust loads by only one
analysis. Additionally, this analysis covers the transitions from one
flight point to another.

— The proposed process allows to consider uncertainties in the analy-
sis. As an example, the damping ratio — one of the most uncertain
parameters in gust loads models — is considered. The analysis result
allows to identify critical parameter combinations without the risk of
missing a critical parameter value.

— The proposed analysis method can be effectively used for multidis-
ciplinary design optimizations. The effectiveness is demonstrated by
tuning a gust load alleviation system.

— Gust load alleviation systems are subject to saturation and sensor
uncertainties. The above mentioned IQC based analysis procedure for
saturated LPV systems can be used to examine the effects of these
perturbations. This worst case analysis is used to prove robust stability
and performance of the previously designed gust load alleviation
system.

1.3 Outline

The structure of this thesis is illustrated in Figure 1.3.

In Chapter 2, the basics of aeroelastic modeling and gust loads analysis are
established. The fundamental concepts of the structural dynamic and aerodynamic
model are presented and their feedback interconnection is explained. Afterwards,
the precise regulations for the gust loads analysis are discussed.

Chapter 3 introduces the theoretical fundamentals of robust performance analysis.
First, LPV models and their linear fractional representations (LFRs) are introduced.
Afterwards, the performance analysis of this system class is discussed where the
emphasis is put on the worst case energy-to-peak gain. The analysis algorithm
requires to solve a semidefinite program (SDP) with infinite dimensional LMI
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constraints. Three techniques to deal with such constraints are reviewed and assessed
in a benchmark at the example of a two degrees-of-freedom (DOF) aeroelastic
system.

Including nonlinearities into the performance analysis using IQCs is treated
in Chapter 4. The focus lies on the analysis of saturated LPV systems. Next to
a description of saturation with standard time and frequency domain IQCs, an
iterative procedure using local IQCs is proposed. The benefits of this procedure
are demonstrated at the example of a simple aeroelastic system combined with a
saturated gust load alleviation system.

In Chapter 5, the connection between the energy-to-peak gain and “one-minus-
cosine” gust loads is elaborated using an aircraft model of industrial complexity.
First, a weighting filter to represent the required gusts with unit energy is designed
and optimized. Afterwards, upper bounds for the gust peak loads are computed
using the energy-to-peak gain. These results are compared to conventional simula-
tion results and worst case excitations are determined. Based on the performance
analysis results, critical flight points are identified which are then used to determine
lower bounds for the peak loads.

The versatile possibilities of the robust performance analysis framework for
gust loads computation are finally demonstrated in Chapter 6. First, an LPV
analysis w.r.t. the entire flight envelope and the analysis of a model with modal
uncertainties is presented. Afterwards, it is shown how the energy-to-peak gain
can be used to optimize a gust load alleviation controller. Robust stability and
performance of this controller w.r.t. saturation and sensor uncertainties is finally
proved using IQCs.

( 1. Introduction

/ (3‘ Robust performance analysis

( 2. Gust load analysis J

)

)

\ ( 4. Analysis using IQCs J
/

)

)

)

( 5. LTI performance analysis for gust loads computation

I

( 6. Robust analysis and control of gust loads models

l

( 7. Summary and outlook

Figure 1.3: Structure of this thesis.



2 Gust Loads Analysis of Flexible
Aircraft

The background of gust loads analysis is presented in this chapter. In Section 2.1,
the aeroelastic model used in this thesis is introduced. Its structural dynamic and
aerodynamic model are explained first. Afterwards, their feedback interconnection
in the frequency domain and in the time domain is treated. Following this, the
gust loads analysis procedure is described in Section 2.2. The focus is put on the
determination of maximum “one-minus-cosine” gust loads.

2.1 Aeroelastic Models for Gust Loads

An aeroelastic system is characterized by the feedback interconnection of the
aerodynamics and the structural dynamics (cf. Figure 2.1). The equations of motion
(EOM) are driven by the aerodynamic forces whereas the structural deformation
alters the aerodynamic flow. If additionally an electronic flight control system
(EFCS) is part of the loop, it is called an aeroservoelastic system. There are three
major issues in aeroservoelasticity:

Flutter: Is the aeroservoelastic system stable?

Maneuver loads: What are the maximum structural loads due to maneuvers?

Gust loads: What are the maximum structural loads due to gusts and turbulence?

wind loads
field . structural >
aerodynamics .
dynamics

Figure 2.1: Basic aeroservoelastic interconnection: Feedback interconnection of
the structural dynamics, the aerodynamics, and the EFCS/pilot.



8 2 Gust Loads Analysis of Flexible Aircraft

,/M\/ﬂfa,\a B =

Figure 2.2: Gust encounter of an aircraft.

During the certification process of a new aircraft, all three points have to be
considered. To that end, the European Aviation Safety Agency (EASA) states
precise requirements and acceptable means for compliance (EASA CS-25)'. As
already mentioned in the introduction, this thesis deals with gust loads.

The modeling process described in this thesis reflects the requirements for the
certification of new aircraft based on EASA CS-25. Consequently, the same model
types are also used in the industry. Following the certification regulations, the
wind field is assumed to be one-dimensional and the gust velocity is acting either
vertically or laterally to the flight direction. Hence, the gust acts first at the aircraft
nose and last at the aircraft tail as illustrated in Figure 2.2. An overview of gust
loads models is presented below. For details, it is referred to the common literature
e.g., Bisplinghoff, Ashley, and Halfman (1955), Hoblit (1988), Rodden and Johnson
(2004) and Kier (2011). The modeling is demonstrated using the Digital-X project
model (Kroll and Rossow, 2012), which serves as an example in this thesis.

2.1.1 Structural Dynamic Model

The structural dynamics of an aircraft are described by a finite element (FE) model.
This means that the continuum of the structure is discretized into finite elements.
The nodes of the FE model are placed along the loads reference axis of the fuselage,
the wing, the horizontal tail plane (HTP) and the vertical tail plane (VIP), see
Figure 2.3. Every node has up to three translational and three rotational DOF.?
The resulting DOF are referred to as g-set and are collected in the vector ju. A
typical size of the g-set is 1500 DOF'. Finally, the FE model leads to the following
frequency domain equations of motion (EOM):

—w? goM gu + o K u = Peys . (2.1)

In (2.1), 4,M is the mass matrix and ,, K the stiffness matrix. The external nodal
forces are denoted gPext and w is the frequency. See Rodden and Johnson (2004)
for details.

1The EASA CS-25 is identical to the US counterpart FAA FAR-25.

2This FE model can be obtained by applying a Guyan reduction on a more complex FE model,
which includes the complete aircraft structure (see Guyan, 1965). Alternatively, a model
using beam elements can be directly defined.
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/

Figure 2.3: Structural dynamic model: FE model along the loads reference axis.
The undeformed grid (——) and the first two eigenmodes (——) and (—) are
depicted.

In order to reduce the problem size, a modal analysis is performed next. To that
end, the eigenvalue problem

1o K® =’ ,M& (2.2)

is solved. The low frequency mode shapes (typically 50 to 100) are collected in the
modal matrix ;¢ which allows to define the modal (or generalized) DOF (h-set)

gu ~ gh¢ R . (23)
The generalized EOM are given as
—w? @ oM P ju+ jw B+ b P K P yu = 3P Pex (2.4)
—_— —_—
M K

Zhh Zhh

or equivalently in the time domain as
WM i+ Byt + K = P Pe (2.5)

The diagonal matrices ,, K and ,,M are referred to as modal stiffness and modal
mass matrix respectively. A modal damping matrix ,,B is already added to the
EOM. Modal damping means that every eigenmode is damped individually. The
damping matrix is hence also a diagonal matrix whose elements are defined as

wBii = Gwi = G/ i Eis ) M (2.6)
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where ¢; and w; are the damping ratio and eigenfrequency of the i*® mode. Here,
the notation ,;B;; means the i*" diagonal entry of the damping matrix. See Rodden
and Johnson (2004) for details. It should be noted that the modal matrix ;& can
be partitioned into rigid body and flexible modes. This allows to replace the linear
rigid body EOM by its nonlinear counterpart (see Waszak and Schmidt, 1988; Kier,
2011).

The nodal loads are recovered using the force summation method:

gP: gPext - g-l)iner 5 (27)
where the inertial forces are computes as

oPiner = —w” ;)M 3P ju . (2.8)
However, for the structural design, the shear forces, the torsional moment, and the
bending moments are required. These loads are also referred to as cut loads (c-set)
and denoted as .P. They can be computed by a simple matrix multiplication

P=,T,P. (2.9)

In principle, ., T sums up the forces and applies the lever arms to obtain the cut
forces and moments. The relevant model outputs — also referred to as interesting
quantities — are the nodal accelerations it and the cut loads .P. See Bisplinghoff,
Ashley, and Halfman (1955), Rodden and Johnson (2004) and Kier (2011) for
details.

The Digital-X structure model is depicted in Figure 2.3. It consists of 188 nodes,
which corresponds to 1128 DOF'. For the modal model, 50 modes are used. The
first and the second mode shape are additionally depicted in Figure 2.3. The c-set
has 1188 DOF.

2.1.2 Aerodynamic Model

The steady aerodynamic model is based on the vortex lattice method (VLM) which
uses concepts of potential flow. This means that the velocity field is the gradient of
a scalar valued potential function. The lifting surfaces of the aircraft are discretized
by trapezoidal shaped aerodynamic boxes — also called panels. A horse shoe vortex
is placed at the 1/4 chord of every panel, see Figure 2.4a. The circulation strengths
of all vortices are chosen such that the boundary conditions are fulfilled. This
means that there is no flow through the solid surfaces and that there is no flow
around the trailing edge. To that end, the orthogonal component of the flow at the
3/4 chord of every panel ;v (j-set, see Figure 2.4b) is considered and normalized
with the flight speed Us. This leads to the downwash

(2.10)
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a) Top view b) Side view

Figure 2.4: Aerodynamic box for the VLM: The horse shoe vortex is placed on the
1/4 chord point and extended to infinity. The 3/4 chord point (X) is the collocation
point (j-set). The vortex strength is chosen such that jur compensates ;v and thus
the boundary condition is fulfilled. The box reference point (k-set) is X.

which can be understood as the local angle of attack (using the small-angle
approximation). The VLM results eventually in the so-called aerodynamic influence
coefficient (AIC) matrix Q> which maps the downwash to the pressure coefficients

Acp = ;Q w. (2.11)
Next, the dynamic pressure is computed from the air density p and U as

Poc = 2pU2, . (2.12)
This enables to compute the pressure distribution by

Ap = ;Q jw. (2.13)

It should be noted that — contrary to this notation — the pressure acts on the 1/4
chord and not on the j-set. Further, the AIC matrix depends on the Mach number®.
Details can be found in Hedman (1966) and Rodden and Johnson (2004). The
VLM grid (with 1856 panels) of the Digital-X model and the pressure distribution
for a constant angle of attack are illustrated in Figure 2.5.

The VLM is only valid for a steady flow. Since the aerodynamic boundary
condition changes rapidly during a gust encounter, using the VLM would introduce
severe modeling errors. To avoid this, unsteady aerodynamic effects are involved
using the doublet lattice method (DLM) which is the unsteady counterpart of the
VLM. In principle, the horse shoe vortices are replaced by pulsating doublet lines.
Eventually, this leads to a harmonic solution in the frequency domain:

chp (Jo) = ;Q(jw) jw(jo) . (2.14)

3The Mach number Ma is defined as Ma = U /a where a is the speed of sound.
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max

pressure

Figure 2.5: Aerodynamic model: pressure distribution for a constant angle of
attack.

The constant AIC matrix is hence replaced by a transfer function matrix. In (2.14),

- Cref / 2

W= U w (2.15)
is the reduced frequency and cyef is the reference chord length. Note that the DLM
provides no analytical function ;,Q (j@) but constant matrices for discrete values of
@. Since the DLM is numerically expensive, the AIC matrix is usually computed
only for a couple of reduced frequencies. Further frequency points are obtained by
interpolation. It should be mentioned that the DLM converges to the VLM solution
if & tends to zero. See Albano and Rodden (1969) and Rodden and Johnson (2004)
for details.

At this point, it is noted that atmospheric parameters are determined using
the international standard atmosphere. This means, the air density p, the speed
of sound a, etc. are functions of the altitude h. Further parameters such as the
Mach number Ma and the dynamic pressure ps can be determined using the flight
speed Uso.

In order to complete the aeroelastic interconnection, structural or modal deflec-
tions have to be transformed to the aerodynamic grid. Analogously, the pressure
distribution must be transformed to loads acting on the structure. This is achieved
by the transformation

oPeig (10) = poo 1T 15 ;Q (@) (D + j& D) 1gT P 4w (j0) . (2.16)
#QU@)

The single steps of the transformations are explained proceeding from right to left.
First, the modal matrix ;,® is used to compute the structural deformation. The
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spline matrix ,, T transforms the structural deformations to the aerodynamic panel
reference points. This is achieved by a surface interpolation based on radial basis
functions. Note that the rotational DOF are explicitly considered in this step. The
differentiation matrices ;Dx and ; Dy allow to compute the downwash which is
induced from deflections and velocities of the panel reference points. The surface
matrix ;;S maps the panel pressure acting on the 1/4 chord to forces and moments
w.r.t. the panel midpoint. In order to transform the aerodynamic forces onto the
structural grid, the transposed spline matrix kgTT is reused, which can easily be
motivated by the concept of virtual work. The resulting transfer matrix ,,Q is
referred to as generalized AIC matrix.* Note that all transformations except of
the modal matrix are pure geometrical mappings. See Rodden and Johnson (2004)
and Kier (2011) for details.

In a similar fashion, the AIC matrices for the control surface deflection ,u can
be defined which leads to

Pes (J0) = poo 1, Q (j@) su (j©) - (2.17)

To that end, T ,,® in (2.16) is replaced by the control surface matrix ,,#. This
matrix contains the relation between control surface deflections and the panel
movement.

Concerning the gust input, recall that the wind field is assumed to be one
dimensional and the gust velocity is acting either vertically or laterally to the
flight direction. Consequently, the normalized gust velocity at the aircraft nose
cw acts time delayed at different 3/4 chord points. Additionally, only the normal
component of the gust to the panel must be used. For one panel, this leads to the
downwash

(@) = Nganaintgusie” ZTPenel/e)I9) G (i) (2.18)

icT

where N panel and ngust are the panel normal and the gust direction respectively.
The distance between the aircraft nose and the 3/4 chord point is Zpaner. The time
delay is transferred into the reduced frequency domain in order to combine the
delay with the AIC matrix. If all panels are considered, all ;51" are collected in a
column vector. The combination of this vector with the ;@ and the transformation
to the structural grid as in (2.16) leads to the following mapping between the gust
input and the nodal forces:

ngust(j‘:’) = P gGQ (j@) cw(j@) . (2.19)

Summarizing, the aerodynamic forces are

e
gPaero = gleig + gPCS + _ngust = Poo [qhQ ng gGQ] |:g:f:| . (220)

4Note that ghQ is only half generalized, because only the deflections but not the forces are
generalized.



14 2 Gust Loads Analysis of Flexible Aircraft

Note that the three transfer matrices ,,Q, ,,Q, and ;;Q depend on the flight
speed and on the Mach number.

2.1.3 Model Integration in the Frequency Domain

Since the elements of the AIC transfer matrix are no rational functions but given as
tabulated data for discrete frequencies, a state space representation of an aeroelastic
model cannot be directly derived. Consequently, gust loads computation is usually
performed in the frequency domain by means of the fast Fourier transform (FFT)
framework (see Bisplinghoff, Ashley, and Halfman, 1955; Rodden and Johnson,
2004). Substituting the aerodynamic forces (2.20) into (2.5) leads to

(—w2 wM + jw ggB + th) U =

2.21
Poo ghQST (ghQ (J‘:}) ru + ng (J‘:}) U + ng (J(':)) ngust) ) ( )

which results in

) Loy -1
AU = Poo (7w2 wM + jw goB + pp K — poo b P ghQ(JW))

9h¢T (gg,Q (J(:J) U + ng (_](:J) ngust) .

From (2.22), the nodal and cut loads can be determined using (2.7) and (2.9).

The resulting frequency response functions (FRFs) from the lateral and the
vertical gust input to the vertical acceleration, the wing root bending moment, and
the VTP root bending moment are depicted in Figure 2.6.

(2.22)

2.1.4 Model Integration in the Time Domain

Although the frequency domain model is convenient for many problems, a time
domain representation is required in some cases, e.g., for controller design or in
combination with nonlinearities. To that end, Roger (1977) propose to perform a
rational function approximation (RFA), e.g., to approximate ,,Q by

"p .
N ALy A A = 2 = jw
ghQ (_](U) ~ ghQ (JUJ) - ghQO + gth-]w - ghQQw + X_;JJQIH J(:} + ps ’ (223)

where p; are the manually chosen poles of the approximation. Because the co-
efficients ., Qo, ,, Q1, ,Q2, and ,, Qp, appear linearly in (2.23), they can be
determined by linear least squares techniques. Replacing jio with the reduced
Laplace variable

re. 2
CUZ s

5§ =

(2.24)
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Figure 2.6: FRFs of the gust loads model: The FRF from the lateral and the
vertical gust and to the vertical acceleration (i), the wing root bending moment
(Pwrben), and the VTP root bending moment (.Pyrrben) are depicted. The Mach
number is Ma = 0.86 and the altitude is A = 9.075km. An excellent agreement
between the frequency domain model (*) and the state space model (—) can be

seen.
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results in a rational transfer matrix ghQ (5) which can be expressed in a state space
representation. The additional states are called lag states. The transfer matrix
ghQ(E) is not proper® but derivatives of ,u are available from the structural model.
See Kier (2011) for details.

Analogously, ,,Q can be approximated for the control surfaces deflection input.
Because the first and the second time derivatives are in general not available, ng1
and ng_Q are often omitted for the RFA. Alternatively, their differentiating behavior
can be approximated using high-frequency low-pass filters.

The approximation of the gust input is a bit more complex. The reason is that
the time delay causes a high phase shift which cannot be accurately approximated
with (2.23). As a remedy, Karpel, Moulin, and Chen (2003) proposed to divide
the gust model into several zones (here 25 per gust direction), each having its
own reference point, see Figure 2.7. Recall that the time delay is modeled in the
reduced frequency. The very small time delay between the 3/4 chord point and the
preceding reference point

o~ (2ATRFA/Crer)® (2.25)

is captured by the RFA. To include the delays between the single gust zones, Padé
approximations of the dead times are cumulatively applied:

—(2Az Y Cref — TzoneW
e (2Azz0ne/cre)® w . (2.26)
Cref + TzoneW

Based on physical considerations, the term gGQQ is dropped (Kier, 2011). The
term gGQ1 is approximated using high-frequency low-pass filters.

At this point, all transfer matrices are expressed by rational functions which
allows to assemble the complete model in a state space representation. In case of
the considered Digital-X model, the resulting model has 1036 states. The states
from the structural dynamics are three rotational rigid body positions®, five rigid
body velocities”, 50 modal deflections and 50 modal velocities. The aerodynamics
contribute with 880 lag states and 48 states for the Padé approximations. The
inputs are the lateral and the vertical gust downwash as well as four control surface
deflections (horizontal stabilizer, aileron, elevator and rudder). The outputs are
the nodal accelerations (1128 DOF) and the cut loads (1188 DOF).

As an example, a Bode diagram from the lateral and the vertical gust input
to the vertical acceleration, the wing root bending moment, and the VTP root
bending moment is depicted in Figure 2.6. An excellent agreement to the frequency
domain model can be recognized.

5A rational transfer function is proper if the number of zeros is less or equal to the number of
poles.

6The translational rigid body positions do not affect the model.

"The velocity in flight direction is considered to be constant.
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Figure 2.7: Gust zones for Padé approx- [~
imation: An excerpt of the wing consist- /

ing of two times two panels is depicted. x| s
The 3/4 chord point of every panel is

shown by X and the reference point of ev-

ery gust zone is ——. The time delay be-

tween the single gust zones Azzone/Uso

( ) is cumulatively approximated us- Eca$ X
ing Padé filters. The small time delay

between the 3/4 chord point and the

preceding reference point Azrra/Uso

(—>) is captured by the RFA.

2.2 Computation of Maximum Gust Loads

According to EASA CS-25, two types of disturbances have to be considered: discrete
“one-minus-cosine” gusts and continuous turbulence. The first case represents
an idealization of a single extreme turbulence event which allows to compute
deterministic limit loads. The other type of excitation, continuous turbulence,
considers the stochastic nature of turbulence. Here, the von Karman wind turbulence
spectrum is applied to white noise in order to create aircraft excitations. The
simulation results are evaluated by stochastic means and the most important
quantities are the RMS values of the interesting quantities. This thesis treats
“one-minus-cosine” gusts.

2.2.1 The “One-Minus-Cosine” Gust Scenario

The gust loads are composed of two parts: trim loads and dynamic loads. The
static loads result from the trimmed horizontal flight and are consequently also
called trim loads. The dynamic loads are caused by the gust excitation and are
referred to as incremental loads. Because of the linear model, both components
can be simply superimposed, i.e.,

P = Pirim + Pincremental - (227)

In order to trim the aircraft, trim conditions for the model states have to be
specified. Usually, the vertical acceleration is constrained by the acceleration of
gravity and other accelerations and velocities are set to zero. This allows to compute
the structural deformation as well as the angle of attack and the control surface
deflections. The resulting structural forces are the trim loads.
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To determine the incremental loads, the aircraft is excited by “one-minus-cosine”

gusts. This gust shape is defined by

Uas (1 — cos (w%)) if 0 < Usot < 2H

0 otherwise,

(2.28)

where H is the gust length and Ugs is the gust design speed. According to EASA CS-

25, 20 gust lengths between 9m and 107 m (30 ft and 350 ft) have to be considered.

The gust design speed is

H \l/6
) (2.29)

Uds: ref'Fg'(m

The reference gust velocity User and the flight profile alleviation factor Fy; depend
on many aircraft parameters (e.g., the maximum operating altitude and the
maximum takeoff weight) as well as on the considered flight point (see EASA CS-
25). In Figure 2.8, “one-minus-cosine” gusts are depicted for several gust lengths.
Simulation results are depicted for the vertical acceleration, the wing root bending
moment and the VTP root bending moment in Figure 2.9. The maximum absolute
incremental loads are referred to as peak loads.

