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Abstract—The exponentiated Weibull (EW) distribution has
been recently proposed for the modelling of free-space optical
(FSO) links in the presence of finite sized receiver aperture.
In this paper, the performance of FSO communication sys-
tems over EW is studied. Specifically, the probability density
function (PDF) and cumulative distribution function (CDF)
of the instantaneous signal-to-noise ratio (SNR), over EW
turbulence fading, are studied. The derived statistics of the SNR
is utilized to analyse the performance of an FSO communication
system over a generalized communication environment with
turbulence induced fading, misalignment errors and path loss.
New expression for the outage probability is obtained, and exact
expressions for the average bit error rate (BER) are derived
for various binary modulation schemes. Finally, the obtained
analytical results are verified via Monte Carlo simulations.

I. INTRODUCTION

Free-space optical (FSO) communication has emerged

recently as an efficient solution to match the larger bandwidth

and high data rates requirement of the upcoming wireless

communication systems. However, the major challenge in

establishing a wireless link at optical frequencies is atmo-

spheric turbulence experienced by the laser beam when it

propagates through the medium [1]. The atmospheric turbu-

lence causes various perturbations in the propagating beam

like scintillation which represents the random fluctuations

in the beam irradiance, beam wander which stands for the

random movement of the instantaneous centre of the beam

at receiving aperture, and beam spreading that indicates the

spreading beyond the diffraction limit of the beam radius [2].

The receivers in FSO systems generally have the point ge-

ometry which further worsens their performance in presence

of the atmospheric turbulence. To improve the performance of

a communication system in atmospheric turbulence, several

techniques have been proposed in the literature [3]-[4]. The

larger dimensions of the apertures in the receiver may help in

collecting the higher irradiance flux, but it will place a hard-

ware constraint on the receiver structures. Aperture averaging

is one of the most widely used alternative technique due to its

simplicity and lower cost. In aperture averaging, to mitigate

the adverse effect of the atmospheric turbulence induced

fading, a collecting aperture is placed at the end of the FSO

link in the receiver side. The placement of the collecting

aperture integrates the more light in the receiver plane and

thus a greater portion of the incoming wavefront can be

concentrated into the photodetector of the point receiver.

The characterization of the atmospheric turbulence induced

fading is an important step in the performance analysis of an

FSO communication systems. The existing channel models

such as log-normal and Gamma-Gamma can not be used in

all turbulence situations, and even sometimes they do not

provide a good fit for experimental and simulated data [2],

[5]. Recently, Barrios et. al. in [6], [7] proposed a new dis-

tribution, known as exponentiated-Weibull (EW) distribution,

to model the atmospheric turbulence induced fluctuations in

the irradiance received at the finite size aperture-averaged

receiver. The EW distribution captures the effect of aperture-

averaging through its constituent parameters as these pa-

rameters depend on the scintillation index of the received

irradiance.

The performance of the FSO communication system over

EW channels has been analysed in [8]-[12]. The approximate

expressions for the bit error rate (BER) are derived in

[8]-[11]. In [8], [11], the BER is obtained using Gauss-

Laguerre quadrature rule, while Gauss-Hermite quadrature

approximation is used in [9]. The average capacity of the

optical wireless communication systems over EW distribution

turbulence channels is derived in [12]. However, the analysis

in all these works utilized the probability density function

(PDF) of the fading channel, and none of them derived and

utilized the PDF of the signal-to-noise ratio (SNR). The sta-

tistical analysis through SNR based approach is less complex

and more general as can be extended to different modulation

techniques directly. So in this paper we, first derive the

distribution of the instantaneous SNR, and apply the derived

statistics to analyze the outage and error performance of the

FSO communication systems. Specifically, expression for the

outage probability using the cumulative distribution function

(CDF) of the instantaneous SNR is obtained. Finally, the

expression for the average bit error rate (BER) is derived,

which is applicable for various binary modulation schemes

such as coherent binary frequency shift keying (BFSK), non-
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coherent BFSK, coherent binary phase shift keying (BPSK),

and differential BPSK.

