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Abstract

An advanced model-based aircraft design system needs to predict the prop-
erties of several aircraft configurations as early as possible in the design
process. Given the fact that the first steps of the design process apply
mostly historical-based design methods, the domain of definition of con-
ceptual design is limited, and sophisticated predictions are possible only
with the aid of physics-based analysis models that are usually employed
at the later, preliminary design stage. However, neither sufficient infor-
mation is available at the very early design stages to trigger physics-based
analysis nor does the large number of necessary evaluations permit the
high computational cost of these methods. The present study focused
on the question of whether it is possible to include physics-based rather
than historical-based methods during conceptual design with a compa-
rable level of complexity and computational cost. Therefore, the study
developed an extensible multi-fidelity loop that bridged the information
gap between conceptual design and preliminary design. In a subsequent
step, the multi-fidelity loop was coupled in a workflow that encompasses a
surrogate modeling method based on symbolic regression. The workflow
created a global surrogate of the multi-fidelity loop that had low complex-
ity and high accuracy. The proposed body of methods was applied to two
design studies resulting in new, physics-based equations for the Oswald
factor, and the mass of a conventional wing that are suitable for very early
design stages. Furthermore, a strut-braced wing was examined with the
aid of the multi-fidelity workflow to enable the conceptual design of such
a configuration. Hence, the study significantly extended the domain of
definition of conceptual design and outlined topics for related future re-
search.





Contents

1 Introduction 1

1.1 Situation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 State of the Art 17

2.1 Conceptual Design . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Design Environments . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Multi-Fidelity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 Surrogate Models . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Multi-Fidelity Workflow 51

3.1 Conceptual Design . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Multi-Fidelity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3 Design of Experiments . . . . . . . . . . . . . . . . . . . . . . . 68

3.4 Symbolic Regression . . . . . . . . . . . . . . . . . . . . . . . . 75

4 Design Studies 89

4.1 Oswald Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2 Wing Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.3 Strut-Braced Wing Mass . . . . . . . . . . . . . . . . . . . . . . 121

5 Discussion 131

6 Conclusion 137

vii



Contents

Bibliography 144

A Complexity 159

B Validation Data 161

C Design of Experiments 167

D Oswald Factor 171

E Wing Mass 175

F Strut Braced Wing Mass 179

viii



Figures

1.1 Simplified design process . . . . . . . . . . . . . . . . . . . . . 2

1.2 Interaction among properties and characteristics . . . . . . . . 5

1.3 Closed multi-fidelity loop . . . . . . . . . . . . . . . . . . . . . 9

1.4 Uni-directional and central model approach . . . . . . . . . . 10

1.5 Components of the proposed multi-fidelity workflow . . . . . 12

1.6 Schematic symbolic regression approach . . . . . . . . . . . . 14

2.1 Dimensions of aircraft design . . . . . . . . . . . . . . . . . . . 18

2.2 Design environment . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Levels of fidelity in aerodynamic analysis of a BWB . . . . . . 34

2.4 Collaborative aircraft design system, [141] . . . . . . . . . . . 37

2.5 Motivations for multi-fidelity . . . . . . . . . . . . . . . . . . . 38

2.6 Artifical neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.7 Artificial neural network . . . . . . . . . . . . . . . . . . . . . . 48

3.1 Multi-fidelity workflow . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Object oriented structure of VAMPzero . . . . . . . . . . . . . 57

3.3 Calculation approaches in conceptual design . . . . . . . . . . 58

3.4 Qualitative dependencies of the reference area . . . . . . . . . 60

3.5 Sensitivities of the reference area . . . . . . . . . . . . . . . . . 62

3.6 Double trapezoid wing planform . . . . . . . . . . . . . . . . . 64

3.7 Three-dimensional geometry initialized by VAMPzero . . . . 65

3.8 Comparison of level of detail of the SFC . . . . . . . . . . . . . 67

3.9 Latin square with three elements . . . . . . . . . . . . . . . . . 69

3.10 Design space coverage as three dimensional plot . . . . . . . . 71

3.11 Design space coverage as scatter-matrix plot . . . . . . . . . . 72

3.12 Histogram of x1 distribution . . . . . . . . . . . . . . . . . . . 73

3.13 Evolutionary algorithm principle . . . . . . . . . . . . . . . . . 75

3.14 Surrogate models for Shevell . . . . . . . . . . . . . . . . . . . 81

3.15 Surrogate models for Raymer . . . . . . . . . . . . . . . . . . . 83

3.16 Surrogate models for Raymer . . . . . . . . . . . . . . . . . . . 85

ix



Figures

4.1 Finite wing as lifting line . . . . . . . . . . . . . . . . . . . . . . 91

4.2 C1 as a function of λ and AR, [54] . . . . . . . . . . . . . . . . 95

4.3 δ depending on the taper ratio, [49] . . . . . . . . . . . . . . . 97

4.4 Design of experiments: Oswald factor . . . . . . . . . . . . . . 99

4.5 Multi-fidelity loop: Oswald factor . . . . . . . . . . . . . . . . 100

4.6 Vortex lattices on double trapezoid wing . . . . . . . . . . . . 101

4.7 Verification: Oswald factor . . . . . . . . . . . . . . . . . . . . . 103

4.8 Surrogate model: Oswald factor . . . . . . . . . . . . . . . . . 104

4.9 Validation: Oswald factor . . . . . . . . . . . . . . . . . . . . . 106

4.10 Multi-fidelity loop: Wing mass . . . . . . . . . . . . . . . . . . 114

4.11 Design concept: Wing mass . . . . . . . . . . . . . . . . . . . . 116

4.12 Verification: Wing mass . . . . . . . . . . . . . . . . . . . . . . 118

4.13 Surrogate model: Wing mass . . . . . . . . . . . . . . . . . . . 119

4.14 Validation: Wing mass . . . . . . . . . . . . . . . . . . . . . . . 121

4.15 Exisiting approaches: Strut-braced wing . . . . . . . . . . . . . 122

4.16 Design concept: Strut-braced wing . . . . . . . . . . . . . . . . 125

4.17 Surrogate model: Strut-braced wing . . . . . . . . . . . . . . . 128

4.18 Verification: Strut-braced wing . . . . . . . . . . . . . . . . . . 129

5.1 Historic vs. physics-based domain of definition . . . . . . . . 132

6.1 Iterative multi-fidelity workflow . . . . . . . . . . . . . . . . . 143

x



Tables

2.1 Conceptual aircraft design performance criteria . . . . . . . . 22

2.2 Qualitative comparison of conceptual design models . . . . . 24

2.3 Level of fidelity classification . . . . . . . . . . . . . . . . . . . 27

2.4 Design environment performance criteria . . . . . . . . . . . . 29

2.5 Qualitative comparison of design environments . . . . . . . . 33

2.6 Performance criteria for surrogate models . . . . . . . . . . . . 41

2.7 Experimental error classification . . . . . . . . . . . . . . . . . 42

3.1 Dimensionless constants . . . . . . . . . . . . . . . . . . . . . . 65

3.2 Space fillingness of DOE algorithms . . . . . . . . . . . . . . . 74

3.3 Qualitative comparison of surrogate models . . . . . . . . . . 87

4.1 Existing approaches: Oswald factor . . . . . . . . . . . . . . . 97

4.2 Domain of definition: Oswald factor . . . . . . . . . . . . . . . 98

4.3 Verification: Oswald factor . . . . . . . . . . . . . . . . . . . . . 103

4.4 Existing approaches: Wing mass . . . . . . . . . . . . . . . . . 111

4.5 Domain of definition: Wing mass . . . . . . . . . . . . . . . . . 112

4.6 Verification: Wing mass . . . . . . . . . . . . . . . . . . . . . . 118

4.7 Domain of definition: Strut-braced wing . . . . . . . . . . . . 126

4.8 Verification: Strut-braced wing . . . . . . . . . . . . . . . . . . 129

A.1 Complexity cost for various building blocks . . . . . . . . . . 159

B.1 Validation data: A300, A310, A318, A319, A320 . . . . . . . . 162

B.2 Validation data: A321, A332, A333, A342, A345 . . . . . . . . 163

B.3 Validation data: A346, A380, B707, B717, A732 . . . . . . . . . 164

B.4 Validation data: B734, B735, B737, B738, B744 . . . . . . . . . . 165

B.5 Validation data: B752, B753, B762, B763, B772 . . . . . . . . . . 166

C.1 Full factorial sample plan . . . . . . . . . . . . . . . . . . . . . 167

C.2 Monte Carlo sample plan . . . . . . . . . . . . . . . . . . . . . 168

C.3 Latin hypercube sample plan . . . . . . . . . . . . . . . . . . . 169

xi



Tables

D.1 Oswald factor: sample points . . . . . . . . . . . . . . . . . . . 173

D.2 Oswald factor: verification points . . . . . . . . . . . . . . . . . 174

E.1 Wing mass: sample points . . . . . . . . . . . . . . . . . . . . . 177

E.2 Wing mass: verification points . . . . . . . . . . . . . . . . . . 178

F.1 SBW mass: sample points . . . . . . . . . . . . . . . . . . . . . 186

F.2 SBW mass: verification points . . . . . . . . . . . . . . . . . . . 187

xii



Glossary

Acronyms
3DOPT 3-Dimensional Design Optimization Code
AAA Advanced Aircraft Analysis
ANN Artificial Neural Networks
BPR Bypass Ratio
BWB Blended Wing Body
CAD Computer Aided Design
CDA Complex-step Derivative Approximation
CEASIOM Computerised Environment for Aircraft Synthesis and Integrated

Optimisation Methods
CFD Computational Fluid Dynamics
CFRP Carbon fiber reinforced plastic
CPACS Common Parametric Aircraft Configuration Schema
DACE Design and Analysis of Computer Experiments
DLR German Aerospace Center
DOE Design of experiments
EIS Entry into service
FLOPS Flight Optimization System
HEB High-dimensional, Expensive (computationally), Blackbox
HSCT High Speed Civil Transport
KBE Knowledge Based Engineering
MDAO Multi-disciplinary Design Analysis and Optimization
MDOPT Multi-Disciplinary Design Optimization Framework
MICADO Multidisciplinary Integrated Conceptional Aircraft Design and

Optimization
MRO Maintenance, Repair and Overhaul
NASA National Aeronautics and Space Administration
ONERA Office national d’Ã©tudes et de recherches aÃ©rospatiales
PASS Program for Aircraft Synthesis Studies
PrADO Preliminary Aircraft Design and Optimisation Program

xiii



Glossary

RANS Reynolds averaged Navier Stokes
RCE Remote Component Environment
RDS Raymer Design Software
SAM Structural and Aeroelastic Analysis Module
SFC Thrust Specific Fuel Consumption
SimSAC Simulating Aircraft Stability And Control Characteristics for Use

in Conceptual Design
SQL Structured Query Language
SUGAR Subsonic ultra green aircraft concept
TLAR Top level aircraft requirements
TLU Threshold Logic Unit
VAMP Virtual Aircraft Multidisciplinary Analysis and Design Processes

Indices
1, . . . , k Number of design variables
1, . . . , m Model order
1, . . . , n Number of samples

Mathematical Symbols
β Regression coefficients
ε Model error
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1 Introduction
We are searching for some kind
of harmony between two
intangibles: a form which we
have not yet designed and a
context which we cannot
properly describe.

(Christopher Alexander)

Within his book “Notes on the synthesis of form,” the architect Alexan-
der [1] outlines some of the difficulties faced by designers during the cre-
ative process of developing a new product. Development in such a case
can be substituted by synthesis, i.e., the process of determining a product’s
form from the context it is supposed to fit.

Alexander’s work was a major driving force of the introduction of design
patterns and has hence had great influence on software development. De-
sign patterns describe an abstract process for solving design tasks. One
might argue that Alexander therefore implies that the automation of design
tasks is possible because the solution to each design task can be reduced
to a predefined pattern; however, this is a contentious statement among
engineers.

Influenced by the work of Alexander, the following section of this chapter
outlines the current situation in aircraft design and the subsequent section
derives the problem statement that led to this research. Thereafter, the
scientific approach is explained in more detail. Finally, the last section of
this chapter provides an overview of the structure of this dissertation.

1.1 Situation

Aircraft design is an example of development of a highly complex prod-
uct, and the gap between form and context spreads widely. In engineering,
form and context are better known as “configuration” and “requirements,”
respectively. A configuration describes the specific, technical arrangement
of components to fulfill a set of requirements, and hence, the term “con-
figuration” encompasses the overall geometric layout as well as all internal
aspects of the aircraft such as the system layout. The development of an
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1 Introduction

aircraft configuration involves several process steps. When a new config-
uration finally takes off for the first time, several years, or even decades,
may have passed since the time of definition of the first requirements.

As shown in figure 1.1, in the context of the present study, the design pro-
cess is grouped into different stages: definition of the top level aircraft
requirements (TLAR), conceptual design, preliminary design, and finally,
detailed design and entry into service (EIS). Apart from the requirements,
which should be independent of the design process, bi-directional inter-
actions occur at all levels of the design process more often than not in an
iterative fashion. The focus of this study is limited to the interaction among
requirements, conceptual design, and preliminary design.

TLA
R

 

EIS 

Figure 1.1: Simplified design process

Requirements

From a manufacturer’s perspective, a good design results in an aircraft
configuration that generates high incomes at a low production cost. Conse-
quentially, requirements are derived mostly from customer demands. Air-
lines, as the operators (and often owners) of the aircraft, decide to invest
into a new aircraft configuration in accordance with their economic and
ecological goals. The operator’s decision is constrained by other stakehold-
ers of the air transportation system, such as the airport, air traffic manage-
ment agencies and regulatory agencies, as outlined by Weiss et al. [138].
However, the designer seldom has a major impact on the requirements, as
these stem from a context he/she can hardly influence. At the most, the
designer assists with the adaption of the requirements so that a proposed
aircraft configuration may exploit its potential to the best possible extent.
This is, more often than not, an iterative process.

The most important requirements relate to the number of passengers and

2



1.1 Situation

the design range and belong to the performance properties of the aircraft.
These requirements are key factors for satisfying the requirements of the
airline’s market. Other properties such as the cruise speed, expected main-
tenance cost, cabin flexibility, and fuel consumption differentiate the qual-
ity of a configuration.

In some cases, strategic decisions produce requirements that are merely
connected to performance characteristics. For example, some products are
designed for commonality rather than for optimum performance, e.g., a
mid-range aircraft family. Furthermore, strategic decisions may be related
to technology development and emerge as additional requirement, e.g., the
introduction of CFRP materials. It is therefore possible that requirements
are not preferentially driven by primary product properties, e.g., operating
cost.

Conceptual Design

As the name suggests, the goal of conceptual design is to derive a concept,
i.e., to select and size an aircraft configuration that promises to be the most
valuable candidate for the given requirements. Therefore, La Rocca [68] de-
fines it as a diverging process. At this design stage, a multitude of concepts
are derived that are subsequently compared, developed, and selected. The
results of conceptual design include an overall geometric description, per-
formance properties such as fuel consumption, and a first estimate of the
mass breakdown. Subsequently, the design process continues with models
of increasing fidelity that are applied to fewer concepts.

Given the fact that only a small amount of information, i.e., the require-
ments, is available, conceptual design may include only simple methods.
For example, conceptual design applies empirical methods that rely on
historical data, e.g., a wing mass estimation based on the wing planform.
In addition, simplified physics-based methods such as the general range
equation facilitate the quantification of the aircraft characteristics.

As the baseline concept(s) originates from the conceptual design stage, im-
portant strategic decisions are made at this point. For example, the fuse-
lage diameter and shape are crucial design variables that need to be fixed
early in the design process and have a large impact on the overall design.

3



1 Introduction

As pointed out by Stark et al. [130, 11] large sums allotted to the overall
development cost are fixed along with these decisions.

Preliminary Design

Since conceptual design provides more detailed information to the subse-
quent preliminary design stage, it enables the use of higher fidelity analy-
sis models. Preliminary design aims to derive the properties of the aircraft,
e.g., lift over drag, from its characteristics, e.g., wing planform, that are a
result of the previous design step. As the number of concepts that need to
be evaluated is already reduced at the conceptual design stage, the compu-
tational cost per analysis in preliminary design may increase.

Hence, preliminary design employs mostly physics-based models. For ex-
ample, wing mass estimations are based on beam- or shell-theory finite
element models and rely on detailed characteristics, i.e., a sufficient geo-
metric description and loads estimation. Three or six degree of freedom
models are applied for mission analysis as well as stability and control.
The level of fidelity in all other disciplines scales accordingly. In addition,
disciplines and physical effects that are not part of conceptual design, e.g.,
aeroelastics, start to influence the aircraft configuration during preliminary
design.

The design stage subsequent to preliminary design, detailed design, is al-
ready out of the scope of the present study. However, it is important to
establish a differentiator between the two design stages. In preliminary
design, the so-called primary structures of the aircraft are described by
physics-based analysis models, e.g., a skin panel on a wing that is repre-
sented in a finite element model. Secondary1 structures are usually ex-
pressed by empirics, e.g., hydraulic pipes and mounts, and hence, sec-
ondary structures are only included implicitly in the analyses methods. In
detailed design, most of the components of the aircraft are modeled ex-
plicitly. The level of detail of the aircraft representation rises, and so does

1 In accordance with the proposed aircraft configuration, different technical aspects may be
examined at a higher level of detail at an earlier design stage. For example, the design
of a more electric aircraft depends on a detailed system analysis prior to other aspects of that
configuration. Hence, the distinction between primary and secondary structures of an aircraft
needs to be adapted with respect to the configuration.

4



1.1 Situation

the level of confidence of the analysis, e.g., the accuracy of the mass break-
down.

Multi-Fidelity

With the interaction of the different design phases, the term multi-fidelity
needs to be defined. Two different definitions of this term exist and need
to be distinguished to thoroughly derive the problem statement.

A well-known definition and field of application for multi-fidelity is mono-
disciplinary, i.e., limited to one domain of physical modeling. As an exam-
ple of mono-disciplinary, multi-fidelity aerodynamic analysis uses models
based on different levels of fidelity, such as vortex-lattice, Euler and RANS
methods. An Euler method may be used to determine approximate proper-
ties of the configuration. Subsequently, at selected design points the more
expensive RANS methods are applied to correct the initial results.

P
R

O
PERTIES 

RANGE 

PAYLOAD 

CRUISE SPEED 

FIELD LENGTH 

C
H

A
R

A
C

TER
ISTIC

S 

SPAN 

ASPECT RATIO 
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VOLUME 

SYNTHESIS 

ANALYSIS 

Figure 1.2: Interaction among properties and characteristics

This study applies an inter-disciplinary definition of multi-fidelity, which is
based on the interaction of conceptual design (synthesis) with preliminary
design (analysis), as shown in figure 1.2. Weber et al. [136, 137] spec-
ify the terms “analysis” and “synthesis” in an engineering context. Here,
analysis deduces the properties of a product from its characteristics, and
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1 Introduction

synthesis executes vice versa2. With the requirements taken as an initial
set of properties, conceptual design derives the first characteristics of the
aircraft, e.g., the wing reference area from the required takeoff field length.
Preliminary design applies these characteristics to derive properties again,
albeit at a higher level of detail, e.g., lift induced drag from the given wing
planform. Several configurations with different characteristics may share
similar properties.

1.2 Problem Definition

The existing design process assesses new technologies unreliably. In the
initial phase, conceptual design often derives aircraft characteristics on
the basis of assumptions that have origins in pre-existing designs, i.e.,
are historical-based3 and hence unreliable for evolving technologies. For
example, Raymer and Roskam [105, 114] outline handbook methods for
the thrust specific fuel consumption that relate to engines with small to
medium bypass-ratios. State of the art technologies such as engines with
high bypass-ratios can be described only by (often illegitimate) extrapola-
tions of these methods.

For example, several handbook methods exist for the mass estimation of
an aircraft’s wing and chapter 4 discusses some of these in more detail. All
of the available handbook methods take into account the sweep angle of
the wing. However, the sweep angle is usually included in the form of one
over the cosine of the sweep angle, and hence, the formulation is symmet-
ric with respect to the unswept wing. While the handbook methods predict
the wing mass of backward-swept configurations in a reasonable manner

2 The interpretation of “analysis” and “synthesis” is controversial. The word analysis orig-
inates from the Greek word analusis, i.e., to unloose or break something up. The Oxford
Dictionary [131] defines “analysis” as a detailed examination of the elements or structure of sth.
The contrasting term “synthesis” is defined as the combination of components or elements to form
a connected whole. Weber et al. extend these abstract definitions to fit into the context of a
design process.

3 The terms “empirical” and “historical” need to be distinguished clearly. The Oxford Dictio-
nary [131] defines empirical as based on, concerned with, or verifiable by observation or experience
rather than theory or pure logic. Hence, a decision driven by empirics during the design of an
unconventional aircraft configuration may still result in a suitable solution; for example, an
aerodynamics specialist may determine a well-designed solution for a wing-strut intersection
based on his/her experience in belly fairings. On the contrary, a decision driven by analy-
sis methods based on historical data and pure statistical observations cannot provide valid
information for a design space outside of its initial data set.
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1.2 Problem Definition

and are proven by substantial data, whether the handbook methods are ap-
plicable for forward-swept wings remains questionable. Given the fact that
a forward swept wing made from isotropic materials suffers from an angle
of attack increase at the wing tip under positive loads (wash-in) rather than
a decrease (wash-out) and that this effect must be countered by additional
structures and hence weight, the symmetric formulation seems unreliable
and prohibits extrapolation.

Technology factors are often applied to enable the assessment of new tech-
nologies. An increase in the bypass-ratio is a result of evolving technolo-
gies, and first assumptions of the engine performance based on technology
factors may be possible. However, the application of simple technology fac-
tors alters existing design methods, but comes short of modeling physical
dependencies. Whether or not radical changes in aircraft concepts, such as
forward-swept or strut-braced wings, can be handled by technology factors
remains questionable.

Since technology factors and extrapolation are no appropriate approaches
for the assessment of new technologies and unconventional configurations,
detailed physics-based analysis is necessary. These analyses are usually
conducted at the preliminary design stage, posteriori to conceptual design.
However, as preliminary design determines the properties of the aircraft
based on the inputs derived at the conceptual design stage, the design
process remains prone to errors.