Obviously, the lateral gust does not affect the wing loads. Similarly, the VTP
is not impacted by the vertical gust. This allows to focus on specific interesting
quantities depending on the gust direction. For the lateral gust, the relevant outputs
are the VTP shear force, torsional moment, and bending moment along the VTP
loads reference axis. In case of a vertical gust, the interesting quantities are the wing
and the HTP shear force, torsional moment, and bending moment. These three
quantities are also referred to as shear ,Psp, torsional .Pior, and bending ,Phen in
the remainder of this thesis.

The eventually interesting numbers are the maximum upper and minimum lower
loads of all interesting quantities. They are computed by superimposing the trim

Figure 2.8: “One-minus-cosine” gust \
excitation: Different gust lengths be-
tween 9m and 107 m are depicted. The
flight point is specified by Ma = 0.86 2
and A = 9.075km.

| | |
0 02 04 06 08 1
t/s
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Figure 2.9: Simulation results for lateral and vertical gusts: The vertical accelera-
tion (yii,), the wing root bending moment (,Pwgben), and the VTP root bending
moment (.PvTrben) are depicted. The Mach number is Ma = 0.86 and the altitude
is h = 9.075 km.
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loads and the peak loads, e.g.,

cPupper = EPtrirn + mtaX |chust| (230)
and

c-l:)lower = cPtrim - mtaX |(;Pgust| . (231)
The reason for the “+” and the “—” sign is that the gust can also act from the

opposing direction. Taking the maximum/minimum of all upper/lower loads results
in the limit loads. In order to size the structure, a safety factor of 1.5 is finally
added to the limit loads. The resulting bounds for the upper and lower loads in
the considered example are compiled in Table 2.1

Table 2.1: Bounds of the upper and lower loads for the considered example.

ubs PWRben VTRben

m/s? 10° Nm 10° Nm
Trim loads —9.81 5.40 0.00
Peak loads (lateral gust) 0.00 0.21 3.15
Peak loads (vertical gust) 11.22 5.80 0.00
Upper limit loads 1.42 11.20 3.15
Lower limit loads —21.03 —0.40 -3.15

2.2.2 Number of Load Cases

The discrete gust scenario described above must be investigated for multiple load
cases such that the entire design envelope of the aircraft is covered:

Flight points: The gust loads are affected by the considered flight condition which
is specified by the flight speed and the altitude. Other parameters — e.g.,
the Mach number or the air density — can be derived using the international
standard atmosphere. Note that the flight envelope represents a continuous
space which must be approximated by a grid in order to perform the gust

simulation.

Wing configurations: Aircraft are mostly equipped with slats and flaps which
allow to operate the aircraft at a higher angle of attack during takeoff and
landing. These so-called high-lift configurations have to be considered during
the gust analysis. On the contrary to the flight envelope, there is only a
limited number of wing configurations. Usually, every wing configuration
results in a new VLM/DLM model.
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Mass cases: Since the aircraft consumes fuel and it can be fully occupied or be
empty, different mass distributions have to be considered. Similar to the
flight envelope, a finite grid of mass cases is used for the simulations.

Flight control modes: A typical civil transport aircraft is equipped with different
flight control modes which have to be considered for the analysis. The
normal control law provides several protections from potentially dangerous
flight states, such as over-speed or too large an angle of attack. In cases
of a sensor or an actuator failure, different fall-back control laws might be
activated. In the worst case scenario, all protections are lost and the aircraft
is operated in an open loop configuration.

Gust lengths and gust directions: As already mentioned, several gust lengths and
two gust directions have to be taken into account while determining the
limit loads.

The permutations of all these cases must be considered. The number of load
cases is estimated in Table 2.2. Facing the number of eight million simulations, it
becomes clear that gust loads analysis is a challenging issue. However, the focus of
this thesis lies on different flight points and different gust excitations. A clean wing
configuration and a full fuel tank are considered. One open loop and one closed
loop setup are studied in the remainder of this thesis.

2.2.3 Covering the Flight Envelope

The flight envelope of the Digital-X model is depicted in Figure 2.10. The EASA
(CS-25 states that flight points both on the border and inside of the envelope have
to be considered. Here, 51 flight points are used as indicated in Figure 2.10. The
air density and the gravitational accelerations can be computed from the altitude.
In combination with the flight speed, the Mach number can also be specified. Note
that a reduced gust design speed is considered for flight velocities greater than the
maximum cruising speed as indicated in Figure 2.10.

Table 2.2: Estimated number of load cases.

50 flight points

x 10 wing configurations
x 100 mass cases

X 4 control modes

X 20 gust lengths

X 2 gust directions

=8000000 load cases
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Figure 2.10: Flight envelope of the Digital-X model. The points e are considered
for the analysis. The maximum cruising speed is plotted by == =. Constant Mach
numbers are indicated by —.
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Figure 2.11: Trim and gust peak loads of the wing root bending moment w.r.t.
the flight envelope.
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Figure 2.12: Maximum upper and minimum lower values of the wing root bending
moment w.r.t. the flight envelope: The maximum upper and the minimum lower
point is each marked by e.

The resulting trim and gust peak loads of the open loop model w.r.t. the flight
envelope are depicted for the wing root bending moment in Figure 2.11. While
the trim loads are almost constant, the gust loads vary intensively. The kink for
large flight speeds results from the reduced gust design speed above the maximum
cruising speed.

The resulting limit loads for the wing root bending moment are depicted in
Figure 2.12. Here, the worst case flight point is specified by Uss = 261 m/s and
h = 9.075 km. However, for the other interesting quantities or in the closed loop
case, different critical flight points can be identified. Note that the worst upper
and lower loads can appear at different points.

The limit loads of all interesting quantities occur at different points in time.
Consequently, they do not fulfill the balance of forces, i.e., the sum of all forces
is not equal to zero. During the detailed loads analysis of one component, the
considered part is cut free and the cut loads are considered as external forces.
In order to avoid a drifting of the component, the balance of forces needs to be
fulfilled. To that end, the so-called correlated loads are considered where the cut
loads of the same point in time are used. However, this subordinated step is not
treated in this thesis.

2.2.4 Techniques for an Efficient Estimation of Maximum Gust
Loads

Since these millions of simulations are time consuming, there is a need for fast and
reliable algorithms to identify critical load cases. Despite of this, the literature
on efficient estimation methods of worst case loads is sparse and the focus lies
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on continuous turbulence. Pototzky, Zeiler, and Perry (1991) and Zeiler (1997)
use matched filter concepts. This method allows to determine an excitation with
unit energy for a single-input single-output (SISO) system which results in a
maximum peak of the output. However, it was primarily used in order to determine
correlated loads from continuous turbulence results. Fidkowski et al. (2008) use a
Lyapunov based approach to compute the RMS values of the model output due to
a gust excitation. This approach corresponds to computing the H2 norm and the
considered interpretation is well-known in control theory.

Khodaparast et al. (2011) and Khodaparast et al. (2012) propose two approaches
for an efficient prediction of maximum gust loads: surrogated modeling and “anti
optimization”. The idea of the surrogated modeling is to simulate only few points
of the flight envelope and to obtain the remaining points by interpolation. The
“anti optimization” aims at finding the worst flight point by optimizing the model
parameters such that maximum loads are generated. In both approaches, only
the load cases resulting from the flight envelope are considered. In Khodaparast
and Cooper (2013), these approaches are extended for correlated loads. A severe
drawback of both ideas is that critical flight points can easily be missed. Additionally,
the simulation of the considered flight points can still be time consuming.



3 Robust Performance Analysis

This chapter introduces the theoretical background of robust performance analysis.
In Section 3.1, the notation and important preliminaries on signal norms, LTI
models, LMIs and SDPs are presented. Parametric uncertainties and LPV models
are introduced in Section 3.2. The analysis of these models is discussed in Section 3.3,
where the focus lies on the worst case energy-to-peak gain. Section 3.4 treats
techniques for infinite dimensional LMIs. The chapter closes with a numerical
benchmark of these techniques in Section 3.5. The results from Sections 3.4 and 3.5
are already partially published in Knoblach et al. (2013).

3.1 Preliminaries

Standard notation is mostly used in this thesis. Scalar variables are denoted in
normal font-weight, e.g., a. Vectors are indicated by bolt small letters a and
matrices by capital bold letters A. The set of real numbers is denoted R, the set of
nonnegative real numbers R, and the set of complex numbers C. R"*™ and C™"*™
denote the sets of n X m matrices whose elements are in R and C, respectively.
A single superscript is used for vectors, i.e., R™ = R™"*!. For a complex number
a € C, @ denotes the complex conjugate. The transpose of a matrix A € C"*™
is denoted AT and the complex conjugate transpose A*. $" C R™ " refers to
n X n symmetric matrices, i.e., A € $ < A = AT, The set of Hermitian matrices
A = A” is denoted H" C C™*".

3.1.1 Signal Norms

An n-dimensional signal x: Ry — R" is a function x of the time ¢. The time
argument of signals is usually omitted in order to simplify the notation. Important
signal norms and signal spaces are defined below.

Definition 3.1 (Skogestad and Postlethwaite, 1996): The L2 norm of a signal @
is defined as

e, = ¢ / ||m<t>||§dt—¢ / 2 ()T (t)dt (3.1)
0 0

The L2 norm can be interpreted as the energy of a signal. Accordingly, it is also
referred to as energy norm. The notation & € L3 refers to n-dimensional signals

25
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with a finite L2 norm. The L2 space is a subset of the extended space L2, whose
members must be square integrable only on finite intervals (Megretski and Rantzer,
1997).

Definition 3.2 (Skogestad and Postlethwaite, 1996): The Lo norm of a signal x
is defined as

lzll;., = sup ()], = sup \/&(t)T(t). (32)
tERy tERy

For scalar valued signals x, the Lo norm represents the maximum peak of the
signal. Hence, it is also referred to as peak norm of a signal. The notation « € L},
refers to n-dimensional signals with a finite Lo, norm. It should be noted that
there exists a second slightly different definition in the literature (see Rotea, 1993).
Here Lo, refers always to Definition 3.2.

3.1.2 LTI Systems
An LTI system P is defined by the linear differential equation

&=Azxz+ Bd, z(0)==xo (3.3a)
e=Cz+ Dd (3.3b)

and maps an input vector d: Ry — R™ to an output vector e: Ry — R™.In (3.3),
x: Ry — R™ is the state vector, g € R™* the initial condition, A € R™**"* the
system matrix, B € R"**" the input matrix, C € R™*"* the output matrix,
and D € R™**™4 the feed-through matrix. Its transfer function is denoted as

P(s)=C(sI-A)'B+D, (3.4)

where s is the Laplace variable. The notation P(jw) is used for the frequency
response function (FRF).

3.1.3 Semidefinite Programs and Linear Matrix Inequalities

Many important problems in control theory can be expressed by LMIs and SDPs
(see e.g., Boyd et al., 1994; Wu, 2001; Dettori, 2001). Both LMIs and SDPs are
convex optimization problems'. Before LMIs and SDPs are defined below, positive
and negative definite matrices are introduced first.

A matrix M € C™*™ is (semi) positive definite if T Mwu > 0 (uT Mu > 0)
holds for all w € R™ \ {0}. In this case the notation M > 0 (M > 0) is used.
Analogously, M < 0 & —M > 0 is used for negative definite matrices. The
notation My > Ms means M7 — M> > 0. Finally, a Hermitian matrix M € H™
is positive definite if and only if all eigenvalues eig(M) are positive. Note that all
eigenvalues of a Hermitian matrix are real numbers.

1Details on convex optimization are briefly explained in Appendix A.



3.2 Parametric Uncertain and LPV Models 27

Definition 3.3 (Boyd et al., 1994): Using the matrices Mo, M1, ..., M, € H™
and the variables z; collected in the vector € R", a linear matrix inequality
(LMI) is a constraint of the form

M(z) = Mo+ Mz + -+ Myz, >0. (3.5)
Note that the mapping M : R" — H™ is affine.

Definition 3.4 (Boyd et al., 1994): A semidefinite program (SDP) is a convex
optimization problem with a linear objective function and LMI constraints. Using
the variables from Definition 3.3 and a vector ¢ € R", an SDP is defined by

mine'®, st. M(z) > 0. (3.6)

It should be noted that equality constraints of the form Ax = b can be additionally
considered in SDPs.

In most applications, the decision variables x; are not expressed in a scalar
fashion as in (3.5) but as matrix variables, e.g., using the matrices M; € C™*™
and M € H™ and the unknown X € $™

M{X + XM, +M;>0. (3.7)

Since the elements of X appear affinely in (3.7), it can easily be transformed to
(3.5). Two (or more) LMIs M,(x) > 0 and My(x) > 0 can be combined to one
LMI:

[M%(:c) Ml?(w)} >0. (3.8)

See e.g., Boyd et al. (1994), Dettori (2001) and Scherer and Weiland (2004) for
further details on LMIs.

Interior-point methods allow to efficiently solve SDPs (Boyd et al., 1994). Popular
solvers, e.g., SDPT3 (Toh, Todd, and Titiincii, 1999) and SeDuMi (Sturm, 1999),
are freely available and have an interface to the LMI parser YALMIP (Lofberg,
2004). Consequently, SDPs have become a powerful tool in control engineering
practice.

3.2 Parametric Uncertain and LPV Models

In many applications, the considered system can be reasonably described by an LTI
model at fixed operating points but the system changes its dynamics w.r.t. model
parameters. For example, in aeroelasticity, the model depends on the flight speed
and on the air density etc. While these time-varying parameters are measurable,
other parameters can be unknown or uncertain, e.g., the mass distribution. A
suitable approach to deal with such systems are parametric uncertain and LPV
models which are introduced below.
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3.2.1 Linear Parameter Varying Models

Before the class of LPV models is introduced, differentiable parameter vector
trajectories with bounded rates are defined. The parameter vector is assumed to be
a continuously differentiable function of time p: R4 — P. Admissible trajectories
are restricted, based on physical considerations, to a compact subset P C R"~.
In addition, the parameter rates of variation p are assumed to lie within the
hyperrectangle P defined by

P = {q||¢h|§l/i Vie{ly---:nﬂ}} ) (3.9)

where v; are nonnegative numbers. The set of all admissible trajectories is defined
as

A= {p|p(t) e P,p(t) e PVt >0} . (3.10)

Definition 3.5 (Wu, 1995; Wu et al., 1996): The continuous matrix functions
A: P =R " B: P — R " C: P — R ™ D: P — R"*" the state
vector x: Ry — R"®, the initial condition xo € R"*, the input vector d: Ry —
R™4, and the output vector e: R+ — RR"¢ define the linear parameter varying
(LPV) system P, by

= A(p)r+ B(p)d, x(0)=xo (3.11a)
e=C(p)z+ D(p)d. (3.11b)

The parameter vector p — also referred to as scheduling signal — can be considered
as an additional input, which alters the plant dynamics. For LPV systems, the
parameter vector is usually assumed to be measurable. On the contrary, parametric
uncertainties are — by definition — unknown. While this distinction is important for
controller synthesis, it hardly affects the analysis of a system. Artificial parameters
which are functions of the states can be used to describe soft nonlinearities. In this
case, the model is called quasi LPV.

The derivation of LPV models from nonlinear systems is intensively studied
in the literature. Marcos and Balas (2004) compare three classical approaches
to generate LPV models: Jacobian based linearization, state transformation, and
function substitution. Optimization based approaches to generate optimal LPV
models are proposed by Pfifer and Hecker (2010) and Pfifer (2013).

3.2.2 Linear Fractional Representation of LPV Models

The symbolic dependence of LPV models on the scheduling parameter complicates
the numerical processing of the model or makes it even impossible. As a remedy,
the LPV model can be written in its LFR. This representation is based on the
linear fractional transformation (LFT) which is defined below.
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Figure 3.1: Graphical interpretation of the upper LFT. The loop is closed by A.

Definition 3.6 (Hecker, 2006): Using the partitioned matrix

Mll M12 (n1+mn2)x(mi+mo)
M = e CcimrT 12 3.12
{le MQJ (312)

and the matrix A € C™*"! | the upper linear fractional transformation (LFT) is
defined as
fu(M,A) == M22 +M21A(I—M11A)71M12, (3.13)

provided that the inverse (I — MnA)f1 exists.

A graphical interpretation of the upper LFT is presented in Figure 3.1. The
LFT describes the relation between d and e in the closed loop. This corresponds
to

v = M11w =+ M12d (314&)
e = Msiw + Msod (3.14b)
w=Av. (3.14c)

If the LPV system (3.11) depends only rationally on the parameters p, it can
be written in its linear fractional representation (LFR)

z=Anx+ Apw+ Bid, z(0) =z (3.15a)
v=Axx + Asow + Bad (3.15b)
e=C,zz+C w+Dd (3.15¢)
w = A(p)v, (3.15d)

(see Dettori and Scherer, 1998; Dettori, 2001). The operator A is also referred to
as delta block or A-block of an LFR. Without loss of generality, the A-block can
be written as the linear function

A(p) = diag (p1Lsy, -5 pn, Ls,, ) 5 (3.16)
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Figure 3.2: LFR of an LPV model.

where diag(-) is the block diagonal concatenation of its arguments. Every parameter
pi is repeated s; times in the A-block. The LFR order is defined as

"p

NLFR = Z Si - (3.17)

=1

The parameters p; are typically scaled s.t. p; € [—1, 1]. The equivalence of an LPV
system and its LFR is illustrated in Figure 3.2.

As already mentioned, the transformation of the LPV system (3.11) into its
LFR is straightforward if the system depends only rationally on the parameters
(Hecker, 2006). However, the LFR is not unique and the resulting LFR order
may vary largely. Hecker (2006) proposes several numerical and symbolic LFR
order reduction algorithms, which allow for an automated generation of low order
LFRs. These approaches are available in the Enhanced LFR-Toolbox for MATLAB
(Hecker, Varga, and Magni, 2005). If the parameter dependence is non-rational, the
functional dependence must be approximated by rational functions. An optimization
based approach for doing this is presented in Pfifer and Hecker (2010) and Pfifer
(2013).

3.3 Analysis of LTI and LPV Systems

In the following section, the stability analysis of LPV systems is discussed and two
important performance measures are introduced. The first one is the well-known
worst, case energy-to-energy gain or — mathematically speaking — the induced
Lo — L2 norm. The second one is the induced L2 — Lo norm, which corresponds
to the worst case energy-to-peak gain.

3.3.1 Stability

The stability analysis of LTI systems is simple and can be performed by an
eigenvalue analysis of the system matrix A. On the contrary, the stability proof of
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the autonomous LPV system
P,:x=A(p)x (3.18)

is more sophisticated. It is common practice to do this by means of Lyapunov
theory. To that end, a positive definite parameter dependent Lyapunov matrix
X : P — $" is introduced and the Lyapunov function

V(z,p) =z "X (p)z (3.19)

is defined. From X > 0 follows that V(z, p) > 0 for all * # 0 and V (0, p) = 0.
Using arguments from Lyapunov theory, it can be shown that the LPV system is
exponentially stable if the derivative of V' w.r.t. the time

90X (p) .

is negative definite, i.e., V(x, p, p) < 0 for all & # 0 and V(0, p, p) = 0.

Note that (3.20) is eventually an algebraic inequality in the variables x, p, and
p which is independent of the time. This allows to consider p and p independently.
To emphasize this, the auxiliary variables p € P and q € P are introduced and
substituted in (3.19) and (3.20) for p and p, respectively. Additionally, the shortcut
OX:PxP— 8"

Viw.p.p) =" (A(p)TX(p) +X(p)AP) +)

Tp

0X(p,q) = Z g (3.21)

is defined. Using this shortcut and (3.19) and (3.20), the following theorem provides
a sufficient condition for the stability of LPV systems.
Theorem 3.1: The LPV system (3.18) is exponentially stable if there exists a

continuous differentiable Lyapunov matriz function X : P — 8™ s.t. for all (p,q) €
P xP

X(p) >0, (3.22a)
A(p)' X (p) + X (p)A(p) + 90X (p,q) < 0. (3.22b)

Proof: The proof can be found in Wu et al. (1996, Lemma 3.2.1) and Dettori
(2001, Theorem 24). |

X .
% must vanish

In case of an unbounded parameter rate ¢; — oo, the term :
in order to keep 0X (p, q) finite. Consequently, X (p) has to be independent of
parameters with unbounded rates. Theorem 3.1 is only a sufficient condition but

its LTI counterpart provides a necessary and sufficient condition.
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3.3.2 Worst Case Energy-to-Energy Gain

The worst case energy-to-energy gain is generally accepted as a performance measure
for LPV systems (Wu et al., 1996; Pfifer, 2013; Saupe, 2013). Mathematically
speaking, this gain is the induced L2 — L2 norm and is defined below.

Definition 3.7 (Wu, 1995; Wu et al., 1996): The induced L2 — L2 norm of an
LPV system P, is defined as

o el s
1Pollzyzy = sup an (3.23)
pca dl.,
deLy\{0}

where a zero initial condition is assumed.

The well-known Bounded Real Lemma provides an LMI condition for the induced
L2 — L2 norm of LPV systems.
Theorem 3.2 (Bounded Real Lemma): An LPV system P, is exponentially stable
and its induced L2 norm || Ppll ., ., from d to e is smaller than a performance

index vy if there exists a continuous differentiable Lyapunov matriz function X : P —
$"e s.t. for all (p,q) € P X P

X(p) >0, (3.24a)
A(p)" X (p) + X (p)A(p) + 0X(p,q) X (p)B(p)
B(p)" X (p) I
1 C(I’)T
37 | D(p) T [C(p) D(p)] <0. (3.24b)
Proof: The proof can be found in Wu et al. (1996, Lemma 3.1.3) and Dettori
(2001, Theorem 24). |

The considerations regarding to the stability after Theorem 3.1 hold analogously
for the worst case energy-to-peak gain. Note that for an LTI system P, the induced
L2 — L2 norm corresponds to the Hoo norm of its transfer function P(s).

3.3.3 Worst Case Energy-to-Peak Gain

Another performance measure is the worst case energy-to-peak gain or mathemati-
cally speaking the induced L2 — Lo norm. This norm is interesting for gust loads
analysis because it enables to compute guaranteed upper bounds for the peaks of
the model outputs.

Definition 3.8 (Rotea, 1993; Dettori, 2001): The induced L2 — Lo norm for
the LPV system P, is defined as

llell -
HPPHLQHLOC = sup d =,
pea ldllz,
deL2\{0}

(3.25)
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where a zero initial condition is assumed.

Remark 3.1: A necessary condition for a finite energy-to-peak gain is a zero
feed-through matrix. To see that, consider the system d = e and the disturbance

L 0<t<b

d(t) = { Vb (3.26)

0 otherwise.

Obviously, ||d||z, =1 and |le||z,, = % Consequently, for b — 0 an infinite large
peak can be reached with unit disturbance energy. For that reason, D = 0 is
assumed in the following treatise.

