

INTEGRATED SOLUTION FOR RAPID DEVELOPMENT
OF COMPLEX GNC SOFTWARE

Jean-Sébastien Ardaens (1), Gabriella Gaias (2)

(1) German Space Operations Center (DLR/GSOC), 82234 Wessling, Germany, jean-sebastien.ardaens@dlr.de
(2) German Space Operations Center (DLR/GSOC), 82234 Wessling, Germany, gabriella.gaias@dlr.de

ABSTRACT

The paper describes the integrated software solution
retained for the design and development of the
AVANTI experiment, a challenging on-board
autonomous formation-flying endeavour to be
conducted in 2016. This solution aims at enabling rapid
prototyping by providing a powerful development,
validation and testing environment, able to support
simultaneously the design and validation of novel
Guidance, Navigation and Control algorithms, the
definition and documentation of the interfaces with the
ground segment, the implementation of the onboard
software using space quality standards, the integration
into an existing satellite bus and all related testing
activities.

1. INTRODUCTION

The possibility to conduct a spaceborne experiment is a
rare and precious opportunity that has to be taken even
in the presence of severe development constraints such
as time pressure or limited human resources.
The Autonomous Vision Approach Navigation and
Target Identification (AVANTI) experiment envisioned
by the German Aerospace Center belongs to such
unique challenging endeavours with limited resources.
AVANTI aims at demonstrating fully autonomous
approach to a non-cooperative object in a safe and fuel-
efficient way using a simple camera. It is implemented
onboard the DLR’s BIROS [1] satellite, scheduled for
launch in 2016, and takes advantage from the fact that
BIROS embarks a third-party picosatellite which will be
ejected in-orbit prior to the start of AVANTI and which
will thus serve as non-cooperative target for the sake of
the experiment
AVANTI is a complex experiment, developed by a
small team (two researchers) in a limited time frame (3
years), making use of several satellite components
(thruster system, attitude control, onboard camera) and
undergoing many constraints (thermal and power
requirements, visibility constraints of the target satellite,
limited onboard resources, safety of the formation,
limited manoeuvring capabilities, ground
communication, telemetry budget).
In addition, the nature of the experiment requires
extensive tests and validation of the algorithms and
software on-ground before the ejection of the
picosatellite. Dealing with a formation of satellites at

low altitude (500km) with very different ballistic
coefficients, it has to be avoided to fix problems - which
could have been detected before - after establishing the
formation because of the high propellant cost required
to maintain the formation.
After a brief description of the envisioned experiment,
the paper proposes some ideas to reduce the
development and validation efforts of such a GNC
experiment while ensuring a smooth integration in the
satellite bus to augment the chance of successful
completion of the experiment.

2. OVERVIEW

2.1. The AVANTI Experiment

As mentioned in the introduction, AVANTI will
demonstrate the capability to perform rendezvous and
receding approaches with respect to a noncooperative
client satellite making use of vision-based angles-only
measurements. The experiment focuses on far- to mid-
range separations (several hundred meters to 10 km).
The capability to approach and rendezvous a non-
cooperative orbiting object in a safe, fuel efficient, and
accurate manner is in fact a key requirement for future
on-orbit-servicing and debris-removal missions. In this
context, the exploitation of angles-only navigation is
appealing since it relies on simple passive low-cost
sensors (e.g., optical or infrared cameras) able to
provide the line-of-sight direction to the target object.
To that end, the star trackers usually employed for
attitude determination can be advantageously used also
to track a space object, if properly oriented [2]. At
sufficiently large separations, where it is acceptable to
approximate the center of mass of the client satellite
with its intensity centroid, angles-only navigation
represents a sufficiently accurate methodology to
accomplish the first phases of the approach. This leads
to a simpler and cheaper design of the servicer satellite,
restricting the sensor complexity to close-proximity
operations, for which more accurate, costly and power-
demanding sensors might be required.
The experiment poses many non-trivial challenges:

 It is not easy to distinguish the target
spacecraft at far range from the surrounding
stars.

