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ABSTRACT 

The paper describes the integrated software solution 
retained for the design and development of the 
AVANTI experiment, a challenging on-board 
autonomous formation-flying endeavour to be 
conducted in 2016. This solution aims at enabling rapid 
prototyping by providing a powerful development, 
validation and testing environment, able to support 
simultaneously the design and validation of novel 
Guidance, Navigation and Control algorithms, the 
definition and documentation of the interfaces with the 
ground segment, the implementation of the onboard 
software using space quality standards, the integration 
into an existing satellite bus and all related testing 
activities. 
 
1. INTRODUCTION 

The possibility to conduct a spaceborne experiment is a 
rare and precious opportunity that has to be taken even 
in the presence of severe development constraints such 
as time pressure or limited human resources. 
The Autonomous Vision Approach Navigation and 
Target Identification (AVANTI) experiment envisioned 
by the German Aerospace Center belongs to such 
unique challenging endeavours with limited resources. 
AVANTI aims at demonstrating fully autonomous 
approach to a non-cooperative object in a safe and fuel-
efficient way using a simple camera. It is implemented 
onboard the DLR’s BIROS [1] satellite, scheduled for 
launch in 2016, and takes advantage from the fact that 
BIROS embarks a third-party picosatellite which will be 
ejected in-orbit prior to the start of AVANTI and which 
will thus serve as non-cooperative target for the sake of 
the experiment 
AVANTI is a complex experiment, developed by a 
small team (two researchers) in a limited time frame (3 
years), making use of several satellite components 
(thruster system, attitude control, onboard camera) and 
undergoing many constraints (thermal and power 
requirements, visibility constraints of the target satellite, 
limited onboard resources, safety of the formation, 
limited manoeuvring capabilities, ground 
communication, telemetry budget). 
In addition, the nature of the experiment requires 
extensive tests and validation of the algorithms and 
software on-ground before the ejection of the 
picosatellite. Dealing with a formation of satellites at 

low altitude (500km) with very different ballistic 
coefficients, it has to be avoided to fix problems - which 
could have been detected before - after establishing the 
formation because of the high propellant cost required 
to maintain the formation. 
After a brief description of the envisioned experiment, 
the paper proposes some ideas to reduce the 
development and validation efforts of such a GNC 
experiment while ensuring a smooth integration in the 
satellite bus to augment the chance of successful 
completion of the experiment. 
 
2. OVERVIEW 

2.1. The AVANTI Experiment 

As mentioned in the introduction, AVANTI will 
demonstrate the capability to perform rendezvous and 
receding approaches with respect to a noncooperative 
client satellite making use of vision-based angles-only 
measurements. The experiment focuses on far- to mid-
range separations (several hundred meters to 10 km). 
The capability to approach and rendezvous a non-
cooperative orbiting object in a safe, fuel efficient, and 
accurate manner is in fact a key requirement for future 
on-orbit-servicing and debris-removal missions. In this 
context, the exploitation of angles-only navigation is 
appealing since it relies on simple passive low-cost 
sensors (e.g., optical or infrared cameras) able to 
provide the line-of-sight direction to the target object. 
To that end, the star trackers usually employed for 
attitude determination can be advantageously used also 
to track a space object, if properly oriented [2]. At 
sufficiently large separations, where it is acceptable to 
approximate the center of mass of the client satellite 
with its intensity centroid, angles-only navigation 
represents a sufficiently accurate methodology to 
accomplish the first phases of the approach. This leads 
to a simpler and cheaper design of the servicer satellite, 
restricting the sensor complexity to close-proximity 
operations, for which more accurate, costly and power-
demanding sensors might be required. 
The experiment poses many non-trivial challenges: 

 It is not easy to distinguish the target 
spacecraft at far range from the surrounding 
stars. 

 The angles-only relative navigation problem is 
weakly observable, so that maneuvers have to 
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be planned and executed to solve the 
ambiguity in the range determination. 

 These maneuvers are part of a rendezvous 
guidance profile, which has to be done in a 
safe a fuel-efficient way and which has to be 
computed autonomously onboard. This 
guidance profile has to be robust in case of 
failure of the thruster system and degraded 
onboard navigation. 

 Since BIROS does not have 3D maneuvering 
capability, the spacecraft needs to rotate to 
execute a maneuver, in which case the target 
spacecraft exceeds the field of view of the 
camera. 

 Eclipses and camera blinding due to the Sun 
affects also the visibility. 

 Orienting constantly the star tracker towards 
the target picosatellite has some impacts in 
terms of power and thermal budget. 

 The high differential drag encountered at low 
altitude results disturbs greatly the navigation 
and control algorithms. 

 The BIROS onboard computer has limited 
resources which make it not really suited for 
image processing. 