Several possibilities for computing the worst case energy-to-peak gain of LPV
and LTI systems are presented below.

Induced £2 — L Norm for LPV Systems
The following theorem gives an LMI characterization of the induced L2 — Lo
norm.

Theorem 3.3: An LPV system P, is exponentially stable and its induced L2 — Lo
norm ||Ppll ., from d to e is smaller than a performance index -y if there exists
a continuous differentiable Lyapunov matriz function X: P — 8" s.t. for all
(p,q) €P xP

X(p) >0, (3.27a)

A(p)"X(p) + X(p)A(p) + 0X (p,q) X(p)B(p)
B(p)" X (p) -1 } <% (3:27b)

X(p) C(p)*
cw |7 (3.27¢)

Proof: The following proof is an adaption of the LTI proof from Dettori (2001,
Theorem 12). Since the LMIs (3.27) hold for all admissible parameter trajectories,
p and p can be substituted for p and g, respectively. This allows the definition of
the storage function V: R"* x P — R4

V(z,p)=z"X(p)x. (3.28)
Adding a small perturbation € > 0 to (3.27b) yields the non-strict LMI?

A(p)TX(p) + X(p)A(p) +0X(p,p) X(p)B(p)
B(p)" X (p) —(1—epyr| =0 (3.29)

2The perturbation is necessary to proof that the norm is smaller (and not only smaller or
equal) than ~.




34 3 Robust Performance Analysis

Left and right multiplication of (3.29) by [T d*] and its transpose, respectively,
leads to the dissipation inequality

AV(z,p) < (1—e)yd'd. (3.30)

The case d = 0 leads directly to Theorem 3.1 and hence exponential stability can
be proved by the same arguments. Using «(0) = 0, integration w.r.t. ¢ yields

T
V(@(T), p(T)) < (1 - o)y / d()d(r)dt (3:31)
0
Next, using a Schur complement (see Lemma A.4) on (3.27¢) yields

X(p) - §C<p>Tc<p> 0. (3.32)

Left and right multiplication by T and «, respectively, results in

%eTe = %xTC(p)TC(p)m <z"X(p)x =V(xp). (3.33)

The evaluation of (3.33) at ¢ = T and the combination with (3.31) gives

1 T 4 T
Se(T) e(T) < (1 =y /0 d(t)"d(t)dt . (3.34)

Taking the supremum w.r.t. T results finally in

lel... <~ldl, (3.35)

which completes the proof. |

Induced L2 — L Norm of LTI Systems in the Time Domain
In case of an LTI system, Theorem 3.3 can be further simplified to allow a more
efficient computation.

Theorem 3.4: The induced L2 — Lo norm of the stable LTI system P is

1Pz, c.. = +/max (eig(CW.CT)) (3.36)

where the controllability Gramian matric W, is the solution of the Lyapunov
equation

AW.+W.A" + BBT = 0. (3.37)
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Proof: Only a sketch of the proof is presented. For the sufficiency part, the proof
for the Ho LMI characterization in Dettori (2001, Theorem 10) can easily be
adapted. This step consists in showing that

v = \/max (eig (CW.CT)) and (3.38a)
X =yWw! (3.38b)

satisfy (3.27). The necessity part results from the fact that a corresponding worst
case excitation can be explicitly computed (see Corollary 3.5). |

Worst Case Excitation

In many applications, not only the norm but also the worst case excitation is
of interest. From controllability analysis (see Dullerud and Paganini, 2000), it is
known that the optimal input

d(t) = B e "W, g (3.39)

steers an LTI system with minimum energy from the initial state (t — —o0) =0
to the final state (0) = xo. The required energy is

Idllc. = Vag W ao. (3.40)

Consequently, all states which can be reached with unit energy lie on the ellipsoid
defined by

eWoh)={z|z' W lz=1}. (3.41)
Further, all states which create an output satisfying [le[|z., = || P, lie on
the ellipsoid

S(CCLIPlgynp, ) ={z | 2" CTCx = |P|g, 0} - (3.42)

The state corresponding to the worst case T is the intersection of those two
concentric ellipsoids. Note that this state vector is in general not unique. However,
in order to find an xwc, an arbitrary &w. with

Zwe € ker (| P2, CCT —W. ) (3.43)

is chosen, where ker(-) is the kernel (or null space) of its argument. From &y, a
worst case state vector can be computed as

Twe = Bwe/V ECWE ' Toe . (3.44)
Using (3.39), the worst case excitation is
due(t) = BTeA "W, 2 e . (3.45)

This result is summarized in the following corollary.
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Corollary 3.5: The worst case excitation in terms of the energy-to-peak gain is

dwc(t) = BTeATthilw’LUC bl

(3.46)

where the worst case state is computed using Equations (3.43) and (3.44).

Example 3.1: A graphical interpretation of the proceeding corollary is depicted
in Figure 3.3. The considered LTI system P is

o |1
“lo

1]
—1
0]

]l

xT.

(3.47)

(3.48)

and hence ||P|[,, . = 0.32.

Induced £> — Lo Norm of LTI Systems in the Frequency Domain
As an alternative to Theorem 3.4, the energy-to-peak gain can also be computed in
the frequency domain. Recall the standard definition of the controllability Gramian:

W, = / T A BETA . (3.49)
0
Consequently,
cw.Cc" = / T CeA BB AT C (3.50)
0
and by Parseval’s Theorem
cw.c" = L /Oo G(jw)G(jw) dw . (3.51)
This leads to the following theorem.
Theorem 3.6: The induced L2 — Lo norm of the stable LTI system P is
1Pz, e, = \/max <eig <217r /°° G(jw)G(jw)*dw>) . (3.52)

Proof: The proof is obvious from Theorem 3.4 and (3.51). |
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Figure 3.3: Graphical interpretation of Example 3.1: The states which can be
reached with unit energy are drawn by . The states corresponding to |le||z.. =
P, . aredrawn by —. The worst case state vector Twc is the intersection
of these two ellipses and is marked by %. The worst case state trajectory is depicted
by —>—. A sign change of d and e results in the mirrored worst case state vector
which is marked by ©.

Connection to the H2: Norm

Finally, the connection between the energy-to-peak gain and the H2 norm is
discussed. Recall first that the H2 norm is defined as

I1Pll5, = \/trace (;ﬂ/ G(jw)G(ijdw) (3.53)

where the trace of a matrix is the sum of the elements on its main diagonal. The
relation between the induced L2 — Lo norm and the H norm are clear if (3.52) is
compared with (3.53). For that reason, the induced L2 — L norm is also referred
to as generalized H2 norm (Rotea, 1993; Dettori, 2001). In the SISO case, the
induced L2 — Lo norm and the Hs norm are identical.
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3.4 Techniques for Dealing with Infinite Dimensional
LMis

Based on Theorems 3.2 and 3.3, optimization problems can be defined in order to
compute an upper bound for worst case gains of LPV systems. For example, in
case of the energy-to-peak gain, the resulting optimization problem reads as

min v s.t. (3.27) holds for all (p,q) € P x P. (3.54)
7, X (P)

However, (3.54) is not yet an SDP. There are two issues which make the optimiza-
tion problems numerically intractable. First, the decision variables can have an
arbitrary functional dependence on the parameters. Second, the LMIs depend on
the scheduling parameters so that they are infinite dimensional. Remedies from
the literature for both problems are presented below. The remedies are explained
at the examples of the energy-to-peak gain but they can easily be adapted for the
energy-to-energy gain.

3.4.1 Construction of Positive Definite Lyapunov Matrix Functions

The optimization problem (3.54) aims at finding a positive definite Lyapunov
matrix function. Since functions can hardly be numerically determined, Wu (1995)
and Wu et al. (1996) propose to assign n¢ basis functions

ng
X (p) = Z fi(p)X; where X; € $"". (3.55)
i=1

The new decision variables are the coefficients X; of the basis functions f;.

More basis functions obviously increase the image space of X and are hence
supposed to reduce the conservatism. However, since every basis function increases
the number of decision variables, this slows the optimization process down or may
cause numerical problems. Consequently, the selection of the basis functions is an
important step, which can have a crucial effect on the results. Unfortunately, there
are hardly any guidelines in the literature how to do this but simple polynomials
lead to good results in practice.

In order to ensure the positive definiteness of X, the following theorem can be
used.

Theorem 3.7: If X (p) is a continuous function of p € P and if X(0) > 0, then
the LMI

A(p)' X (p) + X(p)A(p) + 0X(p,q) <0 V (p,q) EP x P (3.56)

implies that X (p) > 0 for all p € P.
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Proof: The following proof by contradiction is adapted from Pfifer (2013) and
Dettori (2001). Suppose that X (0) > 0 and (3.56) hold but X (p) > 0 does not.
This implies the existence of a p € P such that X (p) # 0. Consider a continuous
trajectory p: [0,1] — P with p(0) = 0 and p(1) = p. This allows to define the
function A: [0,1] — R by

A(t) = min(eig(X (p(1))) (3.57)

which represents the smallest eigenvalue of X (p(t)). Due to the continuity of
X (p(t)), A(t) is also continuous. The positive definiteness of X (p(0)) implies
A(0) > 0 and the indefiniteness of X (p(1)) implies A(0) < 0. In combination with
the continuity of \(t), there must exist a £ € [0, 1] such that \(f) = 0. Consequently,
X (p(t)) has an eigenvalue at zero and this implies the existence of an eigenvector
& which satisfies X (p(f))& = 0.

Evaluate (3.56) at p = p(#) and q = 0. Left and right multiplication by T and
&, respectively, leads to

2" A(p(D)" X (p())& +&" X (p(1) A(p(D))E < 0. (3.58)
=0 =0
This contradicts the assumption and concludes the proof. |

Theorem 3.7 is used by Dettori (2001) and Pfifer (2013) in the context of
stability analysis of LPV systems but it can also be used for robust performance.
The negative definiteness of a matrix requires that any upper left square submatrix
is negative definite. In case of the worst case energy-to-peak gain, the upper left
block of (3.27b) corresponds directly to (3.56). For the energy-to-energy gain, the
upper left block of (3.24b) can be transformed to

A(p)" X (p) + X (p)A(p) + 90X (p,q) < —2> C(p)" C(p) < 0. (3.59)
>0

Hence, Theorems 3.2 and 3.3 imply (3.56) and consequently Theorem 3.7 can be
applied in order to simplify the resulting optimization problems.

3.4.2 Approximation Based on Gridding the Parameter Space

One way to circumvent infinite dimensional LMIs is introduced by Wu (1995) and
Wu et al. (1996) and is based on gridding the parameter space. This means that the
constraints are only enforced on a finite subset Pgria C P. Since Pisa polytope
and the parameter ¢ € P enters the constraints only affinely, it is sufficient to
check the constraints only at the vertices Po, see Proposition A.3. Note that Py
is a finite set. The gridding approach is thus based on an approximation of the
original parameter space P x P by Pgria X Po. This leads in combination with
Theorem 3.7 to the following algorithm.
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Algorithm 3.1: An approximation of the upper bound for the L2 — Lo norm of
an LPV system is determined by assigning ns continuous basis functions

ng
) = Z f;(p)X; where X; € §"* (3.60)

and by solving the SDP

1Pollzp ., < miny st (3.61)
X(0)>0, (3.61a)

and for all (p, q) € Pgria X Po

A(p)"X(p) + X(p)A(p) + 0X(p,q) X(p)B(p)
B(p)" X (p) ot } <0, (3.61b)

X(p) C(p)"
|:C(p) o (3.61c¢)

One advantage of the gridding approach is its simplicity. Further, arbitrary
parameter spaces as well as arbitrary nonlinearities can be considered. The severest
disadvantage is the loss of sufficiency. It is thus self-explanatory that the density of
the grid must be carefully chosen. However, even in the u-framework, the analysis
is often performed on a finite grid of frequency points. It is further possible to check
the validity of the results on a second denser grid 73grid. Therefore, it is proposed
in the literature (e.g. Pfifer, 2013) to optimize only the performance index on the
denser grid while the original obtained Lyapunov matrix function is used. In this
thesis on the contrary, this validation is cast into a simple eigenvalue problem. To
that end, (3.27b) and (3.27c) are converted using Schur complements:

A(p)' X (p) + X (p)A(p) + 90X (p,q) < 0
" (3.62a)
—~I— B(p)" X (p)Z(p, ) X (p)B(p) <0

(3.27b) &

X(p )
{VI - C(p)X(p)~'C(p)" > 0. (3.62D)

In (3.62), the Lyapunov matrix function X is assumed to be known from an initial
analysis on a sparse grid. This allows to compute the performance index by solving
eigenvalue problems as explained in Algorithm 3.2.

(3.27¢) &

Algorithm 3.2: In order to validate the original solution for the sparse grid Pgria
on a second much denser grid Pgia, check for every (p,q) € Pgria X Po if

min (eig (X (p))) > 0 (3.63a)
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rnax(eig(E'(p7 q))) <0 (3.63b)

and compute

1(p, q) = max (eig (~B(p)" X (p)E(p,q) ' X (p)B(p))) (3.63¢)
72(p, q) = max (eig (C(p) X (p) " 'C(p)")) . (3.63d)
The upper bound for the induced L2 — Lo norm on the denser grid is

max (max (Y1(p, q),72(p,q))) if (3.63a) and (3.63b) hold
5={ Pa (3.63¢)
00 otherwise.

If the performance index increases only slightly, this indicates — but does not
prove — the validity of the results. The advantage of this approach is that eigenvalues
can be more efficiently determined than solving SDPs. Additionally, grid points p
with large ¥(p, q) indicate where the grid for the original SDP has to be refined.
Note finally that despite of Theorem 3.7, the positive definiteness of X (p) is
checked at every grid point. The reason is that a rank deficiency of X (p) might
occur between two grid points.

3.4.3 Relaxation Based on Multi Convexity

The following relaxation is restricted to so-called polytopic LPV systems. These
systems are characterized by an affine parameter dependence of the system matrices,
e.g., for the state matrix

p
= Ay + Z PiAi . (3.64)
i=1

Additionally, the parameter space P is assumed to be a convex polytope, i.e.,
P = conv(Py). If further an affine Lyapunov matrix function
"p

X(p)=Xo+) pXi = 0X(pq) un (3.65)

i=1

is considered, the constraints (3.27a) and (3.27¢) become affine in p. Consequently,
Proposition A.3 can be applied and it is sufficient to enforce (3.27a) and (3.27c)
only at Py. The LMI (3.27b), however, is a quadratic function of p:

np np
-2y [P KRy ¥ <0
i=0 j=0 J

(3.66)
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where pp = 1 is used to shorten the notation. In order to apply Proposition A.3
also to (3.66), the function

f(p.q) =2 F(p,q)x (3.67)

must be multi convex for any & # 0. This is the case if

0? ATX; + X;A; X,B;
Tpgf(p, q) =2z" [ BIX, o |20 (3.68)
for all i =1,...,n,. Consequently, the additional constraint
ATX; + X;Ai X;B;
(3 > .
[ BX, 0 } >0 (3.69)
is imposed for all 4 = 1,...,n,. Further details can be found in Gahinet, Apkarian,

and Chilali (1996). The result is summarized in the following algorithm. Note that
Theorem 3.7 is additionally used for the first LMI.

Algorithm 3.3: An upper bound for the L2 — Lo norm of a polytopic LPV
system is determined by solving the SDP

1Pollzysr, < 31)1(11_7 s.t. (3.70)
X(0) >0, (3.70a)

and for all (p,q) € Po X Po

APp)"X(p)+ X(p)A(p) + 0X (p,q) X(p)B(p)
B(p) "X (p) 1 } <0, (3.70b)
X(p) C(p)*
{C(;’) 7’; } >0, (3.70¢)
and fori=1,...,n,

T v A B,
[Az- Xi + Xi A Xle] >0. (3.70d)

B x; 0
The drawback of the polytopic approach is that it is restricted to affine parameter

dependent LPV systems. While every LPV system can be over-bounded by such a
model, this approach is usually extremely conservative (Wu, 1995).

3.4.4 Relaxation Based on the Full Block S-Procedure

The last relaxation method requires that the LPV model is given in an LFR and is
based on the Full Block S-Procedure (see Scherer, 1997; Scherer, 2001).
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Theorem 3.8 (Full Block S-Procedure): Consider the quadratic constraint
F(p)'TF(p) <0, (3.71)

where F(p) = Fu. (M, A(p)) (corresponding to Definition 3.6) and T € $"2.
Equation (3.71) holds if and only if there exists a general multiplier IT € §°™ s.t.

M11 M12 T I 0 Mll M12
I 0 I 0
{04‘7] <0 (3.72)
M21 M22 M21 M22
and for all p € P
1" 1
I >0. 3.73
[A(p)] {A(p)} - (3.73)
Proof: A proof can be found in Scherer (2001). |

Structure of Multipliers

In order to relax the still infinite dimensional second constraint (3.73), the structure
of the multiplier is restricted. Different types of multipliers can be found in the
literature. They are all based on the structure

S
T — [?T R} 7 (3.74)
where Q, R € 8™ and S € R"* %",

Diagonal multipliers Recall first the diagonal structure of the A-block (see (3.16))
where every parameter p; is repeated s; times and scaled to |p;| < 1. A
similar structure is applied to the multiplier IT which leads to

R = diag(Ry,...,R,,) <0, where R; € $°", (3.75a)
Q=-R, (3.75b)
S = diag(S1,...,Sn,), where §; = —S € R***. (3.75¢)

This renders the constraint (3.73) into a block diagonal like structure of
which one block is

T

LH [ o }S{J [pfl] =@ =) R (Si+ST) 20, (376)
<0 <0 =0

Consequently, the second constraint (3.73) is always fulfilled. A special case

is 8§ = 0, where the number of decision variables is reduced on the price of

more conservatism. Finally, this type of multiplier is related with the DG

scales in the p-analysis framework. (Dettori, 2001; Pfifer, 2013)
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Full block multipliers The full block multipliers require no structure of A € P but
it is assumed that the P is a convex polytope, i.e., P = conv(Pp). Using the
partitioned matrix (3.73), the constraint (3.74) becomes

FA)=Q+S"A+A"S+ ATRA>0. (3.77)

Similar to the multi convexity approach, the idea is to check the definiteness
of F(A) only on the vertices Py. Therefore, by Proposition A.3, 27 F(A)x
must be a concave function which is the case if R < 0. Hence, constraint
(3.73) can be transformed to

1 1" s][ 1
A(p)| |ST R||A(p)

The diagonal multipliers are a subset of the full block multipliers. Hence, the
latter are supposed to be less conservative. However, they introduce more
additional decision variables and increase the number of LMIs. (Dettori,
2001; Pfifer, 2013)

Further multipliers Other types of multipliers can be found in e.g., Pfifer (2013).
It should be also noted that different types of multipliers can be combined.

>0VpePy and R<O. (3.78)

LFR of Theorem 3.3
In order to use the Full Block S-Procedure, it is necessary to write Equation (3.27)
as a quadratic constraint. To that end, the Lyapunov matrix function is written as

X (p) = Fx(p)'TxFx(p) . (3.79)
where the basis functions are defined by Fx (p) and their coefficients are collected

in Tx € $. For example a quadratic basis function w.r.t. one parameter p can be
written as

T
_ 2 _ I Xo %Xl I
X(p)=Xo+pX1i +p X2 = L’I} {;Xl X, | |p1] (3.80)

where X, X1, X2 € 5. Further, the differential operator is

X (p.q) = [aﬁ(g;)q)] [IE)X 1;)X:| {6%{((1;;1)} ‘ (3.81)

This allows to write (3.27) as

Fx(p)"TxFx(p) >0 (3.82a)
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0 TX 0 i Fx(p) 0 7
Fap(p,q)" |[Tx 0 | 0 | |Fx(p)A(p)+0Fx(p) B(p)| <0, (3.82b)
0 0 | I 0 I |
=Tsp =Fsp(p,q)
[Tx | 0 0 0] [Fx(p) 0]
|0 |4 0 O 0 I
Fco(p) olo o 1||cw o >0. (3.82c)
L0 |0 T O 0 I
=Tc =Fc (p)

Note that the matrix functions Fx (p), Fap(p,q), and Fc(p) must be given as
LFRs:

Fx(p) = Fu(Mx, Ax(p)) (3.83a)
Fap(p,q) = Fu(Mas, Aas(p, q)) (3.83b)
Fo(p) = Fu(Mc, Ac(p)), (3.83c)

where the three matrices Mx, Map, and Mc are partitioned according to Defini-
tion 3.6.

Using these variables, the following algorithm can be stated where Theorem 3.7
is used for the first LMI.

Algorithm 3.4: An upper bound for the £2 — Lo norm of an LPV system given
as an LFR is determined by solving the SDP

1Poll oy sr < mxin'y s.t. (3.84)
M;22TXMX22 >0 (3.84a)
—_—
=X (0)
Mapi:s Mapia] " 7 o Mapi1 Mapi2]
I 0 AB I 0
[ : TAB] <0 (3.84b)
Map21 Mapae Map21 Mapa2 |
Moy Mo " 1 Mc1n Meca2]
I 0 c I 0
[ 5 _TC} <0 (3.84c)
Mc21 Mca2 Mca1 Mce2: |

and for all (p,q) € Py x Po

I T I
[AAB(p, q)} ILap {AAB(p’ q)} >0, (3.84d)
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The decision variables x contain of the elements of v, T'x, ITap, and IIc. Note
that the structure from (3.75) or (3.78) has to be imposed on the multiplier ITsp
and Ilc in order to yield numerically tractable conditions.

The severest disadvantage of using the Full Block S-Procedure is the need for an
LFR of the considered LPV system. In case of a non-rational functional dependence,
the LPV system must be approximated first and the resulting LFR can be of high
order. Another point is the number of additional decision variables. Especially
for parameter dependent Lyapunov matrices of systems with many states, the
A-block grows rapidly. Since this introduces many additional decision variables,
such problems become quickly intractable.

3.5 A Benchmark of Techniques for Infinite
Dimensional LMIs

While the techniques introduced in the preceding section are well-known, there is
a lack of a neutral comparison. This is assessed in the present section using the
example of a simple aeroelastic system. The benchmark criteria are the conservatism
and the computation time.