A standalone application of physics-based analysis models fails on account
of insufficient information4 being available in the very early design phases.
Further, physics-based analysis is often time intensive and may be unsuit-
able for the number of design loops that are necessary to quantify the prop-
erties of an aircraft configuration. In this context, physics-based analysis
models seldom cover the aspects of overall aircraft design. For example, a
physics-based estimation of wing masses coupled with aerodynamic anal-
ysis provides detailed estimates of certain performance properties of the
aircraft. However, this analysis step does not include any iterative design

4 In this context “complexity” may be a synonym for “information”. Toreenbeek [135] states
that conceptual design is characterized by cyclic design improvements and complexity increasing in
time. As the increment may not only be in granularity, i.e., expressing a piece of information
at a higher level of detail but also additive, i.e., taking into account pieces of information not
available at the previous design step, the term “information” is chosen for this study.
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loop, and hence, it is unknown whether the design is still valid and whether
it fulfills the top level aircraft requirements or not.

In summary, physics-based analysis is necessary to reliably quantify the
impact of new technologies and concepts in aircraft design, and it should
be included as early as possible in the design process. However, two major
obstacles to the implementation of physics-based analysis can be identified:

Information: The existing information gap between requirements and pre-
liminary design needs to be bridged to enable physics-based analysis.

Time: Even if the information gap can be bridged, physics-based analysis
remains extremely time consuming owing to the large number of
evaluations necessary in conceptual aircraft design.

The goal of this work is to develop, test, and validate techniques to im-
prove the quality of conceptual design methods to such an extent that these
methods reflect the behavior of physics-based analysis. Furthermore, the
low computational cost and preferentially, the high transparency of con-
ceptual design methods will be maintained.

1.3 Solution

This study proposes the development of an extensible multi-fidelity loop
that bridges the information gap between the conceptual design and pre-
liminary design stages. In a subsequent step, the multi-fidelity loop is cou-
pled to a surrogate modeling method based on symbolic regression. The
workflow creates a global surrogate of the physics-based analysis part of
the multi-fidelity loop at low complexity and high accuracy. The following
sections outline the selected methods in brief.

Multi-Fidelity Loop

A seamless multi-fidelity loop, as depicted in figure 1.3, is proposed with
the aim of bridging the information gap between requirements and physics-
based analysis. It is composed of requirements, a central data model, a
conceptual design model, and several higher fidelity physics-based analy-
sis models.

The multi-fidelity loop starts from a set of requirements. These are a mix
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Figure 1.3: Closed multi-fidelity loop

of both properties, e.g., range and payload, and a few characteristics, e.g.,
wing sweep. The additional characteristics serve as constraints to define
the location within the design space at which the design is performed. For
example, the wing sweep can be included to examine the effects of forward
swept wings, a technology on which research is ongoing but very few con-
ceptual design models have delivered satisfying results. Without further
definition of these constraints, the subsequent conceptual design would al-
ways drift toward a conventional aircraft configuration that fulfills the top
level aircraft requirements, since no other solutions are available within its
database. The constraints are often related to the aircraft geometry, but
may include any technical parameter, e.g., the aspects of a hybrid laminar
flow system.

The requirements are stored in a central data model that transfers informa-
tion during all design steps. The model is known as the Common Para-
metric Aircraft Configuration Schema (CPACS), and its development was
an ongoing task during the present study, as described in [15, 93]. A cen-
tral model significantly reduces the number of necessary interfaces within
the multi-fidelity loop. Figure 1.4 shows these benefits in comparison to
an n(n − 1) approach. CPACS stores not only product information, e.g.,
geometry, mass, and performance, but also process information, e.g., tool-
specific settings such as convergence criteria. It is therefore possible for
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analysis models to exchange information amongst themselves to control
the development process, e.g., a thrust scaling for the engine performance
map.

(a) n(n− 1) interfaces (b) 2n interfaces

Figure 1.4: Uni-directional and central model approach

In the next step of the design process, a conceptual design is performed.
In this phase, historical-based and simplified physics-based methods, also
known as handbook methods, are applied. This complies with state of the
art conceptual design codes such as FLOPS by McCullers [86] and PASS of
Stanford University [6, 66]. At this stage, the properties and characteristics
lead to the sizing of a new configuration. It can be assumed, that con-
ceptual design methods return only disputable results for unconventional
configurations as the design space explored is often outside of the underly-
ing database of the historical methods. Hence, one of the key requirements
of the conceptual design model is stability, i.e., return not necessarily ac-
curate but sufficient information to trigger further analysis, as its results
will in any case be overwritten by physics-based methods in later design
steps. Therefore, it is more important to transfer the necessary informa-
tion to bridge the gap toward the preliminary design stage than to obtain
reliable results at this stage.

In addition to stability, flexibility is a key requirement of a conceptual de-
sign code in the context of this study. Conversely, flexibility is important
due to the rapidly changing requirements of the aircraft design process,
e.g., a design for a specified range or a redesign with a given fuel vol-
ume. Alternatively, at a later point of the study, the integration of results
that have their origin in higher-fidelity analysis models requires dynamic
changes in the behavior of the conceptual design model, e.g., the inclu-
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sion of an aerodynamic performance map. Prior to this study none of the
available conceptual design codes could satisfy these requirements.

The results of conceptual design describe a configuration, i.e., the overall
geometric layout, mass and system breakdown, but they usually deliver
insufficient information to trigger physics-based analysis. This is most no-
ticeable for two-dimensional geometries (on a conceptual design level) and
three-dimensional geometries (a necessity for most physics-based analy-
ses). Therefore, the available information is transformed and extended to
initialize the physics-based analysis by knowledge based engineering tech-
niques. Along with the product information, process information is also
exported for further analysis. In the course of this study, a new conceptual
design model named VAMPzero has been developed that performs these
tasks.

Several preliminary analysis models are connected to CPACS, most of which
obtain sufficient input from VAMPzero. Zill et al. [141] demonstrated that
these models can be triggered as either standalone (decoupled) models or
in a complete design process. It is therefore possible to trigger analysis
models individually without the overhead of an overall aircraft design pro-
cess. Owing to the nature of preliminary design, the results obtained from
the models are more detailed, e.g., engine performance maps or aerody-
namic characteristics, and are a function of various other parameters.

Subsequently, results from the preliminary design level are integrated at
the conceptual design level to reflect their impact on the overall aircraft de-
sign. In some cases this can be achieved by simple value replacements, e.g.,
overwriting the wing mass estimated by handbook methods with the result
of preliminary design. In other cases, calculation methods need to be re-
placed, for example, to take into account additional information contained
in an engine performance map. This leads to the replacement of the orig-
inal conceptual design methods; for example the method that determines
the thrust specific fuel consumption from the bypass ratio of the engine is
replaced with a method that interpolates in the engine performance map.
In this way, the detailed information of the physics-based analysis becomes
interpretable on the conceptual design level.

With the aid of a multi-fidelity loop, the information gap between require-
ments and physics-based analysis may be bridged. Hence, at an early
design stage, new technologies and concepts may be quantified reliably.
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However, the computational cost of the process remains driven mostly by
the physics-based analysis and may be very high for the large number of
evaluations necessary in conceptual aircraft design. Hence, a subsequent
step must address the obstacle of computational cost.

Surrogate Modeling

In the course of this study, surrogate modeling is applied to overcome the
remaining issue of high computational cost of physics-based analysis. The
idea is to construct surrogate models of the multi-fidelity loop and include
them in the conceptual design model.

The proposed solution, termed multi-fidelity workflow, follows a sequen-
tial process of three steps: a) a design of experiments (DOE), b) the multi-
fidelity loop and c) a surrogate model. The result is a surrogate model that
reflects the behavior of physics-based analysis at very low computational
cost and that is transparent and can be included in the conceptual design
model. Figure 1.5 shows the structure of the workflow.

Figure 1.5: Components of the proposed multi-fidelity workflow

This workflow is explained on the basis of an example of a design study
that quantifies the Oswald or span efficiency factor. Within a given de-
sign space, several wing geometries are explored by a DOE. The initial
configuration is created by a conceptual design model and transferred to
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a physics-based analysis model to determine the aerodynamic properties.
The results are fed back to the conceptual design model to reduce their
complexity and derive the Oswald factor. Finally, a surrogate is created
that consists of a single equation that is included in the conceptual design
model to quantify the Oswald factor of future designs. Once this process
is completed, designers are able to assess configurations by physics-based
methods at the conceptual design stage. Given the fact that the methods
are physics- and not historical-based, estimations are also valid outside of
the pre-existing design space. At the best, no additional inputs are needed
and the change in runtime is negligible.

Design of Experiments

In the first step, a design space is explored by a design of experiments. The
key requirement for a DOE is that the design space needs to be covered by
a space-filling distribution of experiments to examine the underlying model
behavior while maintaining the number of samples as small as possible to
limit the computational cost. In other words the goal is to distribute as few
measurements as possible in a multi-dimensional space while observing all
effects within that space.

The designer defines the outer boundaries of the multi-dimensional design
space; however, these boundaries may often arise from the underlying de-
sign concept. The DOE can be obtained from several algorithms or may
be fed back from the surrogate modeling algorithm in an iterative fash-
ion. Noticeably, many of the points within the covered design space may
result in designs that are far from being a sensible aircraft configuration.
However, these points are necessary to capture the behavior of the physics-
based analysis method and hence foster the argument for a high stability
of the applied analysis model.

Albeit beyond the scope of this study, several DOE algorithms are outlined
in the subsequent chapters and will be evaluated in terms of their perfor-
mance criteria in the context of the described problem definition.
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Symbolic Regression

Several approaches for surrogate modeling are known and will be fur-
ther investigated in the course of this study. As an outstanding candidate,
symbolic regression is a recent type of surrogate modeling technique and
promises to be a valuable solution to address the challenge of creating a
surrogate model with high accuracy while maintaining the high level of
transparency that is required in conceptual design.

In 2009, Schmidt and Lipson [121] distilled the equations for the laws of
momentum conservation by applying symbolic regression to the measure-
ments of angles and angular velocities of a double pendulum. No prior
knowledge of geometry, physics, or kinematics was provided to the algo-
rithm. Through the monitoring of a physical system, a formulation could
be derived that not only described the behavior of the system but also
granted insight into the physical coherence.

Figure 1.6: Schematic symbolic regression approach

Figure 1.6 shows a schematic of a symbolic regression approach. The goal
is to find an equation f (x) that fits to a set of experimental data that may
originate either from a physical or a software experiment. Subsequently, an
iterative process in the fashion of a genetic algorithm mutates and matches
equations to the experimental data. Symbolic regression aims to combine
parameters via mathematical operators to fit the experimental data as well
as possible. For example, if an equation for the Oswald factor is desired,
then a database with the Oswald factor (property) and the wing geometry
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parameters (characteristics) is used as the input for the symbolic regres-
sion. In addition, the permitted mathematical operators such as addition,
substraction, division, multiplication, and cosine, are specified. A genetic
algorithm generates new sets of equations from the characteristics and op-
erators and further modifies the most promising ones. The result is a Pareto
front that includes both the accuracy and the complexity of the equations.

Finally, a new equation is the output of the regression. Unlike other regres-
sion approaches, symbolic regression returns human-interpretable equa-
tions that are not bound to a certain form, e.g., as polynomials. In this
study, the multi-fidelity workflow is proposed to address the issues of the
information gap between requirements and physics-based analysis and the
high computational cost during the early design phases. The following
main challenges need to be overcome to validate the applicability of the
proposed approach:

• Establishment of a closed multi-fidelity design loop between concep-
tual design and preliminary design.

• Exploration of a global design space in an efficient and stable way.

• Generation of a surrogate model that reflects the behavior of a physics-
based analysis while maintaining low computational cost and high
transparency.

1.4 Outline

This document is organized as follows: The present chapter (chapter 1)
describes the current situation in aircraft design and derives the problem
formulation. It also presents an initial overview of the developed process.
Chapter 2 describes the state of the art in conceptual and preliminary de-
sign. In addition, it provides an overview of existing approaches for multi-
fidelity and surrogate modeling in aircraft design. The proposed process
and its components are outlined in chapter 3. This chapter discusses newly
developed components such as the conceptual design model. Chapter 4

applies the proposed body of methods to two design studies of a conven-
tional wing in an unconventional domain of definition for the Oswald fac-
tor and the wing mass estimation. In both cases new equations are derived
and compared to pre-existing design methods. Furthermore, an example
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of a strut-braced wing configuration is discussed to prove that the multi-
fidelity workflow is applicable to unconventional aircraft configurations.
Subsequently, chapter 5 discusses the findings of the design studies. Fi-
nally, chapter 6 draws a conclusion and provides an outlook on promising
future research topics.

16



2 State of the Art
Much of the development of a
new aircraft concept involves not
the design of the configuration
itself, but the design of methods
by which the concept can be
analyzed and evaluated.

(Ilan Kroo)

In 2004 the AIAA Aircraft Design Technical Commitee [133] acknowledged
the fact that most of today’s aircraft design is based on computer simula-
tions. The previous era of try and fail, and experimental design have been
overcome due to the increased understanding of physical effects and com-
puting power. Despite the fact that physical testing is still necessary, design
time and cost decrease significantly.

As stated by Kroo et al. [66], no design program is valuable without good
analysis methods. Two distinctive sources for new analysis methods can be
identified: First, if a new product technology, e.g., carbon-fiber-reinforced
polymers, emerges then analysis methods are usually available from prin-
cipal research. The introduction of these technologies and their associated
analysis methods poses a challenge for the aircraft design process. Second,
new analysis methods arise from new models of known physical phenom-
ena, e.g., direct numerical simulations in aerodynamics.

In an integrated aircraft design process the mentioned analysis methods
spread along different dimensions. Van Tooren and La Rocca [69] first
published on these dimensions; figure 2.1 is similar to their representation.
First, the multi-disciplinary nature of aircraft design needs to be mentioned.
Different physical effects that are inherent to the functionality of the air-
craft, e.g., the lift generated by a wing shaped surface and the bending
of this surface due to the lift forces, need to be analyzed. Usually, these
physical effects are spread throughout different disciplines, in this exam-
ple aerodynamics and structures, and they are more or less intensively
coupled.

The complexity and number of physical effects that need to be taken into
account determine the necessary modeling effort and level of detail. Dur-
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Figure 2.1: Dimensions of aircraft design

ing the course of the aircraft design the level of detail changes, and hence,
multi-fidelity is a further dimension in the design process.

Finally, analysis methods stretch across the different scales of the air trans-
portation system. Ticks on the multi-scale axis of the design process include
components, sub-systems, and systems. At the initial stage of the evalua-
tion of a new aircraft concept, the large scale effects are of greatest interest.
Only a benefit for several stakeholders of the air transportation system jus-
tifies further research. However, reliable results on overall system level can
only be given if the technology at survey is sufficiently modeled, often on
component level.

The following sections elaborate on the state of the art of analysis methods
during the different stages of the aircraft design process. Initially, an
overview of conceptual design (section 2.1) methods is provided. On-
going from conceptual design, the level of fidelity increases and multi-
disciplinary analysis is split up into several separated analysis models com-

18
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bined in a design environment (section 2.2). At this stage of the design,
computational cost may be cumbersome. Therefore, multi-fidelity (sec-
tion 2.3) procedures or surrogate models (section 2.4) need to be applied.

Each section lists not only state of the art publications on the topic but
also tries to arrange publications into context. For this reason, each section
outlines a set of performance criteria that aid in estimating the gains of the
cited approaches. As a quantitative assessment of the performance criteria
is not always sensible and in most cases beyond the scope of this study, a
qualitative evaluation is provided.

2.1 Conceptual Design

In the previous chapter, figure 1.2 shows that conceptual design is a syn-
thesis process. The top level aircraft requirements are defined prior to the
conceptual design, and hence, they are the only information available on
the new product at this stage of the design. The subsequent steps in the
design process are preliminary and detailed design.

The goal of conceptual design is the selection and sizing of an aircraft
configuration that fulfills the top level aircraft requirements and delivers as
much benefit in terms of design goals, e.g., fuel burn or cash operation cost,
as possible. Furthermore, analysis cycles need to be short as several design
evaluations are necessary. Hence, as evaluation times need to be short and
only little information is available, conceptual design applies rather coarse
methods in comparison to advanced physics-based analysis models.

The most simple methods applied in conceptual design base on empirics,
i.e., characteristics of the aircraft are determined from other characteristics
by statistical, historical observations or correlations. Although physical de-
pendencies may be at hand, the models are too simple to fully reflect these.
For example, Raymer [105] provides equation (Eq. 2.1) to determine the
thrust specific fuel consumption (SFC) of an engine. The equation depen-
dents on the bypass ratio (BPR).

SFCcr = 0.88e−0.05BPR (2.1)

The equation is valid for a BPR up to 6, and hence, it is not applicable to
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today’s engine concepts. Furthermore, the SFC depends on several other
factors. Section 3.1 provides further details on this aspect.

Slightly more complex methods base on simplified physics-based assump-
tions with empiric corrections. These equations can usually be solved an-
alytically and are derived from more complex, physical models. For ex-
ample, some wing mass estimation models use simplified beam theory or
at least reflect similar sensitivities. These assumptions are still subject to
simplifications, e.g., isotropic materials or static deflections. Hence, care
needs to be taken when these methods are applied to assess the impact of
new technologies. In addition, corrections that base on historic data are
introduced to overcome the short comings of the simplified physics-based
assumptions. For example, if the simplified physics-based estimation of
the wing mass is only suitable to quantify the mass of the primary struc-
ture then empiric corrections include the masses of systems and secondary
structures.

Shevell [127] provides a method (Eq. 2.2) to estimate the wing mass that
fits into the described scheme. The second part of the equation multiplied
by K2 reflects the physical effects of bending moments acting on the wing.
The first part of the equation introduces empiric corrections scaled by the
wing’s reference area S.

mwing,Shevell = K1S + K2
nultb

√
mTOM mZFM

(t/c)cos(ϕ)2S
1 + 2λ

1 + λ
(2.2)

As can be seen from the examples above, conceptual aircraft design re-
lies heavily on the use of empirics, and these are mostly derived from
databases of existing aircraft. The dependency of the empirical methods
on a database also leads to the term historical-based methods, as a lot of the
information for a new design is based on information about pre-existing,
i.e., historical designs. The use of empirics leads to several drawbacks:

• Availability of data

• Limited design space

• Limited technology options

• Non-optimum designs

First and most important, the data available for a database is limited. De-
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tailed information on the aircraft characteristics and performance are the
knowledge assets of each aircraft manufacturer and airline, and hence, only
limited amounts of data are available on the overall aircraft performance,
e.g., payload range diagrams and geometric characteristics. However, de-
tailed information, e.g., the wing mass, is not publicly accessible. Even if
the quality of the publicly available data is high, a hypothetical statement,
whether enough data can be gathered in the first place remains question-
able.

As already mentioned in chapter 1, conceptual design is supposed to be
a diverging phase of the design, i.e., a variety of different concepts and
technologies needs to be assessed. Whether reliable assumptions on new
aircraft configurations, e.g., forward swept wings, are possible if these
rely upon historical-based methods, which only include backward-swept
wings, is arguable.

Furthermore, empirical methods are limited to existing technologies, and
hence, they are inappropriate to predict the properties of a new aircraft
configuration. Technology factors may be applied to circumvent this short-
coming. However, chapter 1 already outlined the drawbacks of this ap-
proach.

Finally, a database reflects rarely all the design decisions that influenced
the aircraft design. In this context, non-optimum aircraft describe aircraft
that are not sized by any of the classical design goals such as fuel burn or
cash operating cost or aircraft where the rating between different design
goals is unknown. For example, product families generate several points
in a database. However, these designs are usually driven by manufacturing
issues and not by classical design decisions. For example, all aircraft of the
A320 family rely on the same wing5. From a manufacturer’s point of view
this is a sensible solution and it also allows for lower aircraft prices and
maintenance, repair and overhaul (MRO) for the airline. If empirics are
applied that rely upon a database featuring non optimum designs then the
decisions that influenced their design need to be included in the empirics
and the later design process.

Several computer codes for conceptual aircraft design exist. These have
their origins both in academic and industrial developments. The present

5 The high-lift system of the A321 differs from all other aircraft of the family. However, this
change occurs at a level of detail that is rarely available in conceptual aircraft design.
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Criterion Description

Flexibility The ability to adapt the solution path of the conceptual design
Transparency The capability to trace qualitative and quantitative physical de-

pendencies
Extensibility The ability to further extend the calculation methods and hence

increase the number of physical effects taken into account
Automation The capability to automate most of the design steps to allow an

efficient exploration of the design space

Table 2.1: Conceptual aircraft design performance criteria

study examines some of the publicly available codes. Several additional
solutions may exist within aircraft manufacturers6. Table 2.1 outlines major
performance criteria for conceptual design codes. However, the presented
list makes no claim to be exhaustive.

Flexibility is a key requirement for conceptual aircraft design codes as the
design tasks can drastically change. For example, the calculation of the
aircraft payload-range capabilities is often subject to changes. The payload-
range capabilities are either the boundary conditions for a new aircraft
design, or they need to be derived for a refitted design, e.g., in case of a
new engine option. In each case the flight performance calculation needs
to be evaluated in different ways.

Simplifications are an insurmountable characteristic of conceptual aircraft
design. Physical effects are neglected due to these simplifications, and
the results of a conceptual aircraft design need to be critically evaluated.
Hence, transparency is an important criteria for conceptual design, the so-
lution path needs to be (re-)traceable, and the applied calculations need to
be well documented to verify the results.

Furthermore, a conceptual design code needs to be extensible. New tech-
nologies often influence the aircraft design process. Hence, means to ex-
tend the conceptual design code to reflect these technologies are important.

6 Given the fact that a manufacturer has a large amount of data on aircraft designs available, the
accuracy of these codes is supposedly high. However, theses codes are of course not available
and may even be biased towards single design concepts due to the design philosophy of the
manufacturer.
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Examples include the application of technology factors or the replacement
of existing design methods.

Finally, during the conceptual aircraft design step, several design evalua-
tions are necessary and automation is important. Parameter studies and
design optimizations benefit from a code that can be operated in batch
mode.

From the aircraft design textbooks by Roskam [114], DarCORP developed
the conceptual design software Advanced Aircraft Analysis (AAA). AAA fol-
lows a classical approach to conceptual aircraft design that is separated into
a first weight sizing, class I and II weight analysis and several disciplinary
models. With the aid of an extended graphical user interface it is possible
to interact with all parameters. When compared to other solutions, AAA
captures an extended range of parameters and provides detailed feedback
via plots and tables.

McCuller [86] coupled a set of tools at NASA Langley to create the Flight
Optimization System (FLOPS). It comprises a combination of previously de-
veloped codes and new developments. Apart from the conventional con-
ceptual aircraft disciplines, FLOPS includes also extended performance,
noise and cost analysis models. FLOPS is run by namelist inputs and can
easily be automated. As the database of FLOPS includes fighter aircraft as
well as jet transport, it is suited for the design of several types of aircraft.