Further details about the mission can be found in [3]. 
 
2.2. Software Architecture 

Figure 1 depicts the different components of the 
AVANTI software and their interaction with other 
systems of the spacecraft. First, the images collected by 
the star tracker are processed by the Image Processing 
(IMP) module, which identifies the target spacecraft 
among all the luminous spots comprised in the image 
and delivers line-of-sight measurements to the Relative 
Orbit Determination (ROD) module. For simplicity, 
IMP uses the knowledge of the onboard attitude to 

identify the stars present in the image without the need 
of using any lost-in-space star identification algorithm. 
ROD implements an extended Kalman filter to estimate 
the current relative state of the formation. 
The formation state estimate is delivered to the 
Maneuver Planing and Commanding module (MAP), 
which is in charge of establishing a rendezvous profile. 
To that end maneuver commands are sent directly to the 
Attitude and Orbit Control System. For simplicity, it has 
been decided that MAP takes over the spacecraft 
attitude profile throughout the entire experiment, in 
order to point the star-tracker toward the expected 
position of the picosatellite, to rotate the spacecraft 
during the execution of maneuvers and orient the 
communication antenna towards the Earth during the 
ground contacts.  
The AVANTI experiment is implemented as 
independent application running on the BIROS onboard 
computer, which is based on a PowerPC architecture 
and makes uses of an in-house embedded real-time 
operating system, called RODOS (Realtime Onboard 
Dependable Operating System). The RODOS real-time 
kernel provides an integrated object-oriented framework 
interface (using C++) to multitasking resource 
management. Compared to other existing operating 
systems, RODOS focuses on offering the simplest and 
smallest interface to user applications, while still 
providing all the required functionality and flexibility 
(including time management, CPU and memory 
management) [4]. 
 
3. SIMULATION ENVIRONMENT 

3.1. High-Fidelity Simulink-Based Simulator 

Such a complex experiment requires an advanced 
simulation environment to model precisely the 
perturbations acting on the system, understand the 
interactions between the different spacecraft component, 
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assess the impact of the error sources, define and verify 
the behaviour in case of contingencies, etc. To that end, 
the German Aerospace Center can relies on its Multi-
Satellite Simulator (MSS) [5], which was successfully 
used in the past to design advanced autonomous 
embedded formation-flying systems like the TanDEM-
X Autonomous Formation Flying System [6] or SAFE 
experiment [7] using the PRISMA formation flying 
technology demonstrator [8]. MSS is based on a 
MATLAB/Simulink environment (which is widely 
spread in the aerospace community) and comprises a 
collection of in-house aerospace components to model 
precisely the environment (gravity field, orbital 
perturbations, position of the celestial objects, Earth 
orientation) as well as key sensors and actuators. 
 
3.2. Hardware-in-the-Loop Testbed 

In order to ease the final integration in the satellite bus, 
a hardware-in-the-loop testbed in currently under 
construction. The objective is to run the flight software 
with an engineering model of the star tracker. To that 
end, the field of the view of the camera is simulated 
using a monitor in a black chamber, so that the 
interfaces to the camera can be verified. 
 
4. INTERFACING SIMULINK WITH THE 
FLIGHT SOFTWARE 

4.1. Motivations 

In order to reduce the development efforts, it is tempting 
to begin very early with the implementation of the flight 
software, while the underlying core algorithms are still 
under investigation and development. This approach 
presents the advantage of providing well in advanced 
relevant system information (telemetry budget, interface 
definition, system behaviour, etc.) to the other partners 
of the project.  
On the other hand, the development of novel complex 
GNC algorithms might require the use of an advanced 
and mature Simulink-based development environment. 
This poses severe constraints in terms of software 
design, since Simulink does not support all the features 
of object-oriented programming (direct call of a class 
method, polymorphism, handling of events, etc.). 
Similarly, the RODOS operating system is not designed 
to be triggered by an external system like Simulink (in 

particular in what concerns the timing and threads 
handling). 
 
