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Abstract
Noise for continuous-time system simulation is rele-
vant for many applications, where time-domain results
are required. Simulating such noise raises the need to
consistently shape the frequency content of the signal.
However, the methods for this task are not obvious and
often form filters are approximated by state space im-
plementations. In this paper, we address the problem
with a new method relying on directly using the speci-
fied power spectral density for a convolution filter. For
the example of railway track irregularities, we explain
how to derive the required filters, implement them in
the open-source Noise library, and verify the results.
The new method produces correct results, is very sim-
ple to use, and enables new features for time simulation
of physical systems.
Keywords: Noise, power spectral density, track irregu-
larity

1 Introduction
Modeling stochastic signals is of interest in a wide
range of applications, such as sensor modeling, aero-
dynamic turbulence, and rail irregularities. Previous
Modelica libraries, such as the Statistics library
(Haase et al., 2008), allow to precisely define statistical
properties of such signals. However, other properties of
the noise signals such as the underlying random num-
ber generator or the signal’s frequency content could
not be modeled as conveniently. A Modelica Noise li-
brary has thus recently been released in order to enable
the engineer to conveniently and consistently define
noise signals (Klöckner et al., 2014). It is intended
to include a subset of sampled noise generators and
standard distributions in the Modelica standard library.
The remaining functionality will still be available in
the AdvancedNoise library.

The Noise library also introduces a new class of
random number generators: DIRCS Immediate Ran-
dom with Continuous Seed allows to generate random
numbers from an input signal without internal states.
It thus eliminates the need for time-events, but can
be used to generate a random signal directly from the
time variable. This has been shown to positively af-

fect the simulation performance (van der Linden et al.,
2015). Additionally, it allows to define noise signals in
dimensions other than the time. This is advantageous
in several applications. Rail irregularities e.g. are typi-
cally defined with respect to the location on the track.
Turbulence models used in aviation also assume a static
wind field flown through by the aircraft.

Additionally, the frequency content of noise input
to a system must be carefully modeled. It is usually
specified by a power spectral density (PSD). If a linear
time invariant (LTI) system model is considered, the
PSD can be applied in the frequency domain by mul-
tiplying the PSD with the squared transfer function of
the model. See Frederich (1984) for a railway appli-
cation and EASA CS-25 (2013) for a typical aircraft
application. If a nonlinear model has to be simulated in
the time domain, a suitable filter transfer function must
be derived from the PSD. In the case, that the PSD
is a rational function w.r.t. to the squared frequency,
a spectral factorization of the PSD can be derived an-
alytically. See Liepmann (1952) for an aeronautical
example. Otherwise, the PSD must be approximated
by a suitable function. An alternative approach is the
recently developed Fractional-Order Modeling Tool-
box for Modelica (Pollok et al., 2015), which allows to
simulate also non rational transfer functions.

In summary, it is not at all obvious how to
parametrize these frequency properties. We thus
present a systematic method to shape the frequency
content of noise signals. The contributions of this pa-
per are as follows:

1. Using the example of rail irregularities, we sum-
marize how noise is typically specified.

2. We then shortly define the probability distribution
of the noise signals generated in this paper.

3. Starting from a given PSD we rigorously derive a
way to shape this frequency content onto a noise
signal. This method will turn out to be perfectly
simple to use and to be applicable to almost any
kind of noise spectrum.

4. We finally implement the approach and verify that
it yields the same results as conventional methods.
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2 Railway track irregularities
Besides safety and operating efficiency, it is an essential
goal of railway vehicle design to provide an accepted
level of vibration comfort. In order to take human per-
ception into account, different methods and standards
exist for passenger comfort assessment. However all
of these rely on the accelerations experienced by the
passengers as input information.

From a vehicle dynamical point of view these ac-
celerations are the result of forced vibrations of the
vehicle/track-system that are excited by track irregulari-
ties. Frederich (1984) analyzed a large number of track
measurements and introduced representative PSDs for
good, average and bad tracks, see Fig. 1. Note, these
numbers quantify the irregularity per meter track length
or with respect to the spatial frequency (unit: 1/m),
respectively, and have to be transfered into the time
domain taking the vehicle speed into account, see e.g.
(Popp and Schiehlen, 2010).