Research at the Institute of Aeronautics and Astronautics at RWTH Aachen
resulted in the Multidisciplinary Integrated Conceptional Aircraft Design and
Optimization (MICADO) environment. It is described in several publica-
tions by Risse, Lammering, Anton, Franz, Peter, Sahai et al. [109, 7, 38, 39,
70, 71, 72]. The code focuses on a white sheet approach that enables the de-
sign of a new aircraft based only on design requirements7. The calculation
flow is mostly conventional, but also includes parallelized elements. The
development focuses on a modular and extensible architecture. MICADO
follows a central model approach that splits product and process informa-
tion. The aircraft is modeled in a data exchange file, whereas all analysis
models receive their tool-specific inputs via configuration files. The analy-
sis models are fully parametric and object-oriented.

7 Given the fact that MICADO emphasizes on conceptual design, it is listed in this section of the
literature review. In addition, MICADO features the characteristics of a design environment.
Section 2.2 further elaborates on this topic.
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Criterion AAA
FLOPS

M
IC

ADO

PASS
RDS

Flexibility + + ++ + +
Transparency + - + + +
Extensibility - - ++ 0 +
Automation - + + + 0

Table 2.2: Qualitative comparison of conceptual design models

In 1988 Kroo and Takai [132, 66] initiated the development of the Program
for Aircraft Synthesis Studies (PASS) at Stanford University. Antoine et al. [6]
show that PASS is also part of ongoing multi-disciplinary design analy-
sis and optimization (MDAO) studies. PASS includes a knowledge-based
system that supports the designer during the design process as it checks
several design rules. An outstanding feature is the path generator, that en-
ables the calculation of certain parameters throughout various levels of the
code. This is established by tracing variable names in the code’s documen-
tation.

Partly based on the text book by Raymer [105], the Conceptual Research
Cooperation developed the Raymer Design Software (RDS) for conceptual
aircraft design. Raymer [106] carried out an extensive study on the appli-
cability of RDS in MDAO applications. One of the outstanding features of
RDS is the emphasis on an aircraft specific computer aided design (CAD)
system, the Design Layout Module. Zhang et al. [139] showed that a transi-
tion from models created in RDS to computational fluid dynamics (CFD)
meshes is possible. Hence, initialization for higher-fidelity processes is
partly included. Other characteristics of RDS are advanced models, e.g.,
for trimmed flight, and a focus on the easy execution of trade studies.

Table 2.2 summarizes the cited conceptual aircraft design codes with re-
spect to the performance criteria outlined above. It is close to impossible
and certainly out of the scope of this literature review to derive a quantifi-
able metric. Hence, the table provides only a qualitative comparison.

In conclusion, the present section outlined the basics of conceptual aircraft
design and listed existing computer codes. However, the listed conceptual
design codes suffer from few drawbacks that prohibit their application in
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the proposed multi-fidelity loop. The main drawback is their lack of suffi-
cient multi-fidelity capabilities, i.e., means to initialize and integrate mod-
els of higher fidelity. Hence, a new conceptual design code, VAMPzero, is
introduced in section 3.1.

2.2 Design Environments

As outlined in the previous section, it is rarely possible to reliably de-
rive the properties of new aircraft configurations by so called handbook
methods, especially if the design process includes unconventional config-
urations. In most cases, higher order physic-based analysis is necessary,
as no reliable database is available for empirical methods. With a rising
level of detail of the analysis models, e.g., from vortex-lattice up to Navies-
Stokes, designers need more experience and expertise to master a) the un-
derlying physical principles and b) the complexity of the simulation tool.
It is obvious that a single person can and should not handle more than one
or two disciplines in a physics-based design environment. Since neither is
it desired, nor does the trend call for a “super-user” of monolithic codes,
the next logical step is collaboration in MDAO to facilitate an environment
of several, distinctive experts. Kroo [65] defines the term 3rd generation
MDAO to describe these collaborative, distributed design environments.

COMMON 
LANGUAGE 

ANALYSIS 
MODULES 

INTEGRATION 
FRAMEWORK 

Figure 2.2: Design environment
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Design environments are subdivided in three components, as shown in
figure 2.2. These cover the integration framework for process control and
optimization, a data model for the exchange of information, and various,
disciplinary analysis models.

An integration framework consists of two parts: First, the editor and visual
environment for the creation, modification and access control of analysis
tool chains. This graphical user interface provides some kind of workspace
and enables process designers to interact with workflows. This encom-
passes the coupling of analysis models as well as interactions with the data
model representations, regardless of whether textual, structural or geomet-
ric. In addition, there is the core logic that provides data transfer between
remote components, management of intermediate and resulting data sets,
and extraction and merging of partial data with the central data model.
Further duties of the framework are convergence control and optimization.

Disciplinary expertise, and therefore, analysis capabilities are spread across
the boundaries of institutions and locations. Hence, it is necessary to pro-
vide resources so that analysis models can be triggered remotely, e.g., de-
signers must be able to interface an analysis model for aerodynamics at
DLR in Braunschweig from a desktop in Hamburg. Design teams in dis-
tributed institutions benefit, as not only the product description is stan-
dardized but the coupling of analysis models is also similar. Furthermore,
process information, as often coded in from of analysis chains, is exchange-
able.

A common namespace is a key feature for efficient data exchange. The
structure of the coupling of analysis models has a significant effect on the
number of interfaces as shown in figure 1.4. Not only does the number of
interfaces decrease but the analysis models also become more independent.
Hence, changes in one model do not necessarily impact other models. The
common namespace reflects the central information model of the design
team and can be seen as the meta-model for all of the deduced analysis
models.

A central model for a design environment, as described above, consists
of two aspects: a) the schema definition specifies elements, attributes and
their structural dependencies, and b) the data set holds the explicit content
which is conform to the schema definition. Whereas the data set is mainly

26



2.2 Design Environments

Level Description

0 Empirical, historical-based models for conceptual design
1 Low order, disciplinary, physics-based, e.g., beam representa-

tions, or semi-empirical models
2 Medium order, physics-based models, e.g., shell representations
3 High order, state of the art, physics-based models, e.g., RANS;

execution can hardly be automated

Table 2.3: Level of fidelity classification

used for the exchange of information, the schema definition is applied for
the documentation, model validation and model generation.

In accordance with the design task, a specific set of analysis models is
required. These analysis models represent different physical effects that
need to be taken into account. A common use case in MDAO is the inter-
action of fluids and structure for the design of a wing. The analysis models
need to be compatible to the underlying data model. Furthermore, in most
cases batch operability is preferred to enable an automatic execution. The
analysis models return their results to the central data model. In addition,
the analysis models need to enable an easy interpretation of the results by
discipline specific representations, e.g., by plots such as pressure or skin
thickness distributions.

Design environments are mostly applied at the preliminary stage of the air-
craft design. The level of fidelity of the applied analysis models is therefore
beyond the often empiric based calculations executed in conceptual design.
How to specify levels of fidelity is a highly discussed topic in the research
community8. Bartholomew [9] developed a classification that is applied in
the scope of this study and table 2.3 shows Bartholomew’s classification
that is extended by an additional level 0 to take into account conceptual
design methods9.

8 The terms order and fidelity need to be distinguished: An analysis of high order describes
a physical effect in high detail. Conversely, an analysis of high fidelity predicts properties
accurately. Despite the establishment of the term multi-fidelity, the former interpretation is
in fact more common, even though an analysis with low order might return results of high
fidelity.

9 Robinson and Martin [113] present a classification that is also grouped by different disci-
plinary levels of fidelity. However, their classification extends beyond the scope of this study
as the design studies that are outlined in chapter 4 only addresses few disciplines.
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As already mentioned, the expertise and experience of a single user is
rarely sufficient to handle a complete design environment. Various analysis
models are a part of the design process and demand detailed knowledge.
In addition, the process itself is a complicated representation of engineer-
ing knowledge. Hence, the definition of a design environment needs to be
extended to include the roles of the different experts. Berends et al. [10]
and Moerland et al. [91] developed schemes for user roles in design en-
vironments. The definition of Moerland et al. [91] defines three key user
roles: system expert, process integrator and operator.

System experts have detailed disciplinary knowledge about a system of
the aircraft. They usually provide access to one or more analysis models
related to their field of expertise. Furthermore, system experts discuss in-
terfaces with each other. They deliver input for design decisions and aid
in the interpretation of the design process results. For example, an aerody-
namic system expert provides an analysis model at the appropriate level of
fidelity for the aircraft configuration under examination. In addition, the
expert interprets the aerodynamic properties of the configuration and may
suggest changes to the configuration.

Process integrators create, guide, and survey the design process. They
have a general understanding of the affected disciplines, physical effects,
and good communication skills to exchange information with system ex-
perts. The process integrator’s task is to couple analysis models of different
disciplines to cover all physical effects relevant to the aircraft configuration
under examination.

Operators are the product owners in the design environment. They define
requirements, constraints and target functions for the design process. In
the hierarchy of the design team, operators are superior to process inte-
grators and system experts, hence they need to foster and support their
collaboration. While a general disciplinary knowledge similar to the pro-
cess integrators is necessary, no detailed technical skills are required for
operators.

Influenced by the works of LeDoux et al. [73], table 2.4 presents a set of per-
formance criteria for design environments. The criteria are supplemented
by the experiences gained in the Virtual Aircraft Multidisciplinary Analysis
and Design Processes (VAMP) project of DLR, see Nagel et al. [94]. The fol-
lowing paragraphs introduce several existing design environments, both
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Criterion Description

Scalability The capability to fit available schedule requirements and com-
puting resource availabilities for the optimization problem

Flexibility The ability to choose from a variety of solvers and other com-
puter aided engineering tools

Extensibility The capability of the system to grow through refinement of ex-
isting capabilities and the incorporation of new ones

Accessibility The ability easily operate and retrieve information about the sys-
tem at all stages of the execution

Transparency The capability to document and further derive information from
a given design process

Table 2.4: Design environment performance criteria

from research and industrial background. Subsequently, a qualitative com-
parison is provided.

Heinze [46] is the initial developer of the PrADO design environment. De-
spite the rather monolithic structure of PrADO, it is still in use in several
academic aircraft design projects. PrADO couples up to 17 disciplinary
analysis models via a central data model. The analysis models are classi-
fied from level 0 to level 1. An interaction with higher order analysis and
PrADO is outlined in section 2.3. Information in the data model is either
calculated by PrADO, input from the designer, or takes on a default value.
A distinguished execution of analysis models is possible. Designers can
interact with PrADO via a graphical user interface that can be seen as the
integration framework. PrADO is not capable of multi-user operations and
distributed computing. As all code is compiled into a single program the
flexibility is low.

Rizzi et al. [111, 110, 112] develop the Computerised Environment for Air-
craft Synthesis and Integrated Optimisation Methods (CEASIOM). The initial
deployment was founded within the European 6

th Framework Programme
Simulating Aircraft Stability And Control Characteristics for Use in Conceptual
Design (SimSAC). CEASIOM is a framework tool for aircraft design that
integrates several disciplinary analysis models and focuses mainly on sta-
bility and control. In addition, analysis models for aerodynamic analysis
of level 1-2 and aeroelastics are included. In recent developments [18],
CEASIOM adapts to CPACS as the central information model, and hence,
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CEASIOM becomes more extensible. CEASIOM is available under a free-
ware license and most of the code is written in Matlab. Hence, accessibility
and transparency are outstanding.

Alonso et al. [2] introduce the pyMDO design environment that is com-
pletely coded in Python. The initial focus was to enable an unique interface
to several disciplinary tools. As Python is utilized, the design environment
can be created in a modern, object-oriented fashion while it maintains the
possibility to include faster codes such as C++ or Fortran. The level of
detail in the presented studies is high. For example, the design of a super-
sonic business jet aircraft is based on a coupling of CFD and FEM compu-
tations. Recent work, as published by Martins et al. [78], suggests that the
development focus is set on optimization problems and algorithms.

OpenMDAO is another integration framework from the Python commu-
nity. OpenMDAO is published under open source licenses and the core
developers are funded by the National Aeronautics and Space Administration
(NASA). Gray et al. [42] outline some details of the integration framework.
However, an application of OpenMDAO in aircraft design yet remains to
be published.

Herling et al. [47] present a design environment in commercial use, namely
at Boeing. LeDoux et al. [73] further developed the 3-Dimensional De-
sign Optimization Code (3DOPT) into the Multi-Disciplinary Design Optimiza-
tion Framework (MDOPT). The MDOPT environment enfolds aerodynam-
ics, structures and stability & control and is set up modular to enable the
integration of further disciplines. Most of the integrated analysis models
comply with level 2. A dedicated data management facility handles the
data model. All information is stored in a Structured Query Language
(SQL) database and can be accessed via different libraries. Finally, a graph-
ical user interface (MDO Manager) enables the designer to interact with
the design environment.

Given the fact that the developers of MDOPT also published parts of the
performance criteria in Table 2.4, MDOPT performs well for scalability,
flexibility and extensibility. As there is a clear distinction between the three
components of a design environment and some additional interface layers
are available, the accessibility is high as well. Distributed computation is
possible. However, with a low number of incorporated analysis models no
distinctive focus for transparency can be identified.
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Another design environment in commercial use is PACElab Suite. Schnee-
gans and Ehlermann [124] published the only available literature. Further
information can be obtained from the developers homepage10. PACElab
Suite represents a blank design environment without analysis models. A
highly customizable graphical user interface serves as integration frame-
work. Data is stored in an internal XML representation. This data is fil-
tered and depending on the use case only selected parts are presented to
the designer. Customers may either integrate their own analysis models
or buy prepared sets for aircraft design or flight performance from PACE.
Common examples for analysis models in PACElab Suite can be classified
as level 0 or 1.

In PACElab Suite designers design no workflows. Instead an advanced ver-
sion of a solution path generator11 is implemented. Each analysis model
needs to define its in- and outgoing parameters. PACElab Suite tries to find
a computationally efficient execution order that depends on these settings.
One prerequisite for this solution is that analysis models can be reversed.
From a mathematical point of view this is possible for all analysis models
that can be solved analytically and are uniquely defined. If a numerical so-
lution is necessary then an iterative approach is possible. Hereby, it needs
to be taken into account that the iterative approach might fail if no suitable
starting point can be found. From an engineering perspective not all anal-
ysis models can be reversed. For example, it is possible to empirically de-
termine the wing’s mass from the maximum takeoff mass but questionable
whether this correlation may be used to determine the maximum takeoff
mass from the wing’s mass. Hence, in the author’s opinion care needs to
be taken when solution path generators are applied in conceptual aircraft
design.

PACElab Suite is a state of the art design environment. Current develop-
ment targets for a much better scalability. Flexibility and accessibility are
supported by a well designed user interface, as expected from a commer-
cial software. Accessibility is generally high, although data and analysis
models can only be interfaced via different layers. The already mentioned

10 http://www.pace.de/products/preliminary-design/pacelab-suite
11 Rudolph and Bölling [116] show an application for a solution path generator in airship de-

sign. Ait-Aoudia et al. [3] give further information on the details of solution path generators.
The details of the implementation in PACElab Suite are not available.
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solution path generator is the only drawback on a in other respects high
transparency.

The development of an aircraft design environment within DLR started in
2005. During the initial TIVA project Liersch and Hepperle [75] developed
the foundations. Nagel and Zill [93, 141] outline the evolution of the de-
sign environment in the VAMP project that collected various analysis mod-
els from throughout DLR and established processes for multi-disciplinary
collaboration.

The common namespace of the environment is the already mentioned
CPACS definition that is available as open-source. As CPACS is the stan-
dard for aircraft design information exchange among DLR’s aeronautical
institutes, a long list of disciplinary analysis models is connected to the
design environment. Chapter 4 outlines some of these models as they are
included in the design studies presented in this study.

Seider et al. [125] develop the integration framework Remote Component En-
vironment (RCE). The framework is published under open source license
and specialized for a design environment utilizing CPACS. It supports col-
laborative and distributed work. Current DLR projects extend RCE and
CPACS to include the uncertainties that are an inherent component of ev-
ery model-based design process.

DLR’s aircraft design system covers all levels of fidelity and has been ex-
tended during the last years. Given the fact that the analysis models have
been developed in the heterogeneous environments of several institutes
and departments, the accessibility can not be compared to CEASIOM but
it remains higher than in a commercial design environment. The aircraft
design system benefits from the support of several professional software
engineers and hence is superior in scalability and flexibility.

Finally, table 2.5 provides a qualitative comparison of the previously men-
tioned design environments. The comparison is based on the publicly
available information and may be out of date but it is presented as means
to clarify this literature review.

Given the fact that the VAMP design environment is based on a central
model approach, it is the design environment of choice in the present study,
as an initialized data set may be applied in several design studies. Further-
more, the multi-fidelity loop benefits as the different, disciplinary analysis
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Criterion PrA
DO

CEASIO
M

M
DOPT

pyM
DO

PACElab

VAM
P

Scalability 0 0 + 0 + ++
Flexibility - + + + - ++
Extensibility - + + + ++ ++
Accessibility - ++ - ++ ++ +
Transparency 0 ++ 0 + ++ +

Table 2.5: Qualitative comparison of design environments

models of higher fidelity can be triggered independently, and hence, com-
putational overhead is avoided.

2.3 Multi-Fidelity

Different levels of fidelity are an inherent phenomenon of model-based air-
craft design. Figure 1.1 shows a simplified design process from conceptual,
preliminary and detailed design up to the entry into service of the aircraft.
Obviously, as the design process evolves, the amount of information that
describes the aircraft increases. The previous section describes different
levels of fidelity for analysis models applied in a design environment, see
also table 2.3.

Design engineers need to work across the borders of different levels of fi-
delity to establish a design process that is as continuous as possible. Hence,
multi-fidelity has become a substantial part of MDAO. This section derives
a classification for multi-fidelity and outlines applications in aircraft de-
sign.

A difference in the level of fidelity occurs in two types of models, physical
and product, and is associated with changes in cost. First, the fidelity of the
analysis model describes the complexity of the underlying physical model.
With a rise in the complexity, more physical effects are taken into account
and an increase in computational cost is likely. Furthermore, fidelity ex-
presses the difference in complexity of the product model. The amount
of information that describes the product model varies drastically, as can
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be seen from the different stages of design, i.e., conceptual, preliminary
and detailed design. A change in the fidelity of the product model can but
must not be necessary to enable the application of a different analysis, i.e.,
physical model.

(a) Vortex lattice (b) 3D panel (c) Euler

Figure 2.3: Levels of fidelity in aerodynamic analysis of a BWB

Figure 2.3 provides an example for different levels of fidelity both in prod-
uct and physical models. All representations of the blended wing body
(BWB) configuration have different levels of fidelity when the physical
models are compared. The level of physical model fidelity increases from
Vortex Lattice via 3D Panel to Euler calculations. However, the product
model for figures 2.3b and 2.3c is identical. Both analyses base on the same
geometric information12.

It is difficult to translate between different levels of fidelity in the product
model. A fine product model defined in a space with dimensionality m
where m is greater than the dimensionality n of a coarse model can be
reduced to the coarse model as a subset of the fine model, as shown in
equation 2.3.

<n ⊂ <m with n < m (2.3)

During the translation process from the fine to the coarse model, informa-
tion is lost. Buckingham [23] developed the Π-Theorem (Eq. 2.4); an algo-
rithm that can be used for model reductions. The Π-Theorem states that a
functional relationship f of physical quantities (x1, . . . , xn) can be reduced

12 Of course, both analyses apply different meshes, i.e., discretizations of the product model.
However, for a CFD calculation different levels of fidelity in the physical model, e.g., the
turbulence model, are possible that base on the same mesh, i.e., the same product model.
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to a functional relationship F of dimensionless quantities (π1, . . . , πm). The
difference between m and n is hereby defined through r as the rank of
the dimensional matrix. The dimensionless quantities that now define the
model are found from:

πj = xj

r

∏
1=1

x
−αij

i (2.4)

Rudolph [115] applies the Π-Theorem to several product models. Obvi-
ously, the information lost is the physical scale of the product model. Any
further reductions of the product model lead to a further loss of informa-
tion.

The translation from coarse to fine product models can not be achieved
without the use of assumptions. As assumptions often base on general en-
gineering knowledge it can be possible to capture these in form of design
rules. Hence, La Rocca [68] shows that it is possible to “automate the gen-
eration of models”. Design rules are grouped in so called Knowlede Based
Engineering (KBE) frameworks and can aid engineers in the deduction of
a finer model from a coarse product model.

As many evaluations of physical models are necessary during the concep-
tual design stage, e.g., in optimizations, it is preferential to reduce compu-
tational cost. In this context, a multi-fidelity algorithms applies for most
of the evaluations a coarse analysis model, and only few evaluations of a
finer analysis model are necessary to refine the results. A further decrease
in the runtime can be achieved if surrogate models for either one or both
of the analyses are applied. Section 2.4 provides an overview on this topic.

A distinctive group of multi-fidelity simulations is mono-disciplinary. These
studies are related to a specific discipline, often aerodynamics, and focus
on two or more levels of fidelity of physical models.

Oesterheld et al. [97] present a study that examines the influence of aeroe-
lastic effects during the early design stages. A fine model for aerodynamics
and structures, Structural and Aeroelastic Analysis Module (SAM), is included
in the Preliminary Aircraft Design and Optimisation Program (PrADO). The
SAM model is based on static and dynamic analysis using finite-element
method and several analyses models for aerodynamic and aeroelastics.
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Heinze [46] outlines the details of the coarse model in PrADO that is based
on a beam representation.

Leifsson et al. [74] provide an example for the use of multi-fidelity for
the evaluation of the transonic behavior of airfoils. In the course of their
study, a coarse physical model is used for most of the optimization runs
and the model is corrected by a cost-intensive fine physical model. The
authors state that a 90% reduction in the number of model evaluations in
comparison to direct optimization could be achieved. No change in the
fidelity of the product model occurs.

In addition, March and Wilcox [77] published a study that focuses on the
multi-fidelity evaluation of airfoil properties. In their study, several sur-
rogate models of the fine physical model are examined, and a solution is
developed that includes Bayesian calibration models. In this way, the num-
ber of calls to the fine physical model can be further reduced.

March and Wilcox participated also in a study that is presented by Kroo et
al. [67]. The study focuses on multi-fidelity optimization of a supersonic
transport aircraft. The models of different fidelity are A502/Panair, Cart3D
and simple area rule estimations to quantify and minimize the resulting
wave drag of the supersonic configuration. The study is further extended
to take into account the uncertainty that arises if the optimization is based
on surrogate models.