4.2. Stub Components 

The retained solution is to emulate the key 
functionalities of the onboard operating system (timing, 
threading, hardware communication, etc.) under on the 
host computer to create an image of the onboard 
software in the form of a dynamic library, which is then 
called by the different S-Functions composing the 
Simulink simulation. Functionalities which are not 
needed for the simulation are replaced by stubs. 
Figure 2 provides a graphical representation of this 
approach. An almost empty early prototype of the flight 
software is created when starting designing the 
algorithms. This draft software is implemented using the 
target programming language (C++) and relies on the 
libraries provided by the target operating system 
(RODOS), which provides essential functionalities: 
access to the other devices of the satellites bus, timing 
and threading functions, handling of telemetry and 
telecommands, etc. 
The flight software is then compiled as independent 
dynamic library on the host computer. At this stage, it is 
necessary to emulate all the functionalities of the 
operating system needed by the flight software and 
replace them by stubs if necessary. 
Step by step, the flight software grows and becomes 
more mature while the algorithms are developed. The 
main advantage of this approach is that the flight 
software does not need to be adapted for the sake of the 
simulations. In fact, it uses the same C++ objects and 
methods as the ones available on the satellite bus. On 
the host PC, the stubs are implemented as gateways to 
the Simulink blocks. For example, a Simulink model of 
a GPS receiver computes a simulated GPS navigation 
fix, which is sent to the stub of the object instance 
interfacing the GPS receiver. The stub fed with 
simulation data provides them when requested by the 
flight software as if a data from real hardware 
components were read. 
 
4.3. Task Execution Scheduling 

The difficulty here is that the routines provided by the 
target operating system might be fundamentally 

 

 
Figure 2: Integration of Simulink and exogen software 



 

incompatible with a Simulink approach. In RODOS, an 
application is implemented as infinite loop whose time 
execution is controlled by the operating system: 
 

class MyApplication: public Thread { 
public: 
  MyApplication (): Thread("name", priority) { } 
  void init() { /*initialization*/} 
  void run() { 
    TIME_LOOP(offset, period) { 
      /*work*/ 
    } 
  } 
} 
 

Here, TIME_LOOP is a function provided by the operating 
system to execute the content of the loop at a desired 
frequency. The problem is that Simulink is designed to 
take over the task scheduling, i.e. Simulink decides 
when to execute the content of loop (called a step). 
The solution which has been retained is to replace the 
RODOS thread object by a dedicated thread object 
running on the host platform which is completed by 
additional methods to control the execution of the loop 
externally. If OSThread represents a typical thread object 
of the host operating system, this translates simply into: 
 

class Thread: public OSThread { 
public: 
  // executes the content of the loop 
  void doStep() {step=true;} 
  // returns the number of loop executions 
  long getCount(){return count;} 
protected: 
  // returns true when the loop must be executed 
  bool waitForTrigger() 
    {while(!step){};step=false;}  
  long count; 
  bool step;   
}; 

 
As a result, it is enough to redefine the function 
TIME_LOOP as: 
 

#define TIME_LOOP(begin,period) for (count=0; 
waitForTrigger();count++) 
 

to control the thread execution from Simulink. Since 
Simulink and the image of the flight software are 
running in different threads, it is required to wait that 
the content of the loop has been completely executed to 
consider that a step has been done. If application stands 
for one piece of functionality of the flight software, the 
step function of the corresponding Simulink block 
contains simply: 
 

long count=application.getCount(); 
application.step();  
while (count == application.getCount()) {}; 

 
5. INTERFACE DEFINTION AS METADATA 

Interfaces are one of the most important aspects for the 
successful integration of a subsystem into a more 

complex system. As a result, special care must be taken 
to define precisely the interfaces in the very early 
phases of the project. The interfaces definition is 
however subject to frequent updates throughout the 
development process. Automation can be of great help 
to reduce the efforts needed to reflect the interface 
changes in the documentation and software. It has been 
found useful to rely on a central data base on which all 
the development and documentation tools are based. 
The data base contains: 

 The list of all telecommands, comprising 
Application ID, description, and list of 
parameters. 

 The list of all outputs of each component of the 
GNC system. 

 The list of all telemetry packets, comprising 
Application ID, description and content, which 
is made of a selection of the outputs of the 
GNC component. 

As depicted on Fig. 3, the centralization of all interface 
information into a unique data base allows updating 
quickly the project and ensuring the overall consistency 
of the interfaces. In particular, the update process takes 
care of:  

 Generating the C++ objects describing the 
inputs and outputs of every GNC component. 

 Generating the C++ functions to generate 
telemetry packets by assembling the outputs of 
the GNC components and to read the content 
of a packet. 

 Creating the Simulink bus describing the data 
flow. 

 Updating the Interface Control Document and 
filling the interface database of the ground 
segment. 

 
6. CONCLUSION 

Bringing a complex GNC experiment on a real mission 
is a challenging task. Two solutions have been found to 
be particularly useful in the quest of optimizing the 
available human resource and reducing the development 
efforts. The direct interfacing of a mature and validated 
existing Simulink-based simulation environment with 
the flight version of a GNC experiment running in a 
different environment allows developing a prototype 
which can be immediately and effortlessly ported to the 
onboard computer. The centralization of all information 
related to the interfaces into a single data base allows 
instead significant gain of productivity when updating 
the software and the documentation. 
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Figure 3: Automated Interface Work using Centralized Data Base 