The rest of this paper is organized as follows: In section II

the detailed description of channel model is given. The PDF

and CDF of the instantaneous SNR are derived in section III.

Performance analysis metrics such as the outage probability

and average BER are presented in Section IV. Section V

details the numerical results and conclusions are given in

section VI.

II. CHANNEL MODEL

We consider the composite model for the channel between

the source and the destination, represented by the channel co-

efficient h. It is composed of atmospheric turbulence induced

fading represented by the coefficient hI , the misalignment

fading denoted as hm, and distance dependent path loss hℓ.
Thus composite channel coefficient can be given as

h = hIhmhℓ. (1)

The atmospheric turbulence induced fading is modelled
under EW distribution. The PDF of the coefficient hI (hI >
0), is [6]

fhI
(hI)=

αβ

η

(
hI

η

)β−1

exp

[

−

(
hI

η

)β
]{

1− exp

[

−

(
hI

η

)β
]}α−1

,

(2)

where β > 0 and α > 0 are the shape parameters, and η > 0
is the scale parameter. The parameter α, β depends on the

scintillation index of the irradiance [13, Eq. 20,21], and the

parameter η depends on the mean value of the irradiance. The

shape parameter α not characterizes the fading conditions of

the link but also it along with parameter β captures the effect

of aperture averaging. [13].

Assuming a Gaussian spatial intensity profile for the beam

waist, the misalignment fading hm is statistically charac-

terized in [14]. For independent but identical Gaussian

distributed horizontal sway and elevation, the radial displace-

ment at the receiver follows a Rayleigh distribution. Now

using these facts the PDF of hm is given, as in [12], as

fhm
(hm) =

ρ2

A2
0

hρ
2−1
m , 0 ≤ hm ≤ A0 (3)

where A0 is the fraction of the collected optical power

and ρ = ω
2σs

, ω is the equivalent beam width at the

receiver, and σ2
s is the variance of pointing error displacement

characterized by the horizontal sway and elevation.

For the path loss factor we consider the Kim’s model

proposed in [15]. The deterministic path loss factor for a

channel of length L is given by hℓ = exp (−AL), here A is

the attenuation constant defined as

A =
13

V

[

λ× 109

550

]ψ(V )

, (4)

where V is the visibility, λ is operating wavelength, and
ψ(V ) is the coefficient related to the size of atmospheric

particles given by

ψ(V ) =







1.6 for V > 50 km

1.3 for 6 < V < 50 km

0.16V + 0.34 for 1 < V < 6 km

V − 0.5 for 0.5 < V < 1 km

0 for V < 0.5 km .

(5)

III. STATISTICS OF THE INSTANTANEOUS SNR

In this section we derive the PDF and CDF of the

instantaneous received SNR in the receiver. For a subcarrier

intensity modulated communication, the SNR over channel

h is given by γ = γ̄0|h|
2, where γ̄0 = (PtRζ)2

N0

. The term

Pt is the average transmitter power, R is the responsitivity

of the photodetector, N0 is the average noise power of the

additive white Gaussian noise at the receiver, and ζ is the

modulation index [8, Eq. 3]. The average SNR can be given

as γ̄ = γ̄0E[|h|2], where E[·] is the expectation operator [16].

Lemma 1: The PDF of the instantaneous SNR γ can be
given as

fγ(γ) = B1

∞∑

j=0

Ψ(j)γ
ρ2

2
−1Γ

[

τ, B2(j)γ
β
2

]

, (6)

where Ψ(j) = (−1)jΓ(α)

j!Γ(α−j)(1+j)1−
ρ2

β

, B1 = αρ2

2(hℓηA0

√
γ̄0)ρ

2 ,

τ = 1 − ρ2

β
, and B2(j) =

1+j
(hℓηA0

√
γ̄0)β

, Γ(·) is the gamma

function, and Γ(·, ·) is the upper incomplete gamma function
[17].
Proof: In (1), the terms hI and hm are random variables
(RVs) whose PDFs are given in (2) and (3), respectively, and
the term hℓ is deterministic. In order to obtain the PDF of
h, first we derive the PDF of RV X = hIhm. The PDF of
X can be written as,

fX(x) =

∫
∞

x
A0

fhm(x|hI)fhI
(hI)dhI . (7)