3.5.1 Model of the Aeroelastic System

The considered aeroelastic system, taken from Bisplinghoff, Ashley, and Halfman
(1955), is illustrated in Figure 3.4. The equations of motion are

A a1 e R as

where h denotes the vertical deflection and « the pitch angle. The lift L and the
pitching moment 7 are given by

T

L h
|: :| = %onzo [Qeig‘ ‘ qust} [a] . (386)

Vgust

The Theodorsen function Qeig(s) models the relation between the aerodynamic
forces and the eigen movement. The Sears function Qgust(s) maps the vertical
gust velocity vgust on L and 7. Both transfer functions are non-rational in the
Laplace domain. In order to yield a state space realization, R.T. Jones’ rational
approximation is used. The functions depend on the free stream velocity Us, the
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Tar Tcg

Figure 3.4: Aeroelastic system: The airfoil is flexibly restrained. The figure is
adapted from Bisplinghoff, Ashley, and Halfman (1955).

Table 3.1: Model parameters: explanation and default values.

Sym. Explanation Value
kn translational stiffness 0.04
ko rotational stiffness 0.25
m mass 1.00
1 inertia 0.25
Teg location of the center of gravity 0.20
Uso free stream velocity 0.70
p air density 0.80
b half chord length 1.00
Tar location of the aerodynamic reference axis —0.20

half chord length b, and the location of the aerodynamic reference axis x,,. The
transfer functions Qeig and Qgust are explicitly given in Bisplinghoff, Ashley, and
Halfman (1955). Default values and explanations for all model parameters are
given in Table 3.1.

In the considered scenarios, the model input is the gust velocity d = vgust and
the outputs are the spring forces

e= [']jhﬂ . (3.87)

Since the parameter dependence of the resulting state space model is highly involved,
the state space matrices are compiled in Appendix B.1. However, the model has
eight states, namely h, «, h, & and four aerodynamic lag states. Moreover, the feed
through matrix is zero.
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3.5.2 Numerical and Implementational Aspects

In order to reduce numerical problems, it is common practice to precondition the
system before the analysis. The following steps are adapted from Saupe (2013) and
Skogestad and Postlethwaite (1996)

1. The inputs are scaled with the maximum expected energy.

2. The outputs are scaled with the maximum LTI norm. To obtain this norm,
the parameter space is gridded and the LTI norm is computed for every
grid point. Note that the LTI norm computation is much less numerically
sensitive than a robust analysis.

3. In order to balance the state space matrices, a time invariant state transfor-
mation is applied using Matlab’s ssbal.

The analysis is performed using Matlab. The LMIs are coded using YALMIP
(Lofberg, 2004) and the applied SDP solver is SDPT3 (Toh, Todd, and Titiinct,
1999).

3.5.3 Assessment of the Multi Convexity Approach

The first assessment investigates the performance of the multi convexity approach.
To that end, the translational stiffnesses kj, is considered to be uncertain, because
this results directly in a polytopic model without any overbounding of the parameter
space. The parameter range k;, € [0.01,0.30] and a zero parameter rate bound are
chosen. A Bode diagram of the resulting system is depicted in Figure 3.5 for ten
values of kj,.

The parameter space is gridded with 100 equidistantly space values of kj,. The
maximum norm over the corresponding LTI models is used to scale the system.
This implies that a norm value of 1 is a lower bound for the results. An LFR based
analysis (using diagonal multipliers) serves as a reference solution. The analysis
results are compiled in Table 3.2. In case of a constant Lyapunov matrix, the
constraints for both norms are infeasible, independent of the relaxation method.
Next, an affine Lyapunov matrix is considered. In case of the energy-to-energy
gain, the multi convexity approach result is double as large as the LFR based
result.®> The latter is only slightly greater than 1 and hence not conservative.
For the energy-to-peak gain, the conservatism of the multi convexity approach
is comparable to the LFR based result for an affine Lyapunov matrix function.
However, the LFR based result can be improved by choosing a quadratic Lyapunov
matrix function which yields a non-conservative result. Consequently, the multi
convexity approach leads here to an overestimation of the norm by 18 %.

3In order to eliminate the possibilities of implementational and numerical problems, the multi
convexity results are backed up using LMI Lab (see Robust Control Toolboz: User’s Guide
2011), which yields the same result.
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Figure 3.5: Bode diagram for the multi convexity assessment: The translational
stiffness is indicated by the color.

Table 3.2: Results for the assessment of the multi convexity approach.

X(p) Relaxation | Ppll@_wljorﬁlll’pllb_wm
Const. polytopic/LFR-based infeasible

Affine polytopic 2.159 1.179
Affine LFR based (diag. multiplier) 1.053 1.162
Quad. LFR based (diag. multiplier) 1.001 1.000

Although the considered model can be covered by a polytopic LPV model
without any overbounding, the result for the energy-to-energy gain is extremely
conservative. This can be caused only by the additional constraint (3.70d) and
appears to be a systematic problem of this approach. In combination with the
restriction to polytopic LPV models and affine Lyapunov matrix functions, this
approach seems here to be unfavorable.

3.5.4 Assessment of Multipliers for the Full Block S-Procedure

In the second assessment, the effect of the multipliers for the Full Block S-Procedure
is considered. To that end, the mass is assumed to be uncertain in the interval
m € [0.4,1.5] and the free stream velocity in the range of Uy € [0.5,0.8]. The
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Figure 3.6: Bode diagram of the second to the fourth assessment: 3 x 3 values of
U and m are considered. The same color indicates the same velocity Uso.

Table 3.3: Results for the assessment of different multipliers. (#x refers to the
number of decision variables and #LMIs to the number of LMIs.)

a) Energy-to-energy gain

Relaxation Norm Time #x  #LMls
diag multipl. / X (p) 1.002 10 s 857 113
full block multipl. / X (p) 1.002 67 s 2825 305
diag multipl. / X (0) 1.002 8 s 729 81
full block multipl. / X (0) 1.002 43 s 2297 209
b) Energy-to-peak gain
Relaxation Norm Time #x  #LMls
diag multipl. / X (p) 1.162 9 s 985 155
full block multipl. / X (p)  1.095 84 s 3353 411
diag multipl. / X (0) 1.162 8 s 857 123
full block multipl. / X (0) 1.095 59 s 2825 315
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parameter rates are again set to zero. This leads to the A-block diag(mlIs, UsI7).
The Bode diagram for the resulting model family is depicted in Figure 3.6 for
three different values per uncertain parameter. Here, quadratic Lyapunov matrix
functions are used. Additionally, the effect of the relaxation of the first LMI applying
Theorem 3.7 is studied.

The analysis results are shown in Table 3.3. Regarding the energy-to-energy
gain, all four methods obtain the same low conservative result. However, they
differ distinctly in the computation time and the SDP problem size. The number
of decision variables (#x) for the full block multipliers is more than three times
greater than for the diagonal ones. The full block multipliers increase the LMI
size (#LMIs) by a factor of 2.5. The increased problem size is reflected in the
computation time which lasts more than 6.5 times longer. Using Theorem 3.7,
which allows to consider only X (0) > 0, reduces #x and #LMIs by approx. 15 %.
This results in a reduced computation time. Similar results are obtained for the
energy-to-peak gain. The only difference is that the full block multipliers reduce
the conservatism by 6 %.

Summarizing, it can be concluded that full block multipliers improve the results
at the best only slightly. In combination with the increased problem size they are
not beneficial for the considered example. On the contrary, the usage of Theorem 3.7
has proved to be useful.

3.5.5 Assessment of the Gridding Approach

The gridding based approximation is assessed below. The model of the preceding
subsection is used and a grid of 51 x 51 points is considered. During an initial
analysis only 6 x 6 points are used. Afterwards the results are validated on the
full grid (cf. Algorithm 3.2), which leads to a set of invalid grid points. A subset
of these points are next additionally used for a second analysis, which is again
validated on the full grid. A grid of 11 x 11 points serves as a reference solution.
All grids are illustrated in Figure 3.7.

The results are compiled in Table 3.4. First of all, both approaches lead to same
results, which are consistent with the LFR based ones. The results of the two step
analysis are valid on all 51 x 51 points although the SDP is solved only on 41 and
39 grid points. Since the adaption of the grid allows to consider much less grid
points, the analysis can be sped up compared to directly using a dense grid.

For the energy-to-peak gain, the results are finally backed up by a p-analysis.
To that end, the function wegain of the robust control toolbox (Robust Control
Toolboz: User’s Guide 2011) is used. Using the default parameters of wcgain results
in an upper bound which is smaller than the maximum LTI norm. In order to yield
consistent results, it was necessary to use 2000 logarithmically spaced frequency
points between 0.01 Hz and 1.00 Hz. The reason for the sensitivity toward the
frequency grid is the distinct resonance of the system. See also Figure 3.8.
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Energy-to-energy gain Energy-to-peak gain
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Figure 3.7: Grid points for the third assessment: The parameter space is gridded
by 51 x 51 points (). 6 X 6 points (°) are used for an initial analysis. The other
points are used for validation, where the invalid points (*) are obtained. A subset
of these points (¢) are finally used for a second analysis. A second grid (+) of the

size 11 x 11 serves as reference.

Table 3.4: Results for the assessment of the gridding approach. (#x refers to the
number of decision variables and #LMIs to the number of LMIs.)

a) Energy-to-energy gain

Grid points Norm Time #x  #LMlIs
11 x 11 (fixed) 1.002 13 s 217 1097
41/2601 (adaptive) 1.002 6 s 217 377
wcgain (default freq. grid) 0.797 150 s N/A N/A
wcgain (customized freq. grid) ~ 1.002 3618 s N/A N/A
b) Energy-to-peak gain
Grid points Norm Time #x  #LMlIs
11 x 11 (fixed) 1.000 19 s 217 2307
39/2601 (adaptive) 1000 9s 217 749
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Singular values

Figure 3.8: Worst case gain analysis
for the third assessment: The results us-
ing the default options of wcgain (¢) are
smaller than the maximum LTI norm. A
customized frequency grid (—) leads to
consistent results. Additionally, a singu-
lar value plot of the nominal model ()
and of the worst case model (-~ ) are ~30 | i

depicted. 0.05 0.1 0.2

J/Hz

3.5.6 Assessment of Different Lyapunov Basis Functions

The last assessment treats different Lyapunov basis functions at the example of
the two preceding sections. The following basis functions are considered:

Xast(p) = Xo + Uso X11 + mX12 (3.88a)
Xquad (P) = Xan(p) + Uk Xo1 + m* Xag + Usom Xos (3.88Db)
Xewb(P) = Xquad(P) + UL X1 4+ m® Xao + UZmXss + Usom®Xaa  (3.88¢)

The SDPs for a constant X (p) and for functions depending on only one parameter
are infeasible. The free stream velocity U is considered as a time varying parameter.
The rate bounds Us, € [—0.08v,0.080] with v € {0.0,0.25,...,1.0} are used.

The results are depicted in Figure 3.9. While the norm values differ only slightly
for small parameter rate bounds, they differ greatly otherwise. For increased rate
bounds, higher order basis functions yield less conservative results. Note that an
affine basis function in combination with a high rate bound leads to an infeasible
SDP. The results for the quadratic and the cubic basis function differ only for the
maximum rate bound in case of the energy-to-energy gain.

Finally, the relaxation method is revisited. The gridding approach leads always
to the smallest results. At an increased rate bound, the LFR based results start to
be more conservative. The overestimation using full block multipliers is smaller
than for diagonal ones. However, while the SDP for the diagonal multipliers can be
solved in less than a minute, the computation using the full block multipliers lasts
up to thirty minutes. Further, the full block multipliers cause numerical problems in
many cases. A third order basis function for the energy-to-peak gain leads even to
an “out of memory” error.? The reason is that a third order basis function doubles
the LFR size of X (p). Because X (p) appears in every LMI, the overall LFR size
is almost doubled and consequently the multiplier size is greatly increased.

4The used desktop computer is equipped with 12 GB RAM.



54 3 Robust Performance Analysis
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Figure 3.9: Results of the fourth assessment: The induced system norms are
depicted w.r.t. the relative rate bound. The colors indicate the Lyapunov basis
function and —— represents an affine function, —— a quadratic function, and

a cubic function. In case of a grid based approximation, a solid line —— is
used. In case of the Full Block S-Procedure, the line styles -=- and -e- refer to
diagonal and full block multipliers, respectively. Missing points indicate that the
corresponding SDP could not be solved.

3.5.7 Conclusions

The most important observation is that the LFR based and the gridding based
analysis yields comparable results. On the contrary, the polytopic approach is —
independent of any model overbounding during the modeling — very conservative
for the considered examples.

Since the LFR based analysis provides a guaranteed upper bound, it is convenient
to use this approach provided that an LFR model exists. Referring to the different
multipliers, the theoretical superiority of full block multipliers over diagonal ones is
proved at few examples. However, while the reduced conservatism is small, severe
numerical problems are introduced and the computation lasts 5 to 50 times longer.
Consequently, diagonal multipliers are the first choice and full block ones can be
considered as a fall-back alternative.

In case that no LFR model is given or the LFR order is very high, the gridding
approach is a reasonable option. As already mentioned, this approach yields
comparable results. Due to the two step analysis, the SDP can be solved on a
sparse grid while the validity is ensured on a dense grid. The results are hence
supposed to be reliable.

The last important result is that a parameter dependent Lyapunov matrix
function allows to distinctly reduce the conservatism of the analysis results. Note
that this observation holds for both the gridding approach and the LFR based
relaxation.



4 Analysis of Uncertain LPV Systems
using 1QCs

While parameter dependence and many “soft” nonlinearities can be described
using LPV models, “hard” nonlinearities such as saturations and dead zones
cannot be reasonably covered. These nonlinearities can be involved by integral
quadratic constraints (IQCs). To that end, the system is represented by a feedback
interconnection of an LPV model P, and a nonlinear or an uncertain block A
(see Figure 4.1). The input/output behavior of A is then described by constraints
which can be incorporated in the robust performance analysis. In the present thesis,
the focus lies on constraints for the saturation nonlinearity which are later used
for the worst case analysis of a saturated gust load alleviation system.

Figure 4.1: Feedback interconnection of an LPV model with a nonlinear block.

The chapter starts with an introduction to IQCs in Section 4.1. IQCs are defined
and a list of important IQCs is provided. In Section 4.2 it is shown how uncertain
LPV models can be described and analyzed using IQCs. LMI constraints which
bounds the worst case energy-to-energy gain and the worst case energy-to-peak
gain are given. It is further shown how the conservatism can be reduced by means
of a local analysis. Finally, in Section 4.3, an aeroelastic system in combination
with a saturated gust load alleviation controller is considered as an examples in
order to examine the influence of different IQCs and saturation limits.

4.1 Integral Quadratic Constraints

4.1.1 Definition and Properties

This section describes constraints for a causal operator A which can be incorporated
in the input/output analysis. The constraints are called IQCs and are taken from
Megretski and Rantzer (1997). They can be expressed in the frequency domain as
well as in the time domain. First, the definition in the frequency domain is given.

55
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Figure 4.2: Graphical interpretation of an IQC.

Definition 4.1 (Megretski and Rantzer, 1997): Let IT: jR — H("**"w) be a
measurable Hermitian-valued function. A bounded, causal operator A: L57 — L%
satisfies an IQC defined by the multiplier IT if the following inequality holds for
allv e L3, w= A(v), and T > 0:

* oGw) ]y [96w)
[ ['Lf)(yu)} II(j )[ﬁ:(Jw)] dw > 0. (4.1)

o0
In (4.1), © and W are Fourier transforms of v and w, respectively.

The multiplier IT can be factorized as
I (jw) = ¥ (jw)” M¥(jw) (4.2)

which allows to connect the frequency domain formulation to a time domain
formulation (see Megretski and Rantzer, 1997; Megretski, 2010; Seiler, 2015). This
leads to a definition of an IQC in the time domain.

Definition 4.2 (Pfifer and Seiler, 2014b): Let M € $™* and ¥: L5 T™ — L1*
be a stable linear system. A bounded, causal operator A: L3? — L3¥ satisfies an
IQC defined by (¥, M) if the following inequality holds for all v € L3V, w = A(v),
and T > 0:

T
/ 2(t)"Mz(t)dt >0, (4.3)
0
where z is the output of the linear system ¥
Ty = Agxy + Byi1v + Bygow , Tw (0) =0 (44&)
z=Cgxy + Dg1v + Dgow . (4.4b)

The notation A € IQC(¥, M) is used if A satisfies the IQC defined by (¥, M).

Figure 4.2 provides a graphical interpretation of a time domain IQC. The input
and output signals of A are filtered through . If A € IQC(¥, M), then the
output signal z satisfies the (time domain) constraint in Equation (4.3) for any
finite-horizon T > 0.

The following example, taken from Pfifer and Seiler (2014a), shows how a norm
bounded uncertainty can be described by an 1QC.
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Example 4.1: Consider a causal (possibly nonlinear) SISO operator A with an
induced L2 norm bound [|All,, . <b,ie,

lwllz, <blvll,, VwveL:andw=A(v) (4.5)

or equivalently

/oo w(t)’dt < b° /Oo v(t)?dt. (4.6)

Next, it is shown that the former inequality holds in fact also for all finite time
horizons. To that end, consider the truncated signal

a(t) = {U(t) ift<T

. (4.7)
0 otherwise

and the corresponding output w = A(?). It is easy to see that the inequality

/Tuv(t)?dt < /oo w(t)*dt < 62/00 o(t)%dt = b° /Tﬁ(t)th (4.8)

is true. Because A is causal, w(t) = w(¢) if ¢ < T and hence

T T
/ w(t)?dt < b2/ v(t)?dt  for all T > 0. (4.9)
0 0

Finally, rewriting (4.9) leads to

g v(t) T o v(t)
/0 {w(t):| {0 —1} [w((t)] dt =0 (4.10)

which is an IQC defined by % = I, and M = [t 9 ].

It should be noted that there exists a technical detail for time domain IQCs
which is discussed in the following remark.

Remark 4.1: A distinction between hard/complete and soft/conditional IQCs
can be found in the literature (see e.g., Megretski and Rantzer, 1997; Seiler, 2015).
Definition 4.2 represents a hard IQC because the integral constraint (4.3) has to
hold for all finite time intervals T° > 0. On the contrary, for a soft IQC, it must
hold only for the infinite time interval

/oo 2(t)"Mz(t)dt > 0. (4.11)

Further, the factorization of a frequency domain IQC into a time domain IQC
is not unique and there might exist a hard and a soft factorization for the same
IQC. Numerical procedures for the hard factorization and conditions to check
their existence can be found in Seiler (2015). However, this detail is not further
considered in this thesis and there exists a hard factorization for all used frequency
domain IQCs.
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Figure 4.3: Saturation nonlinearity.

4.1.2 1QCs for Saturation

The advantage of the IQC framework is that many properties of nonlinearities
can be described by them. In order to arrive at low conservatism, an as accurate
as possible description must be found for the considered nonlinearity. This can
be achieved by combining several IQCs. To that end, Megretski and Rantzer
(1997) present a lot of IQCs, which can be combined to described a wide class of
uncertainties/nonlinearities.

Here, a selection of IQCs for the saturation nonlinearity w = sat(v) defined by

v if v <o

w = sat(v) = { (4.12)

sgn(v) - o  otherwise,

is given. In (4.12), o denotes the saturation limit. The saturation nonlinearity is
depicted in Figure 4.3. Three properties of saturation can be described by classical
IQCs from Megretski and Rantzer (1997).

Memoryless sector bounded nonlinearity: Figure 4.4 shows that the saturation
lies in the sector defined by two lines with slope o = 0 and 8 = 1, denoted
as sector [0, 1]. More general, a memoryless nonlinearity ¢: R — R lies in a
sector [a, O] if

(w(t) — aw(t)) (Bo(t) —w(t)) = 0 (4.13)

holds for all v(¢) € R and w(t) = ¢(v(t)). This can be equivalently expressed
as

>0. (4.14)

|:v(t)}T [2&,8 a+ﬂ} [v(t)
w(t) a+8 =2 w(t)

Since (4.14) has to hold pointwise in time, it also holds when integrated
over time

T To)]" —2af a+ 8| |v(t)
/0 [w((t))] [a-l—,@ -2 ] {w((t):| d¢=0 (4.15)
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Figure 4.4: Sector constraint () for the saturation nonlinearity (—).

for any T" > 0. Note that the converse is not true. Hence, the saturation
function satisfies the IQC defined by

_ _|—2aB a+p

¥=I, and M = |:oz+ﬁ _9 :| , (4.16)
with o = 0 and 8 = 1. Note that the sector IQC holds also for time varying,
memoryless nonlinearities w(t) = ¢(v(t),t).

Popov IQC: In order to capture the time invariance of saturation, the Popov
IQC can be used. Consider a memoryless and time invariant nonlinearity
w(t) = ¢(v(t)), where ¢: R — R is a continuous function with v(0) = 0,
and w and v are square integrable. Then, the integral constraint

/ o(t)w(t)dt = 0 (4.17)

0

holds. Equation (4.17) corresponds to the frequency domain IQC defined by
—jw 0

T (jw) —i[ 0 j“’] . (4.18)

However, since IT is not bounded on the imaginary axis, it is not a proper
IQC. As a remedy, the loop transformation from Figure 4.5 can be used.
The operator A satisfies the IQC defined by

_ 0 i

H(jw)y=+| 5, "Hv|. (4.19)
1+jw 0

In order to revert the low-pass filter, the non-proper filter s + 1 must be

added to the interconnection (see Figure 4.5). This requires that the plant

is strictly proper. The combination of the Popov IQC and of the sector

constraint IQC yields the classical Popov criterion (Megretski and Rantzer,
1997).

Zames-Falb IQC: Finally, saturation is described by a monotonic, slope restricted,
and odd function which is the last property satisfying a classical 1QC.
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! !
1 1

Dols+ 14l L ) A 3
1

Figure 4.5: Popov IQC: loop transformation to yield a proper IQC.

Consider w(t) = ¢(v(t)) where ¢: R — R is a monotonic and odd function
and its slope is bounded by g—f € [0, k] for a constant k > 0. Then, v and w
satisfy the IQC

o 0 1+ H(jw)
II(jw) = 1+ H(Gw) —(2+ H(w)+ H(w))/k

(4.20)

where H(s) is an arbitrary rational transfer function whose impulse response
has an £; norm not larger than one. Details can be found in Zames and
Falb (1968).

4.2 Analysis of Uncertain LPV Systems

In the following section, uncertain LPV models are introduced. The uncertainty is
described by IQCs. This allows to specify a dissipation inequality which bounds
the induced Lo — L2 or the Lo — Lo norm.