A different group of studies focuses on inter-disciplinary simulations in
multi-fidelity research. These studies consider different phases of the de-
sign, i.e., conceptual and preliminary design, and hence, they are not only
influenced by changes in the level of fidelity of the physical model but also
by changes of the product model.

Choi and Alonso [26, 25] published studies that concern the multi-fidelity
optimization of supersonic jets. The conceptual design model PASS, al-
ready described in section 2.1, represents the coarse model. The calcu-
lations in PASS base on experimentally derived data and a vortex lattice
model. The study uses two fine models: The first increase in fidelity is
established using the A502/Panair supersonic linearized panel code, and
for even higher fidelity an Euler analysis is included. PASS encompasses a
product model typical for the conceptual design level including wing refer-
ence area, span, quarter-chord sweep, taper and leading and trailing edge
extensions. A 3-dimensional representation of the product model based on
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CAD is necessary for the finer models. Surrogates for the fine models are
constructed from quadratic response surfaces. It must be noted, that this
surrogate is also included (at a later point) in the coarse model to replace
the previous assumptions. However, the design space remains limited to
the search space of the optimization run, i.e., the surrogate model is only
locally valid. Despite the fact that these analyses are only applied to the
aerodynamic properties of the aircraft, the change in the level of fidelity of
the product model justifies the classification as inter-disciplinary work.

Figure 2.4: Collaborative aircraft design system, [141]

In the course of the VAMP project at DLR, Zill et al. [142] developed vari-
able fidelity optimization techniques. The demonstrated approach includes
changes in the level of detail of the product and process model, and it also
spans across various physical disciplines. Zill et al. couple a coarse con-
ceptual design model13 with a system of fine preliminary analysis models,
as shown in figure 2.4. The fine models include aerodynamics, propulsion,
wing structures, landing gear and flight performance analyses. Zill exe-
cutes four different optimization strategies that vary the wing’s geometric
characteristics of a subsonic jet. In each case a bridge function between

13 Zill uses the aircraft design system at DLR and some of the components have been developed
in the course of this study. Hence, the conceptual design model applied is VAMPzero and
chapter 3 provides further information.
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the coarse and the fine model is constructed. With the aid of the vari-
able fidelity approach, the number of evaluations of the coarse model rises
quickly from zero to 5112 while the number of evaluation of the fine mod-
els decrease significantly from 912 to 35.

While few other examples for multi-fidelity applications exist in the liter-
ature, the works from Choi and Alonso [26, 25] and Zill et al. [142] are
the ones mostly related to this study. Choi and Alonso present the only
study that to some extend re-integrates the fine model behavior into the
coarse model. However, the design space they explore is limited and the
re-usability of the surrogate model can be neglected due to the specific op-
timization task. Zill et al. demonstrate the first application that includes
significant changes in the level of fidelity of the product model and the
process model.

MULTI-FIDELITY  

ACCURACY 

COST INSIGHT 

Figure 2.5: Motivations for multi-fidelity

Figure 2.5 identifies three key motivations for the application of multi-
fidelity techniques: First, designers try to obtain a higher level of accuracy
of their analysis by applying fine models. For example, the approach taken
by Oesterheld et al. [97] is mostly driven by this motivation. In addition,
the reduction of cost, as intended by Leifsson et al. [74], is a common target.
Finally, multi-fidelity can be used to gain further insight as it can be used
to make the behavior of the fine model available in the coarse model also
at a later point in time. Choi and Alonso [26, 25] addressed this issue in a
limited way and this motivation is the main driver for the present study.

While insight is the main driver for this study, the meaning of cost should
not be neglected. Multi-disciplinary optimization may be applied to any
formulation derived from the proposed multi-fidelity workflow. In this
case the optimization may interact only with the conceptual design tool
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without any calls to tools of higher fidelity. Any of the monolythic schemes
mentioned by Martins et al. [80] can be applied for the optimization.

Hence, the runtimes for the optimization itself can be reduced drastically.
However, one needs to take into account that the execution of the proposed
multi-fidelity workflow prior to any optimization is time intensive (mostly
due to the symbolic regression as will be further outlined in section 3.4),
and hence, time benefits will only arise if several optimization tasks are
carried out.

An added benefit for an optimization based on any formulation derived
by the multi-fidelity workflow is that the formulation is based on an al-
ready iterated design. Hence, cost and the risk of non-converged designs
is further reduced. This is linked to issues for large scale designs that were
already mentioned by Kroo [63] more than two decades ago.

One characteristic that all of the listed approaches have in common is that
they apply the multi-fidelity approach locally, often to find a single opti-
mum. In contrast, the goal of the present study is to derive conceptual
design methods from the multi-fidelity workflow that are valid in an ex-
tended design space, i.e., globally rather than locally. In this way, the re-
sults of the multi-fidelity analyses are preserved to permanently improve
conceptual aircraft design also in later applications rather than being valid
only for a single optimization study.

2.4 Surrogate Models

Section 2.2 introduces design environments that consist of several physics-
based analysis models. The execution of these models leads to so called
High-dimensional, Expensive (computationally), Blackbox (HEB) problems. Es-
pecially for applications such as optimization and parameter studies, the
computational cost for the evaluation of a model often exceeds manageable
time frames.

The previous section discusses multi-fidelity approaches that substitute an
expensive, fine analysis model h(x) by a cheaper, coarse analysis model
l(x) which reduces the necessary computational time and cost. Certain
physical effects may be neglected in the coarse model to reduce the com-
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putational time significantly. However, these simplifications contrast with
a thorough evaluation of the relevant physical effects.

If the properties of the expensive, fine analysis model need to be preserved
but the computational cost is too high then it may be replaced by a surro-
gate model s(x). The surrogate or meta-model is a mathematical approxi-
mation of the original HEB problem. Once a surrogate model is sufficiently
trained, it takes the same inputs as the fine model and provides similar out-
puts14, but it does not suffer from the computational cost of the original
model. Simpson et al. [128] name three motivations to apply surrogate
models:

• insight into the relationship between inputs and outputs

• faster analysis for optimization and design space exploration

• independence from computer architectures

The first two arguments, insight and speed, map to the previously men-
tioned motivations for multi-fidelity techniques. The last argument is still
valid for very expensive calculations that require the extensive use of hard-
ware, e.g., computer clusters or cloud applications. Most other analysis
models can be ported to today’s operating systems due to an ongoing
progress in virtualization techniques.

The different kinds of motivations influence the decision for a specific sur-
rogate model. Shan and Wang [126] developed an assessment scheme for
surrogate models that is based on a list of performance criteria, see Ta-
ble 2.6. Criteria like accuracy and flexibility are superior independent from
the implementation motivation. A user targeting for reduced cost is in-
terested in a high efficiency and smoothness, for example, if some form
of gradient based optimization is a part of the problem. If a surrogate
model is applied for reasons of better understanding then interpretability
and transparency are the relevant criteria.

In a mathematical notation, the high fidelity analysis model is a function
h(x) where x is a vector of k input variables. The surrogate is then de-
scribed by a function s(x) so that:

14 Of course, the inputs of the surrogate model may consist only of a subset of the HEB problem
inputs. As a matter of fact, the surrogate is (in theory) unable to exactly reproduce the
outputs of the HEB problem since the behavior of the HEB problem is known only at selected
points in the design space.
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Criterion Description

Accuracy The capability of predicting underlying func-
tions over a design space

Interpretability or transparency The ability of proving information and interac-
tions among variables

Flexibility or robustness The capability to provide accurate fits for differ-
ent problems

Dimensionality The amount of data required to avoid an un-
acceptably large variance that increases rapidly
with increasing dimensionality

Computability or efficiency The computational effort required for construct-
ing the model and for predicting the response
for a set of new points by the model

Simplicity The ease of implementation
Smoothness The derivative ability of the model function

Table 2.6: Performance criteria for surrogate models

y = h(x) (2.5)

ŷ = s(x) (2.6)

y = ŷ + ε (2.7)

In this notation ε represents the error of the surrogate and therefore the
difference between the model response y and the surrogate response ŷ.
Generally speaking, three different error categories need to be taken into
account, and table 2.7 provides the classification by Forrester et al. [36] for
different types of experimental errors.

For example, human error arises from mistakes in coding or the handling
of input values. Systematic errors occur if the chosen model does not reflect
the relevant physical effects. However, the key point with computer exper-
iments, i.e., the conduction of analysis models, is that systematic errors
occur in the same fashion every time. Computer models are deterministic.
Hence, random errors, as they occur in physical experiments, are neglected
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Type Description

Human An error introduced simply by the experimenter’s mistake
Systematic An error occurring due to a flaw in the philosophy of the exper-

iment that adds a consistent bias to the result
Random An error which is due to measurement inaccuracies, e.g., inher-

ent to the instruments being used

Table 2.7: Experimental error classification

when surrogate models are derived15. This is of importance when more
advanced models like Kriging are elaborated.

It is necessary to obtain a set of initial data from the high-fidelity model
h(x) to construct a surrogate model s(x). The initial data is gathered by a
design of experiments16 where n samples of xk,n are used to evaluate h(x).
In a next step, a surrogate model approach is chosen that is then trained to
the data to find s(x).

Forrester et al. [36] introduce the so called needle in the haystack function
(Eq. 2.8) that is the most simple surrogate model and hardly needs any
model fitting. Obviously, the skills of the needle in the haystack function to
reflect the behavior of the original model h(x) are weak.

s(x) =



y1 if x = x1

y2 if x = x2

· · · · · ·
yn if x = xn

0 otherwise


(2.8)

Therefore, the needle in the haystack function serves as cautionary tale for a
surrogate model. In the scope of this study, a subset of more sophisticated
approaches is highlighted. These approaches include response surfaces,

15 Whether computer models provide smooth and deterministic inputs for a surrogate model
is questionable. Especially, for numerical and iterative analyses the above statements are
controversial. Forrester et al. [37] provide more details on this issue that is out of the scope
of the present study.

16 Design of experiments is an essential and far-reaching part of surrogate modeling. Hence,
for means of clarity no further information is included at this point. Section 3.3 describes the
topic in more detail.
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Kriging, and artificial neural networks. Where available, links to studies
concerning aircraft design are presented in further detail. For further read-
ing, Simpson et al. [128], Shan and Wang [126] and Queipo et al. [104]
developed detailed reviews on surrogate models that include additional
approaches. Jones [58] elaborates on a taxonomy for surrogate models in
relation to global optimization problems and explains further details out of
the scope of this literature review.

Furthermore, section 3.4 outlines symbolic regression, the surrogate model
used within the course of this study. Section 3.4 links all presented ap-
proaches and symbolic regression to the performance criteria presented in
Table 2.6.

Response surfaces

Box and Wilson [20] were the first to implement response surfaces. Usu-
ally, response surfaces are created from low, either first (Eq 2.9) or second
(Eq. 2.10) order polynomials. Higher order terms are possible but often
do not increase the quality of the surrogate due to oscillating behavior of
the polynomials and the rising numbers of sampling points necessary to
determine the coefficients.

ŷ = β0 +
k

∑
i=1

βixi (2.9)

ŷ = β0 +
k

∑
i=1

βixi +
k

∑
i=1

βiix2
i +

k

∑
i=1

k

∑
j=1,j<i

βijxixj (2.10)

The regression coefficients β are found via least squares estimates that
make use of the initially sampled data for xi and yi. As outlined by
Sasena [119], equation 2.10 results in:


1 x1 x1

2

1 x2 x2
2

...
...

...

1 xm xm
2




β0

β1

β2

 =


y1

y2
...

ym

 (2.11)
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The above equation can easily be solved for β. The minimum number of
sampling points n for a set of k design variables in a m order polynomial
response surface that is fully determined is provided by the binomial coef-
ficient:

n =

(
m + k− 1

m

)
m! (2.12)

Response surfaces have their most recent application in aircraft design for
the quantification of the interference drag of a strut-braced wing aircraft.
Duggirala et al. [32] examine several interactions of a strut-strut intersec-
tion. The authors explore a larger design space by CFD simulations and
make the results available in form of a second order response surface.

Benefits of response surfaces include the low evaluation cost and the high
smoothness of the data. On the contrary, response surfaces may not suffi-
ciently capture the shape of the original function h(x), especially for highly
non-linear problems. Furthermore, the transparency of a polynomial that
describes a reasonably complex physical phenomenon, especially in matrix
notation, is low.

Response surfaces are a type of surrogate that is based on regression.
Hence, the following sections refer to response surfaces by the term r(x). In
combination with interpolating methods that reproduce each sample point
exactly, e.g., Kriging, response surfaces can overcome the shortcomings of
a regression approach.

Kriging

Kriging17 surrogates are also known as Design and Analysis of Computer
Experiments (DACE) from the inaugural paper by Sacks et al. [118]. The
basic idea is a combination of the regression approach r(x), as described
above, and a correlation c(x) approach. The surrogate is then written as:

17 Sacks et al. published the first application of the Kriging algorithm in combination with
computer experiments. The algorithm is named after Daniël Krige [62], a South African
Mining engineer. Matheron [83] published initially about geo-statistics and applied Krige’s
algorithm.
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ŷ = r(x) + c(x) (2.13)

The regression is usually of low order and not dominant in the behavior of
the surrogate. The correlation model departures from this regression. As
mentioned in the previous chapter, the correlation approach assumes that
the error of the approximation model is a function of the design variable
x. If one tries to predict the model behavior at a location xj before any
points are sampled then the function value is uncertain. However, it can be
assumed that this uncertainty can be described by a random variable Y(x)
with a mean value of µ and variance σ2. Hence, the function provides a
value that is within the range of µ ± uσ, where u is an arbitrary positive
number.

Furthermore, it is assumed the function being modeled is continuous. If
this is true then the function values y(xi) and y(xj) tend to be close for a
small distance of xi and xj. This statement transfers to the statistic con-
siderations in a way that the correlation of Y(xi) and Y(xj) is high if the
distance of xi and xj is small. In Kriging this is usually expressed by the
following basis function:

cor[Y(xi), Y(xj)] = e
−

n
∑

l=1
θl |xi,l−xj,l |pl

(2.14)

Equation 2.14 nicely reflects the behavior demanded above. If xi equals
xj then the correlation of Y(xi) and Y(xj) is 1. On the contrary, if xi and
xj are infinitively distant towards each other then the correlation tends to
zero. The parameters θ and p assist in describing the model behavior in
each of the k dimensions of the design space. θ determines the gradient of
the relationship between the distance of the points in k and the correlation
of the function value. p typically takes values between 0 and 2 and models
the smoothness of the function.

All values for θ and p need to be determined to build a surrogate using the
Kriging basis function. Commonly this is done by maximizing the concen-
trated ln-likelihood function. This approach makes use of the assumption that
in an interpolating surrogate model of a deterministic computer model the
modeling error ε can be eliminated. However, the further construction of
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a Kriging model is complex and out of the scope of this literature review.
Jones [58] gives an excellent explanation of the process.

Further details on Kriging can be found from Simpson et al. [128] and
Sacks et al. [118]. In an earlier work Simpson et al. [129] compare response
surfaces and Kriging approaches for the multi-disciplinary design opti-
mization of an aerospike propulsion system. While both models return at
a similar quality, the Kriging model is constructed on a linear base, where
as the response surface needs a computationally more expensive second
order polynomial.

A further application for Kriging in the field of aircraft design is presented
by Koch et al. [60]. The authors build a model from FLOPS (see section 2.1)
to evaluate the design of a high speed civil transport (HSCT) aircraft. The
number of variables for the approximation models is large given the fact
that several design variables and uncertainties are included in the study.
The authors further argument that for these large numbers of variables
Kriging is more suitable as response surfaces would require too many sam-
ples to determine all coefficients. Of course, this argument is valid only if
the regression model of the Kriging approach is of lower order. However,
the key argument remains valid: If too many evaluations are necessary to
create a surrogate model then the cost savings may not be achievable.

Zhang et al. [140] apply Kriging to determine an aerodynamic database of
the X-31 aircraft configuration. The database consists of a Kriging model
that is build up from low- and high-fidelity aerodynamic analysis. Hence,
their study can be classified as a mono-disciplinary, multi-fidelity analysis
that is based on surrogate models. As Euler and RANS are the correspond-
ing analyses methods, the level of fidelity is combarably high.

In comparison to response surfaces, Kriging models provide a significantly
higher accuracy and robustness. Their key advantage is that each sample
point is exactly reproduced. The argument of cost, i.e., computability and
dimensionality, depends on the characteristics of the original model. How-
ever, the implementation of a Kriging model is rather complex. Further-
more, transparency is low as the number of basis functions and coefficients
quickly increases and becomes unmanageable.
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Artificial Neural Networks

Scientists model the human brain as a form of a biological neural network.
It consists of a set of neurons that are interconnected via synapses. Through
synapses signals are transferred from one neuron to one or several other
neurons. Once the input at a neuron surpasses a threshold, the neuron
sends further information by itself. Artificial neural networks try to model
the workings of biological neural networks in a formalized and executable
process.

McCulloch and Pitts [87] provide the initial description of a neuron for an
artificial neural network. This simplification of a biological neuron is also
known as a Threshold Logic Unit (TLU). A TLU takes a set of inputs (xi =

x1, · · · , xk). The inputs are summed up and if the sum exceeds a certain
threshold then a signal (y) is passed on to the next neuron. Otherwise, no
signal is emitted. Hence, a TLU is fairly similar to a transistor unit in a
computer.

In comparison to the previously outlined approaches, an immediate advan-
tage becomes obvious: While response surfaces and Kriging models try to
model continuous data, an artificial neural network can easily describe a
non-continuous behavior, e.g., a step function. For example, the fuselage
diameter is a step function that depends on the number of seats abreast
and the corresponding number of aisles.

Hebb [45] extends the TLU by a set of weighting factors. The weighting
factors (wi = w1, · · · , wk) are multiplied to each input value xi. A set
of exercises must be at hand to train the neuron, so that the inputs and
outputs can be checked against the actual and expected behavior of the
neuron. If the weighting factors and the threshold value change then a
training or learning effect is established. Figure 2.6 displays a single TLU
with inputs x1, · · · , x3 that is enhanced by weighting factors w1, · · · , w3
and a threshold value σ.

A full artificial neural network, as shown in figure 2.7, is constructed from
a set of layers of neurons that interact with each other. The first layer of
the neural network is the input layer where upon several hidden layers
follow. Finally, the last layer delivers the output s(x). Rummelhart and
McClelland [117] established the most well known method to train neural
networks, namely back propagation. In back propagation the measured er-

47



2 State of the Art

Figure 2.6: Artifical neuron

ror of the output of the neural network ε is propagated backwards through
each hidden layer. At each layer the weighting factors and summation
functions are altered to decrease the error.

Figure 2.7: Artificial neural network

Patnaik et al. [98] apply artificial neural networks for the multi-disciplinary
design optimization of a high speed civil aircraft. The analysis model re-
placed by the artificial neural network is the already mentioned FLOPS
model. Extensive reductions of the computational cost could be achieved
by the application of the outlined mechanism. However, due to the ever-
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increasing computational power this part of Patnaik’s paper is most prob-
ably outdated by now.

A recent application for artificial neural networks in aircraft design maps
the pressure distribution from a CFD simulation to a FEM model of a
UCAV model. Mazhar et al. [84] exploit the benefits of the artificial neu-
ral network to overcome the boundaries that arise from different meshing
schemes in the high-fidelity analysis tools.

Finally, artificial neural networks benefit from the fact that effective training
algorithms are available and that their evaluation can easily be parallelized.
For example, each neuron could be hosted on a single core of a computer
system. To some extend a neural network can be used as a representation
of a symbolic function, and hence, neural networks are connected to sym-
bolic regression as outlined in section 3.4. However, in the context of the
present study, interpretability and transparency of a surrogate are key fac-
tors. An artificial neural network may present a certain transparency as its
functionality can be broken down into each neuron. Nonetheless, for larger
neural networks a simple representation or evaluation is not possible.

In the scope of the present study, symbolic regression is proposed as a
valuable alternative to the described mechanisms for surrogate modeling.
It needs to be proved that symbolic regression can outperform the existing
approaches in terms of transparency while maintaining a similar or better
performance in terms of model error. Hence, section 3.4 of the next chapter
applies all mentioned surrogate models to different problems in aircraft
design to reliably quantify their performance in comparison to symbolic
regression.
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3 Multi-Fidelity Workflow The purpose of computation
is insight, not numbers.

(Richard Hamming)

The book “Numerical Methods for Scientists and Engineers” written by
Hamming [44] is a benchmark publication on physical models in engineer-
ing under the aid of computer science. This chapter outlines the proposed
multi-fidelity workflow in more detail. The goal is to create a workflow
that enables a better understanding of design problems in aircraft design,
and hence, a workflow that results in insight rather than a set of numbers.

DOMAIN OF DEFINITON 

DESIGN OF EXPERIMENTS 

CONCEPTUAL DESIGN 

INITIALIZATION 

PRELIMINARY DESIGN PRELIMINARY DESIGN PRELIMINARY DESIGN 
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Figure 3.1: Multi-fidelity workflow

The design studies outlined in chapter 4 all follow a pre-defined workflow,
as shown in figure 3.1. In the end, the conceptual design model is enhanced
and able to describe a certain design aspect, e.g., the wing mass estimation,
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by means of physics-based analysis in a given domain of definition at the
speed and level of detail of a handbook method.

The first step is the choice of a design concept. The design concept de-
scribes a topology that is subsequently examined in further detail. For
example, the strut-braced wing aircraft design concept consists of a high-
wing configuration with a supporting strut, that in subsequent steps is
examined parametrically, e.g., for different spanwise locations of the strut-
wing intersection. In this stage of the workflow, the relevant physical ef-
fects need to be identified, so that appropriate physics-based methods can
be selected.

The domain of definition describes a set of k design variables, i.e., dimen-
sions in which the design can be explored, x = (x1, · · · , xk) with upper and
lower boundaries ui and vi for each xi that parametrically describe an as-
pect of the design concept. The design variables need to be represented at
the conceptual design level of detail. Furthermore, the physic-based analy-
sis model (shown as preliminary design) needs to be sensitive to the design
variables18. Of course, the domain of definition may not exceed the domain
of definition of the physical model. The design space is the combination
of the design concept and the domain of definition.

In a subsequent step, the domain of definition needs to be explored by
means of a design of experiments. The DOE specifies a set of n samples
X = (x(1,1), · · · , x(k,n)) within the design space. The distribution of sam-
ples must cover the design space as completely as possible while keeping
the number of samples as low as possible. Section 3.3 outlines the details
of this step.