Using (2) and (3), (7) can be written as,

fX(x) =
ρ2

A
ρ2

0

x
ρ2−1

∫
∞

x
A0

hI
−ρ2 αβ

η

(
hI

η

)β−1

exp

[

−

(
hI

η

)β
]

×

{

1− exp

[

−

(
hI

η

)β
]}α−1

︸ ︷︷ ︸

A1

dhI . (8)

To solve the integration in (8), we expand the A1 using
the Newton’s generalized binomial theorem i.e. (1 + y)t =
∑∞
j=0

Γ(t+1)yj

Γ(t−j+1)j! . After some mathematical manipulations

(8) can be rewritten as,

fX(x) =
αβρ2

ηβA
ρ2

0

x
ρ2−1

∞∑

j=0

(−1)jΓ(α)

j!Γ(α− j)

×

∫
∞

x
A0

hI
β−1−ρ2 exp

(
−(j + 1)

ηβ
h
β
I

)

dhI . (9)

The integral term in (9) can be solved using [17, Eq. 381.3],
as

fX(x) =
αρ2

(ηA0)ρ
2
x
ρ2−1

∞∑

j=0

Ψ(j)Γ

[

1−
ρ2

β
,
(1 + j)xβ

(ηA0)β

]

.(10)
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The PDF of the channel coefficient h = Xhℓ can be obtained
as 1

fh(h)=
αρ2

(hℓηA0)
ρ2

∞∑

j=0

Ψ(j)hρ2−1Γ

[

1−
ρ2

β
,

1+ j

(hℓηA0)
β
h
β

]

, h ≥ 0.

(11)

Now the PDF of instantaneous SNR γ defined can easily be

derived using [16, Eq. 5-8].

Observation 1: The expression of the PDF in (6) consists

of infinite summation which results from the use of Newton’s

generalized binomial expansion, however the for the given

values of the parameters α, β, and η, the infinite summation

is convergent and ten to fifteen terms are sufficient for this

series to converge [10] and can be verified analytically

using MATLAB or MATHEMATICA. Further this can

also be verified from Fig. 1, where we plotted the PDF

for j = 0 to 10, and j = 0 to 100 terms, and it can be

observed that the plots of the PDF in both the cases are same.

Observation 2: The effect of channel parameters α, β,

and η on the SNR can also be observed from Fig. 1. The

increase in the parameters α and β spreads the distribution

as they are shape parameters and they control the steepness

of the tail of the PDF. On the other hand, the height of

the distribution reduces with an increase in the value of

the parameter η because it is the scale parameter and

it determines the scale or the height of the distribution.

Thus any change in the channel parameters affects the

tail probabilities which are of maximum importance in

the analysis of any communication system as the tail of

distribution defines the error performance significantly.

Observation 3: To analyse the effect of γ̄0, we plotted

the PDF for different values of average SNR γ̄0 in

Fig. 2. The plots suggest that the higher the γ̄0, wider will

be the distribution and accordingly its height is scaled down.

Lemma 2: The CDF of the instantaneous SNR γ can be
given as

Fγ(z) =
2B1

β

∞∑

j=0

Ψ(j)z
ρ2

2G
2,1
2,3



B2(j)z
β
2

∣
∣
∣
∣
∣
∣

1− ρ2

β
, 1

0, τ,− ρ2

β



 , (12)

where Gm,npq

(

·
∣

∣

·
·
)

is the Meijer’s G function [18, Eq.
(07.34.02.0001.01)].
Proof: The CDF of the SNR is defined as,

Fγ(z) =

∫ z

0

fγ(γ)dγ,

= B1

∞∑

j=0

Ψ(j)

∫ z

0

γ
ρ2

2
−1Γ

[

τ,B2(j)γ
β
2

]

. (13)

On replacing the upper incomplete gamma function in (13)
with its Meijers-G equivalent [18, Eq. (06.06.26.0005.01)]

and substituting γ
β
2 = t we get,

Fγ(z)=
2B1

β

∞∑

j=0

Ψ(j)

∫ z
β
2

0

t
ρ2

β
−1
G

2,0
1,2

(

B2(j)t

∣
∣
∣
∣

1

0, τ

)

dt.(14)

1The derived PDF fh(h) in (11) is a valid PDF as it is non-negative (see
Table I), and area under this PDF is unity (see appendix for proof).
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Fig. 1. The PDF of the instatntaneous SNR γ for aperture-averaged receivers
under the influence of atmospheric turbulence induced fading, misalignment
fading and path loss.