4.2.1 Uncertain LPV System

Pfifer and Seiler (2014a) propose to describe uncertain LPV system by the feedback
interconnection of an LPV system P, with a nonlinear and/or an uncertain
operator A (see Figure 4.6a). This corresponds to an upper LFT which is denoted as
Fu(Pp, A). In order to derive a tractable solution for computing system norms, the
exact relation w = A(v) is replaced by an IQC (¥, M) such that A € IQC(¥, M).
The resulting analysis interconnection is depicted in Figure 4.6b and its dynamics
is ruled by

z= A(p)x+ Bi(p)w+ Ba(p)d, z(0) = xo (4.21a)
z=Ci(p)x + Dii(p)w + D12(p)d (4.21Db)
e = Cs(p)x + D2 (p)w + D22(p)d (4.21¢)
w = A(v). (4.21d)
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a) Uncertain LPV system b) Representation with IQCs

Figure 4.6: Uncertain LPV model with IQCs.

Note that « includes the states of P, and ¥. In the later analysis, the uncertainty
A is removed and w is treated as an external signal s.t.

/T 2(t)"Mz(t)dt >0 VT >0. (4.22)

The interconnection in Figure 4.6b can also be used to validate an IQC. The
interconnection is excited with a finite test signal d. If A € IQC(¥, M), (4.22)
must hold (Megretski and Rantzer, 1997).

It is finally assumed that the interconnection F,(P,, A) is well-posed. In prin-
ciple, this means that the mapping from d to e is causal. A precise definition is
given below.

Definition 4.3 (Seiler, 2015): The feedback interconnection of P, and A is
well-posed if for each d € L2 there exists a unique e € Lo such that the mapping
from d to e is causal.

4.2.2 Worst Case Energy-to-Energy Gain
The induced L2 — L2 norm of uncertain LPV systems is defined similar to the
nominal case.

Definition 4.4 (Pfifer and Seiler, 2014a): The induced £ — L2 norm for the
uncertain LPV system F,, (P,, A) is defined as

llell -
1 Fu(Ppy Al zys ey = sup sup y 2, (4.23)
A€IQC(¥,M) pcA ” ”gz
deL2\{0}

The following Bounded Real Lemma for LPV systems with IQCs is found in
Pfifer and Seiler (2014a) and Pfifer and Seiler (2014b). It states a dissipation
inequality which bounds the worst case energy-to-energy gain.
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Theorem 4.1: The induced L2 norm from d to e of an uncertain LPV system
| Fu(Poy Az, z, is smaller than a performance index v if the interconnection
is well posed for all A € IQC(W, M) and if there exists a continuous differentiable
Lyapunov matriz X : P — $™* and a scalar A > 0 s.t. for all (p,q) € P x P

X(p) >0, (4.24a)
A(p)" X (p) + X(p)A(p) + 0X(p,q) X(p)Bi(p) X(p)Ba(p)

Bi(p)" X (p) 0 0
B:(p)" X (p) 0 -1
Ci(p)*
+A |Du(p)’ | M [Cl (p) Dui(p) DIQ(p)]
Di2(p)*
Ca(p)*
+% | Dai(p)" | [Ca(p) Dai(p) Doa(p)] <0. (4.24b)
Dx(p)*
Proof: A proof can be found in Pfifer and Seiler (2014b, Theorem 2). |

It should be noted that exponential stability of the feedback interconnection
Fu(Pp, A) can hardly be checked. Instead, Megretski and Rantzer (1997) and Seiler
(2015) propose to check the induced £2 norm of the perturbed interconnection

z = A(p)x + B(p)w, z(0) = xo (4.25a)
v =C(p)x + D(p)w + d1 (4.25b)
w = Av +dz (4.25¢)

which is depicted in Figure 4.7. If the induced L2 norm from d = [d] d3]" to
e=[vT wT]" is finite, then the uncertain LPV system F,(P,, A) is said to be
input/output stable.

Figure 4.7: Perturbed uncertain LPV system for stability analysis.

4.2.3 Worst Case Energy-to-Peak Gain

As already mentioned, the worst case energy-to-peak gain is the more interesting
norm for gust loads analysis. For an uncertain LPV system, this norm is defined
as follows:
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Definition 4.5: The induced L2 — Lo norm of an uncertain LPV system
Fu(Py, A) is defined as

lell
1 Fu(Ppy Al oy = sup sup y = (4.26)
A€IQC(¥,M) pEA H Hz;z
deL2\{0}

The following theorem is an adaption of Theorem 4.1 and provides an LMI
constraint for the induced L2 — Lo norm with 1QCs.

Theorem 4.2: The induced Lo — Loo norm from d to e of an uncertain LPV
system || Fu(Pp, A)lz, .. with D21(p) = 0 and Da22(p) = 0 is smaller than a
performance index v if the interconnection is well posed for all A € IQC(¥, M) and
if there exists a continuous differentiable Lyapunov matriz function X : P — $"=
and a scalar X > 0 s.t. for all (p,q) € P x P

X(p) >0, (4.27a)
A(p)"X (p) + X(p)A(p) + 0X (p,q) X(p)Bi(p) X(p)B:(p)
Bi(p)" X (p) 0 0
Bs(p)" X (p) 0 -1
(

Ci(p)*
+A DII(P)T M[Cl(P) D11 (p) Dlz(p)] <0, (4.27b)
(»)*

[X(p) C:p)"| ¢ (4.27¢)

C:(p) 71

Proof: The proof is similar to the proof of Theorem 3.3. From well-posedness
follows that the signals x, e, w, v, and z due to an excitation d € L2 are well-
defined. Since the LMIs (4.27) hold for all admissible parameter trajectories, p and
p can be substituted for p and g, respectively. This allows the definition of the
storage function V: R"® x P — Ry

V(z,p) =z X(p)x. (4.28)

A small perturbation € > 0 is added to (4.27b) to yield a non-strict LMI. Next, left

and right multiplication by [T w?T d"] and its transpose, respectively, lead to

the dissipation inequality
Ay (z,p) <(1—e)yd"d—22"Mz. (4.29)

Using x(0) = 0, integration w.r.t. ¢ yields

V(z(T), p(T)) < (1 —€)y /T d(T)"d(T)dt — /T AzTMzdt. (4.30)
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Because of the IQC constraint (4.3) and A > 0, the summand A fOT 2TMzdt >0
and hence

V@U%Mﬂ)ﬁﬂfdv/ d(T) d(T)dt. (4.31)

Next, expanding (4.27c), using a Schur complement (see Lemma A.4), and left
and right multiplication by T and x, respectively, results in

%eTe = %mTC(p)TC(p)m <z"X(p)x =V(xp). (4.32)

The evaluation of (4.32) at ¢ = T and the combination with (4.31) gives

1 T r T
Se(M)Te(T) < (1=en /0 d(T)"d(T)dt . (4.33)

Taking the supremum w.r.t. T results finally in

lell.. <~lldl, , (4.34)
which completes the proof. |

For simplicity, the preceding theorem is given in terms of a single IQC (¥, M).
It can easily be modified to handle multiples IQCs. Consider the case of multiple
uncertainties, which are satisfied each by several IQCs. This leads to a list of IQCs
defined by (¥;, M;) with i = 1,...,niqc. Every ¥; is connected to the input and
output of the corresponding uncertainty which yields the outputs

z; = Cr;x + Di1sw + Diaid. (435)

In (4.35), C1s, D11; and D12; denote the output and feed-through matrices of the
corresponding ¥;. The states of P, and of all ¥; are included in « and the output
of every uncertainty is contained in w. In order to use Theorem 4.2 for computing
the induced L2 — Lo norm of the resulting system, the second summand of the
constraint (4.27b) is modified to

Qe Cui(p)”*

Z Xi | D11i(p)" | M; [Cui(p) Duu(p) Diai(p)] (4.36)
i=1 Di2i(p)”*

The positive scalars A; are additional unknowns in the SDP.

Note finally that the same step as for the nominal LPV analysis are applied
in order to yield a numerical tractable SDP. Basis functions for the Lyapunov
matrix function are assigned and the parameter space is gridded or the Full Block
S-Procedure is used for an LFT based analysis. See Section 3.4 for details.
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4.2.4 Analysis of Saturated Systems using Local IQCs

In Section 4.1.2, standard constraints from the literature (Megretski and Rantzer,
1997; Zames and Falb, 1968) for the saturation function are given. While all these
IQCs guarantee global robust performance of a system under saturation, all of
them are independent of the saturation limit. Hence, they are expected to be
very conservative for many practical applications. It is well understood in the
literature that performance results which only hold locally can greatly improve
the analysis of saturated systems by incorporating the actual saturation limit (see
Hindi and Boyd, 1998; Hu, Lin, and Chen, 2002; Hu and Lin, 2002). If the global
performance requirement is relaxed to only consider local performance, a modified,
less conservative version of the sector bound IQC can be used.

The approach pursued in this thesis is based on the notion of local IQCs
(Summers and Packard, 2010). There, a general framework for the local analysis
of systems under perturbations described by IQCs is given. The specific nature
of the perturbation, namely the saturation function, is exploited to obtain local
conditions. The conditions are similar to the IQCs for saturations given in Fang,
Lin, and Rotea (2008).

The global sector constraint for the saturation function is defined by the sector
[0, 1]. It is easily seen that the sector bound holds independent of the size of the
input v (see Figure 4.8). If an Lo norm bound on the saturation input v is known,
i.e. |u] < R, then a refined sector constraint can be given. Instead of checking over
the whole sector [0, 1], it is sufficient to only consider the smaller sector [o/R, 1]
(cf. Figure 4.8). Recall that o is the saturation limit.

In order to validate the assumed L~ bound R on v, the interconnection in Fig-
ure 4.9 is considered where the performance output is replaced by the (possibly vec-
tor valued) nonlinearity input v. Assume that the disturbance energy is constrained
by [|d[|;, < 1.Next the induced L2 — Lo norm « from d to the nonlinearity input v
is computed using Theorem 4.2. If v < R, then [|v|| . < R. Hence, the condition for
applying the local IQC is satisfied. While this appears to be a circle conclusion, the
following theorem proves the validity of this statement. The theorem is adapted from
Summers and Packard (2010) which considers local IQCs w.r.t. L2 bounds for v.

R
/é \ LU

Figure 4.8: Local sector constraint IQC for saturation: Because of |v| < R, only
the solid drawn part of the saturation (——) can be reached but not the dashed
one (- --). This allows to decrease the sector from to =
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Figure 4.9: Analysis interconnection for validating a local IQC: The performance
output e is replaced by the nonlinearity input v.

Theorem 4.3: Consider the interconnection in Figure 4.9. Assume that the inter-
connection is well posed, that A satisfies the IQC(¥, M) locally for ||v||, < R,
and that ||d| ., < 1. If Theorem 4.3 is satisfied with v < R, then |[v|, < R.
Further, the conditions for applying the local IQC are satisfied.

Proof: From Theorem 4.3 and ||d||,, < 1, it follows that |[v|[,_ <. In order to
prove that v < R validates the local IQC, the LMIs from (4.27) are transformed to

o(T) (T) < +* /T d(t)"d(t)dt — v\ /T z(t)T Mz (t)dt (4.37)

(cf. the proof of Theorem 4.3 for details and replace e by v).
Next, the function

N(T) = sup v(t)Tv(t) (4.38)
0<t<T
is defined. Note that N(T') represents the Lo norm of v truncated at the time
T. Because the states  are continuous functions of the time and v = Cex, N(T)
must also be continuous. By definition, N(T) is further a non-decreasing function.
From the zero initial condition follows further that N(0) = 0.

Assume by contradiction that there exists a T' such that N(T) > R. Because
N(T) is a continuous, non-decreasing function with N(0) = 0, this implies the
existence of a 7' < T s.t. N(T') = R and N(T) < R for all T < T'. Hence, on the
interval [0, T} the IQC(¥, M) is locally satisfied. Consequently, in Equation (4.37),

fy)\f ()TMz(t)dt > 0 for all 0 < T < T and hence
T
o(T) o(T) < +* / dt)Td(t)dt. (4.39)
0
Taking the supremum of (4.39) w.r.t. 0 < T < T yields

T
R =N <7 [ at) a2l <7 (4.40)
0

Hence, R < v which contradicts v < R and proves the theorem. |
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For simplicity, the preceding theorem considers only a single nonlinearity and a
single IQC. It can easily be modified to deal with multiple global and local IQCs
(cf. Summers and Packard, 2010). It is further possible, to use local IQCs w.r.t.
both £, and L bounds on v.

In order to reduce the conservatism of the analysis, a possibly small bound
on v should be determined. In case of using the sector IQC for the saturation
nonlinearity, this can be achieved by the iterative procedure in Algorithm 4.1.

Algorithm 4.1:

1: compute the nominal induced L2 — Lo norm ~o from d to v

2: repeat
3 use R; = 1.1-7;_1 to define the local sector IQC for sector [max(c/R;, 1),1]
4: compute the robust induced Lo — Lo norm ~; from d to v
5
6

:until v; < R;
: compute the induced L2 — Lo norm of the performance channel

In order to find an initial guess for the Lo bound on v, the nominal induced
L2 — Lo norm v from d to v is computed (Step 1). Because the nominal analysis
probably underestimates the true bound, a back-off factor of 1.1 is used to get a
bound R; and to define a sector IQC for the local analysis (Step 3). In Step 4, this
local and other global IQCs are then use to compute the robust induced L2 — Lo
norm 7; from d to v by using Theorem 4.2. In combination with [|d||,, <1, this
allows to apply Theorem 4.3. If this step fails, Steps 3 and 4 are repeated until
i < R;. In Step 6, an upper bound for the worst case energy-to-peak gain of the
performance channel is computed. Note that in the last step the more common
worst case energy gain can be alternatively considered using Theorem 4.1.

In an early version of Algorithm 4.1 (see Knoblach, Pfifer, and Seiler, 2015), a
global analysis is performed to validate the local IQC constraint. The benefit of
this new approach is that the iteration can be directly started with a local IQC.
The advantage is that this allows to analyze systems which are only locally — but
not globally — stable. Additionally, the convergence behavior is improved.

4.3 Analysis of an Aeroelastic System

In order to evaluate the proposed approach and to investigate the effects of different
IQCs, the worst case energy-to-peak gain of a simple aeroservoelastic system is
computed. An aeroelastic system in combination with a gust load alleviation system
is considered.

4.3.1 Aeroservoelastic System

A similar system as for the benchmark in Section 3.5 is used. The difference is that
a flap is added which can be used to actively reduce the gust loads. The example



68 4 Analysis of Uncertain LPV Systems using IQCs

system is illustrated in Figure 4.10. The equations of motion are

bt e 1 s

where h denotes the vertical deflection and « the pitch angle. The lift L and the
pitching moment 7 are given by

=t [ente) | @uatol] | 5| (1.4

The Theodorsen function Qeig(s) models the relation between the aerodynamic
forces and the heave, the pitching and the flap movement, denoted h, «, and
B, respectively. The Sears function Qgust(s) maps the vertical gust velocity vgust
on L and 7. Both transfer functions are non-rational in the Laplace domain. In
order to yield a state space realization, R.T. Jones’ rational approximation is used.
The functions depend on the free stream velocity Us, the half chord length b,
the location of the aerodynamic reference axis xa., and the hinge position xyp.
Qeiz and Qgust are explicitly given in Bisplinghoff, Ashley, and Halfman (1955).
Here, the velocity Us is considered as scheduling parameter. Ten equidistantly
spaced grid points in the interval Us € [0.3,0.9] are used. The rate bounds are
U € [-0.1,0.1]. The other parameters are compiled in Table 4.1.

The closed loop configuration in Figure 4.11 is considered. The weighting filter W
defined by

dw = saw + 15d (4.43a)
Vgust = TW (443b)

is used to shape suitable gusts with unit energy. The performance outputs are the
spring forces

o €h o kh -h
)= i
The first order low pass filter Gact

Tact = Tact + U (445&)
V= Tact (4.45Db)

serves as an actuator model. Since the flap deflection § is assumed to be limited,
saturation

B =w = sat(v) (4.46)

is added.
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Figure 4.10: Aeroservoelastic system.
Table 4.1: Model parameters.
Sym. Explanation Value
kn translational stiffness 0.04
ko rotational stiffness 0.25
m mass 1.00
1 inertia 0.25
Teg location of the center of gravity 0.20
p air density 0.80
b half chord length 1.00
Tar location of the aerodynamic reference axis —0.20
Thp location of the hinge axis 0.80
d ’Ugust €h
w
u v w \ e
Gact - % .
K

Figure 4.11: Closed loop of the aeroservoelastic system.
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Figure 4.12: Bode diagram of the aeroservoelastic system: The - lines represent
the open loop and —— ones the nominal closed loop. The color indicates the free

stream velocity.

A simple gust load alleviation system which is based on a gain scheduled (by
Us) proportional controller K

(4.47)

u=([42 —27.3 149.2] + U [0.19 —49.4 138.6]) {”gﬂ
is used to close the loop. The controller is tuned using systune (Apkarian and Noll,
2006). The tuning goal is to minimize the variance of the performance output.

Since the parameter dependence of the resulting state space model is highly
involved, the open loop state space matrices are compiled in Appendix B.2. A
Bode diagram of the open and the nominal closed loop (i.e., without saturation) is
depicted in Figure 4.12 for different parameter values.

4.3.2 Comparison of 1QCs

The effect of different IQCs is investigated using the LTI model corresponding to the
highest free stream velocity. The globally valid sector [0, 1] is considered separately,
in combination with the Popov IQC and in combination with three different
parameterizations of the Zames-Falb IQC. The Zames-Falb IQC is parameterized
by a first order low pass filter

_r
Ls*,l’

Tzr

H(s) = (4.48)
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Table 4.2: Results for several IQC combinations.

s S/p S/ZF S/ZF S/ZF S/P/ZF
TZF 0.01 0.1 1 all
Norm 0.185 0.184 0.183 0.175 0.181 0.175
Impr. 0% 0% 1% 5% 2% 5%

where the three values for the time constant Tzr € {0.01,0.1,1} are used. Finally,
the combination of the sector IQC, the Popov IQC, and all three Zames-Falb IQCs
is considered. The results are compiled in Table 4.2. The best result is achieved
using the sector IQC and the Zames-Falb IQC with Tzr = 0.1. The results cannot
be improved by adding the Popov IQC or combining several Zames-Falb 1QCs. For
that reason, the sector and the Zames-Falb IQCs with Tzr = 0.1 are used below.

4.3.3 Convergence of Local 1QCs
The convergence behavior of Algorithm 4.1 is investigated using two examples.

Example 1

The LPV model from Section 4.3.1 is used and the six saturation limits o €
{0,3,...15} are considered. The Lyapunov matrix is parameterized by a quadratic
function. The results are depicted in Figure 4.13a, where the induced L2 — Lo
norm is plotted as a function of the iteration. In the left subplot, the norm from
the disturbance to saturation input can be seen and, in the right one, the norm of
the performance channel.

First of all, the initial guesses for the sector constraint using the nominal analysis
result are already close to the converged result. This leads to a fast convergence
after the second iteration. The upper bound for the worst case energy-to-peak gain
from the gust to the saturation input can be reduced by only 2 %. However, the
proposed algorithm allows to reduce the upper bound for the performance channel
by up to 69 % (depending on the saturation limit).

In order to estimate the conservatism induced by the description of saturation
with IQCs, the robust analysis results are compared to standard LPV analysis
results for the open and the nominal closed loop. A saturation limit of zero
corresponds to the open loop. Using Algorithm 4.1 for a zero saturation limit leads
to conservative results, as it can be seen in Figure 4.13a. The reason for this is
that a zero saturation limit leads always to the sector [0, 1].

On the contrary, a very high saturation limit corresponds to the nominal closed
loop. Specifically, an Lo, norm of the saturation input less than the saturation
limit results in a never saturated system. Consequently, the sector converges to
[1,1] which represents the smallest possible sector. In the considered example, the
upper bound for the robust norm for a saturation limit of o = 15 becomes even
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Disturbance — saturation input Disturbance — performance output

12.5 T T T \ 0.6 r T T T 3
= ’ - EEEEEEEEEEE . N
: r 1
2 124 N 0.5¢
K%g ——o—o—0o—9
T 12.3 o o *
o
Q S s e 2
12.9 \ \ \ 0.2 gmmmfrmrpng oy
1 2 3 4 5 1 2 3 4 5
Iteration Iteration
[ n n n ‘ ‘
15 12 9 6 3 0
Saturation limit
a) Example 1
Disturbance — saturation input  Disturbance — performance output
r T T T 1 0.52 - T T 1 1
£ 1.55 r | ' L
3
S 0.5 >
; .
Q
/l\
g
Saiaieh diaiuiin niiaiuih aluieie | 0.44 SN AN AN AN
1 2 3 4 5 | 2 3 4 5
Tteration Iteration
[ n n ‘ ‘
1.6 1.2 0.8 0.4 0

Saturation limit
b) Example 2: modified controller

Figure 4.13: Convergence of local IQCs: The induced L2 — L gain is depicted
as function of the iteration number (—e—) for several saturation limits indicated
by the color. The results are compared to the open (===) and the nominal closed
( ) loop results. In case of the closed loop, a third order test function for the
Lyapunov matrix ( ) is additionally considered.
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smaller than the result for the nominal closed loop. The reason for this unexpected
result is that the nominal LPV analysis is already conservative. In case of the
robust analysis, the additional state of the Zames-Falb IQC introduces additional
decision variables which reduce the conservatism. However, using a third order test
function for the Lyapunov matrix function yields consistent results.

Example 2

In the first examples, the Lo norm bound for the saturation input varies only
slightly (see Figure 4.13a). This means that the variable R;41 in Algorithm 4.1
(Step 4) is almost constant and consequently the algorithm converges extremely
fast. In order to examine the convergence behavior of Algorithm 4.1 if this is not
the case, a second example is considered. To that end, the feedforward path of the
gust load alleviation system is removed, i.e., the modified controller K is

u= ([0 —27.3 1492] + U~ [0 —494 1386]) [“%“} : (4.49)

Further, the saturation limits o € {0,0.4,...1.6} are used. All other parameters
are identical to the preceding examples. The results are depicted in Figure 4.13b
in the same fashion.

It is easy to see that the L., norm bound for the saturation input norm bound
varies larger. Here, this bound can be reduced by approximatively 15 % (compared
to 2% in the first example). However, the convergence of the algorithm is still
excellent. The convergence behavior of Algorithm 4.1 appears hence to be very
good.

4.3.4 Influence of the Parameter Rate Bounds

In a last example, the influence of the parameter rate bounds is analyzed. To
that end, Algorithm 4.1 is used to compute an upper bound of the induced
L2 — Lo norm for the saturation limits o € {0,3,...,15} and for the rate
bounds Us € [—0.17,0.1v] with v € {0.0,0.2,...,1.0}. The results are illustrated
in Figure 4.14.