Subsequently, at each location in the DOE a first conceptual design is per-
formed. The characteristics of the derived concept are identical to the val-
ues of the design variables. The methods applied in this step are still coarse
and often historical-based equations. Section 3.1 outlines the principles of
the conceptual design model used in this study.

As can be seen from figure 1.2, the conceptual design is a necessary step
to derive initial information before a physic-based analysis model can be

18 It is not necessary for the conceptual and preliminary model to share identical inputs. During
the initialization step the coarse design variable may have an impact on the product model
that is forwarded to the preliminary design model. However, this connection must exist to
circumvent unnecessary computational cost
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triggered. Without sufficient information on the characteristics of the con-
figuration, it is not possible to execute physic-based analysis. For example,
if the wing mass needs to be calculated by physics-based means then it is
necessary to calculate the loads acting on the wing. Hence, in this case
global information, e.g., on overall aircraft masses, is an essential input
parameter.

Obviously, the information available at the conceptual design stage is not
sufficient to trigger any physics-based analysis model during preliminary
design. For example, it is not possible to develop a reasonable finite ele-
ment model from the few design variables that describe the wing geometry
in conceptual design. Hence, initialization is a necessary next step in the
workflow. During the initialization knowledge based engineering tech-
niques are applied to derive sufficient information for a physics-based anal-
ysis. Initialization and integration are described in section 3.2.

In accordance to the design problem, one or more physics-based analysis
models are triggered during the preliminary design phase. For each de-
sign study chapter 4 introduces these models, e.g., a vortex lattice method
to determine the induced drag of the aircraft. Physics based methods ben-
efit from the fact that their domain of definition is usually larger than that
of historical-based methods.

However, the disciplinary analysis updates only some properties of the
aircraft configuration and it is still necessary to take the effect of these
changes into account. Integration is necessary to make use of the results
of the preliminary design at the conceptual design stage. The integration
enables the conceptual design to enhance its own calculation by the higher
fidelity results obtained. Section 3.2 elaborates on two different approaches
for integration: a) parameter replacement, and b) method replacement.

In the next step, the conceptual design is updated. It is important to note
that an update in the conceptual design can lead to a change in the input
set for the preliminary design. For example, if the preliminary design cal-
culates a different wing mass, the overall masses of the aircraft will change,
and hence, the loads on the wing change as well. As every other numeri-
cal design process, the multi-fidelity loop needs to be repeated iteratively.
Once the multi-fidelity loop is converged, the outer loop continues with
the next point of the design of experiments.

Finally, once all points in the DOE are examined, a surrogate model is
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constructed. For this purpose, this study applies symbolic regression and
section 3.4 provides further information on this step. It is important to ver-
ify the derived surrogate, i.e., ensure that the behavior of the surrogate is
similar to that of the physics-based analysis. Therefore, additional evalua-
tions are necessary to check the quality of the symbolic regression, and if
necessary, introduce changes to the density of the design of experiments.
The additional evaluations are placed at random locations within the do-
main of definition. The verification step is necessary from an academic
point of view as it, at least to some extend, ensures that the surrogate
model reflects the behavior of the physical model. However, in the course
of an HEB problem, every expensive evaluation should be “spent” to train
the surrogate model. Chapter 5 discusses this topic in further detail.

Of course, the surrogate model replicates only the behavior of the pre-
liminary design models. As no a-prori valdidation of the multi-fidelity loop
exists, in a next step further validation is necessary to prove the applica-
bility in conceptual design. Hence, it must be shown that the disciplinary,
physical behavior described by the surrogate model provides reasonable re-
sults in the context of overall aircraft design. For this purpose a database,
as can be found in appendix B, is used to validate the surrogate model. The
database holds details about civil aircraft from publicly available sources.
The geometric characteristics and TLAR of these configurations serve as in-
put for the conceptual design model enhanced by the surrogate model. In
a subsequent step a conceptual design for all configurations is conducted
that includes the derived surrogate model and the outputs for mTOM and
oEM are compared to the database. If the overall error remains within rea-
sonable bounds then the surrogate model is included permanently in the
conceptual design model.

As a matter of fact, the validation is only possible within the already ex-
isting boundaries of the historical-based methods. A validation in the ex-
tended design space is only achievable if further aircraft configurations are
available.

Finally, the surrogate model is included in the conceptual design model to
enhance the validity at the early design stage. For future applications, it is
important to note the valid domain of definition for the newly developed
method, a common shortcoming among available design literature.

The following sections highlight some of the necessary implementations to
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carry out the above described workflow. Subsequently, chapter 4 describes
three design studies that apply the workflow. The design studies sub-
stantially increase the domain of definition for aerodynamic and structural
analysis of wing geometries in conceptual aircraft design. Furthermore,
the last design study examines the properties of a strut-braced wing air-
craft and it facilitates the design of such a configuration during the early
design stages. Chapter 6 provides an outlook of other possible applications
of the multi-fidelity workflow.

3.1 Conceptual Design

As the goal of this study is to enhance aircraft design by supplying physics-
based analysis methods at the conceptual design stage, a conceptual design
model is one of the core elements of the development. This section defines
several requirements that a conceptual design model needs to fulfill to sup-
plement the goals of this study. Subsequently, details of the implementa-
tion are highlighted.

Requirements

Primarily, a conceptual design model needs to fulfill three main require-
ments to be applied in the course of this study. It needs to provide means
to:

• reflect the results of the study, i.e., include the physics-based surro-
gate models in the conceptual design model.

• examine the difference to existing methods, i.e., enable a comparison
between physic- and historical-based analysis.

• close the multi-fidelity loop, i.e., initialize and integrate information
from different levels of fidelity.

The surrogate models that the design studies (chapter 4) derive need to
be included in a conceptual design model to enable design studies in the
extended design space. Technically speaking, the source code must be
adaptable. From a legal point of view this further implies that it must be
allowed to change the code. This is only possible in self-written or open-
source codes.
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Furthermore, it must be possible to compare the physics-based surrogate
models with pre-existing historical-based methods. The goal is to highlight
qualitative changes, i.e., in the number of dependencies as well as quantita-
tive changes, i.e., the magnitude of sensitivities at different locations within
the design space.

Section 3.2 outlines the interaction of the conceptual design model with the
higher fidelity, physics-based analysis models. While it is possible that a
separate model initializes19 the multi-fidelity loop, the integration neces-
sarily needs to be included in the conceptual design model as it influences
the dependencies in the synthesis process. For example, if instead of a sim-
ple handbook equation a complex engine performance map is applied as
means to quantify the thrust specific fuel consumption then several, addi-
tional parameters are necessary that need to be provided by the conceptual
design model.

Section 2.1 examines several available conceptual design models and it can
be seen that none of them fulfills the outlined requirements. Therefore,
a new conceptual design model, namely VAMPzero, has been developed.
VAMPzero is published under an open source license and the following
section outlines some of the implementation details. Further information
can be obtained from a previous publication [16] or the online documenta-
tion20.

Object-Oriented Structure

Apart from the already mentioned requirements, VAMPzero is supposed
to fulfill the requirements of a conceptual design model for the needs of
MDAO to support the distributed design environment VAMP mentioned
earlier. These requirements include a clear decomposition of components
and disciplines of the aircraft so that VAMPzero is able to close gaps in
higher fidelity MDAO processes. Furthermore, transparency, flexibility and

19 The initialization provides the necessary information for analysis models, and hence, most of
the information is geometry related. Therefore, a separate initialization code might perform
decently, e.g., it transforms a wing from conceptual to preliminary level of detail. How-
ever, further information is necessary for some of the operations during the initialization,
e.g., weight and balance information to locate the landing gear and size control surfaces.
This information becomes available at the conceptual design stage and for this reason the
initialization is included in the conceptual design model.

20 http://software.dlr.de/p/vampzero/
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easy maintenance are required to enable a sustainable development. There-
fore, the code uses an object oriented structure, as shown in figure 3.2.

AIRCRAFT 
GEOM 

WING 
… 

… AERO 

COMPONENT 

DISCIPLINE 

REFAREA 
PARAMETER 

Figure 3.2: Object oriented structure of VAMPzero

Components in VAMPzero resemble selected physical systems of the air-
craft, also the aircraft is listed as a component. Like systems of systems,
components may be nested within each other, e.g., an aileron within a
wing within the aircraft, resulting in the hierarchy of the calculation pro-
cess. In each component the properties of the component are evaluated
within several disciplines. Either a complete calculation or a component-
or discipline-wise calculation is possible due to this setup.

At the intersection of disciplines and components, parameters are intro-
duced in VAMPzero. For example, in the above figure 3.2 the component
wing and the discipline geometry overlap. One of the parameters at the
intersection is the reference area of the wing. While components and dis-
ciplines serve as means to organize the calculation, parameters hold the
design knowledge coded as calculation methods.

As the design space of a calculation method is usually limited to a spe-
cific domain of definition or design concept, multiple calculation methods
need to be available for the same parameter. For example, a different cal-
culation method for the fuselage mass is necessary if the engines are wing
or fuselage mounted (design concept) and if the slenderness ratio of the
fuselage is either large or small (domain of definition). Furthermore, the
design task specifies the order in which parameters need to be calculated.
For example, whether the design range is an input or a desired result of
the calculation, determines the way the mission fuel mass is calculated.
VAMPzero includes several calculation methods in a parameter via a mon-
key patch. A monkey patch enables the dynamic exchange of functions
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during the runtime of the code, i.e., VAMPzero always calls the calc() func-
tion of all parameters but the parameter itself is capable of exchanging its
own calc() function. For example, the parameter reference area of the wing
holds three different calc methods:

• calc: to decide upon the correct calculation method and replace itself.

• calcGeometry: to calculate the reference area from the span and as-
pect ratio.

• calcWS: to calculate the reference area from the maximum wing load-
ing and the maximum take off mass.

If the calc() function of the wing’s reference area is called then it deter-
mines whether the aspect ratio and the span are given as inputs, and
subsequently, it exchanges itself with the correct calc() function. In the
static code, both calc functions have different names. The first function is
initially named calc and called by the overall calculation during the first
iteration. It then decides depending on the input parameters to dynami-
cally exchange itself with, for example, calcGeometry(). In the next iteration
the overall calculation calls calcGeometry instead of calc. Pilgrim [100] and
Hetland [48] provide detailed information on this process of dynamically
changing the behavior of a code element during runtime. The inaugural
paper on VAMPzero [12] highlights further details of the implementation.

(a) (mostly) Sequential (b) Cascade

Figure 3.3: Calculation approaches in conceptual design

The object-oriented structure of VAMPzero implies that its calculations fol-
low a different calculation scheme as conventional conceptual design mod-
els. As of before, conceptual design calculations followed a sequential ap-
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proach over different stages such as a first weight sizing, a class I and II
weight analysis, and other disciplinary models such as aerodynamics I and
II. The sequential approach, as can be seen from figure 3.3a, suffers from
two drawbacks: First, the structure of the calculation is rigid. It is there-
fore difficult to change the combination of input and output parameters. In
accordance to the design task, e.g., design a new aircraft or determine the
properties of an existing aircraft with re-fitted engines, the rigid setup can
be cumbersome. Second, the convergence control of a sequential approach
usually monitors only a few parameters, e.g., the maximum takeoff mass
and the mission fuel mass. These parameters have a large influence on
the properties of the aircraft configuration, and therefore it is questionable,
whether the complete calculation is converged if a code monitors only these
few parameters. For example, it is likely that the direct operation cost, an
important parameter in many optimization studies, converges several iter-
ations later, as it depends on both of the aforementioned masses.

VAMPzero provides a cascade-like calculation, as shown in figure 3.3b.
During one iteration all parameters are calculated once. As all parameters
can interact with each other at the same time, no issues from fixed in-
and output settings occur. The calculation proceeds iteratively until all
parameters are converged. Hence, the convergence of parameters that are
downstream in the design process is ensured. It is likely that the cascade
like calculation has a higher computational cost21. However, which of the
approaches, sequential or cascade, provides the better overall convergence
performance remains an item of future research.

Qualitative Dependencies

The object-oriented structure of VAMPzero enables it to automatically ex-
amine the dependencies between parameters. As the calc() functions can
be replaced to fit to the design task, dependencies are dynamic and can
not be found from static code analysis22. Whenever a parameter’s calc()

21 The overall runtime of VAMPzero remains under a second on a standard desktop computer
and can be further reduced for optimization tasks so the cost increase seems to be manage-
able.

22 For example, the design rules that Kroo [66] extracts from the documentation of PASS base
on a static analysis. However, dynamic changes in the code can not be traced in this way.
These dynamic changes become necessary either if the design task changes or if multi-fidelity
operations are included.
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function obtains the value of another parameter, VAMPzero logs this as a
dependency. The result is a complete list of qualitative dependencies for
the design process.

Figure 3.4 shows the qualitative dependencies for the reference area of the
main wing. In the middle, the parameter under examination is shown. The
right hand side shows all parameters on which the calculation of the central
parameter relies, i.e., the wing’s span and aspect ratio. The left hand side
provides all parameters whose calculation relies on the value of the central
parameter. If the wing’s reference area changes then all parameters on the
left hand side change as well. It is crucial to deliver this information to the
designer to ensure his acquaintance of implications to the design due to
changes he introduces.

The right hand side information can easily be gained from any textual rep-
resentation of an aircraft design process, e.g.,by looking up the method for
calculation of the wing’s reference area in a design handbook. The determi-
nation of all the influences of the wing’s reference area is more challenging
as it would require to examine the complete handbook for appearances of
the reference area within an equation. Nonetheless, these observations are
static as well, and hence, they are overloaded with unnecessary informa-
tion.

Figure 3.4: Qualitative dependencies of the reference area
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Quantative Dependencies

If a designer knows about the qualitative dependencies in a design pro-
cess then the he can determine which parameters influence each other, and
hence, he is able to judge whether the calculation method is appropriate for
the design problem at hand. If the dependencies are not in agreement with
his professional experience then the calculation method might be improper
for the design task as it neglects certain physical effects. In a next step, it
is important to examine the magnitude of the influence, i.e., the quantita-
tive dependencies. Hence, information about the sensitivities at the design
point is necessary. There are several possibilities to derive the sensitivity of
a quasi-numerical calculation method.

Finite differences are a conventional method to determine sensitivities.
Equation 3.1 is a forward-difference implementation of finite differences
for a function f (x) with step-width h and truncation error O. It is ob-
vious that the result depends on the step-width. If the step-width is too
large then the error of the sensitivity increases. Contrary, if the step width
becomes too small then subtraction errors occur on a computer. Given the
large bandwidth of numerical scales in conceptual aircraft design, it is hard
to find a suitable step-width to estimate the sensitivities off all calculation
methods.

∂ f
∂x

=
f (x + h)− f (x)

h
+ O(h) (3.1)

VAMPzero applies complex-step derivative approximation (CDA) to over-
come these shortcomings. In the context of engineering applications, Mar-
tins et al. [82, 81, 79] first described this technique. It benefits from the fact
that the analysis is independent from the magnitude of the step-width. At
first the function, i.e. the calculation method under examination, is written
as f = u + iv and the complex variable z = x + iy is defined. If f is ana-
lytic, i.e., differentiable in the complex plane then Cauchy-Riemann (Eq 3.2
and 3.3) can be applied:

61



3 Multi-Fidelity Workflow

∂u
∂x

=
∂v
∂y

(3.2)

∂u
∂y

= − ∂v
∂x

(3.3)

If equations 3.1 and 3.2 are combined then the derivative for u is written
as:

∂u
∂x

= lim
h→0

v(x + i(y + h))− v(x + iy)
h

(3.4)

Given the fact that the quantitative analysis in VAMPzero targets for real
values, equation 3.4 is further simplified by y = 0, u(x) = f (x) and v(x) =
0. The following equation is therefore noted as complex step derivative
approximation:

∂ f
∂x
≈ =[ f (x + ih)]

h
(3.5)

As complex operations become necessary, the implementation effort of
equation 3.5 is of course substantially higher than for equation 3.1. How-
ever, as VAMPzero is programmed in a dynamically typed language23, the
development overhead is low.

Figure 3.5: Sensitivities of the reference area

Figure 3.5 shows the sensitivities of the reference area of the wing as given
by Equation 3.6. Obviously, the wing span has a larger influence due to

23 https://www.python.org
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the exponent. Furthermore, the reference area increases if the span rises.
Hence, the span’s bar in the above plot is larger than the bar of the aspect
ratio.

AR =
b2

s
(3.6)

3.2 Multi-Fidelity

In the present study, the conceptual design model closes the multi-fidelity
loop. Hence, it must be able to transfer information from its own coarse
product model with a dimensionality n to a finer, mono-disciplinary prod-
uct model with a higher dimensionality m and vice-versa.

The conceptual design model interacts with the physics-based analysis
models via a central data model to close the multi-fidelity loop, see fig-
ure 1.3. In the direction of increasing fidelity it is necessary to initialize
these models with the required product and process information. For ex-
ample, initialization includes the generation of a 3-dimensional geometry
definition as well as flow conditions for aerodynamic analysis.

In addition, in the direction of decreasing fidelity, the higher fidelity results
need to be reduced to the level of detail available in conceptual design. For
example, a conceptual design model works with discrete SFC values at
certain points of the mission profile (climb, cruise, etc.) so that a detailed
engine performance map needs to be reduced to the SFC values at these
points. In this case, the coarse model can still access all information from
the model of higher fidelity, and hence, no further error is introduced into
the design. However, if not all information can be transformed to the coarse
model then the coarse and the fine model need to be compared to quantify
the arising error.

Initialization

The initialization of higher fidelity analysis models from VAMPzero’s own
data model requires a transition from <n → <m which can not be achieved
without the use of assumptions. For this upward process La Rocca [68] pro-
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poses the application of knowledge based engineering (KBE) techniques24.
These techniques are suitable if sufficient design knowledge in an engi-
neering domain is available that can be coded in a set of rules. The next
paragraphs provide an example for the initialization of the main wing
geometry.

The main wing within VAMPzero is a single trapezoid, planar wing. Most
available literature in handbooks gives equations for the analysis of such
a simple concept. Within the equations correction factors balance the ge-
ometric inaccuracy. However, for the further analysis of jet transport con-
cepts by means of physics-based analysis, a realistic double trapezoid wing
including twist and dihedral is required.

Figure 3.6 shows the higher fidelity wing. The wing span (bW ), the leading
edge sweep (ϕ25), the aspect ratio (AR), the taper ratio (λ), and the kink
ratio (ηk) describe the wing planform. The trailing edge from root to kink
is perpendicular to the fuselage. The twist angle (ϑ) is applied in a linear
distribution from root to tip. The thickness to chord ratios are varied in
accordance to Schmidt [123] from root to tip. The dihedral folds the wing
from the fuselage intersection onward.

ϕ

b
x

y

ct

cr

ηk

yf

b

Figure 3.6: Double trapezoid wing planform

24 A previous publication [17] on VAMPzero provides further details on the implemented
knowledge based engineering approach.
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Table 3.1 lists dimensionless parameters for the description of the geometry
of the wing with the help of the Π-Theorem by Buckingham [23]. The com-
plete process is outlined by Jepsen [55] in full detail. During the mapping
to the fine product model, Π1 to Π4 are constant to assure geometric sim-
ilarity to the single trapezoid wing. Π5 and Π6 are then derived for a
constant wing reference area (S = f (ci, ca, b, η f , ηk, ϕ)) and the provided
fuselage diameter.

Π1 = ϕ Π2 = τ Π3 = λ = co
ci

Π4 = AR = 4b2

S Π5 = ηk =
yk
b Π6 = η f =

y f
b

Table 3.1: Dimensionless constants

Similar approaches are applied to other parts of the geometry. Figure 3.7
shows an example for a geometry that is initialized by VAMPzero and
exported to CPACS. For example, the fuselage in VAMPzero is modeled as
a combination of cylinders for nose, cockpit, cabin, and tail. The fuselage
is transformed by KBE technologies to standard geometry as it is usually
employed in preliminary aircraft design.

Figure 3.7: Three-dimensional geometry initialized by VAMPzero
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Integration

While information based on engineering knowledge needs to be added in
the process of initialization, integration reduces the dimensionality of the
described information and hence information is lost (<n ← <m). However,
the loss of information is still justified as it is the only way to enable concep-
tual design, and hence, a synthesis in the multi-fidelity loop. Two different
approaches enable integration in VAMPzero; they are termed parameter
replacement and method replacement.

In a parameter replacement, the information from a higher fidelity analysis
model simply overwrites one of the parameters in the conceptual design
model. In this case, the information is handled as an input parameter,
and hence, the calculation of the conceptual design model for the specific
parameter is overwritten. During the runtime of the conceptual design
model no further calculations are necessary. For example, in VAMPzero
the horizontal tail mass is quantified by a method from Raymer [105]. If
more accurate information is available, e.g., from finite element analyses
then the value for the mass is overwritten. The integration process needs
to filter the appropriate value for the relevant cruise condition.

As the parameters in VAMPzero are fixed by a parameter replacement,
similar to a user input, no right hand dependencies exist while the level
of precision increases due to the higher fidelity of the imported data. If
a method replacement is applied then it will change the right hand de-
pendencies in the calculation. For example, mission analysis in conceptual
design is based on a constant thrust specific fuel consumptions (SFC) in
each segment. Equation 2.1 shows a dependency between the SFC and the
bypass ratio of the engine. The equation, as mentioned earlier, is intro-
duced by Raymer [105] and valid for bypass ratios up to 6. Obviously, the
equation is based on simple empirics and not applicable for modern engine
concepts, as these usually rely on much higher bypass ratios. Figure 3.8a
shows the limited number of dependencies.

From a higher fidelity analysis model engine performance maps are avail-
able via CPACS. While the level of detail in the mission analysis remains
unchanged the import of the engine performance map increases the fidelity
of the calculation. The performance maps provide the SFC in relation to the
altitude, Mach number and thrust. As VAMPzero makes use of a constant
SFC, most of the information in the performance map is unused. How-
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(a) Historic based

(b) Physics based

Figure 3.8: Comparison of level of detail of the SFC

ever, the qualitative dependencies increase (see figure 3.8b) and therefore
the feedback that is provided to the designer is enlarged. In this exam-

67



3 Multi-Fidelity Workflow

ple, the thrust is a parameter that constantly changes during the iterative
loop, and hence, it is not possible to include the SFC via a static parameter
replacement.

3.3 Design of Experiments

One of the first steps in the multi-fidelity workflow after the design space
has been chosen is to determine how the experiment is designed, i.e., de-
termine the locations where analyses need to be conducted in the selected
domain of definition. Historically, Fisher [34] is deemed to have first in-
troduced the term Design of Experiments. This section provides a short in-
troduction on different DOE algorithms and warrants the Latin-Hypercube
approach applied in this study.