0 1 2 3 4 5 6
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

 γ

P
D

F
, 
f γ(γ

)

 

 

γ̄0 = 0 dB

γ̄0 = 2 dB

γ̄0 = 4 dB

γ̄0 = 6 dB

Fig. 2. The effect of average SNR γ̄0 on the PDF of the instantaneous SNR
γ.

This integral can be solved using [18, Eq.

(07.34.21.0084.01)].

IV. PERFORMANCE ANALYSIS

In this section we apply the derived statistics of the

SNR to analyse the performance of an FSO communication

system model. We consider a source and an aperture-averaged

destination. The source has one transmit antenna aperture

to send its message, and the destination has a finite sized

receive antenna aperture for receiving from the source. The

channel between the source and the destination is represented

by the coefficient h and is defined in (1). In the following

subsections we will derive the expressions of the outage

probability and the average BER.

A. Outage Probability

The outage probability Pout is defined as the probability

of instantaneous SNR γ over a channel h falling below a

threshold value. We assume γth to be the threshold SNR, so

the corresponding outage probability is,

Pout = Pr{γ < γth} =

∫ γth

0

fγ(γ)dγ. (15)
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Fig. 3. Outage Probability vs av. SNR for different values of threshold SNR
γth, and channel length L.

The outage probability Pout in (15) can be obtained using

(12) as Pout = Fγ(γth).

B. Average BER

The average BER for binary modulation schemes can be

given as [19]

P (e) =

∫ ∞

0

P (e|γ) fγ(γ)dγ, (16)

where P (e|γ) is the conditional error probability and for

the given γ it can be written as P (e|γ) = Γ(µ1,µ2γ)
2Γ(µ1)

, the

parameters µ1, µ2 are modulation dependent constants and

their values are : µ1 = µ2 = 0.5 for coherent BPSK, µ1 =
0.5, µ2 = 1 for coherent BFSK, µ1 = 1, µ2 = 0.5 for non-

coherent BFSK, and µ1 = µ2 = 1 for differential BPSK.
Now using [18, Eq. (06.06.26.0005.01)], and (6), followed

by using [18, Eq. (07.34.21.0013.01)], the average BER in
(16) can be obtained as,

P (e)=

∞∑

j=0

B1k
τ−1/2lµ1+(ρ2−3)/2µ2

−ρ2/2

2Γ(µ1)(2π)l+k−2

×G2k,2l
2l+k,2k+l

(

Ω(j)

∣
∣
∣
∣

∆(k, 1),∆(l, ε) ,∆(l, ε− µ1)

∆ (k, 0) ,∆(k, τ) ,∆(l, ε)

)

(17)

where l and k are integer constants so that β = l
k

, ∆(m,n) =

(n/m)((n + 1)/m)....((n +m − 1)/m), Ω(j) = (B2(j))
kll

µ2
lkk

and ε = 1− ρ2

2 .

The expressions of the average BER for various modu-

lation schemes can be found on substituting the values of

parameters µ1 and µ2 accordingly.

V. NUMERICAL RESULTS

In this section, numerical results are presented for the

outage performance of the considered system. In Fig. 3, the

outage probability is plotted for various values of threshold

SNR γth, and link length L considering A0 = 0.35, ρ = 1,

V = 1.2 km, α = 2.18, β = 4.0, η = 0.5. For various
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Fig. 4. Effect of misalignment fading : Outage probability vs av. SNR for
different values of parameters {α, β, η}.
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Fig. 5. Average BER for the different binary modulation schemes.

values of threshold SNR plots the link length is considered

to be L = 500 m, and for various values of link length

plots the threshold SNR is taken as γth = 2 dB. It can

be observed that the outage performance of the system

deteriorates as the value of the target or threshold SNR

increases. Further, as the separation between transmitter and

receiver is increased, the outage probability increases and

hence the system performance worsens, intuitively.