Regarding the saturation limits, the results from the preceding subsection
hold for all parameter rate bounds. For high saturation limits, the norm bounds
converge to the nominal LPV analysis results. As expected, reducing the parameter
rate bounds leads to a smaller upper bound. If the rate bound approaches zero,
the robust analysis converges to the maximum LTI norm w.r.t. all ten nominal
closed loop models. The latter norm is known not to be conservative and provides
consequently a lower bound for the worst case performance.

4.3.5 Conclusions

The analysis of saturated LPV systems using IQCs is discussed in this section. In
order to reduce the conservatism of the analysis results, an iterative procedure to
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refine local IQCs is proposed. This method is intensively studied at the example of
a two-dimensional thin airfoil in combination with a gust load alleviation system.
Summarizing, it can be said that the results are conservative if a low saturation
limit is considered and the system is most of the time saturated. On the contrary,
for relatively high saturation limits, Algorithm 4.1 converges to the nominal case
and is hence only slightly conservative. However, this approach allows to compute
guaranteed upper bounds for the outputs of saturated LPV systems.



5 LTI Performance Analysis for Gust
Loads Computation

While robust control theory methods have been accepted as powerful tools for
flutter analysis (see e.g., Lind and Brenner, 1999; Borglund, 2003; Borglund, 2004;
Borglund, 2005), they have never been used for loads analysis. However, the
similarities between the discrete gust problem and the energy-to-peak gain are
obvious. In both cases, a set of models is considered and there is the question:
what are the maximum output peaks? The aim of this chapter is consequently to
investigate if and how the energy-to-peak gain can be used for the discrete gust
problem. It is shown how this method can be used to determine guaranteed upper
bounds for the peak loads and how to efficiently identify critical flight points.
The chapter is organized as follows: A weighting filter is introduced and designed
in Section 5.1. Next, Lo norm bounds for the peak loads are computed using the
worst case energy-to-peak gain in Section 5.2. The analysis results are compared
to the simulation results from Section 2.2. Additionally, worst case excitations for
specific cases are computed and the inclusion of the trim loads is demonstrated. The
determination of lower bounds for the peak loads is treated in Section 5.3. Finally,
the results are evaluated and discussed in Section 5.4. Note that the present chapter
extends results from Knoblach (2013b) and Knoblach (2013a) where a simpler model
with only two — instead of more than several hundreds — outputs is considered.

5.1 Weighting Filter

By definition, the worst case energy-to-peak gain represents an Lo, norm bound for
the output caused by an arbitrary excitation with a maximum energy of ||d|| ., < 1.
Such an excitation is obviously not the same as a “one-minus-cosine” gust. In
order to remedy this problem, a weighting filter is introduced (see Figure 5.1).
Assume that this pre-filter is able to create a “one-minus-cosine” gust of arbitrary

d weighting cW ; ; i loads
—> —
filter =

Figure 5.1: Interconnection of the aircraft model and the weighting filter.

75
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length with a maximum energy of [|d|| ., < 1. Then, the induced L2 — Lo norm
of the weighted system represents an upper bound for the gust peak loads. Note
that the weighting filter must be stable and strictly proper in order to fulfill the
requirements for a finite induced £2 — Lo norm (see Remark 3.1).

5.1.1 Design of the Weighting Filter

Recall the definition of the “one-minus-cosine” gust excitation

Uref : Fg ( H )1/6 ( ( UOOt)) i
Dref Ty (M 1—cos (7220)) i 0 < Ust < 2H
cw(t)={ 2U. \107Tm “C\"H HH= Vel =

0 otherwise.
(5.1)

(cf. Section 2.2, Equations (2.28) and (2.29)). Because this excitation depends on
the flight speed U as well as on the design gust speed defined by User and Fy,
a reasonable weighting filter must depend on the same parameters. In order to
remove these dependences for the filter design, all quantities are normalized. This
is indicated by overlining the variable, e.g., t.

Here, the time and accordingly the Laplace variable' are normalized by

t=1t-Ux/lm and §=s1m/Ux. (5.2)

Assume that the filter W maps the disturbance d with ||d||z, = 1 to the normalized
“one-minus-cosine” gust of arbitrary length

(D) = #@FQ Cgw(f- 1m/Use). (5.3)

In order to revoke the normalization of the signals, t = ¢ - Uss /1 m is substituted
and the signals are appropriately scaled. Because the normalization changes the
L5 norm of a signal, the disturbance is multiplied with 1/v/Us to keep ||d||;, = 1.
For achieving the correct amplitude of the “one-minus-cosine” gust, ;w must be
multiplied with the factor Uyes - Uo_o1 - Fy. The denormalized weighting filter can
thus be achieved by applying both factors:

W(s) = Uset - US? - Fy - W(s-1m/Us). (5.4)

The denormalization of all quantities is summarized in Table 5.1.
In order to ensure a unique state space representation of the weighting filter
at all flight points, its denormalization is analogously expressed in its state space

1Note that the normalized Laplace variable is related to the reduced Laplace variable of the
DLM which depends on the reference chord length (see Section 2.1, Equation (2.14)). In
order to avoid a dependence on aircraft specific parameters, a reference chord length of
Cref = 2m is used for the weighting filter.
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Table 5.1: Denormalization of the disturbance, the gust, and
the weighting filter.

Disturbance:  d(t) = Ux'? - d(t - Uss/1m)
Gust: ()= Uret - UZ' - Fy - qiw(t - Uso /1 m)
Filter: W(8)=Uset - U™? - Fy- W(s-1m/Us)

representation. Let W (5) = Cw (I5 — Aw ) 'Cw, then W (s) can be realized using
the matrices Aw = Us ~Zw, Bw = Ux ~§W7 and Cw = Uyer - Uo_og/2 - Fy - Cw.
Recall that Dy must be zero to meet Remark 3.1.

The remaining problem is to find a weighting filter W which is able to create
all normalized “one-minus-cosine” gusts cw with maximal unit energy. Obviously,
this filter is not unique and hence there is the question which is the best one. Here
it is decided to define the best filter as the one which requires a similar amount of
energy to create “one-minus-cosine” gusts of all possible lengths. In order to solve
the resulting optimization problem, the required energy for creating a sp/eigiﬁc gust
must be computed. This requires the inversion of a test weighting filter . Recall
that the weighting filter must be strictly proper which complicates the inversions
in the time domain. Consequently, the inversion is performed in the frequency
domain, which leads to

d(5) = W)™ qw(s). (5.5)
Using Parseval’s Theorem (Zhou and Doyle, 1998), the energy of d is

— oo 2
Il ., = % ’W(J'&J)‘1 o (j@)| dw. (5.6)

Note that ||d||z, is a function of the gust length H. In order to find an optimal
filter as defined above, the ratio between the maximum required energy and the
minimum required energy is minimized. The optimization problem is thus

| maxy HJHQ
min ———2 . (5.7)
w ming HdHLQ

Using the optimal solution Wopt, the desired weighting filter is
W = max ||d||£2 Wopt » (5.8)

which ensures that all discrete gusts can be indeed created with unit energy.



78 5 LTI Performance Analysis for Gust Loads Computation

THHW T 1 THHW T T T 111

20 4

= 10 4

3

0 - al

i i i i _10 AR || IR,
20 40 60 80 100 1073 1072 107* 10°

H/m w
a) Required energy b) Bode diagram

Figure 5.2: Optimization results for the weighting filter: In the left plot, the
required energy to create a “one-minus-cosine” gust is plotted as a function of the
gust length. The first order system is drawn by —— and the second order system
by ——. The corresponding Bode diagrams are depicted in the right plot.

The test filter is parametrized with

n—1 —q
— " b

b Sk
izlazw

where a; and b; are the decision variables. This parameterization ensures a strictly
proper result. As it can be seen in Equation (5.6), the phase of the filter does not
affect the result. Consequently, any unstable pole or zero can be mirrored into the
left half plane. The optimization is performed using MOPS (see Joos et al., 2002).
Because no good initial values could be found intuitively, a genetic algorithm is
used in a first step. The final optimization is pursued using a gradient free pattern
search algorithm.

Results for a first and a second order filter are depicted in Figure 5.2. As it can
be seen in Figure 5.2a, the required energy for a 40 m gust using the first order
filter is less than 0.80. On the contrary, the minimum required energy using the
second order system is already 0.98. This can be only slightly improved with a
higher order system. The corresponding Bode diagrams are depicted in Figure 5.2b.

(5.9)

5.1.2 Evaluation of the Weighting Filter

Since the weighting filter crucially affects the conservatism of the analysis, the
chosen filter is evaluated carefully. To that end, the energy-to-peak gains for
specific outputs are computed using different weighting filters. The considered
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flight points are (Ma = 0.26,h = 0km) and (Ma = 0.86,h = 10.74km). The
considered interesting quantities are the VTP root torsional moment (.PyTRtor)
and the torsional bending moment close to the HTP tip (.PurTtor). Additionally,
the following general important interesting quantities are considered: the VTP root
bending moment (.PyTrben), the vertical rigid body acceleration (,ii,), and finally
the wing root bending moment (.PwRben)-

In order to investigate the conservatism induced by the weighting filter, the
second order weighting filter from the preceding section (referred to as original one)
is compared with a brute force optimized filter. The optimization of this filter aims
directly at minimizing the energy-to-peak gain for the considered transfer paths,
which allows to detect conservatism due to a badly chosen weighting filter. The
filter’s FRF is directly parameterized, i.e., ,tge decision variables are the discrete
frequencies @; and the corresponding gains Wo(w;).2 Here, 25 sampling points are
used and frequency points in between are obtained by interpolation. Beside the
different decision variables and the different criterion, the optimization is performed
analogously to the preceding section. Since the problem is well conditioned and
reasonable initial values are known from the original weighting filter, the pattern
search algorithm is used directly. Because this filter is only optimal for the considered
aircraft and outputs, it is only used as a reference for the chosen weighting filter
but not for an analysis of the complete aircraft.

The resulting energy-to-peak gains are depicted in Figure 5.3. The results indicate
that the original weighting filter is indeed conservative for som interesting quantities.
An analysis of the corresponding Bode diagrams (see Figure 5.4) indicates the
need for an additional roll-off for frequencies i > 1. Consequently, the original
weighting filter is modified by multiplying a second order Butterworth filter with
a cut-off frequency of @w = 1.7. Note that this requires to increase the gain of the
filter slightly in order to be still able to create all gusts with unit energy. The
results are additionally depicted in Figures 5.3 and 5.4 where a good agreement

2Recall that the phase has no effect on the results and is thus neglected.
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Figure 5.5: Disturbance and weighting filter output: The disturbances d are
chosen such that the filter outputs match the normalized “one-minus-cosine” gusts.

with the brute force optimized filter can be seen. Consequently, the modified filter
is proved valid and is used through the remaining part of this thesis.

In order to validate the design steps, the required disturbances and the cor-
responding filter outputs are finally depicted in Figure 5.5. For the purpose of
validation, the L2 norms of the disturbances are computed in the time domain.
The results are identical to their frequency domain counterparts. The weighting
filter outputs match perfectly the normalized “one-minus-cosine” gusts. Because
of the non-proper weighting filter, the inverse filter cannot be directly realized.
As a remedy, a third order low pass filter is applied to the weighting filter. The
additional poles at @ = —10° are far beyond the excitation’s frequency range, so
that they do not affect the results.

5.2 Determination of Worst Case Gust Loads

The worst case energy-to-peak gain is used in this section for the analysis of gust
loads. First, implementational aspects are discussed. Next, the wing loads are
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analyzed and worst case excitations for selected interesting quantities and flight
points are presented. Afterwards, the inclusion of trim loads is presented. Finally,
the analysis results for the HTP and VTP are briefly discussed.

5.2.1 Implementational Aspects

Both gust directions are separately analyzed by connecting the considered gust
input with the weighting filter of Section 5.1. For the vertical gust, the considered
model outputs are the wing and HTP shear, torsional, and bending loads. Because
the lateral gust input is omitted, the resulting model has 726 states. The number
of considered outputs is 162. In cases of the lateral gust, the model outputs are
the VTP shear, torsional and bending loads. The resulting model has 728 states
and 51 outputs.

In order to determine the induced L2 — Lo norm for every output, Theorem 3.4
is used. To that end, the controllability Gramian W, is computed only once using
the gram command of the Matlab’s Control System Toolbox (see Control System
Toolbox: User’s Guide 2013). Afterwards, every row of the output matrix Cje is
used individually:

1Pacseillzy e, = V/CraW.CE. (5.10)

The advantage of this approach is that the numerically expensive computation of
the controllability Gramian has to be performed only once. The bounds for every
interesting quantity can be subsequently computed by “cheap” matrix multiplica-
tions.

5.2.2 Analysis of the Wing Loads

Since the weighting filter is able to create an arbitrary “one-minus-cosine” gust with
unit energy, the induced L2 — L norm of the weighted model provides an Lo
norm bound for the gust peak loads. In a first step, this norm bound is compared
to the peak loads from discrete gust simulations. The peaks and the norm bounds
are depicted w.r.t. the flight point® and the wing span in Figure 5.6. Obviously,
the absolute values of the peaks and the norm are not the same. Nevertheless, the
shape of the plots in both columns looks very similar.

In order to verify the similarity between both shapes, the ratio of the norm
bound to the peaks is depicted in Figure 5.7. The division by the peaks from the
simulations implies that a ratio of one is the optimal result and any larger value is
a direct measure of the conservatism. Additionally, some statistical key values of
the norm to peak ratio are compiled in Table 5.2.

3The flight points are firstly sorted according to the Mach number and secondly w.r.t. the
altitude.
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Figure 5.6: Peak and norm for the wing loads: The shear, torsional, and bending
load peaks from discrete gust simulations are depicted w.r.t. the flight point (cf.
Footnote 3, Page 81) and wing span y in the left column of the figure. In the same
fashion, the Lo norm bound is illustrated in the right column. A similar shape
between the peak and the norm can be recognized.
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Figure 5.7: Norm to peak ratio for the wing loads: In the left column, the ratio of
the Lo norm bounds to the peak loads is depicted w.r.t. flight point (cf. Footnote 3,
Page 81) and the wing span. In the right column, the worst ratio of every flight
point is plotted regarding to flight speed and altitude.
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Table 5.2: Statistical evaluation of the norm to peak ratio
for the wing loads: The mean, minimum, maximum value
and the standard deviation of the norm to peak ratio for
the shear, torsional and bending loads are compiled. For
the torsional moment, interesting quantities for the outer
part of the wing (y > 6.9m) are separately considered.

Shear Torsional Torsional®* Bending

mean  1.38 1.59 1.57 1.35
min 1.26 1.21 1.39 1.19
max 1.62 2.45 1.83 1.49
std 0.07 0.16 0.09 0.06

* Interesting quantities of the outer part of the wing.

First the bending moment is considered. A trivial — but nevertheless important —
result is that the ratio is always greater than one. Consequently, the norm provides
indeed an upper bound for the discrete gust peak loads. A mean ratio of 1.35 (cf.
Table 5.2) means an average conservatism of 35 % which is a lot in terms of loads
analysis. However, since the ratio varies only slightly between 1.19 and 1.49, the
conservatism is relatively constant. Further, no striking dependence on the flight
point can be recognized in Figure 5.7 (lower right subplot). This result has to
be put into the context that the bending peak loads vary between 2.2 x 10* N m
and 6.3 x 10° N m, which is a variation of more than two decades. Consequently,
the energy-to-peak gain provides here a guaranteed — but not overly conservative
— upper bound for the maximum peak loads, which can be used as an excellent
indicator for critical flight points.

Next, the shear force is regarded where similar results are obtained. Here, the
mean ratio is slightly greater but the standard deviation is comparable. However,
the ratio at the inner part of the wing (y < 6.9m) is noticeable greater than at
the outer wing (see the upper left subplot of Figure 5.7). The reason is discussed
in the next subsection.

Finally, the torsional loads are considered. Here, distinct differences between
the inner part (y < 6.9m) and the outer part of the wing can be recognized (cf.
Figure 5.7, middle left subplot). The results of the outer part are comparable
to the ones for the shear force and the bending moment. On the contrary, the
conservatism for the inner wing is severely larger. Here, the worst ratio is 2.44 and
the variation w.r.t. the flight point is obviously larger (cf. Figure 5.7, middle right
subplot). The reason for this result is discussed in the next subsection.

Nevertheless, the critical flight points obtained by the norm correspond for all
three quantities with the actual critical flight conditions. This means that the
actual maximum peak loads and the maximum norm occur at the same flight point.
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Figure 5.8: Worst case excitation for the wing root bending moment: The worst
case gust in terms of the energy-to-peak gains (—) is depicted together with
the “one-minus-cosine” gusts in the left subplot. The resulting wing root bending
moments are illustrated in the right subplot using the same colors. The induced
L2 — Loo norm (===) is actually reached. The maximum peak of the “one-minus-
cosine” gust simulations is indicated by . The worst case gust is shifted w.r.t.
the time s.t. the maximum peaks occur simultaneously.

How this can be used in the further gust loads analysis process is explained in the
following Section 5.3.

5.2.3 Worst Case Gusts for the Wing Loads

In order to further evaluate the results, worst case excitations for two selected
scenarios are computed.

First, the wing root bending moment for the flight point 45 (Ma = 0.86,
h = 9.075km) is considered. A worst case disturbance d with [|d|[,, = 1 is
computed using Corollary 3.5. The output of the weighting filter due to this
excitation represents the worst case gust in terms of the energy-to-peak gain. This
worst case gust and the corresponding wing root bending moment are depicted
in Figure 5.8 together with results from “one-minus-cosine” gusts simulations. It
can be seen that the worst case gust reaches indeed the predicted Lo norm. An
interesting fact is that the worst case gust shape is similar to the excitation during
wake vortex encounters (see Kier, 2011; Kier, 2013). This means that the identified
worst case gusts can occur indeed and are thus relevant.

In a second example, the results for the torsional moment at the inner part
of the wing are considered. To that end, the worst ratio is considered, which is
specified by flight point 3 (Ma = 0.32, h = 3.368km) and y = 5.24 m. A worst case
gust is computed in the same way as in the preceding paragraph. The worst case
gust and the corresponding torsional moment are illustrated in Figure 5.9. The
oscillating nature of the gust is obvious. This leads to the suspicion that for the
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Figure 5.9: Worst case excitation for the wing torsional moment: The worst
case gust (—) is depicted together with the “one-minus-cosine” gusts in the left
subplot. The corresponding wing torsional moments (for y = 5.24 m) are depicted
in the right subplot using the same colors. The induced L2 — Lo norm (=) is
actually reached. Additionally, the incremental loads from a continuous turbulence
analysis (===) are illustrated and compared to the peak loads from discrete gust
simulations (). The worst case gust is shifted w.r.t. the time s.t. the maximum
peaks occur simultaneously.

considered load case, the continuous turbulence loads are greater than the discrete
gust loads and that this also affects the performance analysis.

Consequently, a continuous turbulence analysis is performed and additionally
depicted in Figure 5.9. It can be seen that the continuous turbulence loads are
higher than the discrete gust loads. This confirms the suspicion. The higher norm
to peak ratio of the shear forces at the inner wing can be similarly explained.

A logical question is whether a continuous turbulence load case can easily be
distinguished from a “one-minus-cosine” gust case. To that end, the Bode diagram
of the considered case is depicted in Figure 5.10 where the weighting filter is already
applied. The distinct resonance at f = 3.9 Hz can clearly be recognized which
corresponds to the oscillation of the worst case gust. An obvious criterion for a
continuous turbulence load case might consequently be the existence of a distinct
resonance. However, this is not further examined in the remainder of this thesis
but might be worth to be considered in the further research process.

5.2.4 Inclusion of Trim Loads

As stated in Section 2.2, the trim loads have to be considered to yield the maximum
upper and minimum lower loads. Similar to the normal loads computation process,
this can be achieved by superimposing the Lo norm bound with the trim loads.



5.2 Determination of Worst Case Gust Loads 87

dvert — cPtor

120 T TTTTT TTTTTT T TTTI T 17
Figure 5.10: Bode diagram for the wing 100
torsional moment: The distinct resonance &
(=== is the reason for the overestimation g 80

using the energy-to-peak gain. Note that the
weighting filter is already applied. 60

1072 107t 10° 10t

1/Hz
True upper loads Estimated upper loads
©
=
<
a
2
:
D.‘U
True lower loads Estimated lower loads
g
Z 12f
= 8t
T 4F
=2 O0OF
& —4
) 10 5 200 10 5 200
% 0 100 % 0 100
Ve Ul @l Voo (019)

Figure 5.11: Superposition of gust and trim loads: The trim loads are superim-
posed with the peak from “one-minus-cosine” gust simulations (referred to as true
loads; left column) and the norm bounds (right column).
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This leads to the following bounds for the maximum and minimum loads:

cPupper < gljtrim + |‘Pd~>L,P

e N

and
c-ljlower 2 cPtrim - ||Pd—>CP

}52%00 . (5.12)
This is shown for the wing root bending moment in Figure 5.11. The superposition
of the trim loads and the norm bounds provides a good and guaranteed conservative
estimation of the true upper and lower limit loads. For simplicity, only the gust
increments are considered in the remainder of this thesis.

5.2.5 Analysis of the Tail Loads

The tail loads are analyzed in the present section. First, the HTP loads due to
vertical gusts are considered. Afterwards, the effect of lateral gusts on the VTP
are investigated. Since both results are comparable to the wing loads, the results
are not discussed in detail.

Analysis of the HTP Loads

The analysis is performed in the same way as for the wing loads. The results are
depicted in Figure 5.12 and statistical key values are compiled in Table 5.3a. The
results correspond well with the ones of the wing loads.

For the shear force and the bending moment, the minimum ratio between norm
and peak loads is comparable to the one of the wing loads. On the contrary, the
maximum ratio is clearly greater than in case of the wing. These high ratios
are caused by exceptions which represent 9.8 % (shear force) and 6.3 % (bending
moment) of all cases. At these samples, the continuous turbulence and the “one-
minus-cosine” gust loads are very close. However, the critical flight points are still
met, i.e., the actual loads peaks and the norm is maximal at the same flight points.