 The angles-only relative navigation problem is
weakly observable, so that maneuvers have to

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institute of Transport Research:Publications

https://core.ac.uk/display/31019247?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

be planned and executed to solve the
ambiguity in the range determination.

 These maneuvers are part of a rendezvous
guidance profile, which has to be done in a
safe a fuel-efficient way and which has to be
computed autonomously onboard. This
guidance profile has to be robust in case of
failure of the thruster system and degraded
onboard navigation.

 Since BIROS does not have 3D maneuvering
capability, the spacecraft needs to rotate to
execute a maneuver, in which case the target
spacecraft exceeds the field of view of the
camera.

 Eclipses and camera blinding due to the Sun
affects also the visibility.

 Orienting constantly the star tracker towards
the target picosatellite has some impacts in
terms of power and thermal budget.

 The high differential drag encountered at low
altitude results disturbs greatly the navigation
and control algorithms.

 The BIROS onboard computer has limited
resources which make it not really suited for
image processing.

Further details about the mission can be found in [3].

2.2. Software Architecture

Figure 1 depicts the different components of the
AVANTI software and their interaction with other
systems of the spacecraft. First, the images collected by
the star tracker are processed by the Image Processing
(IMP) module, which identifies the target spacecraft
among all the luminous spots comprised in the image
and delivers line-of-sight measurements to the Relative
Orbit Determination (ROD) module. For simplicity,
IMP uses the knowledge of the onboard attitude to

identify the stars present in the image without the need
of using any lost-in-space star identification algorithm.
ROD implements an extended Kalman filter to estimate
the current relative state of the formation.
The formation state estimate is delivered to the
Maneuver Planing and Commanding module (MAP),
which is in charge of establishing a rendezvous profile.
To that end maneuver commands are sent directly to the
Attitude and Orbit Control System. For simplicity, it has
been decided that MAP takes over the spacecraft
attitude profile throughout the entire experiment, in
order to point the star-tracker toward the expected
position of the picosatellite, to rotate the spacecraft
during the execution of maneuvers and orient the
communication antenna towards the Earth during the
ground contacts.
The AVANTI experiment is implemented as
independent application running on the BIROS onboard
computer, which is based on a PowerPC architecture
and makes uses of an in-house embedded real-time
operating system, called RODOS (Realtime Onboard
Dependable Operating System). The RODOS real-time
kernel provides an integrated object-oriented framework
interface (using C++) to multitasking resource
management. Compared to other existing operating
systems, RODOS focuses on offering the simplest and
smallest interface to user applications, while still
providing all the required functionality and flexibility
(including time management, CPU and memory
management) [4].

3. SIMULATION ENVIRONMENT

3.1. High-Fidelity Simulink-Based Simulator

Such a complex experiment requires an advanced
simulation environment to model precisely the
perturbations acting on the system, understand the
interactions between the different spacecraft component,

Figure 1: AVANTI software architecture and interfaces to space and ground segments.

assess the impact of the error sources, define and verify
the behaviour in case of contingencies, etc. To that end,
the German Aerospace Center can relies on its Multi-
Satellite Simulator (MSS) [5], which was successfully
used in the past to design advanced autonomous
embedded formation-flying systems like the TanDEM-
X Autonomous Formation Flying System [6] or SAFE
experiment [7] using the PRISMA formation flying
technology demonstrator [8]. MSS is based on a
MATLAB/Simulink environment (which is widely
spread in the aerospace community) and comprises a
collection of in-house aerospace components to model
precisely the environment (gravity field, orbital
perturbations, position of the celestial objects, Earth
orientation) as well as key sensors and actuators.

3.2. Hardware-in-the-Loop Testbed

In order to ease the final integration in the satellite bus,
a hardware-in-the-loop testbed in currently under
construction. The objective is to run the flight software
with an engineering model of the star tracker. To that
end, the field of the view of the camera is simulated
using a monitor in a black chamber, so that the
interfaces to the camera can be verified.