Given a function or computer model f (x1, · · · , xk) with xk input values the
goal of a design of experiments is to examine the function in a domain of
definition xi ∈ <|vi ≤ xi ≤ ui in a representative way so that the behavior
of f is sufficiently observed while maintaining an as low as possible num-
ber of samples to minimize computational cost. Thereby, ui and vi are the
upper and lower boundaries of the domain of definition. Hence, the de-
sign of experiments results in an input matrix X = (x1,1, . . . , xk,n) with n
samples. Generally speaking, two different ways for design of experiments
exist: Deterministic and random sampling.

While deterministic sampling ensures an even distribution over the domain
of definition, the number of samples usually rises quickly. One example for
a deterministic design of experiments is a full factorial sampling plan25

that examines for each dimension (x1, · · · , xk) a number of levels m. The
number of samples results in mk. Hence, n = 64 samples are necessary
to examine the outer boundaries of a m = 6 level design for a simple two
dimensional design space, say wing area and aspect ratio. If two additional
dimensions are introduced to the domain of definition then the number of
samples rises to n = 4096. Obviously, limitations due to computational
cost may arise even if the cost of a single analyses run is low.

25 Several deterministic alternatives to full factorial sampling plans exist. For example, Box
and Behnken [19] introduce fractional factorial or Box-Behnken sampling plans. As full
factorial design of experiments are a well arranged example, this review focuses only them
as a representative for deterministic sampling plans.
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In the context of the Manhattan Project, Metropolis and Ulam [90] intro-
duced Monte Carlo simulation, a well-known example for a random sam-
pling design of experiments. In a Monte Carlo simulation, the input values
for f (x1, · · · , xk) are randomly selected without further constraints. One
of the benefits of the completely random sampling is that additional points
can be added to the experiment at any time. On the contrary, it is not
guaranteed that the random sampling spreads evenly across the domain
of definition, i.e., whether it is space-filling. Hence, a large number of eval-
uations might be necessary to obtain a representative evaluation of the
domain of definition.

ui vi xi 

pi 

(a) Sampling

x1 

xk 

X1 Xn … 
…

 

(b) Pairing

Figure 3.9: Latin square with three elements

In a later development, McKay et al. [88] and later Iman et al. [53] propose
a random sampling technology that explores the domain of definition more
evenly and is termed Latin hypercube. First, each dimension is sampled
separately. The sampling is also based on random numbers but it divides
the domain of definition of each parameter vi ≤ xi ≤ ui into n intervals.
In each interval a random number is chosen that takes into account the
probability density function of the parameter. As the input parameters in
the scope of this study are based on characteristics of the product, e.g., the
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wing span and the aspect ratio, a constant distribution of the probability
density is assumed. If the input parameters include environmental factors,
e.g., the crude oil price, then a non-constant distribution is advised. Fig-
ure 3.9a shows the sampling process both for a normal as well as for a
constant distribution of the probability density function.

In the next step, the samples from each parameter are paired to form the
input sets for f (X). The n intervals of the k parameters are then combined
via a permutation or pairing algorithms. Figure 3.9b shows a Latin square
that illustrates the method applied in Latin hypercube sampling. For each
input set X = [x1,1, · · · , xk,n] different intervals from each factor xi are
chosen.

The core benefit of the Latin hypercube sampling is a distributed sampling
across the domain of definition, at a relatively low number of samples.
One drawback remains: As the number of intervals needs to be known in
advance, additional points can not be added to the experiment posteriori.
Current research in the field of design of experiments suggests that this
drawback may be overcome, and chapter 6 briefly explains in which way
the proposed multi-fidelity workflow may benefit from this research.

Assessment of Design of Experiment Algorithms

Three exemplary sampling plans XFF, XMC, XLH for three design variables
x1, x2, x3 are introduced to enable a comparison of the different design of
experiments algorithms full factorial, Monte Carlo and Latin hypercube.
Hereby, the domain of definition is limited from 0 to 1 in each dimension.
Each of the sampling plans, regardless of the design of experiment algo-
rithm, holds n = 64 samples, and hence, it causes a similar computational
cost. Appendix C lists all sampling plans.

On a side note, the sampling plans can be displayed in a three-dimensional
plot, as shown in figure 3.10. However, this form of representation lacks
clarity both for a higher number of samples and even worst for a higher
number of dimensions. Hence, in the further course of this study scatter-
matrix plots visualize higher dimensional contents. Figure 3.11 displays
the same sampling plans in a scatter-matrix that shows data for a combina-
tion of two parameters, e.g., x1 over x2 and x2 over x1. Despite the fact that
for each plot one dimension is hidden, it is still the most clear way to dis-
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play higher dimensional data, especially necessary for the design studies
presented in chapter 4.
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Latin hypercube Monte Carlo Full factorial

Figure 3.10: Design space coverage as three dimensional plot

As it can be seen from both diagrams (figure 3.10 and 3.11), the full factorial
sampling plan evenly distributes the samples but only covers a small num-
ber of discrete values within the design space. The Monte-Carlo sampling
plan targets for different locations, and hence, it seems to cover the domain
of definition better than the full factorial design. However, at some loca-
tions a very tight clustering can be observed, e.g., at x2 ≈ 0.8 and x3 ≈ 1.0.
Finally, the Latin hypercube provides an apparently similar design to the
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Monte Carlo sampling plan, but no tight clustering occurs as the design
space is subdivided into distinct intervals.

x1

0.0 0.5 1.0

0.0

0.5

1.0

0.0

0.5

1.0

x2

0.0 0.5 1.0 0.0 0.5 1.0
0.0

0.5

1.0

x3

Latin hypercube Monte Carlo Full factorial

Figure 3.11: Design space coverage as scatter-matrix plot

An important criteria for the quality of a design of experiments is its space-
fillingness. While this topic opens the view on a complete field of research,
far beyond the scope of this study, some clarifications are necessary to
justify the application of a certain design of experiments algorithm over
another. Graphically, the space-filling abilities of a distribution can be vi-
sualized by a histogram. Figure 3.12 displays the histogram for the distri-
bution of samples across the design variable x1 from the previous example.
The plot subdivides the design space (0, · · · , 1) into 16 intervals.
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The full factorial sampling plan places samples at four different locations
on x1 and each one holds n = 16 samples. Plainly, it will be hard to grasp
the behavior of h(X), if only samples from four positions within a dimen-
sion are known. On the contrary, the Monte Carlo and Latin hypercube
sampling plans distribute samples more evenly along x1. In comparison,
the Latin-Hypercube appears to be superior as it places four values within
each of the sixteen intervals.
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Figure 3.12: Histogram of x1 distribution

Certainly, a graphical evaluation of design of experiment algorithms ei-
ther via scatter matrix plots or histograms becomes cumbersome for larger
design spaces and sampling plans and is further unsuitable for an exact
comparison. Johnson et al. [57] propose the maximin criterion as numerical
means for the evaluation of the space-fillingness of a sampling plan X. The
criterion is based on the set of unique distances d1,··· ,u between all pairs of
points within the sampling plan and the number of pairs of points J1,··· ,u at
equal distance. The most common way to determine the distance between
a pair of points is the Euclidean norm (Eq. 3.7).

d(x1, x2) =

√√√√ k

∑
j=1
|xj,1 − xj,2|2 (3.7)

Johnson et al. then define that a maximin sampling plan is the sampling
plan among all available plans that maximizes d1 and minimizes J1. Mor-
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ris and Mitchell [92] further extend the definition by Johnson et al. to in-
clude all distances and occurrences, i.e., the maximin sampling plan among
all available sampling plans maximizes d1 and minimizes J1 and further
maximizes all subsequent d and for each minimizes the related J.

While both maximin criteria may be applied to compare and subsequently
optimize sampling plans, this approach is neglected within the research
community for various numerical reasons. Instead, Morris and Mitchell
propose equation 3.8 for the comparison of sampling plans where a smaller
value of Φq, i.e., the Morris-Mitchell criterion, indicates a better space-
fillingness.

Φq(X) =

 u

∑
j=1

Jjd
−q
j

1/q

(3.8)

Forrest et al. [35] explore various values for q and due to high numerical
cost they fail to deliver full proof but advise higher values of q to obtain
sample plans that also fulfill the above mentioned maximin criteria. Hence,
table 3.2 displays the results for d1, J1 and Φ100 for each of the provided
sampling plans.

Full Factorial Monte Carlo Latin Hypercube

d1 0.3333 0.0373 0.0477

J1 63 1 1

Φ100 3.1522 26.8016 20.9773

Table 3.2: Space fillingness of DOE algorithms

In terms of the Morris-Mitchell criterion, the full factorial sampling plan
is superior to the random sampling methods due to its large distances
between pairs of points26. However, as seen from the above plots, and
given the fact that J1 is large, the full factorial sampling remains an inferior
choice. The comparison of the Monte Carlo and Latin hypercube sampling
plans is straightforward both for the Morris-Mitchell criterion and the max-
imin criterion. Latin hypercubes are the algorithm of choice in the present

26 The higher values of J for the full factorial sampling plan are almost neglected due to high
values of q.
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study due to a higher value of d1, i.e., the shortest distance between a pair
of points, and lower values of Φ100 .

3.4 Symbolic Regression

A common drawback of the surrogate models, as outlined in section 2.4,
is their predefined model structure. Given a parameter set X of a func-
tion h(x), a surrogate model is represented by a function s(x) that delivers
similar outputs as h(x). Hereby, s(x) is constructed from experiments that
apply X to h(x) and measure the result. If the structure of s(x) is pre-
defined, e.g., a polynomial of mth order, then this implies that a certain
knowledge about the structure of h(x) is available. If no knowledge about
the structure of h(x) is available then the (most probably inappropriate)
structure of s(x) should not be fixed.

It is assumed that no prior knowledge about the model structure is avail-
able due to the complexity of the applied higher fidelity models h(x) in
this study, and hence, a surrogate model without predefined structure is
preferred. A technology that enables the construction of a surrogate with-
out a predefined structure is symbolic regression; it is based on genetic
algorithms and -programming.

Figure 3.13: Evolutionary algorithm principle
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Genetic algorithms are the core of genetic programming as well as symbolic
regression. They describe means to model evolutionary processes with the
aid of executable computer models. Fraser and Burnell [40] outline the key
elements, population, chromosomes, selection, mutation, and crossover, as
shown in figure 3.13. In short, a genetic algorithm tries to find an indi-
vidual out of a generated population that best fits the metrics of a given
fitness function. Each individual of the population is described by a set
of chromosomes and their order among each other. The genetic algorithm
is able to mutate each individual. A mutation exchanges certain chromo-
somes or reshuffles their order. Furthermore, new individuals are created
by crossing over parts of two or more other individuals.

From an initial set of random individuals, the genetic algorithm creates
new individuals in an iterative process and applies mutation and cross-
over. In a subsequent step, the fitness function is applied to each individual.
In this step, the equivalent to nature’s selection of the fittest, only the best
individuals are chosen for further development.

As a further subset of genetic algorithms, Koza [61] and Forrest [35] de-
veloped genetic programming. In genetic programming the evolutionary
approach is taken to create computer programs. Thereby, each chromo-
some is an executable statement, often a function. Most relations lead to
functional programming languages such as LISP. Symbolic regression is
one of the siblings of genetic programming.

In a symbolic regression the chromosomes are the parameters of an input
set X = [x1, · · · , xk] and mathematical operations such as addition, sub-
traction, and division or functions such as sine and cosine. While adhering
the laws of mathematics, a genetic algorithm combines these chromosomes
and tries to find a function s(x). The fitness function for the symbolic
regression is some kind of error metric, e.g., the root mean square error
(Eq. 3.9). The goal is to minimize the error ε so that s(x) becomes as simi-
lar as possible to h(x).

ε =

√√√√√ n
∑

i=1
(h(Xi)− s(Xi))2

n
(3.9)

The present study applies the symbolic regression algorithm Eureqa pub-
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lished by Cornell University27 and developed by Schmidt and Lipson [121,
122, 120]. In their studies, they show that symbolic regression is capable of
finding the Lagrangian and Hamiltonian descriptions of physical systems
such as a double pendulum.

Physical systems are described by invariants such as the afore mentioned
Lagrangian and Hamiltonian notations of energy in the system. When
searching for these invariants from a given set of data, the problem arises
that several more trivial invariants exist. Schmidt and Lipson propose the
use of a predictive ability criterion to determine suitable and non suitable
invariants: “We define a potential law equation to be nontrivial if it can predict
differential relationships between two or more variables.” The predictive abil-
ity is therefore the comparison of partial derivatives. If the experiment
is described by two variables x and y then the partial derivatives can be
calculated by local polynomial fits and are noted as:

∆x
∆y

=
dx
dt

/
dy
dt

(3.10)

For any equation found by the symbolic regression algorithm the same
information can be found from basic calculus. For example, for an equation
f(x,y) over variables x and y:

δx
δy

=
δ f
δy

/
δ f
δx

(3.11)

Schmidt and Lipson further apply a mean log error to compare the results
of equations 3.10 and 3.11. Equations found from the symbolic regression
that lead to a small number for the error are further developed. Hereby,
the mean log error is written as:

ε = − 1
n

n

∑
i=1

log(1 +
∣∣∣∣∆xi
∆yi
− δxi

δyi

∣∣∣∣) (3.12)

Hence, the implementation by Schmidt and Lipson further reduces the
number of possible solutions and the identification of meaningful candi-
dates becomes easier.

27 In 2013 Schmidt created a spin-off from Cornell University and Eureqa is now published by
Nutonian Inc. The name and licensing of the software have changed various times, but the
software is still available for academic purposes.
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Assessment of Surrogate Models

Chapter 2, while outlining the state of the art in surrogate modeling, intro-
duced an assessment scheme for surrogate models by Shan and Wang [126].
In the following paragraphs the categories of Table 2.6 are applied to sym-
bolic regression. A quantitative holistic assessment of the various criteria
for surrogate models is hard to achieve and is out of the scope of this study.
However, some numerical studies are outlined in the next paragraphs to
back up the qualitative assessment. The goal of this assessment is to jus-
tify the application of symbolic regression as the surrogate model of choice
in the present study by means of a comparison against other commonly
applied surrogate models.

Selected surrogate models are applied to two different handbook methods
for the estimation of the wing mass. The number of samples n is increased
and the error of the surrogate model is monitored. This experiment is
conducted to answer the following questions:

1. How many samples are necessary for a good fit?

2. Which surrogate provides the lowest error?

3. Which surrogate provides the lowest complexity?

Question 1 relates to the numerical effort necessary to create a surrogate
model. If a high number of samples is necessary to create a good surrogate
then the computational cost might become insurmountable. As outlined in
the previous section, samples are created via Latin hypercubes .

Question 2 relates to the numerical error introduced into the design due
to the use of a surrogate model. It may be assumed that for a certain
number of samples the error of the surrogate behaves asymptotically, i.e.,
more samples not necessarily improve the precision of the surrogate model.
Kriging models are exempt from this assumption as they are interpolating
methods and each additional sample still increases their precision. The
error is measured as the root mean square error (Eq. 3.9) divided by the
mean of all function evaluations. The result of the surrogate is compared
to the result of the examined function for ten thousand samples that are
derived by a Monte-Carlo simulation.

Question 3 relates to the computational cost of the surrogate model and its
transparency, i.e., the possibility for an engineer to implement and interpret
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the surrogate model. The goal of this study is to include the surrogate
model in a conceptual design code and in such a code analysis methods are
usually implemented in one or few equations per parameter. Furthermore,
evaluation times must remain low to justify the replacement of a slower,
higher fidelity analysis.

Complexity is expressed as the sum of cost of mathematical operators and
operands. A different cost is allocated for each operator. For example,
f (x) = x+ 1 has a complexity of 3; 1 is the cost of each variable or constant,
plus a cost of 1 for the addition operator. In comparison, trigonometric
operators have a higher cost, and hence, f (x) = cos(x+ 1) has a complexity
of 6. Appendix A lists the cost of all mathematical operators.

Subsequently, the computational cost necessary to derive a surrogate model
needs to be taken into account, especially as it poses one of the main draw-
backs of symbolic regression. While it is possible for the symbolic regres-
sion to derive the perfect fit for the deterministic models posed in this
assessment, the computational cost and runtime are high. Hence, the max-
imum computational cost granted to the symbolic regression is limited to
one core hour. Of course, for a high fidelity task this is not a sensible
boundary condition, but it serves as means to enable a comparison of the
different surrogate models:

• Linear Response Surface,

• Quadratic Response Surface,

• Universal Kriging with Constant Regression,

• Universal Kriging with Linear Regression,

• Universal Kriging with Quadratic Regression,

• Artificial Neural Network,

• Symbolic Regression.

If the number of samples is too low and results in an under-determined
solution then response surfaces are not trained. Despite several approaches
to fit polynomial terms for an under-determined number of samples exist,
this study neglects these approaches due to their high numerical cost and
low precision. Conn et al. [27] provide detailed information on this subject.
It may be assumed that a decent fit is only possible for a number of samples
equal or higher than the number of necessary coefficients.
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3 Multi-Fidelity Workflow

The Kriging models use the response surfaces as regression models. Nielsen
et al. [96] published a state of the art implementation of the DACE ap-
proach from Sacks et al. [118]. This study uses the Scikit28 version of
Nielsen’s implementation.

The artificial neural network is based on the PyBrain29 framework. It con-
sists of an input layer with k nodes. The next layer is linear with k − 1
nodes. Subsequently, a linear layer with k − 1 nodes is added. Finally, a
single node provides the output. The artificial neural network is trained via
a back propagation trainer. Despite the fact that the linear layers may not
aid in refactoring very complex mathematical constructs, they are chosen
in this example due to their low complexity30.

The symbolic regression is based on the Eureqa31 toolbox. As already men-
tioned, a complete holistic comparison of surrogate models lies beyond the
scope of this study. Hence, conservative, best practice approaches are cho-
sen for the above mentioned surrogate models.

The first experiment is based on the wing mass estimation method (Eq. 2.2)
by Shevell [127], already introduced in chapter 2. Under the assumption
that mZFM is proportional to mTOM all exponents of the equation are natu-
ral numbers. Hence, it is expected that all surrogate models reflect most of
the behavior of the equation.

Figure 3.14a shows the error for each surrogate model plotted for an in-
creasing number of samples while the number of design variables is kept
constant at four. The first observation is that all surrogate models, except
the linear response surface, provide an error of less than 5% even for a
low number of samples. It can be observed that the Kriging models still
increase their precision with a rising number of samples, albeit slowly. The
Kriging model with the regression model of highest order, i.e., quadratic,
provides the smallest error.

Furthermore, figure 3.14b displays the complexity for each surrogate again
over the number of samples. The fixed form linear and quadratic response

28 www.scikit-learn.org, v0.14

29 www.pybrain.org, v0.3.2
30 In a further step, not only the type of layer could be adjusted but also the number of layers

and nodes within each layer may be subject to an optimization. However, this optimization
rises significant numerical cost while it increases the complexity and is hence excluded in the
comparison

31 www.nutonian.com, v0.99.6
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Figure 3.14: Surrogate models for Shevell
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3 Multi-Fidelity Workflow

surfaces have a constant complexity. Given the fact that for each sample
added to the Kriging model the complexity increases, the complexity rises
quickly. The complexity of the symbolic regression varies at a low number
between the linear and quadratic response surface.

Given the fact that Shevell provides a (mathematically) simple equation,
the same experiment is repeated for the wing mass estimation method
(Eq. 3.13) by Raymer [105]. It neglects the influence of mZFM. Addition-
ally, it introduces the controls surface area Scs. The exponents of Raymer’s
equation are real numbers and it is assumed that especially the response
surfaces face difficulties to reflect their behavior. The ultimate load factor
nult is kept constant at 3.75.

mwing,Raymer = 0.0051
(mTOM nult)

0.557S0.648 AR0.5(1 + λ)0.1S0.1
cs

cos(ϕ)(t/c)0.4 (3.13)

Figure 3.15a displays the error of the surrogate models for Raymer’s equa-
tion. The overall behavior is similar to figure 3.14a. Apparently, the sur-
rogate models can cope with the more difficult mathematical formulation.
However, the error levels are slightly higher. This is most obvious for the
linear response surface. The behavior of the complexity in figure 3.15b is
similar to the first experiment.

These first two experiments lead to the conclusion that adequate error lev-
els can be obtained for a low number of samples n. From a precision point
of view, the Kriging model in combination with the regression model of
quadratic order yields the best results, while the linear response surface
has the lowest complexity. The vertical axis needs to be displayed on a
logarithmic scale to include the complexity of the Kriging model. The
symbolic regression provides a balance between both criteria.

In a further step, not only the impact of the number of samples n but also
the impact of the number of dimensions k needs to be examined. Hence the
three surrogate models, linear response surface, Kriging, and symbolic re-
gression, are trained to Raymer’s wing mass estimation again. The number
of samples is now a function of k. As a conservative assumption, twenty
samples per dimension are evaluated. The number of dimensions increases
from two to six, in ascending order from the taper ratio to the wing sweep,
the thickness to chord ratio, the maximum take-off mass, and the reference
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Figure 3.15: Surrogate models for Raymer
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3 Multi-Fidelity Workflow

area. The goal of the experiment is to determine whether the results ob-
tained from the previous experiment are also valid for higher and lower
numbers of design variables.

Figure 3.16a shows the error of the different surrogate models over the
number of dimensions k. The linear response surface shows a large error
for the low number of dimensions which is due to the non-linear behavior
of the equations. The Kriging model and the symbolic regression provide
small errors in comparison to the two previous experiments. It must be
stated that the error is slightly increasing for a higher number of dimen-
sions, which is likely due to the number of samples. However, the error
remains far below 5%.

In addition, figure 3.16b details the complexity of the surrogate models
over the number of dimensions k. The linear response surface has a slight
increase in complexity compared to the Kriging model. The symbolic re-
gressions is again within an order of magnitude of the linear response sur-
face and even finds solutions with a lower complexity at a higher number
of dimensions.

With the insight provided by the above experiments a qualitative assess-
ment of surrogate models based on Table 2.6 is possible.

The accuracy of symbolic regression is shown by Schmidt and Lipson and
the conducted numerical studies where the relative error remained signif-
icantly below five percent, and hence, the level of confidence in the results
is high. However, it must be noted that symbolic regression on the contrary
to Kriging does not reflect each sample. Furthermore, the sample points
are subdivided in a training and a validation set, and hence, they are taken
into account for different purposes.