In Fig. 4, the effect of misalignment errors is observed

on the outage performance with A0 = 0.85, γth = 5 dB,

V = 1.2 km, L = 500 m. In this figure the effects of the

variations in the values of the parameters α, β, and η can be

observed. Further, it can be seen from this figure that as the

value of ρ increases the outage probability decreases. This

happens due the parameter ρ is inversely proportional to the

pointing error jitter at the receiver side [14], thus increased
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value of the parameter ρ signifies the reduced level of the

magnitude of the misalignment error.

Fig. 5 analytically plots the average BER of the various

modulation schemes with respect to average SNR for differ-

ent values of pointing error parameter ρ. The coherent BFSK,

non-coherent BFSK, coherent BPSK, and Differential BPSK

modulation schemes are considered. The values of other

parameters are assumed as follows: A0 = 0.35, V = 1.2
km, α = 2.18, β = 3.8, η = 0.75. The main observation

from this plot is that for the given value of ρ the average

BER for coherent BFSK and differential BPSK is almost

same. Further, the complexity of the coherent detection can

be justified as the coherent BPSK outperforms the other

detection techniques and provides the minimum gain of

approximately 2.5 dB, when compared to differential BPSK,

and 4 dB when compared to non-coherent BFSK.

VI. CONCLUSIONS

In this paper, a finite sized receiver aperture based commu-

nication system is analyzed over EW distributed FSO chan-

nels. Initially, the PDF of the composite channel coefficient

has been derived with turbulence induced fading, distance

dependent path loss, and misalignment fading. Using the PDF

of the composite channel coefficient the statistics of the SNR

over EW distribution were obtained. Finally, new closed form

expressions for the outage probability and average BER were

derived.

APPENDIX

TABLE I

h 0 0.1 0.2 0.3 0.4 0.5 0.6

fh(h) 0 .0284 .0609 .0948 .1279 .1547 .1656

h 0.7 0.8 0.9 1.0 1.1 1.2 1.3

fh(h) .1513 .1124 .0645 .0273 .0082 .0017 .002

For the expression in (11) to be a valid PDF it must be

non-negative and area under this PDF should be unity. The

non-negativity of PDF fh(h) in (11) can be observed from

Table I as the range of fh(h) in the possible domain of h
is positive. Following is the proof of unit area under PDF

fh(h) :
As the PDF given in (2) is a valid PDF [6], area under this

PDF should be one i.e.
∫∞
0
fhI

(hI)dhI = 1. Rewriting the
PDF fhI

(hI) using Newton’s generalized binomial theorem,
we get

αβ

η

∞∑

j=0

(−1)jΓ(α)

j!Γ(α− j)

∫
∞

0

(
hI

η

)β−1

exp

[

−(1 + j)

(
hI

η

)β
]

dhI = 1.

(18)
After solving this integral, followed by some mathematical

rearrangements (18) reduces to

∞∑

j=0

(−1)jΓ(α)

j!Γ(α− j)(1 + j)
=

1

α
. (19)

The area under the PDF fh(h) is S =
∫∞
0
fh(h)dh. Using

(11) we get,

S=
αρ2

(hℓηA0)
ρ2

∞∑

j=0

Ψ(j)

∫
∞

0

h
ρ2−1Γ

[

1−
ρ2

β
,

1+ j

(hℓηA0)
β
h
β

]

dh.

(20)

On substituting hβ = r in (20), and using [17, Eq.
(6.455.1)], we get

S=

∞∑

j=0

Ψ(j)

(1 + j)
ρ2

β

2F1

(

1, 1;
ρ2

β
+ 1; 0

)

, (21)

where 2F1 (·, ·; ·; ·) is Gauss hypergeometric function

[18, Eq. (07.23.02.0001.01)]. Now using [18, Eq.

(07.23.03.0001.01)] and (19) we get S = 1.
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