Table 5.3: Statistical evaluation of the norm to peak ratio for the HTP and VTP
loads: The mean, minimum, maximum value and the standard deviation of the
norm to peak ratio for the shear, torsional and bending loads are compiled.

a) HTP loads b) VTP loads
Shear Torsional Bending Shear Torsional Bending
mean  1.49 1.73 1.47 2.04 2.08 1.90
min 1.28 1.53 1.28 1.46 1.77 1.39
max 1.80 1.99 1.74 2.32 2.39 2.32

std 0.12 0.08 0.12 0.18 0.09 0.21
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Figure 5.12: Norm to peak ratio for the HTP loads: In the left column, the
ratio of the Lo norm bounds to the peak loads is depicted w.r.t. flight point (cf.
Footnote 3, Page 81) and the HTP span. In the right column, the worst ratio of
every flight point is plotted regarding to flight speed and altitude.
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Regarding the torsional loads, it must be said that the ratio is clearly greater
than for the other interesting quantities. The reason is that all cases are continuous
turbulence loads. Using these loads as a reference, the maximum ratio decreases
from 1.99 to 1.69.

Analysis of the VTP Loads

The analysis results are depicted in Figure 5.13 and statistical values are compiled
in Table 5.3b. The ratio between the “one-minus-cosine” gusts and the norm is
here in general greater than for the wing and the HTP loads. The reason is that
here for all flight points and for all interesting quantities the continuous turbulence
loads are greater than the discrete gust loads. Nonetheless, the critical flight points
are correctly identified.

5.3 Determination of Lower Bounds for Maximum
Peak Loads

In the preceding section, it is shown how the worst case energy-to-peak gain can be
used to determine an upper bound for discrete gust peak loads. The conservatism
of the analysis results was evaluated using simulation results of the complete
flight envelope. These simulation results must be expensively determined and are
consequently in general not available. In order to estimate the conservatism anyway,
lower bounds for the maximum peak loads are instead computed. Here, few critical
flight points are identified using the energy-to-peak gain. Afterwards, discrete gust
simulations for these few points are carried out and the results are used as lower
bounds.

The critical flight points are determined by creating a ranking. To that end, the
flight points are sorted for every interesting quantity w.r.t. the Lo, norm bound in
descending order. In order to merge the results of all interesting quantities, score
points are assigned: for every first rank three points are used, for every second
rank two points, and for every third rank one point. The rationale behind this is to
weight first ranks stronger than second ranks. Nevertheless, it must be mentioned
that this a pure heuristic criterion but it works well in practice.

The ranking results are compiled in Table 5.4. The wing and the HTP loads
due to vertical gusts are considered together, while the VTP loads from lateral
gusts are treated independently. The top three critical points are considered for the
simulations. Hence, the flight points 11, 45, and 17 ((Ma, h) € {(0.50,0.000 km);
(0.86,9.075km); (0.55,1.684km)}) are considered for the lateral gust. In case
of the vertical gust, the regarded flight points are 45, 40, and 46 ((Ma,h) €
{(0.86,9.075 km); (0.80,7.926 km); (0.86,10.740km)}).

The two times three flight points are simulated using each twenty gust lengths
as described in Section 2.2. The resulting peak loads are used as lower bounds.
The results are depicted in Figure 5.14. It can be seen that the lower bounds are
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Figure 5.13: Norm to peak ratio for the VTP loads: In the left column, the
ratio of the Lo, norm bounds to the peak loads is depicted w.r.t. flight point (cf.
Footnote 3, Page 81) and the VTP span. In the right column, the worst ratio of
every flight point is plotted regarding to flight speed and altitude.
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Table 5.4: Ranking of the flight points: The most critical flight points (FP) are
compiled. The number of first (#1°*), second (#2°¢), and third ranks (#3™®) and
the resulting score points are given. The top three critical points are each considered
for the simulations.

a) Lateral gust b) Vertical gust

FP #15t 274 43vd Ppnpg, FP #15t #27d 43v4 png,
1 11 39 2 2 123 45 141 9 8 449
2 45 11 9 20 71 40 9 81 34 223
3 17 0 31 9 71 46 11 60 10 163
4 40 1 9 2 23 35 1 6 74 89
5 23 0 0 10 10 47 0 5 32 42
6 35 0 0 8 8 29 0 1 2 4

very close to the true peak loads. For the wing loads, the lower bounds are actually
identical to the peak loads. In case of the HTP and VTP, the underestimation is
7% and 3% respectively. Consequently, the purely heuristic criterion fulfills its
purpose and there is no need for a more sophisticated criterion.

Finally, the resulting peak loads from a continuous turbulence analysis are
additionally depicted in Figure 5.14. For the VTP, it can bee seen that the
continuous turbulence loads are almost as great as the maximum energy-to-peak
gain. This allows to conclude that for VTP, “one-minus-cosine” gusts are not the
critical excitation. Hence, despite of the high conservatism of the energy-to-peak
gain, the norm represents also here valuable information.

5.4 Evaluation and Conclusions

The energy-to-peak gain combined with the weighting filter provides a guaranteed
upper bound for the “one-minus-cosine” gust peak loads. It must be clearly noted
that the £ norm bound is conservative as it can be inferred from the ratio of
the norm to the peak loads from simulations. This ratio varies between 1.19 and
2.45. However, in all cases with large conservatism, the continuous turbulence loads
are greater than the discrete gust loads. If the maximum of the discrete gust and
the continuous turbulence loads is used as reference, the worst ratio is decreased
to 1.67.

However, next to the meaning of the absolute value of the ratio, it can be
recognized that the ratio varies only slightly w.r.t. the envelope. Note that the
maximum peak of one interesting quantity can be more than four times greater
than its minimum peak. Next, the peaks of all interesting quantities reach over
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Figure 5.14: Lower and upper load bounds: The true peak loads from discrete
gust simulations at all flight points are . The lower bounds (obtained by
the simulation of three selected flight points) are = = =. Since the true loads and
lower bounds are very close, the two lines coincide which appears as ===. The
upper bounds (obtained by the energy-to-peak gain) are ===. Additionally, the
incremental loads from continuous turbulence (—) are depicted.

more than two decades. Compared to this, a variation between 1.19 and 1.67
is relatively small. Consequently, large values of the norm bound correspond to
maximum peaks of discrete gust simulations. The L norm bound can hence be
used to obtain critical flight points. Standard “one-minus-cosine” gust simulations
are next carried out to determine a lower bound for the maximum peak loads. In
most cases, the obtained lower bound is identical to the actual peak loads.

The computational effort is compared in Table 5.5. While the simulations for all
flight points and both gust directions last 135.9 min, the norm for all outputs at all
flight points can be computed within 7.8 min. The simulations of the discrete gusts
for the critical flight points last 8.0 min. Thus, the lower and the upper bound for
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Table 5.5: Required computation times for
all discrete gust simulations, the determination
of the lower and upper bounds, and for the
computation of the continuous turbulence loads.

Norm Sim. Total
(in minutes)

Discrete gust 135.9
Lower/upper bnd. 7.8 8.0 158
Cont. turbulence 13.8

the peak loads can be obtained in 15.8 min, which is more than eight times faster
than conventional discrete gust simulations.

Since the continuous turbulence loads correspond in principle to the H2 norm,
they can be efficiently computed in a similar fashion in 13.8 min. Taking the
maximum of the continuous turbulence loads and of the lower bound for the
discrete gust loads results consequently in a very close estimation of the overall
peak loads.

In summary, the norm provides a guaranteed upper bound for “one-minus-
cosine” gust loads which serves as an excellent indicator for critical flight points. In
combination with its efficient computation, the energy-to-peak gain can be used to
efficiently determine critical flight points. The simulation of selected critical flight
points results in a lower bound for the maximum peak loads.



6 Robust Analysis and Control of
Gust Loads Models

In the preceding chapter, it is shown that the worst case energy-to-peak gain
can be used for the efficient analysis of LTI gust loads models. However, the
application of the robust performance analysis framework offers a wide range of
new possibilities. One example (presented in Section 6.1) is the analysis of an
LPV model, which is valid in the entire flight. Its number of states is numerically
reduced and the influence of the parameter rates is examined. In Section 6.2,
the influence of an uncertain damping ratio, one of the most uncertain model
parameters, is treated. Another possible application for the worst case energy-
to-peak gain is the multidisciplinary design optimization. The benefits of the
proposed approach are demonstrated in Section 6.3. It is shown how a gust
load alleviation system can be efficiently tuned. Finally, the worst case effects
of saturation and sensor uncertainties on the resulting controller are studied in
Section 6.4.

6.1 LPV Analysis regarding the Flight Envelope

This section provides a similar analysis as in Chapter 5 but instead of analyzing an
LTT model for a discrete flight point, an LPV analysis for the complete envelope is
performed. This allows to include the transition from one flight point to another
and to examine the effects of the parameter rates. As explained in Section 3.4, there
are several methods to deal with the resulting infinite dimensional LMIs. Since the
model is readily given at discrete flight points (see Section 2.1), the gridding based
approach is most convenient here. On the contrary, an LFR based analysis would
require an approximation of the parameter dependence by rational functions. In
the considered example, the model input is the vertical gust downwash wyert and
the outputs are the wing root torsional and the bending moment, denoted .P;or
and .Pyen. However, because the model order of 1036 states is too high for an LPV
analysis, an order reduction is performed before.

The presented analysis extends the results from Knoblach (2013b) and Knoblach
(2013a). While in these papers LPV analyses of gust loads models w.r.t. one
parameter are described, a two-dimensional parameter space representing the
complete flight envelope is considered here.

95
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6.1.1 LPV Model Order Reduction

The model from Section 2.1 has originally 1036 states. The number of these states
is initially reduced by physical considerations: First, the number of the inputs and
outputs is reduced: as input, only the vertical gust is considered and as outputs
the wing root torsional and the bending loads. Second, because of the symmetric
excitation, only the symmetrical modes need be considered. Both steps lead also
to a reduction of the lag state number in the aerodynamic model. After all, this
results in a model with 241 states.

LPV models of this size can in principle be analyzed by the methods from
Chapter 3. Since these approaches scale badly with the number of states, the
resulting SDP has many LMI constraints and decision variables. Solving this SDP
can be very time consuming or, due to numerical problems, even impossible. As
a remedy, the LPV model is additionally reduced by numerical means. To that
end, two fundamentally different methods can be found in the literature. The first
method is a generalization of the balance and truncation algorithm for LTI systems
(see Wood, Goddard, and Glover, 1996). The advantage of this approach is its
theoretical foundation. The drawback is that similar LMIs as for the performance
analysis have to be solved. Consequently, the corresponding SDP has the same
problem size as the analysis so that this approach is not considered here. The idea
of the other method is to perform an LTI model reduction at every grid point.
Because the reduced models have different states at different grid points, LPV
methods cannot be applied. Consequently, the states are transformed in a second
step to approximatively maintain their consistency. Several approaches for doing
this can be found in the literature, e.g., Poussot-Vassal and Roos (2012), Adegas
et al. (2013) and Theis et al. (2015). In the considered example, a combination of
the ideas from Poussot-Vassal and Roos (2012) and from Theis et al. (2015) shows
best results. The first step consists of the Krylov based multi model order reduction
(Poussot-Vassal and Roos, 2012). In a second step, the reduced LTI models are
transformed into a consistent mode-wise canonical representation (Theis et al.,
2015). Both steps are briefly explained below.

Multi Model Krylov Order Reduction

First, the LTT case is considered. Let P(s) = C(sI — A)"'B and P(s) = C(sI —
A)ABe denote the transfer functions of the original model and the reduced model,
respectively. The order of P is denoted n, and the order of P is ny < ng. The
idea of the Krylov order reduction is to find a P(s) such that

N

P(oy) = P(oy) (6.1)

for all so-called interpolation points o5 € C with kK = 1,...n,. All interpolation
points are collected in the vector o. For simplicity, it is assumed that n, = nz.! If

11t should be noted that, in general, the first N derivatives of P(s) and f’(s) can also be
considered, i.e., d' P(s)/ds!|,, = d'P(s)/ds!|,, forallk=1,...,n, and [ =0,..., N. This
leads to additional states in the reduced model.
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the interpolation points o are given, two projection matrices V, W € C"**"¢ are
computed s.t. (6.1) is satisfied by the reduced state matrices

A=WTAV, B=WTB, and C=CV. (6.2)

The computation of V' and W is not treated here but efficient algorithms are
described in the literature (see e.g., Gugercin, 2005).

The remaining problem is the selection of suitable interpolation points which
crucially affects the approximation quality. In order to find sensible interpolation
points, an Hy optimality condition is considered. This condition states that the
model error in terms of the H2 norm is minimal if and only if o, = —\x for all
k=1,...,ns where )\ is the k' eigenvalue of A (see Gugercin, 2005, Theorem 2).
This leads to a simple iterative procedure — called iterative SVD-Krylov based
model reduction method — to determine an H2 optimal approximation given in the
following algorithm.

Algorithm 6.1 (Gugercin, 2005; Poussot-Vassal and Roos, 2012):
1: Make an initial selection for the interpolation points o
2: repeat
3 Compute the projection matrices V and W using o
4: Compute the eigenvalues of the reduced system: A = eig(WTAV)
5
6
7

Use o0 = — A as new interpolation points
: until o is converged
: Compute the reduced system

From an initial guess for the interpolation points, a reduced system matrix is
computed (Steps 1 and 3). The eigenvalues of the reduced system matrix are then
used as new interpolation points (Steps 4 and 5). This procedure is repeated until
o is converged and the reduced system is computed as defined by Equation (6.2).

The previous algorithm is now extended to grid based LPV models, i.e., the LPV
system is represented by np LTI models P;. In principle, Algorithm 6.1 can be
applied to the LTI model at every grid point. The problem of this approach is that
state space bases of the reduced models at different grid points are inconsistent,
i.e., the reduced state space matrices are no smooth functions w.r.t. the scheduling
parameters. Consequently, it is impossible to interpolate between different grid
points or to perform an LPV analysis. As a remedy, Poussot-Vassal and Roos (2012)
propose to use the same (or similar) interpolation points at all grid points in order
to yield similar projection matrices and hence similar states. The determination of
this consistent interpolation points is described in Poussot-Vassal and Roos (2012,
Algorithm 3). The complete multi model order reduction algorithm is explained in
Poussot-Vassal and Roos (2012, Algorithm 2).

Transformation into a Mode-wise Canonical Representation
The considered model is reduced from 241 to 20 states as explained above. An
inspection of the pole migration of the reduced model shows that its eigenvalues
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are indeed smooth functions w.r.t. the parameter space. It is worth to mention that
the poles obtained by an LTI balance and truncation order reduction are much
more scattered. However, despite of using consistent interpolation points, the state
space bases at different grid points are inconsistent in the considered example, i.e.,
an interpolation of the state space matrices or the application of LPV methods is
impossible.

In order to recover state consistency, Theis et al. (2015) propose to transform
the reduced model into a mode-wise canonical representation. This means that
the state matrix is a block diagonal matrix whose blocks A; each represent one
mode:

i for real eigenvalues

A= 0 1 (6.3)
_ |/\.‘2 2. Re(\:) for complex conjugate eigenvalues.

In (6.3), A\; represents one real eigenvalue or a complex conjugate pole pair of
the state matrix. For the oscillatory modes, the resulting states represent each a
modal velocity and a modal position. The resulting state space representation is
unique apart from a permutation of the blocks. Because this makes an interpolation
between two grid points or an LPV performance analysis impossible, the blocks are
finally sorted. To this end, a mode tracking using a matching function is applied.
See Theis et al. (2015) for details.

It must be clearly noted that despite of the second transformation, the states
at different grid points are not the same. However, the corresponding states at
varying grid points describe a similar dynamic property. Because the individual
modes depend continuously on the parameters, the resulting state space matrices
are smooth functions, which allows an interpolation and the application of LPV
methods.

Results for the Model Order Reduction

Before the considered model is reduced, the input and outputs are suitably scaled
as follows. First, the weighting filter from Section 5.1 is added. This implies that
the relevant frequency range is weighted greater and that the expected disturbance
energy is one. In a second step, both outputs are individually normalized by the
mean LTI energy-to-peak gain w.r.t. the flight envelope. For numerical reasons,
the models are balanced using Matlab’s ssbal command.

A Bode diagram of the normalized and the reduced model is depicted in Figure 6.1
for five flight points. For most flight points, an appropriate agreement up to the
relevant frequency range of 10 Hz can be seen. A root locus plot of the reduced
model is depicted in Figure 6.2. In order to represent the two-dimensional parameter
space, a reference trajectory is chosen. It can be recognized that the poles migrate
smoothly w.r.t. this trajectory.
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Figure 6.1: Bode diagram of the normalized and the reduced model: The normal-
ized model is depicted by the dotted lines (- ) and the reduced by solid ones
(—). The different colors correspond to five points of the flight envelope.
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Figure 6.2: Root locus plot of the reduced model: The color corresponds to a
representative trajectory through the two-dimensional parameter space.

6.1.2 LPV Analysis — Results and Conclusions

An LPV performance analysis of the reduced model — in terms of the worst case
energy-to-peak gain — is performed using Algorithm 3.1. It must be noted that
every output is considered individually, i.e., for every output, an SDP has to be
solved. To reduce the numerical sensitivity of the SDPs, every output is scaled
with its maximum LTT norm.

The scheduling parameter p consists of the flight speed Us, and the altitude
h: p = [Ux h]T. For numerical reasons, both parameters are scaled to the
interval [—1, 1]. Although the variation of these parameters is in general very slowly,
their effect is examined using extremely overestimated rate bounds. In case of
the flight speed, a rate bound of 1.5 times the gravitational acceleration is used:
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|Uoo|1.5g = 14.8 m/s?. For the altitude h, the maximum flight speed is considered,
i.e., |h| <265.56m/s. For the Lyapunov matrix function, a second order polynomial
is used as basis function:

Xo(p) = Xo + Uso X11 + hX12 + Uz Xo1 + h* X2 + UschXas . (6.4)

The analysis results are illustrated in Figure 6.3 where the ratio of the LPV
norm to the average LTI norm for both outputs is depicted. The ratio is 1.08 and
1.06 for the torsional and bending moment, respectively. This means that the LPV
results are close to the LTI ones.

In order to validate the grid based analysis results, a set of 2500 randomly
distributed points inside the flight envelope is created. The corresponding state
space matrices are obtained by interpolation. Algorithm 3.2 is then applied to the
new grid points. The results of this validation step are additionally depicted in
Figure 6.3. They are consistent with the initial analysis. Consequently, there is
hardly any risk of missing a critical flight point.

The benefit of the LPV analysis is that by only one analysis an upper bound of
the gust loads can be computed for the complete parameter space. Additionally,
this analysis includes the transition from one flight point to another. Hence, the
risk of missing a critical flight point or transition effects can be almost excluded.
However, despite of an enormous overbounding of the parameter rate bounds, the
LPYV results are very close the maximum LTI norm. Consequently, the transition
effects are — at least in the considered example — very small. This implies that
the common practice to analyze LTI gust loads models at multiple grid points is
valid. Since the LPV analysis requires further an order reduction and is numerical
sensitive, the numerically robust and cheap LTI approach from Chapter 5 is the
more reasonable option in most practical cases.

However, the successful LPV analysis can also be understood as a validation
of the LPV order reduction. Inconsistent states or discontinuities in the state
space matrix functions would have probably caused large discrepancies between
the LTI and the LPV analysis. This means also that the LPV framework might
be an interesting option for the synthesis of self-scheduled gust load alleviation
controllers.



6.2 Influence of the Damping Ratio 101

6.2 Influence of the Damping Ratio

The damping ratio is one of the most uncertain parameters in aeroelastic models. In
order to determine reliable information how it affects the gust loads, the damping
ratio is considered as uncertainty in the present section and an LFR based robust
performance analysis is performed. The uncertain damping matrix is defined as

thunc = AB thnom (65)

and two cases, Ap € [1/2,2] and Ap € [1/4,4], are considered. The analysis is
pursued at the example of the wing torsional and bending moments for several
cuts along the wing span. The treated flight point is specified by Ma = 0.9 and
h = 1.24km.

In order to yield a reasonable problem size, the resulting LFR model is numer-
ically reduced by methods available in the Enhanced LFR Toolbox (see Hecker,
Varga, and Magni, 2005). To that end, every output is scaled by the nominal
energy-to-peak gain. The order of the reduced model P is chosen iteratively s.t.
the absolute model distance

sup HP(S7 Ag) — P(s, AB)H

s,Ap

(6.6)

2

is smaller than 0.2 %. The number of states of the reduced model varies between
41 and 53. The size of the uncertainty matrix is always 18. A comparison of the
Bode diagrams and simulation results of the original and the reduced model show
an excellent agreement.

Despite of the known conservatism, a constant Lyapunov matrix is chosen for the
LFR based analysis. The reason is that a parameter dependent one would increase
the overall LFR size from 18 to over 100. For relaxing the infinite dimensional
LMIs by the Full Block S-Procedure, diagonal multipliers are used.

The analysis results are illustrated in Figure 6.4, where the ratio of the robust
norm to the nominal norm is depicted w.r.t. several cuts along the wing span.
It can be seen that for most of the cuts, the ratio of the robust to the nominal
norm is smaller than 5% even for the greater uncertainty. Exceptions are some
cuts between the engine and the fuselage where the norm for the torsional moment
is increased by over 15 %. In order to estimate the conservatism induced by the
robust analysis, the maximum LTI norm w.r.t. five equidistantly spaced values of
Ap is additionally depicted. These results are a bit smaller but agree in general
well with the robust performance analysis results. The difference can be explained
by the fact that a constant Lyapunov matrix is used.

The analysis results show that the damping ratio affects only a few outputs. The
most concerned output is the torsional moment at the cut marked in Figure 6.4. This
cut is considered for a more detailed analysis. “One-minus-cosine” gust simulations
are performed for Ap € {1/4,1,4} using the unreduced model. The simulation
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Figure 6.4: Analysis results for an uncertain damping ratio: The ratio of the
robust to the nominal norm is depicted w.r.t. the wing span. Results for the smaller
uncertainty are plotted by —— and for the larger one by ——. Additionally, results
for the maximum LTI norm w.r.t. five equidistantly spaced values for Ap are
depicted in the same fashion. The line -<- corresponds to the smaller and -=- to
the greater uncertainty. The cut marked by — is considered for a detailed study.

results correspond well with the results from the robust performance analysis as it
can be seen in Figure 6.5. The actual torsional peak loads are indeed affected by
the damping ratio. A reduction of the damping ratio leads to an amplification of
the peak by 10 %. On the contrary, the bending moment is (as indicated by the
norm) hardly affected by different damping ratios. Note that the variation of the
simulation peaks w.r.t. the damping ratio corresponds well to the variation of the
LTT norms.

In order to emphasize the correlation between the simulation and the performance
analysis results, the amplification of the norms and of the simulation peaks due
to the uncertainty is depicted in Figure 6.6. It can be seen that for the torsional
moment, the robust and the maximum LTI norm are increased by a factor of 1.17
and 1.16. Similarly, the maximum peak from the simulations is increased by a
factor of 1.11. In case of the bending moment, on the contrary, all metrics are
changed only slightly by less than 4 %.