Regarding the vehicle/track system that is excited
by the track unevenness we confine ourselves to verti-
cal dynamics and use the simplified quarter car model
shown in Fig. 2. The excitation input is introduced as a
variable track height z defined as a stochastic function
of the longitudinal track position. The wheel/rail con-
tact is represented by a stiff but linear spring/damper
system. Rail and its support constitute a dynamical sub-
system on the track side of the model, suspension and
car body form the vehicle subsystem. The acceleration
of the car body a is the output quantity of the model.
The resulting Bode diagram is depicted in Fig. 3.

Here, the model is defined linear by intention. Pre-
suming a constant running speed of the vehicle, the
acceleration response of the car body can be evaluated
in the frequency domain (Knothe and Stichel, 2003,
Ch. 6), which provides the opportunity of comparison
and validation with results from time domain simula-
tions in Modelica. Fig. 4 presents the pure frequency
domain results, that are based on the excitation by a
track of all three qualities.

The results presented in this paper are confined to
linear systems in order to validate the time-domain sim-
ulation approach with a well know frequency domain
solution. However, this limitation can be dropped, once
the results from time domain simulations with appro-
priately shaped noise spectra is validated. Time domain
simulations are then available for non-linear systems,
are capable of running with variable speed and may
consider singular disturbances such as running over
railway switches as well.
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Figure 1. Representative track irregularity PSDs (Frederich, 1984).

Figure 2. Simplified quarter car model of a railway vehicle in
Modelica.
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Figure 3. Amplitude response from track irregularity (in m) to
body acceleration (in m/s2).
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Figure 4. PSD of the body acceleration a for different track irregu-
larities at a velocity of v = 100m/s

3 Review of Noise parameters
The general degrees of freedom in parameterizing noise
have been described in detail earlier (Klöckner et al.,
2014). A noise signal can be specified in three steps:

1. Select a random number generator, which gener-
ates uniformly distributed random numbers with
certain statistical properties, such as subsequent
numbers being independent from each other.

2. Transform the uniformly distributed random num-
bers in order to match a given probability density
function, such as for a normal distribution.

3. Interpolate the resulting stream of correctly dis-
tributed random numbers.

The random number generators of the xorshift
family (Vigna, 2014) have been included in the Noise
library since its last release.1 These generators have
very strong statistical and computational properties and
are thus used in the library without exception.

In all cases, where unsampled random numbers are
required, the DIRCS generator is used. This random
number generator does not require a state but generates
a random number directly from a double input sig-
nal. To this end, the xorshift64* algorithm is first
initialized with the double input signal casted to two
integer values. After ten iterations, the output of
xorshift64* is used to seed an xorshift128
+ generator for a final iteration. In this way, high
quality random numbers are produced by the efficient
xorshift generators with a low computational effort
for arbitrary input values.

The standard normal distribution is chosen for all
random numbers generated in this work. This does not
allow to reproduce effects commonly found in measure-
ment noise, such as discretization. However, the choice
is reasonable when complex filters are used to shape
the actual noise signal to be used in the simulation.
Typical filter parameterizations for rail irregularities

1https://github.com/DLR-SR/Noise

e.g. assume standard normal distributions of their in-
put signals (SIM, 2003). Additionally, the subsequent
interpolation relies on computing the weighted sum
of consequent random numbers. Following the cen-
tral limit theorem, the result will inevitably be shaped
towards the normal distribution.

In previous work, we have described three distinct
interpolation functions for noise signals. These include
piece-wise constant and linear interpolations as well a
smooth interpolation using the sinc function. The in-
terpolations yield a continuous-time random signal r(t)
by computing the sum of consequent random numbers
wi, weighted with an admissible kernel function k(t):

r(t) =
+n

∑
−n

wi · k(t− i∆t), (1)

with

k(i∆t) !
=

{
1 if i = 0
0 if i 6= 0.

(2)

In this equation, ∆t is the sample period of the random
numbers and the interpolation base n has to be chosen
according to the selected kernel k(t).

However, for the more general case of a given PSD,
the final interpolation step has to be replaced by a more
powerful approach as described in the following sec-
tions.