Interpretability and transparency of the symbolic regression approach are
generally high as the result is an interpretable equation. For some physical
problems it was shown that the resulting equation reflects the well known
mathematical description of physical laws, as in the inaugural paper by
Schmidt and Lipson [121]. In addition, the optimization of the regression
algorithm can be configured to take into account the complexity. Hereby,
the number of applied building blocks is kept at a low number.

In comparison to Kriging and artificial neural network approaches that rely
on larger mathematical constructs and can easily occupy several kilo- to
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3 Multi-Fidelity Workflow

megabytes in a computer code, the transparency of a surrogate created via
symbolic regression is outstanding. However, in accordance to the problem
formulation, results may include representations that are hard to interpret.
Linear response surfaces, the only surrogate model with a lower complex-
ity, return results at an unsatisfying error level.

The flexibility and robustness of symbolic regression benefit from the ge-
netic algorithm approach. First of all, the structure of the surrogate model
is not predefined and hence flexible. In addition, the genetic algorithm
explores a large population of possible structures to further increase the
chance to find a suitable representation for the surrogate model.

In comparison to surrogate models of predefined structure, it is hard to
characterize the dimensionality of symbolic regression. With a predefined
structure, where the maximum order of the response surface is known, a
minimum of sample points can be derived. For a symbolic regression no
minimum number of sampling points exist. However, too little information
influences the accuracy of every surrogate model.

The computability of symbolic regression may be cost intensive. Especially,
for a new fit a large number of evaluations is usually necessary. Benefits
in time arise from the good support of parallelization. Hence, calculations
can be accelerated by suppling additional computational power.

If pre-existing knowledge about the behavior of f (x) is at hand in the do-
main of definition then symbolic regression may be accelerated by seeding.
Seeding describes the definition of a set of individuals before the genetic
algorithm tries to create the surrogate model. In the present study limited
knowledge is available in from of handbook methods. These methods may
be fed to the symbolic regression to reduce computational cost.

However, just in time computations can hardly be achieved by symbolic
regression, and hence, the iterative execution of the multi-fidelity loop is
neglected in the present study. Further information on this topic is pro-
vided in chapter 6. Adaptations to new design points come at relatively
low cost as these can be added to an existing database and the symbolic
regression approach can be started with the previously most successful
populations.

The simplicity of symbolic regression is higher than for all other named
surrogate models due to the availability of the Eureqa toolbox from Schmidt
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3.4 Symbolic Regression

Criterion Response
Surface

Kriging ANN Symbolic
Regression

Accuracy - ++ + +
Interpretability - - - - ++
Flexibility - - + ++ ++
Dimensionality 0 + 0 ++
Computability + ++ - -
Simplicity + - + ++
Smoothness + + - +

Table 3.3: Qualitative comparison of surrogate models

and Lipson. The symbolic regression algorithm can either be executed from
a simple spreadsheet interface or via a batch mode. Cloud and grid com-
puting capabilities are also available. As a drawback, no source code for a
symbolic regression analysis is available.

The smoothness of an equation derived by symbolic regression depends on
the building blocks used during the optimization. Most mathematical op-
erations applied in an engineering background can easily be derived, even
analytically. Problems may arise for more complicated building blocks,
e.g., hyperbolic functions, or if the derived equation is subject to division
by zero errors.

In addition to the already introduced requirements, special attention shall
be paid to the application of symbolic regression in multi-disciplinary op-
timization. In comparison to other surrogate models, the time necessary to
derive a symbolic regression is large and this must be listed as the greatest
con argument. Only if a global surrogate can be found, and hence, it is
ensured that the surrogate may be applied for several optimizations signif-
icant benefits can be achieved. On the other hand the symbolic regression
provides several benefits for an optimization. First, gradient information
is in most cases easily accessible for the analytic formulations that are the
result of the symbolic regression. Second, the symbolic regression may be
based on any grid, and hence, enables dynamic data driven applications.
Third, the computation time of the symbolic regression (once it has been
derived) is insignificantly short.

Table 3.3 summarizes the qualitative comparison of surrogate models. Cur-
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3 Multi-Fidelity Workflow

rently, there is no publication available that compares the benefits and
drawbacks of the surrogate models in a mathematical fashion. Jin et al. [56]
published a valuable approach, but it excludes symbolic regression in the
list of compared surrogate models, and hence, the comparison remains an
item of future research.

In conclusion, the numerical experiments conducted in this section pro-
vide reason that symbolic regression is able to produce surrogates of air-
craft design methods at a comparable accuracy to other surrogate modeling
techniques commonly applied in MDAO. The sufficient accuracy in com-
bination with the superior transparency, i.e., low complexity, justify its ap-
plication as surrogate model in the proposed multi-fidelity workflow. The
following chapter then applies the multi-fidelity workflow to three design
studies.
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4 Design Studies Remember that all models are
wrong; the practical question is
how wrong do they have to be to
not be useful.

(George E. P. Box)

Scientists create models to express the behavior of a certain aspect of reality.
However, a model is usually incomplete as it is based on simplifications.
These simplifications may have their origin in neglected physical effects.
For example, an aerodynamic analysis model that disregards transonic ef-
fects. Furthermore, errors in models arise from statistical or numerical
approximations. In this chapter, surrogate models of physical models are
created by the proposed multi-fidelity workflow and the present study has
to prove that this method is useful in the sense of Box and Wilson [20].

Three design studies are presented: First, a design study quantifies the
induced drag of various wing geometries. It is comparably simple and
serves as a proof of concept. The second design study applies a sophisti-
cated wing mass estimation workflow that includes secondary structures
such as control surfaces to quantify the overall wing mass of various ge-
ometries. The multi-fidelity workflow takes into account aerodynamics,
loads and structures. Finally, the third design study examines the prop-
erties of a strut-braced wing aircraft and the mass of the strut and wing
combination.

4.1 Oswald Factor

The first design study derives a surrogate model of the Oswald factor and
the approach outlined in this section has partially been presented in a pre-
vious publication [14]. Contrary to this publication, insight from further
research reduces the computational cost as the number of necessary sam-
ples is lower than expected.

First, this section introduces a definition of the Oswald factor. Subse-
quently, it elaborates existing approaches that determine the Oswald factor
on a conceptual design level. In a next step, a physics-based multi-fidelity
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4 Design Studies

workflow is set up and applied to create a surrogate model that is based on
symbolic regression. Finally, the surrogate model is included in the concep-
tual design model to enlarge the valid domain of definition and increase
the precision.

Induced Drag

A lifting surface in a fluid with free stream velocity V∞ experiences forces
due to pressure and shear. The sum of forces perpendicular to V∞ is called
lift L and the sum of forces parallel to V∞ drag D. The drag is further
subdivided into drag at zero lift D0 and drag due to lift DL.

Hence, drag due to lift is a force that is sensitive to lift. In the following,
the focus is set on induced drag Di. However, it is important to note that
induced drag and drag due to lift are not exchangeable terms. Induced
drag is one component of drag due to lift. Changes in drag due to lift
occur also due to different physical effects, e.g., with increasing lift local
velocities on the lifting surface change and influence the acting viscous
forces.

To enable a clear physical and mathematical description of induced drag
and the Oswald factor, the following paragraphs outline some basic aero-
dynamic principles. As a full introduction into aerodynamics is out of the
scope of this study, some principles are taken for granted. Anderson [5]
provides a detailed description of the relevant physical effects and model-
ing approaches.

Prandtl’s lifting line theory [101] applies the three basic theorems, circu-
lation, Kutta-Joukowski and Biot-Savart, to a finite wing in an inviscid and
incompressible flow. Thereby, a wing, as represented in figure 4.1, is re-
placed by a single lifting line. The lifting line extends along the y-axis with
upper and lower bounds ±b/2. An infinite number of horseshoe vortices is
super-positioned along the lifting line. The circulation Γ of each horseshoe
vortice is infinite.

Subsequently, the Biot-Savart law is applied to the vortices along the lifting
line to find the down-wash velocity w. The down-wash velocity (Eq. 4.1) is
the integral of the induced velocities perpendicular to the free stream.
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4.1 Oswald Factor

V∞

x

y

Figure 4.1: Finite wing as lifting line

w(y) = − 1
4π

∫ b/2

−b/2

(dΓ/dy)dy
y0 − y

(4.1)

As some of the stream in proximity to the wing is diverted downwards, the
downwash velocity effects the aerodynamics of the finite wing. The actual
angle of attack differs from the angle between the wing and the direction of
the free stream velocity V∞, and the additional angle is called the induced
angle of attack αi. As the velocity components V∞ and w are known, αi
can be calculated under the assumption that w is much smaller than V∞
(Equation 4.2). As w is a function of y, the same is true for αi.

αi =
w(y)
V∞

(4.2)

The effective angle of attack αe f f is the angle of attack that acts on the finite
wing. It equals the difference of the geometrical angle of attack α and the
induced angle of attack αi. As αi is function of y, αe f f is as well. The
effective angle of attack is necessary to compute the local lift coefficient
cl for each strip of the finite wing, as in equation 4.3. Furthermore, it is
assumed that the local section lift slop equals 2π, and the local angle of
attack for zero lift αL=0 is introduced.

cl(y) = 2π(αe f f (y)− αL=0) (4.3)

In addition, the lift per unit span is expressed by the local lift of a strip

91



4 Design Studies

element (Eq. 4.3) or by Kutta-Joukowski. Equations 4.4 and 4.5 show the
respective results for the lift per unit span. Furthermore, the chord c(y),
i.e., the extrusion of the wing in x-direction, is introduced as a function of
y. For small induced angles of attack the drag per unit span of the wing is
equal to the lift per unit span times the induced angle of attack.

L′ =
1
2

ρ∞V2
∞c(y)cl(y) (4.4)

L′ = ρ∞V∞Γ(y) (4.5)

D′ = L′αi (4.6)

Equations 4.4, 4.5 and 4.2 in combination with the definition of the angle
of attack and the induced and effective angle of attack provide the funda-
mental equations of Prandtl’s lifting line theory:

α = αe f f + αi (4.7)

α =
Γ(y0)

πV∞c(y)
+ αL=0 +

1
4πV∞

∫ b/2

−b/2

(dΓ/dy)dy
y0 − y

(4.8)

If an elliptical circulation distribution is assumed for the finite wing then
equations 4.9 and 4.10 show that the lift distribution is elliptical as well.

Γ(y) = Γ0

√
1−

(
2y
b

)2
(4.9)

L′(y) = ρ∞V∞Γ0

√
1−

(
2y
b

)2
(4.10)

In a next step, y is substituted by b/2cos(Θ) and dy by −b/2sin(Θ)dΘ to
enable the integration of Eq. 4.10. Hence, the lift of the finite wing L can
now be calculated. Furthermore, the wing’s lift coefficient CL and reference
area S are introduced in the standard notation (Eq. 4.12).

L = ρ∞V∞Γ0
b
4

π (4.11)

L =
1
2

ρ∞V2
∞CLS (4.12)
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4.1 Oswald Factor

The downwash velocity w and the induced angle of attack αi become:

w = − Γ0
2b

(4.13)

αi =
Γ0

2bV∞
(4.14)

If equations 4.11 and 4.12 are solved for Γ0 and substituted into 4.14 then
they provide the induced angle of attack that depends on the lift distribu-
tion (Eq. 4.15). Subsequently, equations 4.15 and 4.6 can be solved to find
the induced drag coefficient CD,i for the elliptical lift distribution (Eq. 4.16).

αi =
CL

πAR
(4.15)

CD,i =
C2

L
πAR

(4.16)

Equation 4.16 provides the induced drag for a finite wing with an elliptical
lift distribution in an incompressible, inviscid flow. Hence, the Oswald
factor e describes the deviance from the elliptical lift distribution (Eq. 4.17).
Anderson [5] states that an approximate value of 25% of the overall drag
of the aircraft arises due to induced drag. If aircraft fly at a higher lift
coefficient then this value may increase up to 60%.

e =
C2

L
πARCD,i

(4.17)

In an incompressible, inviscid flow an elliptical lift distribution is easily
obtained from an elliptical planform of the wing. Several reasons prohibit
the design of such a planform. For example, wings are swept to counteract
transonic effects. Furthermore, they are built from straight tapered sections
to ease production. Finally, an elliptical lift distribution leads to high loads
on the outer wing that increase the root bending moment and the wing
mass. The negative aerodynamic effects of a non-elliptical planform are
usually countered by twisting the wing to establish a close to elliptical lift
distribution. Hence, the wings of modern aircraft are designed in such
a way that the tip twists (washes) out under high loads to reduce wing
bending moments. The wing can either be twisted geometrical by a change
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of the incidence angle of local sections or aerodynamically by different local
airfoil profiles. However, sophisticated multi-disciplinary optimization is
necessary to develop a sensible twist distribution.

Existing Approaches in Conceptual Design

Several approaches exist to quantify the Oswald factor in conceptual air-
craft design; Niţă and Scholz [95] present an overview paper. Contrary to
their work, this section focuses exclusively on the Oswald factor. Hence,
the present literature review neglects viscid and wave drag effects as these
are hard to quantify at a reasonable computational cost.

The first outlined approach originates from Raymer [105] and is based on
the aspect ratio (AR) and the leading edge sweep angle of the wing (ϕ).
Raymer provides two different equations for unswept (Eq. 4.18) and swept
(Eq. 4.19) wings.

e = 1.78(1− 0.045AR0.68)− 0.64 (4.18)

e = 4.61(1− 0.045AR0.68)(cos(ϕ))0.15 − 3.1 (4.19)

with ϕ > 30

The equations can be evaluated quickly as the number of variables is low.
Drawbacks arise as the design space is limited due to the restrictions on the
leading edge sweep angle. Brandt et al. [22] present an equation similar to
Raymer’s second equation that also takes into account the sweep angle.

An approach (Eq. 4.20) by Howe [51] takes into account additional parame-
ters like the flight Mach number (MN), the taper ratio (λ) and the thickness
to chord ratio (t/c). The equations derived by Howe provide drag due to
lift, and it is not possible to extract an exact formulation for the Oswald
factor. Equations 4.21 and 4.22 are the functions for the taper ratio and
aspect ratio:
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4.1 Oswald Factor

CDI =
(1 + 0.12M6

N)

πAR
(4.20)[

1 + g(AR) +
0.142 + AR f (λ)(10t/c)0.33

cos(ϕ)2

]
f (λ) = 0.005

[
1 + 1.5(λ− 0.6)2

]
(4.21)

g(AR) =
0.1

(4 + AR)0.8 (4.22)

Jenkinson [54, 50] describes a partially physics-based approach for the in-
duced drag that is based on the lifting-line theory. The approach leads to a
function (C1) that depends on the taper ratio and aspect ratio, as shown in
figure 4.2.

Figure 4.2: C1 as a function of λ and AR, [54]

Subsequently, the results are corrected for conventional (Eq. 4.23) and CFD
(Eq. 4.24) wing designs so that e results in C2 over C1. As can be seen
from figure 4.2, Jenkinson’s approach returns an optimal Oswald factor for
wings with taper ratios of approx. 0.4.

C2 = 1.235− 0.0245AR (4.23)

C2 = 1.113− 0.0116AR (4.24)
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Kroo [64] provides equation 4.25 for drag due to lift32 CD,L that takes into
account the induced drag, the increase of drag due to viscous forces due to
lift33, and the zero lift drag due to twist34.

CD,L =
C2

L
πARus

+ a0τCLv + (a0τ)2w (4.25)

In the scope of this literature review, the first part of equation 4.25 is im-
portant. The Oswald factor equals the product of u and s. Hereby, u rep-
resents a theoretical value for the Oswald factor. Kroo states that u should
be quantified by physics-based analysis and s defines a correction factor
to take into account the aerodynamic effects of the fuselage. The fuselage
effect on the induced drag can be found from equation 4.26, where d is the
fuselage diameter and b the wing span.

s = 1− 2
d2

b2 (4.26)

Despite the fact that Kroo’s formulation may not be applied for a numeric
comparison, it is listed for two reasons: First, it supports the overall state-
ment of the present study that physics based analysis is already necessary
at the conceptual design stage. Second, it introduces the correction factor
in equation 4.26 that is applied in the later course of this design study.

Hörner [49] provides an equation for the Oswald factor that depends on
the aspect and taper ratio of the wing. The Oswald factor is described in
equation 4.27, and figure 4.3 shows a plot for the included δ over the taper
ratio. Furthermore, Hörner outlines corrective terms for the impact of the
sweep ϕ (Eq. 4.28) and the dihedral ψ (Eq. 4.29) angle on the Oswald
factor. Similar to Jenkinson’s approach, Hörner finds an optimal Oswald
factor for unswept, low aspect ratio wings with a taper ratio between 0.3
and 0.4. McCormick [85] and Dubs [31] present similar approaches.

32 Kroo applies the term induced drag for the overall equation. For clarity Kroo’s naming con-
vention is changed in this literature review. The physical meaning of the three components
of the drag term remains unchanged.

33 As the lift produced by the wing changes, velocities increase. Hence, viscous drag, usually
only taken into account as zero lift drag, rises as well. Conceptual design usually neglects
this effect.

34 As a wing with negative and positive incidence angles produces local lift that may result in
no overall net lift, induced drag is present that is not a function of CL
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4.1 Oswald Factor

Figure 4.3: δ depending on the taper ratio, [49]

e =
1

1 + δAR
(4.27)

e′ = e cos(ϕ) (4.28)

e′ = e cos(ψ)2 (4.29)

Table 4.1 summarizes the findings of the literature review on existing ap-
proaches to quantify the Oswald factor. It displays the qualitative depen-
dencies for each analysis method. It must be noted, that none of the anal-
ysis methods takes into account the twist angle of the wing neither as geo-
metric nor as aerodynamic twist. Furthermore, all approaches are limited
to single trapezoid geometries.

Author AR ϕ λ t/c ψ

Raymer [105] • •
Howe [51] • • • •
Jenkinson [54] • •
Kroo [64] •
Hörner [49] • • • •

Table 4.1: Existing approaches: Oswald factor
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As already mentioned, the method described by Kroo relies on a factor
u that needs to be determined from physics-based analysis, and hence,
Kroo’s approach is usually sensitive to more parameters. Howe’s method is
listed for completeness. It is not comparable to the definition of the Oswald
factor that is applied in this study as it includes several other effects.

Multi-Fidelity Workflow: Oswald Factor

The design space that is covered by the above mentioned methods is limited
to few parameters, a common characteristic of conceptual design methods.
Hence, in the following paragraphs the multi-fidelity workflow, as outlined
in chapter 3, is applied to derive a new conceptual design method to quan-
tify the Oswald factor. The new method is supposed to remain as trans-
parent and cost effective to evaluate as the outlined existing approaches in
conceptual design.

The design concept is a low-wing, wing and tube configuration with con-
ventional empennage. It is similar to the aircraft shown in figure 3.7. The
wing is a double trapezoid with an inboard rectangular fuselage section
followed by trapezoids each in- and outboard of the kink. The wing is lin-
early, geometrically twisted35 from the root to the tip. Figure 3.6 shows the
graphical representation of the parametrization.

Variable Symbol Range

Sweep angle ϕ25 -40.0°- 40.0°
Aspect ratio AR 5.0 - 25.0
Taper ratio λ 0.1 - 1.0
Twist angle τt -5.0°- 5.0°
Kink ratio ηk 0.2 - 0.4

Table 4.2: Domain of definition: Oswald factor

Table 4.2 details the domain of definition that includes wing sweep, aspect

35 For an up-to date commercial aircraft the twist distribution is far more complex. However,
such a twist distribution can only be found from detailed studies that include several dis-
ciplines. The goal of this study is rather to establish a sensitivity of the aircraft properties
towards twist, and enable designers to assess how much twist is approximately necessary for
the final design.
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4.1 Oswald Factor

ratio, taper ratio, twist and kink ratio. Both forward and backward swept
geometries are under examination. Furthermore, the study explores low to
high aspect ratio wings; aspect ratios for nowadays aircraft range from 7
to 10. The taper ratio is limited from 0.1 to 1.0, to examine a broad area
around the expected optimum of ≈ 0.4 for an unswept wing. Finally, the
twist angle and the spanwise location of the kink are taken into account.
The study neglects the effects of the fuselage, and instead, it applies the
correction as proposed by Kroo, see equation 4.26.
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Figure 4.4: Design of experiments: Oswald factor

The design of experiments builds upon a Latin hypercube sampling plan
with n = 100 samples. As the experiments conducted in chapter 3.3
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suggested n = 10k samples, the sampling plan is sized conservatively.
Figure 4.4 shows the design of experiments. All points from the Latin
hypercube are displayed as blue crosses. Furthermore, red circles mark
n = 10 verification points that are the result of a Monte Carlo sampling.
Appendix D list all results of the multi-fidelity workflow.
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C 
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AERODYNAMICS 

INTEGRATION 

INITIALIZATION 

REQUIREMENTS 

Figure 4.5: Multi-fidelity loop: Oswald factor

The multi-fidelity loop that quantifies the Oswald factor is shown in fig-
ure 4.5 which is a special case of figure 1.3. It consists of a set of require-
ments, e.g., range and cruise Mach number, for the aircraft36 that include
the characteristics, e.g., sweep angle and aspect ratio, which are identi-
cal to the samples within the design of experiments. This informations is
forwarded via CPACS to the conceptual design model VAMPzero. Subse-
quently, VAMPzero derives the concept and creates the necessary informa-
tion to trigger the physics-based analysis.

A vortex lattice method is applied to quantify the induced drag. Similar
to Prandtl’s lifting line theory, it is valid for incompressible, inviscid flows.
However, it overcomes some of the shortcomings of Prandtl’s theory and
provides reliable results for swept and low-aspect ratio wings. The theory
applies not only one lifting line along the spanwise coordinate, but an
infinite number of lifting lines. Therefore, the circulation changes not only
in spanwise, but also in chordwise direction, as figure 4.6 shows. Hence,
two vortex sheets in x and y exist, where one is due to vortex lines running

36 In this study the requirements are similar to a mid-range, passenger aircraft like the Airbus
A320 or Boeing B737.
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in spanwise direction γ(x, y) and one is due to vortex lines running in
chordwise direction δ(x, y). Subsequently, these distributions are solved
for the flow-tangency condition, i.e., the induced velocities summed with
the free stream velocity need to be zero on the lifting surface.

δ(x, y)

γ(x, y)

δw(y)

x
y

Figure 4.6: Vortex lattices on double trapezoid wing

Several analysis models exist for vortex lattice analysis and are publicly
available. Among the most widely known are: Tornado from Melin [89],
AVL by Drela [30], and LIFTING_LINE from Horstmann [50]. This study
applies Tornado as implemented by Pfeiffer et al. [99].