4. INTERFACING SIMULINK WITH THE
FLIGHT SOFTWARE

4.1. Motivations

In order to reduce the development efforts, it is tempting
to begin very early with the implementation of the flight
software, while the underlying core algorithms are still
under investigation and development. This approach
presents the advantage of providing well in advanced
relevant system information (telemetry budget, interface
definition, system behaviour, etc.) to the other partners
of the project.
On the other hand, the development of novel complex
GNC algorithms might require the use of an advanced
and mature Simulink-based development environment.
This poses severe constraints in terms of software
design, since Simulink does not support all the features
of object-oriented programming (direct call of a class
method, polymorphism, handling of events, etc.).
Similarly, the RODOS operating system is not designed
to be triggered by an external system like Simulink (in

particular in what concerns the timing and threads
handling).

4.2. Stub Components

The retained solution is to emulate the key
functionalities of the onboard operating system (timing,
threading, hardware communication, etc.) under on the
host computer to create an image of the onboard
software in the form of a dynamic library, which is then
called by the different S-Functions composing the
Simulink simulation. Functionalities which are not
needed for the simulation are replaced by stubs.
Figure 2 provides a graphical representation of this
approach. An almost empty early prototype of the flight
software is created when starting designing the
algorithms. This draft software is implemented using the
target programming language (C++) and relies on the
libraries provided by the target operating system
(RODOS), which provides essential functionalities:
access to the other devices of the satellites bus, timing
and threading functions, handling of telemetry and
telecommands, etc.
The flight software is then compiled as independent
dynamic library on the host computer. At this stage, it is
necessary to emulate all the functionalities of the
operating system needed by the flight software and
replace them by stubs if necessary.
Step by step, the flight software grows and becomes
more mature while the algorithms are developed. The
main advantage of this approach is that the flight
software does not need to be adapted for the sake of the
simulations. In fact, it uses the same C++ objects and
methods as the ones available on the satellite bus. On
the host PC, the stubs are implemented as gateways to
the Simulink blocks. For example, a Simulink model of
a GPS receiver computes a simulated GPS navigation
fix, which is sent to the stub of the object instance
interfacing the GPS receiver. The stub fed with
simulation data provides them when requested by the
flight software as if a data from real hardware
components were read.

4.3. Task Execution Scheduling

The difficulty here is that the routines provided by the
target operating system might be fundamentally

Figure 2: Integration of Simulink and exogen software

incompatible with a Simulink approach. In RODOS, an
application is implemented as infinite loop whose time
execution is controlled by the operating system:

class MyApplication: public Thread {
public:
 MyApplication (): Thread("name", priority) { }
 void init() { /*initialization*/}
 void run() {
 TIME_LOOP(offset, period) {
 /*work*/
 }
 }
}

Here, TIME_LOOP is a function provided by the operating
system to execute the content of the loop at a desired
frequency. The problem is that Simulink is designed to
take over the task scheduling, i.e. Simulink decides
when to execute the content of loop (called a step).
The solution which has been retained is to replace the
RODOS thread object by a dedicated thread object
running on the host platform which is completed by
additional methods to control the execution of the loop
externally. If OSThread represents a typical thread object
of the host operating system, this translates simply into:

class Thread: public OSThread {
public:
 // executes the content of the loop
 void doStep() {step=true;}
 // returns the number of loop executions
 long getCount(){return count;}
protected:
 // returns true when the loop must be executed
 bool waitForTrigger()
 {while(!step){};step=false;}
 long count;
 bool step;
};

As a result, it is enough to redefine the function
TIME_LOOP as:

#define TIME_LOOP(begin,period) for (count=0;
waitForTrigger();count++)

to control the thread execution from Simulink. Since
Simulink and the image of the flight software are
running in different threads, it is required to wait that
the content of the loop has been completely executed to
consider that a step has been done. If application stands
for one piece of functionality of the flight software, the
step function of the corresponding Simulink block
contains simply:

long count=application.getCount();
application.step();
while (count == application.getCount()) {};

5. INTERFACE DEFINTION AS METADATA

Interfaces are one of the most important aspects for the
successful integration of a subsystem into a more

complex system. As a result, special care must be taken
to define precisely the interfaces in the very early
phases of the project. The interfaces definition is
however subject to frequent updates throughout the
development process. Automation can be of great help
to reduce the efforts needed to reflect the interface
changes in the documentation and software. It has been
found useful to rely on a central data base on which all
the development and documentation tools are based.
The data base contains:

 The list of all telecommands, comprising
Application ID, description, and list of
parameters.