4 Application of a given PSD
As already explained in Section 2, instead of (band-
limited) white noise, colored noise is required for most
practical applications. The required frequency content
of the noise signal is usually specified by a given PSD
Φ( f ). In order to apply this PSD to a raw white noise
signal with piece-wise constant interpolation a linear
form filter is typically applied (SIM, 2003, VIII-TE:8).
This filter H( f ) defines a mapping in the frequency
domain between the white noise input vector w(t) and
the colored noise output vector r(t):

R( f ) = H( f )W ( f ) (3)

where R( f ) and W ( f ) are the Fourier transforms (FTs)
of r(t) and w(t). White noise is defined by its flat PSD
of W ( f )≡ 1. If the filter H( f ) is applied to white noise,
the PSD of the colored noise is thus simply

Φr( f ) = |R( f )|2 ≡ |H( f )|2 . (4)

In order to shape colored noise to a given PSD, the
required filter is hence constrained by

|H( f )|2 !
= Φ( f ). (5)

In practice, the filter is typically applied by fitting a
rational transfer function on Φ( f ) which is then sim-
ulated as an additional linear block in the model (see
Section 4.1). An alternative exploiting the interpolation
kernel from Eq. (1) is proposed in Section 4.2.

https://github.com/DLR-SR/Noise


4.1 Using a transfer function
Before the approximation of a given PSD with a ratio-
nal transfer function is explained, important properties
are briefly repeated. In principle, the filter H( f ) is
restricted to rational functions which are usually ex-
pressed w.r.t. the Laplace variable s = d + 2π j f , i.e.

H(s) =
N(s)
D(s)

=

nz

∑
k=0

aksk

np

∑
l=0

blsl
. (6)

The coefficients ak of the numerator N(s) and the co-
efficients bl of the denominator D(s) are real numbers.
Both, the numerator and denominator can be factorized
which leads to

H(s) =

nz

∏
k=1

(s− zk)

np

∏
l=1

(s− pl)

. (7)

Every zero zk and every pole pl is either a real number
or two zeros (or poles) are each a complex conjugate
pair. A necessary condition to express H(s) in a state
space representation is that H(s) is proper, i.e. the num-
ber of poles np is greater than or equal to the number
of zeros nz. If the real part of all poles and zeros is
negative, a transfer function is called minimum phase.2

In addition to constraint (5), H(s) must be proper
and minimum phase, in order to be realizable by a
state space system. Because a suitable transfer function
H(s) cannot be analytically computed from a given
PSD Φ( f ) in general, a least squares fit is performed:

min
ak,bl

n f

∑
i

(
|H(2π j f )|−

√
Φ( f )

)2
. (8)

The coefficients ak and bl are chosen as decision vari-
ables because they are real numbers and independent
from each other. In order to ensure that the filter
is proper, nz = np − 1 is chosen. The optimization
is pursued with MOPS (see Joos et al., 2002) and a
Levenberg-Marquardt algorithm is used.

Finally, the minimum phase requirement is fulfilled
by a subordinate step. To that end, the zeros zk and
poles pl of the optimal solution are computed. After-
wards, the real part of every pole/zero is mirrored into
the left half plane, e.g.

p̄i =−|ℜ(pi)|+ℑ(pi). (9)

Note that the latter operation alters only the phase but
not the amplitude of H(s).

2Minimum phase means that both the filter and its inverse are stable and
causal.
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Figure 5. Approximation of the average track irregularity PSD
with a first order and a second order filter. The second order filter
shows a good fit to the reference.

Figure 5 compares the reference PSD to the PSDs of
a first and second order filter. It can be seen that the
second order filter is a very good approximation of the
average track irregularity. This filter can thus be used
to implement the form filter.

4.2 Using the interpolation kernel
The filter or transfer function is typically implemented
using continuous-time states in Modelica. This ap-
proach has two major drawbacks: First, expressing
the filter in the time domain limits the simulation to a
fixed velocity in order to map the location to a time-
domain filter. Second, the additional states of the filter
require the raw noise signal to be generated accurately
using events, which considerably slows down simu-
lation, even if only low accuracy is required. In this
paper, we introduce a different approach to shaping the
frequency content of the noise signal using the interpo-
lation kernel k(t) from Eq. (1).