The preceding example demonstrates how a robust performance analysis can
be used to examine the effects of uncertainties. An increased robust norm for one
output indicates that the considered output is sensitive towards the uncertainty.
Performing an LTI analysis of the considered output with different values for the
uncertainties allows next to identify critical parameter combinations. If the worst
LTI norm is close to the guaranteed upper bound from the robust performance
analysis, the risk of missing a critical parameter combination can be almost
excluded. The identified critical parameter combinations can finally be analyzed
by simulations.
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Figure 6.5: Simulation results for three damping ratios: One quarter of the
nominal damping is used in the first row, the nominal damping in the middle row
and four times the nominal damping in the lower row. The torsional moment is
depicted in the left column and the bending moment in the right one. In order to
compare the different plots, the maximum peak for the minimum damping (—),
for the nominal damping (—), and for the maximum damping (—) is shown in
all plots.
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The obvious next step is to use independent uncertainties for the damping ratios
of all modes. Unfortunately, the corresponding results are extremely conservative.
It is supposed that the reason for this is the use of a constant Lyapunov matrix.
Experiments with parameter dependent Lyapunov matrix functions turn out to be
intractable. However, progress in SDP solvers or recent results on the approximation
of SDPs by linear programs (Ahmadi and Parrilo, 2014; Peni and Pfifer, 2015)
might solve this limitation in the near future.

6.3 Design of a Gust Load Alleviation System

Modern aircraft are often equipped with a gust load alleviation system in order to
reduce structural loads. The reasons are that this allows to decrease fatigue loads
and to improve passenger comfort. In case of small failure probabilities, it is even
possible to reduce the safety factor for the open loop loads. Hence, it is possible
to decrease the aircraft weight which results in a reduction of fuel consumption.
Clearly, such flight controller systems are safety critical. Consequently, the controller
must be carefully designed and analyzed. The benefit of the robust performance
analysis as a tool for doing this is demonstrated in the present and following section.
However, it is not the aim to find a gust load alleviation system featuring all of
its many demands but to demonstrate the usefulness of the proposed analysis
methods.

6.3.1 Scenario and Aircraft Model

The vertical gusts downwash swvert is considered as disturbance and the elevator
sUele as well as symmetrically deflected ailerons ,ua.i are used as control inputs.
The performance outputs e are the wing root torsional . Pwgrtor and bending
Pwrben moments, the vertical acceleration , and the pitch rate ,q. The vertical
acceleration and the pitch rate are used as measurement for the feedback path.
Additionally, a light detection and ranging (LiDAR) sensor measures the gust wind
field at the aircraft nose which is used for a disturbance feedforward control.
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The considered aircraft model has hence three inputs and four outputs. In order
to accelerate the controller tuning, the resulting model (229 states) is numerically
reduced. To that end, a frequency weighted balance and truncation reduction (see
Zhou, 1993) is applied which allows to weight the relevant frequency range stronger.
The gust input is weighted by (s 4+ 9.2)/(s + 1000) which is an adaption of the
first order weighting filter from Section 5.1: the filter is modified such that it is
invertible. For the control inputs, the weighting filter 5(s + 50)/(s + 1000) is used
which corresponds to the actuator dynamics. Every output is scaled with its (open
loop) worst case energy-to-peak gain of the weighted model. The order reduction
is performed using Matlab’s reduce function (see Robust Control Toolbox: User’s
Guide 2011). The original model and the reduced model with 27 states are depicted
in Figure 6.7. A reasonable agreement in the relevant frequency range up to 10 Hz
can be recognized.

6.3.2 Controller Structure and Tuning

The controller is tuned by minimizing the energy-to-peak gains of the closed
loop using the interconnection depicted in Figure 6.8. The weighting filter from
Section 5.1 is applied to the vertical gust input gwyert. Additionally, actuator and
sensor models are used. The control inputs are connected to the first order low
pass filter Gact

allele | | 5320
- 20 u, (67)
zUail 0 5120

which is used as an actuator model. As already mentioned, a LiDAR sensor is
used for a disturbance feedforward control. Because LiDAR sensors are notably
perturbed, noise dnoise is added as a second disturbance input. The gain N = 0.01
is used to affect the influence of the disturbance feedforward path. For the feedback
path, the measurements are the vertical acceleration and the pitching rate. Finally,
a sensor model Ggsen

10 0 0 0.1 GWvert
s+10 100 s+10 bq
y=1| 0 2% 0 0 4 (6.8)
0 0 100 0 b
5+100 dnoise

is added. Note that the slower time constant for the LiDAR sensor is motivated by
a weaker measurement quality.

A simple proportional controller is used. The six gains are tuned by multi
objective optimization. The objective is to minimize the ratio loop energy-to-peak
gains from the closed loop to the open for all performance outputs. This is shown
by

Ov o ||PCL,d~>ei|‘£2_>£oo
;=

(6.9)
[Pov,d—e;ll ysr.
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Figure 6.7: Bode Diagram of the original model () and the reduced model
(—). A reasonable agreement in the relevant frequency range up to 10 Hz can be
seen.



6.3 Design of a Gust Load Alleviation System 107

where i represents the four performance outputs respectively. This tuning goal is
hence a measure for the load reduction due to the gust load alleviation system.
The overall cost function V is defined as the sum of squares of all O;:

PwRtor PWRben

vV =0? +0’ +0%. + 0%, - (6.10)

In order to avoid too excessive control commands, constraints for the elevator and
aileron deflections are added:

Cv . ||PCL,d~>ui ch_}Cw
v 25°

<1.7. (6.11)

In (6.11), the 25° represents the maximum possible elevator and aileron deflection.
The allowed exceedance of the saturation limit by a factor of 1.7 is chosen due to
the conservatism of the norm base analysis and to allow for a high performance
controller.? The overall optimization problem reads as

m}%nV s.t. Clug, and C ., are satisfied. (6.12)

The rationale of this optimization setup is that this criterion can be computed much
more efficiently than the performing “one-minus-cosine” gust simulations. Further,
as demonstrated in Chapter 5, it serves as an excellent indicator for maximum
loads.

The optimization is performed with MOPS (see Joos et al., 2002) using a gradient
free pattern search algorithm. Because this leads to excellent results, no genetic
algorithm or gradient based optimization algorithms are applied in addition.

dnoise
—IN O
dvert Gwverl e
w ¢
u @
z L>|
Gact > Gsen

u | Yy

K
|

Figure 6.8: Analysis interconnection for the controller tuning.

2The effects of possible exceedances are discussed in the next section.
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Figure 6.9: Simulation results for the open (left column) and the closed loop
(right column): In order to compare the different plots, the maximum peak from
the open loop (—) and from the closed loop (—) are shown in all plots. A
distinct load reduction can be seen.
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6.3.3 Results and Conclusions

“One-minus-cosine” gust simulations of the open and the closed loop are compared
in Figure 6.9. It can clearly be seen that the peaks of all performance outputs are
distinctly decreased. The relative reduction of the energy-to-peak gain as well as
the reduction of the peaks from the simulations are illustrated in Figure 6.10. The
predicted improvement by the energy-to-peak gain agrees perfectly with the actual
load reduction. The differences vary between —5% and +6 %.

Further, the predicted exceedance of the control commands w.r.t. the saturation
limit agrees well with the simulation results and the overestimation corresponds
well with the results from Chapter 5. Hence, suitable demand values can be used
to specify the acceptable exceedance of the saturation limit. It is finally worth to
mention that comparable simulation results are obtained using the full model.

As already mentioned, this controller will probably not feature all demands
of a gust load alleviation system. In order to yield a system supporting all re-
quirements, a multi objective optimization scheme as e.g., developed in Saupe
(2013) can be set up. For example, the resulting controller may lead to increased
loads close to the ailerons or at the HTP. In order to avoid such effects, the
objective function can be extended to cover these quantities, too. The desired
load alleviation at single cuts can then be achieved by choosing suitable de-
mand values. Similarly, to improve the robustness of the controller, a multi model
approach and classical robustness criteria can be included in the optimization.
Further, the described procedure can also be used to tune more complex control
structures such as an Ho, or an LPV controller instead of a simple proportional
controller.

Such an optimization is beyond the scope of this thesis. However, since the
energy-to-peak gain can be much more effectively determined than peaks from
“one-minus-cosine” gust simulations, the optimization is distinctly accelerated. The
excellent results of the presented example demonstrate clearly the usefulness and
efficiency of this approach.
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6.4 Analysis of a Saturated Gust Load Alleviation
System

Gust load alleviation systems are commonly subject to saturation and uncertainties.
Since these systems are safety critical, the effects of such perturbations on stability
and performance must be carefully evaluated. How this can be done using the IQC
framework is demonstrated using the example of the above designed controller.

As already mentioned, the considered gust load alleviation system is subject
to saturation. Additionally, an uncertainty resulting from the LiDAR sensor is
considered. The resulting analysis interconnection is depicted in Figure 6.11. The
difference to the tuning interconnection (cf. Figure 6.8) is the added saturation
block and the uncertainty which replaces the noise input.

First, the case without the uncertainty of the LiDAR sensor is considered.
The simulation results are depicted in Figure 6.12. Although the aileron position
is saturated, the controller performance is only marginally decreased. However,
because this allows no general valid conclusions, a robust performance analysis
based on the IQC theory from Chapter 4 is performed. The saturation blocks for
both commands are described each by a Popov, a Sector and a Zames-Falb IQC.
The Zames-Falb IQC is parameterized by the first order low pass filter

1

H(s)= —. (6.13)

In order to reduce conservatism, the iterative local analysis as described in Algo-
rithm 4.1 is performed. Note that two sector constraints for the two saturation
blocks are considered during the iteration.

The robust performance analysis results are illustrated in Figure 6.13 and
compared to the simulation peaks. In contrast to the simulation results, the
saturation leads, especially in case of the two moments, to a notable degeneration

A
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Figure 6.11: Interconnection for the robustness analysis.
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Figure 6.12: Simulation results without (left column) and with saturation (right
column): In order to compare the different plots, the maximum peaks without
(—) and with saturation (—) are shown in all plots.
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Figure 6.13: Robust performance analysis results: The peaks from simulation
using the open loop model (0a) and the closed loop model without (lm) and with
(Bm) saturation are compared to different norm bounds. The norm bounds for the
nominal closed loop is depicted by [a. The robust norm without sensor uncertainty
is illustrated by llm and with sensor uncertainty by Oa. All results are normalized
by the open loop norm.

of the worst case energy-to-peak gain. However, except for the wing root bending
moment, all robust norms are smaller than the peaks from the open loop simulations.
Consequently, the robust performance analysis proves that these loads are declined
by the gust load alleviation system. Regarding to the wing root bending moment,
the value of the robust norm is 71 % of the nominal open loop. This indicates
that the designed gust load alleviation system will robustly decrease the wing root
bending loads, too.

In a second example, an uncertainty is added to the LiDAR sensor:

A=A+1 with ||A|}L2%2 <0.2. (6.14)

For the analysis, this uncertainty is described by the IQC from Example 4.1. The
results are additionally depicted in Figure 6.13 and are only slightly greater than
the results including only the saturation. Consequently, the controller is robust
against the inaccurate measurements of the LiDAR, sensor.

Summarizing, it can be said that the IQC based analysis proves robust stability
and performance of the controller against saturation and measurement uncertainty.
This validates the proposed design method from the preceding section.



7 Summary and Outlook

7.1 Summary

In this thesis, a new approach for the computation of worst case gust loads based
on the robust performance analysis framework is proposed. It is shown that the
worst case energy-to-peak gain can be used to compute a guaranteed upper bound
for loads due to “one-minus-cosine” gust excitations. The computational efficiency
of this approach allows an extremely fast identification of critical flight points
which is then considered for a more detailed analysis. The effectiveness of the
proposed approach is demonstrated at various examples: nonlinear and uncertain
models are considered and the design of a gust load alleviation system is presented.

The robust performance analysis requires to solve an SDP with infinite dimen-
sional LMI constraints. A benchmark of three techniques for dealing with such
constraints from the literature is presented. The benchmark shows that a gridding of
the parameter space and an LFR based analysis leads to consistent results. On the
contrary, the polytopic approach is — independent of any overbounding during the
modeling — very conservative for the considered examples. Another result is the dis-
tinct reduction of conservatism by parameter dependent Lyapunov matrix functions.

The analysis of saturated LPV systems using IQCs is treated. An iterative
procedure to refine local IQCs is proposed to reduce the conservatism of the
analysis results. The effectiveness of this approach is examined at the example of a
two-dimensional thin airfoil in combination with a gust load alleviation system.
The results indicate conservatism for low saturation limits. However, for larger
saturation limits, the proposed method converges to the nominal case and is hence
only slightly conservative.

After elaborating the required theory, the energy-to-peak gain is used to compute
upper bounds for “one-minus-cosine” gust loads. To this end, a weighting filter is
designed, which is able to create all admissible “one-minus-cosine” gusts with unit
energy. Consequently, the energy-to-peak gain represents a guaranteed upper bound
for the maximum gust loads. The analysis results are compared to simulation results
in a comprehensives case study using an aircraft model of industrial complexity. The
outcome is evaluated by considering the ratio of the norm bound to the simulation
peaks. Since this ratio varies between 1.19 and 1.67, it must be clearly noted that
performance analysis results are conservative. However, beside of the actual bound
for the gust loads, the energy-to-peak gain serves as an excellent indicator for
critical flight points. Standard “one-minus-cosine” gust simulations at these critical
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flight points are carried out to determine a lower bound for the maximum peak
loads. The obtained lower bounds are identical to or slightly smaller than the
actual peak loads. The benefit of this approach becomes clear if the computational
effort is considered: the computation for both the lower and upper bound is eight
times faster than the conventional gust loads analysis.

The application of the robust performance analysis framework for gust loads
analysis offers a wide range of new possibilities. Examples for such applications are
presented in the last chapter of this thesis. First, the analysis of an LPV model,
covering the entire flight envelope, allows to compute a bound for gust loads by
only one analysis. This analysis covers also the transition from one flight point to
another. Next, the structural damping ratio is considered as an uncertainty and an
LFR based analysis is performed. This analysis allows to identify outputs which
are sensitive to the uncertainty without any risk of missing a critical parameter
combination. Finally, the tuning and worst case analysis of a gust load alleviation
system is presented. It is shown that the energy-to-peak gain serves as an excellent
optimization criterion. Robust stability and performance of the resulting controller
against saturation and sensor uncertainties is then proved by an IQC based analysis.

All results show the effectiveness of this new approach. Critical flight points
can be reliably identified without any risk of missing a critical parameter combina-
tion. Because of the computational efficiency, the proposed approach is especially
convenient during a multidisciplinary design optimization.

7.2 Outlook

As already mentioned, the robust performance analysis framework offers a wide
range of applications for gust loads analysis. These include the LFR based analysis
with many uncertainties. However, the resulting SDPs turn out to be numerically
intractable or yield extremely conservative results. A reduction of this conservatism
and the inclusion of unstructured uncertainties is hence considered as a relevant re-
search field. As already mentioned, interesting approaches for doing this lead to very
complex SDPs which are then the major limitation. Such SDPs are approximated
by linear or second order cone programs in recent works of Ahmadi and Parrilo
(2014) and Peni and Pfifer (2015). Because these problems can be solved much
more efficiently, complex problems with more uncertainties might become tractable.
Regarding to the IQC based analysis of saturated systems, the conservatism could
be reduced by including further IQCs such as the ones described in Fang, Lin, and
Rotea (2008) and Materassi and Salapaka (2009). Another interesting idea is to use
IQCs in order to enforce further constraints on the disturbance. For example, to use
not only an energy bound but also a peak bound on the disturbance might reduce
the conservatism of the analysis. Finally, specialized algorithms for the synthesis of
optimal energy-to-peak gain controllers are described in e.g., Rotea (1993). These
algorithms are an interesting option for the design of a gust load alleviation system.



A Convex Optimization

Some fundamental facts of convex optimization are presented below in order provide
the basis for the results in Chapter 3. The following treatise is adapted from Boyd
et al. (1994), Scherer and Weiland (2004) and Pfifer (2013) where further details
can be found.

In general, a convex optimization problem is given by

min fo(x), st. fi(x)>0 Vi=1,...,n. (A1)

In (A.1), the functions f;: R" — R with ¢ = 0,...,n are convex. An essential
feature of convex optimization problems is that any local optimum is the global
optimum. Consequently, such problems can be efficiently solved. A precise definition
of convex sets and functions is given in the remainder of this appendix.

A.1 Convex Sets and Functions

Convex Sets
A set P is convex if any line segment between two points pi,p2 € P is also
contained in P. This means that

pp1+ (1 —p)p2 € P (A.2)
ifpi,popePand 0< p< 1.
A point

p= Z PiPi (A~3)
i=1

with Z::I pi=1land p; >0Vi=1,--- nis called a convex combination of the
points pi, P2, ..., Pn. This allows to define the convex hull of a given set Py as

P = conv(Po) = {Zpipi
i=1

If the set Py is finite, P represent a convex polytope. The notation vert(P) is used
to refer to the vertices of the convex hull of P.

Zpi—landpi>0Vi—1,~~~,n}. (A.4)
i=1
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Convex Functions
A function f: P — R is called convex if P is convex and if for any pi,p2 € P and
any 0 < p<1

f(pp1 + (1 — p)p2) < pf(p1) + (1 — p)f(p2) . (A.5)

If the function —f(p) is convex, f is called concave. Note that an affine function is
simultaneously convex and concave.
Convexity of a function f can be investigated using its Hesse matrix

P S
ap2 Op10pn
d* '
= (A.6)
_o® ¢ .. 2% ¢
Op10pn ap%

If %f(p) is positive semidefinite for all p € P, the function f is convex.

A.2 Bounds for Convex Functions with Polytopic
Parameter Spaces

The following propositions are used for relaxing infinite dimensional LMIs with
affine parameter dependences.

Proposition A.1 (Scherer and Weiland, 2004): Consider a convez function
f: P — R with P = conv(Po). Then, f(p) <0 for all p € P if and only if f(p) <0
for all p € Py.

A relaxed version of the above proposition requires only multi convexity of the
function f, i.e.,

2
g—pgzo Vi=1,--,n,. (A.7)

This leads to the following proposition.

Proposition A.2 (Gahinet, Apkarian, and Chilali, 1996; Scherer and Weiland,
2004): Consider a multi-convez function {: P — R with P = conv(Po). Then,
f(p) <0 for all p € P if and only if {(p) <0 for all p € Po.

In many cases, Propositions A.1 and A.2 can be analogously used for the
definiteness of matrix functions.

Proposition A.3 (Scherer and Weiland, 2004): Consider a matriz function
F: P — 8 with P =conv(Po). Assume that

F(p)<0 VpePo (A.8)
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holds, which implies that
f(p) =a"F(p)x <0 Ypec Py and anyx #0. (A.9)

If f(p) is a (multi) convex function — which depends on F(p) — Proposition A.1
(or Proposition A.2) can be applied and (A.9) implies that

' F(p)x <0 VYpeP. (A.10)
Since x is arbitrary, this implies that
F(p) <0 (A.11)

holds for all p € P.

It should be noted that in general, the convexity of f(p) can hardly be checked.
However, a special case occurs when F(p) is an affine function. Then, {(p) is affine
and hence also convez.

A.3 Schur Complement

Finally, the following lemma (found e.g., in Boyd et al., 1994) allows to transform
a nonlinear constraint into an LMI. It is required for proofs in this thesis.

Lemma A.4 (Schur complement): Using the three matrices X € H*, Y € H™,
and Z € C™*™, the following three conditions are equivalent:
Y>0and X —2ZY 'Z* >0, (A.12a)
X>0andY —2Z2"X'Z >0, (A.12b)

E lz/] 0. (A120)






B State Space Matrices of
Aeroelastic System for the
Benchmarks

B.1 State Space Matrices for the Benchmark in
Section 3.5

The state space matrices regarding the benchmark of techniques for dealing with
infinite dimensional LMIs (Section 3.5) are explicitly presented below. Note that
only the uncertain parameters of the benchmarks are considered. The other param-
eters are already evaluated using the values from Table 3.1. Due to limited space,
the free stream velocity Us is shortened by U.

r—0.13U 0 0 0 0 0 0 0
0 —-1.0U 0 0 0 0 0 0
0 0 0 0 1.0 0 0 0
0 0 0 0 0 1.0 0 0
A = | 0.029U 0.029U —0497%—0,066 U? 0.21-0.35U2 —0.3U —0.31U 0.048U2% 0.048 U2
0.016 U 0.016U 0.83 %m,u U? 0.6U%?-1.0 0.52U —0.16U —0.082U% —0.082U?
0 0 0.0043 U —0.091U 0 0 —0.045U 0
L o 0 0.38U —1.0U 0 0 0 —0.3U
[o.82U
6.1(3)U
_ 0 _[o0ok, o0 o000 0] _ 10
B = 8 C—[OOOO.25mOOOO D—[o]
0
L o

The order of the states is two aerodynamic lag states for the Theodorsen function,
four states from the EOM, and two other lag states for the Sears function. The
EOM states are h, «, h, and ¢&. The input is the gust velocity and the outputs are
the spring forces.

B.2 State Space Matrices for the IQC Example in
Section 4.3

The state space matrices for the IQC examples in Section 4.3 are explicitly given
below. The open loop case without actuator dynamics and without weighting filter
is considered. Note that only the uncertain parameters of the benchmarks are
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considered and the other parameters are already evaluated using the values from
Table 4.1. Due to limited space, the free stream velocity U is shortened by U.
r—0.13U 0 0 0 0 0 0 0

0 —1.0U 0 0 0 0 0 0
0 0 0 0 1.0 0 0 0
0 0 0 0 ) 0 1.0 0 0
A= | 00200 0.029U —0.066 U>—0.039 0.21—0.35U> —0.3U —0.31U 0.048U> 0.048 U?
0.016 U 0.016U 0.11U%40.033 0.6U%—1.0 0.52U —0.16U —0.082U? —0.082 U?
0 0 0.0043 U —0.091 U 0 0 —0.045U 0
L o 0 0.38U —1.0U 0 0 0 —0.3U

[0.82U —0.45U?
6.3U 0.41U%
0 0

—_ 700004 0 0000
C_[OO 0 0250000] D

I
oo

ooooo
ocoocoo

The order of the states is two aerodynamic lag states for the Theodorsen function,
four states from the EOM, and two other lag states for the Sears function. The
EOM states are h, a, h, and &. The inputs are the gust velocity and the flap angle.
The outputs are the spring forces.
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