 The list of all outputs of each component of the
GNC system.

 The list of all telemetry packets, comprising
Application ID, description and content, which
is made of a selection of the outputs of the
GNC component.

As depicted on Fig. 3, the centralization of all interface
information into a unique data base allows updating
quickly the project and ensuring the overall consistency
of the interfaces. In particular, the update process takes
care of:

 Generating the C++ objects describing the
inputs and outputs of every GNC component.

 Generating the C++ functions to generate
telemetry packets by assembling the outputs of
the GNC components and to read the content
of a packet.

 Creating the Simulink bus describing the data
flow.

 Updating the Interface Control Document and
filling the interface database of the ground
segment.

6. CONCLUSION

Bringing a complex GNC experiment on a real mission
is a challenging task. Two solutions have been found to
be particularly useful in the quest of optimizing the
available human resource and reducing the development
efforts. The direct interfacing of a mature and validated
existing Simulink-based simulation environment with
the flight version of a GNC experiment running in a
different environment allows developing a prototype
which can be immediately and effortlessly ported to the
onboard computer. The centralization of all information
related to the interfaces into a single data base allows
instead significant gain of productivity when updating
the software and the documentation.

7. REFERENCES

1. Reile, H., Lorenz E. & Terzibaschian, T. (2013),
The FireBird Mission - A Scientific Mission for
Earth Observation and Hot Spot Detection, Small
Satellites for Earth Observation, Digest of the 9th
International Symposium of the International
Academy of Astronautics, Wissenschaft und
Technik Verlag, Berlin, Germany.

2. Jørgensen, J. L., Denver T., & Jørgensen, P. S.
(2004), Using an Autonomous Star Tracker as
Formation Flying Sensor, Fourth Symposium on
Small Satellites Systems and Services, European
Space Agency, La Rochelle, France.

3. Gaias, G., Ardaens, J.-S. & D’Amico, S. (2014),
The Autonomous Vision Approach Navigation and
Target Identification (AVANTI) Experiment:
Objectives and Design, 9th International ESA
Conference on Guidance, Navigation & Control
Systems, Porto, Portugal.

4. Montenegro S. (2005), RODOS, DLR-Network
Centric Core Avionics TN 05-08, Deutsches
Zentrum für Luft- und Raumfahrt, Germany.

5. Gaias, G., Ardaens, J.-S. & D’Amico, S. (2011),

Formation, Formation Flying Testbed at DLR’s
German Space Operations Center (GSOC), 8th
International ESA Conference on Guidance,
Navigation & Control Systems, Karlovy Vary,
Czech Republic.

6. Ardaens, J.-S. & D’Amico, S., Spaceborne
Autonomous Relative Control System for Dual
Satellite Formations (2009), Journal of Guidance
Control and Dynamics, Vol.32, No.6, pp:1859-
1870, doi: 10.2514/1.42855.

7. D’Amico, S., Ardaens J.-S. & Larsson R.,
Spaceborne Autonomous Formation Flying
Experiment on the PRISMA Mission (2012),
Journal of Guidance Control and Dynamics,
Vol.35, No.3, pp:834-850, doi: 10.2514/1.5563.

8. Bodin, P., Noteborn, R. , Larsson, R., Karlsson, T.,
D’Amico, S., Ardaens, J. S. , Delpech, M. &
Berges, J. C. (2012), Prisma Formation Flying
Demonstrator: Overview and Conclusions from the
Nominal Mission, No. 12-072, 35th Annual AAS
Guidance and Control Conference, Breckenridge,
Colorado, USA.

Figure 3: Automated Interface Work using Centralized Data Base