4.2.1 Theoretical background

The idea is based on the convolution theorem. It relates
the continuous-time integration of the filter states to a
convolution integral of the raw noise signal wi(t) with
the filter’s IRF h(t). Exploiting the piece-wise constant
noise signal, this approach can be further reduced to a
sum of weighted random numbers wi:

R( f ) =W ( f )H( f )

cs
r(t) = wi(t)∗h(t)

=
∫ +∞

−∞

wi(t) ·h(t− τ)dτ

=
+∞

∑
−∞

(
wi ·

∫ (i+1)∆t

i∆t
h(t− τ)dτ

)
. (10)

The weights in (10) are specified by the integral of
the IRF h(t). This integral can also be expressed as the
step response ς(t) of the filter. Assuming a stable filter,
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the convolution can finally be approximated using a
truncated sum:

r(t) =
+∞

∑
i=−∞

wi · (ς (t−(i+1)∆t)− ς (t−i∆t))

≈
bt/∆tc+n

∑
i=bt/∆tc−n

wi · (ς (t−(i+1)∆t)− ς (t−i∆t))︸ ︷︷ ︸
:=k(t)

. (11)

Using this approach, all continuous and discrete
states can be eliminated from the noise generation. This
was shown before to be advantageous for the simulation
performance (van der Linden et al., 2015). Addition-
ally, the interpolation kernel k(t) can be shaped using
an arbitrary filter, if its step response is known.

4.2.2 Computation of the IRF
As we have seen, only a suitable step response is re-
quired to shape the desired frequency content. This
IRF can easily be obtained from the transfer function
derived in Section 4.1. However, in order to avoid
the approximation with a rational function, the IRF
is directly computed from the PSD using the frame-
work of Fourier transform (FT) and inverse Fourier
transform (iFT). The resulting IRF is then numerically
integrated in order to yield the step response.

Because the PSD describes only the amplitude of the
filter and because the filter must be not realized in state

space representation it is possible to use the phase as
an additional degree of freedom. Here, two different
phases are considered: zero phase and minimum phase.

Zero phase: First the zero phase case is considered.
For this case all phase are set to zero. The FT of the
interpolation kernel is hence simply

K( f ) =
√

Φ( f ). (12)

However, for a correct application of available FT
algorithms, the frequency samples must be chosen care-
fully: In order to yield a real valued k(t), K( f ) =
conj(S(− f )) must hold. It is further helpful to re-
member that – because time and frequency are both
discretized – K( f ) and k(t) are periodically repeated.
This is illustrated in Fig. 6a for a simple example and
the correct samples are marked.

After the iFT, the resulting k(t) is periodically re-
peated, too. This allows to chose the correct samples as
depicted in Fig. 6b. As it can be further seen, the zero
phase yields a non-causal IRF which is symmetric to
t = 0.

Minimum phase: Second, the minimum phase case
is considered. In this case, only the amplitude of the
FT of the interpolation kernel is given by the PSD:

|K( f )|=
√

Φ( f ). (13)



The minimum phase 6 (K( f )) can be computed using
the Hilbert transform. For the Hilbert transform, the
same samples must be chosen as for the iFT. The result-
ing minimum phase is depicted in Fig. 6a. Afterwards,
the full FT of the interpolation kernel is given by

K( f ) = |K( f )| · exp(j · 6 (K( f ))). (14)

The transformation into the time domain is subse-
quently performed in the same way as for the zero
phase case. As it can be seen in Fig. 6b, the minimum
phase filter is causal, i.e. its IRF is non-zero only for
non-negative times t ≥ 0.

Figure 7 compares IRFs for the average track irregu-
larities as obtained from the procedure outlined above.
First, the IRF of the fitted second order filter is eval-
uated by simulation and by iFT of the PSD shown in
Fig. 5. Both results are essentially the same, showing
the correct iFT application. The IRFs obtained directly
from the given PSD are also shown. The minimum
phase IRF is very similar to the fitted filter’s IRF, un-
derlining the good fit of the filter. The zero phase IRF
is non-causal, as it is non-zero for negative times.

5 Results
The form filters for average track irregularities are im-
plemented using the Noise library according to the
procedures outlined above. Using the Dymola 2016
RC2 simulation tool with its DASSL solver, the dif-
ferent steps of the implementation are then verified.
To this end, the following simulation experiments are
presented:

1. The minimum phase convolution is verified
against a state space filter implementation with
identical white noise input.

2. The white noise input of the state space imple-
mentation is exchanged by an independent noise
source not using the DIRCS algorithm.

3. The minimum phase and zero phase IRFs are com-
pared to each other.

4. The quarter car model of the railway vehicle is fed
with the zero phase noise convolution filter and
compared against the standard frequency domain
solution.

5.1 Convolution verification
Figure 8 shows a comparison of the fitted second or-
der filter’s state space implementation with its mini-
mum phase convolution implementation. Both filters
are driven by identical white noise generated with the
DIRCS generator directly from the position on the track.
The raw random numbers are generated with a sam-
ple period of ∆x = 0.4m and a standard deviation of
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in the lower plot, the signals are also identical.



σ =
√

0.5/∆t. It can be seen that the white noise spec-
trum has indeed a spectral density of 1; except for its
random nature. The shape of the white noise spectrum
directly corresponds to the shape of the track irregu-
larity PSDs. Both irregularity PSDs can be seen to be
identical. This is also the case for the actual simulation
output z of the track irregularity.

5.2 Space domain noise verification
In the second step, the minimum phase convolution
implementation is compared to a traditional state space
implementation fed by a time domain sampled noise.
In order to yield comparable results, the time domain
noise is sampled with ∆t = ∆x/v. The standard devi-
ation of the normal distribution is kept the same. Fig-
ure 9 compares both results to the reference. Good
agreements can be observed in both time frequency
domain and spatial frequency domain PSDs. Timing
comparisons are not presented, as the current convolu-
tion implementation is not yet optimized.

5.3 Minimum and zero phase filters
The comparison of the minimum phase and zero phase
convolution implementations can be seen in Fig. 10.
The white noise generator is DIRCS in both cases and
the sample periods are both ∆x = 0.4m. Both IRFs
have a resolution of 0.1 m. Both variants agree very
well with the reference in the low frequencies. At very
high frequencies, the influence of the two sampling
periods are marked with vertical lines. Characteristic
marks on the PSDs can be seen at these lines. The re-
spective sampling periods must thus always be chosen
high enough to resolve all relevant effects.

5.4 Quarter car railway vehicle
Finally, the zero phase convolution implementation
is integrated with the quarter car model of a railway
vehicle running at v = 100m/s. Figure 11 compares
the acceleration of the car body from this simulation
to the well trusted frequency domain solution. A very
good agreement can be seen.

6 Conclusions
In this paper, we show how to consistently shape a noise
signal to match a given frequency content specified by
a PSD. The method is introduced at hand of the quarter
car model of a railway vehicle, for which well trusted
reference solutions are available.

Our method uses the non-recursive random number
generator DIRCS. It generates normally distributed ran-
dom numbers directly from the current location on the
track. We then shape the frequency content of the ran-
dom numbers using a convolution with the impulse
response of a form filter. It is shown that the IRF of
the form filter can be directly generated from the given
PSD using the inverse Fourier transform.
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Figure 9. The PSD of the track irregularity from simulation ( )
and from convolution ( ) are compared in the time frequency
domain (upper plot) and in the spatial frequency domain (lower
plot). Both agree very well. In the spatial frequency domain, an
excellent agreement with the reference ( ) can be also seen.
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Figure 10. The PSD resulting from the minimum phase ( )
and from the zero phase ( ) iFT agree well with the reference
( ).
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The method is implemented in the Modelica Noise
library and validated against the given spectrum. It is
then used to excite a linear quarter car model running
at a constant speed. Results obtained with our method
agree very well with the standard solutions based on
frequency domain computations.

Our method is thus shown to produce correct results.
Additionally, it can be employed not only for linear
models, but also for non-linear models, vehicles run-
ning at varying speed, or in more complex scenarios
involving e.g. singular disturbances. Moreover, the
method proposed in this paper is perfectly straightfor-
ward to use and can also be applied to a variety of
problems, such as turbulence or street roughness.

The current implementation is based on the open-
source Noise library. This makes the method avail-
able to a wide audience and also gives room for further
improvements. Since our implementation of the convo-
lution has not yet been optimized, further investigations
should take into account timing measures. Extensions
of the method could possibly be found in higher di-
mensional noise spectra, correlated noise, or additional
effects such as discretization.

Reproducible research
The results of this paper can be reproduced using
the code which will be made available on http:
//dlr-sr.github.io.
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