Subsequently, VAMPzero receives the aerodynamic performance map of
the aircraft configuration from Tornado37. The aerodynamic performance
map lists, among other parameters, the lift and drag coefficients over the
angle of attack of the configuration. VAMPzero groups corresponding pairs
of lift and drag coefficients, and it fits them to a polynomial of second order
as in Eq. 4.30. The constant part of this equation provides the increase in

37 Vortex-lattice models may only be applied to slender bodies to produce reasonable results.
Hence, the fuselage is excluded in the aerodynamic calculation. Furthermore, the empenage
is excluded from the calculation to eliminate any side-effect. In a future study, it might be
of interest to derive the Oswald factor for a trimmed configuration that includes a sized
horizontal tail plane.
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drag due to local lift38, the linear part the shift in drag due to the incidence
angle of the wing. Both terms may be neglected when the focus is set on
the Oswald factor. Hence, equations 4.17 and 4.30 in combination provide
the Oswald factor (Eq. 4.31) as an outcome of the vortex lattice analysis.

cD = ac2
L + bcL + c (4.30)

e =
1

aARπ
(4.31)

The values of the Oswald factor at each location within the design of ex-
periments are passed on to the symbolic regression algorithm. The algo-
rithm is forced to include all parameters in the resulting equation even if
their influence on the Oswald factor is small. Furthermore, the algorithm
is allowed to apply the following mathematical operators: constant, ad-
dition, subtraction, multiplication, power, cosine, sine, logarithm, and the
e-function. Division is omitted to suppress zero division errors in the re-
sulting equation. However, the algorithm may apply divisions by negative
exponents for the power operation, but they come at a significantly higher
cost in terms of complexity. Hence, the mathematical solution is not omit-
ted, but limited by a higher cost in terms of complexity.

Equation 4.32 is the result39 of the symbolic regression. It departs from the
formulation mentioned above to take into account the further design pa-
rameters. Interestingly, the symbolic regression proposes to apply a cosine
in the equation. The cosine as well as the Oswald factor may not exceed
values greater than one, and hence, the upper limits of the codomain are
identical.

e = cos(0.3761λ− 2.086/AR + 0.2013ARηk ϕ− 0.2013ARλτtηk ϕ) (4.32)

In addition to the initial sample points in the DOE, a Monte Carlo sampling
plan with ten samples is evaluated to verify equation 4.32. For this purpose

38 Drag due to local lift arises mostly from a twist of the wing. For a twisted wing incidence
angles exist where the wing creates no net lift, because the segments of the wing create equal
amounts of negative and positive lift. Despite the zero net lift, drag arises due to the local
lift.

39 The cosine is calculated in radians and the sweep and twist angle are also converted to
radians to remain compatible with most computer algebra systems.
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Metric Sample points Verification points

Mean error −0.16% −0.70%
Standard deviation 3.3% 1.8%
Root mean squared error 0.11% 0.04%
Standard deviation 0.22% 0.039%

Table 4.3: Verification: Oswald factor

the sample and verification points are compared to the equations proposed
by the symbolic regression. Table 4.3 shows both the mean error and the
root mean square error averaged over all samples, as in Equation 3.9, and
their respective standard deviations. It can be seen that all error metrics
have a reasonable low value, in some cases the error is even lower for the
verification points than it is for the sample points. Hence, equation 4.32

seems to represent the physical behavior not only at the locations speci-
fied in the initial DOE but also at different locations in the design space.
Chapter 5 further discusses the results obtained from the design studies.
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Figure 4.7: Verification: Oswald factor

Figure 4.7 displays the error between the surrogate model and the multi-

103



4 Design Studies

fidelity loop. Sample points are indicated by blue crosses; verification
points by red circles. The error equals zero if all points are located on
the diagonal. It can be seen that the error remains mostly in reasonable
boundaries, especially for all verification points.
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Figure 4.8: Surrogate model: Oswald factor

Figure 4.8 displays the behavior of the surrogate model. The hidden dimen-
sions are set to default values, i.e., ϕ = 20°, AR = 9.5, λ = 0.25, τt = −2°,
and ηk = 0.35. As a matter of fact, the full behavior of Eq. 4.32 can only
be displayed in an infinite number of plots, and hence, the interpretation is
limited on this snapshot of the multi-dimensional space.

For clarification, figure 4.8 can be understood as a combination of contour
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4.1 Oswald Factor

plots for two dimensions each. Each contour plot is repeated in opposite
order. The remaining dimensions take the above mentioned default values.
For example, in figure 4.8 two locations for a taper ratio of 0.5 and a wing
sweep of 19° are highlighted. The value of the Oswald factor at this location
equals ≈ 0.98.

Generally speaking, figure 4.8 shows that equation 4.32 is highly sensitive
to the sweep angle, aspect ratio and taper ratio. The influence of the twist
and the kink is significantly lower. The Oswald factor is high for low sweep
angles. The tendency towards positive sweep angles is a result of the kink
on the trailing edge of the wing. For a forward swept wing the kink in-
creases the inboard area of the wing. On the contrary, the kink decreases
the inboard area of a backward swept wing. For a tapered wing, the former
effect leads to a lift distribution that is shifted too far inboards.

If the aspect ratio is low then the highest values for the Oswald factor can
be obtained. While this seems to be inconsistent with aircraft designers
experience (the higher the aspect ratio the lower the induced drag) it must
be kept in mind that the Oswald factor describes the deviance of the ellip-
tical lift distribution, and this deviation becomes significant for very high
aspect ratios. However, due to equation 4.17 the induced drag is lower for
a high aspect ratio of the wing. The same behavior can be observed from
Hoerner’s and Raymer’s formulations for the Oswald factor.

The sensitivity of the Oswald factor towards the taper ratio is comparable
to the aspect ratio and sweep angle. If the wing has only little sweep then
the taper ratio must be close 0.5 to obtain best values for the Oswald factor.
For forward swept wings the taper ratio should be further reduced, again
a result of the kink on the trailing edge. The higher the aspect ratio the
higher the taper ratio should be to remain within a reasonable range of an
elliptical lift distribution.

The influence of the twist angle on the Oswald factor is comparably small.
On the one hand, this may be due to the fact that wing is twisted linearly,
and hence, the twist acts similar to an increase of the incidence angle of
the wing, despite the increased effect towards the tip of the wing. On the
other hand, the effect of the twist on the constant part of equation 4.30,
i.e., the drag due to local lift, is significant. In a future study, the outlined
design study can be applied to deliver means of quantification for this ef-
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fect. However, the twist distribution should then be a result of a combined
aerodynamic and structural study.

The effect of the spanwise kink location on the Oswald factor is, similar to
the twist, small. For high sweep values, a more inbound location of the
kink is preferable as it reduces the amount of inboard lift. This effect is
higher for forward swept wings. The same effect applies for high aspect
ratio wings.

The results presented above serve as means to verify equation 4.32, i.e.,
ensure that the equation reflects the behavior of the higher-fidelity model in
an accurate way. Subsequently, a validation is necessary that demonstrates
that the same equation is applicable in conceptual aircraft design. As a
matter of fact, the design space during the validation is limited to existing
designs, and appendix B lists the 25 reference aircraft.
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Figure 4.9: Validation: Oswald factor

Usually, the input into a conceptual design code is limited as little infor-
mation is available. Similarly, the data given in the appendix is sparse and
hampers convergence. The initial version of VAMPzero40 fails to converge
for five of the reference aircraft. If these aircraft remain out of consider-

40 The initial version of VAMPzero is based on Raymer’s previously mentioned method to
estimate the Oswald factor.

106



4.2 Wing Mass

ation then the average error is approx. 7.3% for the mTOM and 3.6% for
the mOEM. The results improve after equation 4.32 has been integrated
into VAMPzero. The average error is now −2, 1% respectively −0.9% and
all designs converge. Figure 4.9 compares the results of the VAMPzero
calculations and the reference aircraft. Hence, the multi-fidelity workflow
enlarges not only the design space, but it also increases the accuracy of the
conceptual design model.

4.2 Wing Mass

The second design study quantifies the wing mass of a jet transport aircraft
by means of a high-fidelity wing mass estimation process. A predecessor
of the study has been published in [13]. Contrary to the Oswald factor, the
wing mass is a dimensional parameter, i.e., it is expressed by some means
of a mass unit and a conceptual design method for a dimensional parame-
ter may not be scaled as easily. For example, the equation to quantify the
Oswald factor is applicable to wings of all sizes. Given the fact that the
mass estimation introduces a further physical dimension, the domain of
definition that needs to be covered increases significantly. Furthermore, as
not all locations within the domain of definition are valid design points,
the analysis is hampered, e.g., an analysis for an aircraft with a wing of
low reference area, e.g., similar to an Embraer E-195, and high maximum
takeoff mass, e.g., similar to an Airbus A380, is likely to fail. Regardless
of the “success” of the physics-based analysis, the design concept is most
probably inappropriate.

The following sections cover these issues. First, a definition of the wing
mass is introduced. Subsequently, the study outlines means for wing mass
estimation and existing approaches. Finally, the multi-fidelity workflow
that determines the wing mass is processed, evaluated and validated.

Wing Mass Definition

This study applies the wing mass definition of the Luftfahrttechnisches
Handbuch [52]. It is similar to the Airbus weight chapter 10 definition.
Accordingly, the wing mass equals the sum of:

• skins (including stringers),
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• spars,

• ribs,

• pylon attachments (front and rear attachment, fairing attachments,
spigot attachment),

• landing gear support (gear beam and ribs, attachments and fittings),

• fixed leading edge (ribs, panels, movable support structures),

• movable leading edge (slat, droop nose, krueger flaps, slat tracks),

• fixed trailing edges (panels, falsework, flap tracks and attachments,
spoiler and aileron support),

• movable trailing edges (flaps including flap track rear link and car-
riages, ailerons and spoiler),

• and miscellaneous (external paint final coat, wing tips, winglets, sealant,
fairings, fittings and supports).

It must be noted that the definition above is applied to all calculations in
the subsequent sections. However, it may not be taken for granted that all
of the existing approaches that are outlined in the literature review follow
this definition. The information that is obtainable from these resources is
seldom sufficient to extract an exact definition of the wing mass.

Ardema et al. [8] estimate that the total mass of the wing equals the pri-
mary wing mass, i.e., the physically sized wing box, times a factor of
≈ 1.73. Of course, this number is only valid in a very limited domain
of definition of a conventional design concept. Hence, special attention
needs to be paid to the methods that are applied to quantify the wing mass
and whether they take into account secondary structures or not.

Means for Wing Mass Estimation

Several analysis methods exist to quantify the items of the wing mass
breakdown listed above and their applicability depends on the design task
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at hand. This section outlines different levels of fidelity of wing mass esti-
mations methods41 and their recommended area of application.

For conventional configurations reliable conceptual design methods exist.
These base on historical-based methods and may be enhanced by simpli-
fied physics-based terms. Chapter 2 already presented some examples.
However, these conceptual design methods suffer from the drawbacks of
any historical-based method, and hence, they are usually not applicable
for unconventional designs. As it is the goal of this work to replace some
of these methods, the following section discusses existing approaches in
conceptual design in more detail.

The next higher level of fidelity encompasses lower order physics-based
models. For example, Ardema et al. [8] and Elham et al. [33] published
representative studies. Their methods require more information as input
and are physics-based with the aid of some empirical corrections. Some
of the included analyses base on assumptions, i.e., the lift distribution. In
the structural analysis, models base mostly on beam representations. Beam
models presume that one dimension of the structure is significantly larger
than the others. Hence, beam models return reasonable results for high
aspect ratio wings. However, beam models suffer from the fact that kinks
can hardly be represented and local load introduction, e.g., at the engine
location, is also hampered by the physical model.

Higher order physics-based models rely on shell models of the structure
rather than on beam models. Dorbath [29] and Rieke [108] published ex-
emplary implementations. Usually, not only the structural representation
of these models is more elaborate, but also the loads computation and
aeroelastic42 couplings go into more detail. Shell models differ themselves
from beam models as not only one dimension, but two are significantly
larger than the other. These models overcome many of the shortcomings
of beam models, and hence, they enable designers to reliable predict the
properties of more sophisticated structures, e.g., secondary structures such
as control surfaces and pylon attachments. Hence, the change in the level

41 Concerning higher fidelity models, a detailed treatment of loads and finite element models is
out of the scope of this study and only an overview on implementations of these disciplines
is given. Lomax [76] is a sound source for detailed information on loads as well as Cook et
al. [28] is for finite element analysis.

42 However, the aeroelastic coupling remains static for these high level of detail models. For
example, most academic aeroelastic applications exclude full control surface kinematics and
structures.
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of detail of the physical models allows the designer to increase the level
of fidelity of the product model. As the works of Dorbath already link to
CPACS, this model is applied in the present study.

Existing Approaches in Conceptual Design

The Luftfahrttechnisches Handbuch [52] introduces Equation 4.33 to quan-
tify the mass of the wing. It is valid for conventional, aircraft configurations
that range from a maximum takeoff weight (mTOM) of 33t up to 400t. When
validated to a broad set of existing designs, the standard deviation of the
method is 6.4% .

mwing = 2.20013 10−4
(

401.146S1.31 + m1.1038
TOM

) AR1.5(t/c)−0.5

cos(ϕ)
(4.33)

Contrary to the Luftfahrttechnisches Handbuch, Raymer [105] introduces
a handbook method (Eq. 3.13) that also includes the ultimate load factor n
and the area of the control surfaces Scs. In addition, the taper ratio of the
wing λ is taken into account. Chapter 3 already applied Raymer’s equation
for the comparison of surrogate models.

mwing = 0.0051
(mTOM nult)

0.557S0.648 AR0.5(1 + λ)0.1S0.1
cs

cos(ϕ)(t/c)0.4

Shevell [127] developed a handbook method (Eq. 2.2), as already mentioned
in chapter 2, that quantifies the wing mass and distinguishes between parts
that are dependent and independent of the wing bending moment. There-
fore, the first part of the equation is completely empirical, whereas the
second part is influenced by physical assumptions. Furthermore, Shevell
introduces the maximum zero fuel weight mZFM as a variable to take into
account the missing bending relief from fuel stored in the wing tanks.

mwing = K1S + K2
nultb

√
mTOM mZFM

(t/c)cos(ϕ)2S
1 + 2λ

1 + λ

Toreenbeek [134] developed equation 4.34, and Roskam [114] cites this
equation as well. It relies only on mZFM and leaves out mTOM. Several
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Author mTOM mZFM S b AR t/c ϕ λ Scs

LTH [52] • • • • •
Raymer [105] • • • • • • •
Shevell [127] • • • • • • •
Toreenbeek [134] • • • • •

Table 4.4: Existing approaches: Wing mass

additional correction parameters can be defined, e.g., for wing mounted
engines and aircraft of different weight classes.

mwing =

(
12.55 10−3b

cos(ϕ)

)0.75 [
1 +

(
6.3cos(ϕ)

b

)0.5
]

n0.55
ult

(
bS

(t/c)mZFM cos(ϕ)

)0.3
(4.34)

Table 4.4 lists all dependencies for the named handbook methods43,44. The
aspect ratio, span and wing reference area may of course be substituted
by each other. It can be seen that Raymer provides the only handbook
method that takes into account the control surface area of the wing, i.e.,
some means to explicitly, yet only simply, address the impact of secondary
structures on the wing mass.

Multi-Fidelity Workflow: Wing Mass

As the outlined approaches are limited to statistical observations in combi-
nation with simplified physical models, they can hardly be applied to new
design concepts or at unconventional locations in the domain of definition.
This section elaborates a multi-fidelity workflow to quantify the wing mass
that is physics-based, includes some of the secondary masses, and leads to

43 The dependencies of the named handbook methods are not as similar as displayed in the
table. For example, the thickness to chord ratio may be the thickness to chord ratio at the
root of the wing or the average thickness to chord ratio. This distinction is excluded for
clarity but taken into account for the quantitative comparison of the handbook methods.

44 As the study takes into account only aircraft that belong to the same regulation category, the
load factor is excluded from this list
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Variable Symbol Range Unit

Wing loading W/S 450 - 750 [kg/m2]
Sweep angle ϕ25 -40.0°- 40.0° [ ]
Aspect ratio AR 6.0 - 13.0 [ ]
Taper ratio λ 0.2 - 0.6 [ ]
Thickness ratio t/c 0.1 - 0.16 [ ]

Table 4.5: Domain of definition: Wing mass

a surrogate model that can be applied in conceptual aircraft design. The
schematic of the multi-fidelity workflow is again similar to figure 3.1 intro-
duced at the beginning of chapter 3.

The design concept remains unchanged to the previous design study on the
Oswald factor: A low-wing, wing and tube aircraft with a parametrization
similar to figure 3.6. Two engines are located on the wing outboard of the
kink. The wing box is created from two spars. The wing features all control
surfaces of a today’s aircraft, i.e., ailerons, flaps, slats, and spoilers.

The domain of definitions is similar to the previous design study. Twist
is now excluded and set to standard values as the detailed twist distribu-
tion that includes twist angles at several locations should be determined
by a separate optimization at a later design stage. The thickness ratio is
included as an additional parameter, as it has a major impact on the wing
mass. The thickness to chord ratio is a non-dimensional parameter that
describes the maximum thickness of the wing in terms of its chord. The
provided thickness to chord ratio is the thickness to chord ratio at the root
of the wing. The thickness to chord ratio is identical at the root and the
fuselage-wing intersection. As the wing thins towards its tip, the thickness
to chord ratio at kink and tip is lower.

As the design of experiments consists of five design variables and again for
each design variable twenty samples are taken into account, the DOE of
the previous design study can be reused. As a matter of fact, the scaling of
the design variables changes but the overall layout is similar to figure 4.4.
Furthermore, appendix E provides all results of the multi-fidelity workflow.

As already mentioned, several difficulties arise from the fact that the wing
mass is a dimensional parameter. Instead of analyzing several aircraft of
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different weight categories this study remains its focus on a mid-range,
narrow-body aircraft and alters the wing loading W/S. The wing load-
ing is the ratio of the maximum takeoff mass to the wing’s reference area.
Hence, in the multi-fidelity workflow the wing area remains constant and
the maximum takeoff mass changes. The result of the multi-fidelity work-
flow is an equation f0, as in equation 4.35. In a subsequent step, f0 is scaled
by the reference area to extend the domain of definition of the newly de-
veloped conceptual design method. For this purpose the wing mass data
that has been used to derive the LTH wing mass estimation equation is
combined with the initial equation to find f1 as a function of f0 and the
wing’s reference area.

f0 = f (AR, ϕ25, λ, (W/S), (t/c)) (4.35)

f1 = f (S, f0) (4.36)

Figure 4.10 shows the multi-fidelity loop for the wing mass design study
which is again a special case of figure 1.3. In contrast to the Oswald fac-
tor design study, it includes further analysis models. These are loads,
aerodynamics and structures, i.e., mass estimation. In the initialization,
VAMPzero derives not only the outer wing shape but also the location of
inner structures as well as the control surfaces and wing tanks. The area of
the control surfaces is determined by empirical correlations in VAMPzero;
the initialization defines the outer shape of the control surfaces in accor-
dance to the overall wing layout. All values are provided in a relative
spanwise coordinate ξ and a relative chordwise coordinate χ.

In accordance to empiric rules, two spars and four ribsets, where each ribset
may either hold a fixed number of ribs or several ribs at a fixed distance,
are placed within the wing. The first ribset is located within the rectangular
fuselage section and holds four ribs. The second ribset extends from the
fuselage up to the engine. It is combined with a single rib so that one rib
is equidistant to the engine pylon on the right and left side. Finally, a last
ribset stretches from the engine on outward close to the tip of the wing.

Three tank volumes are defined within the wing where the boundaries
of the tanks are provided by the spars and ribs. Again, the first tank is
in the rectangular section within the fuselage, the second extends from
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Figure 4.10: Multi-fidelity loop: Wing mass

the fuselage up to the engine, and finally the last tank is outboard of the
engine.

In a subsequent step, VAMPzero positions the control surfaces (ailerons,
flaps, slats and spoilers) on the wing. The positioning encompasses the
definition of the outer shape as well as the internal structure of the control
surfaces and the connections to the overall wing structure. The area of each
control surface is determined by the inner loop of VAMPzero, the shape is
subject to knowledge based engineering rules as outlined in the following
paragraphs.

Ailerons are placed from the outer tip of the wing inwards. As the chord of
the aileron is a function of the span, the layout needs to be determined in
an iterative process. The aileron starts at ξ = 0.96 and is extended inboard
with a constant relative chord offset to the rear spar of the wing. Actuators
of the aileron are placed at a relative aileron span position of thirty and
seventy percent, respectively.

Flaps are divided in inner flaps that are inboard of the kink and outer flaps
outboard of the kink. The initialization starts with the inner flaps. All
remaining area45 is forwarded to the outer flaps. The inner flaps have a
constant absolute chord which is determined by the spar offset at the kink.
The inner flaps extend between the kink and the wing-fuselage intersec-
tion. The outer flaps have a constant relative spar offset. The spar offset

45 At the conceptual design stage only the overall flap area is quantified. Hence, the initializa-
tion must distribute the flap area across the wing in a reasonable manner.
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decreases, if the outer flaps overlap with the aileron. If the remaining area
is not sufficient then the rear spar positioning needs to be changed. Flaps
are split up into several flaps if the aspect ratio of a flap exceeds 9.

Similar to the flaps, spoilers are grouped into inner and outer spoilers with
respect to the kink. The outermost ξ location of the spoiler is identical to
the outermost position of the flaps. The chord of the spoilers is 5% of the
kink chord length plus 50% of the inner flap length. All spoilers have a
rectangular shape. Spoilers are split up if their aspect ratio exceeds 3.

Finally, slats are defined on the wing’s leading edge. Slats have a constant
absolute chord, and a ξ = 0.05 gap is inserted at the engine location. The
outboard position of the slats may not exceed ξ = 0.95. They are split up
for aspect ratios higher than 5.5. If the chord of the slats exceeds χ = 0.075
at the wing-fuselage intersection then the front spar locations need to be
revised.

Figures 4.11a and 4.11b show a schematic of the wing including control
surfaces that is initialized by VAMPzero and an example representation of
the finite element model in WINGmass, developed by Dorbath [29]. All
the control surfaces that are defined by VAMPzero include structural in-
formation on the material and the thickness of the skin, the spars, and the
ribs. The initialization is not expected to deliver a sufficiently designed
aircraft, e.g., a sized skin thickness distribution, but enables the use of
higher-fidelity analysis. Hence, the design may be sized and altered as
more detailed information becomes available.

WINGmass is one of the components of ELWIS that encompasses all higher
fidelity analysis models applied to determine the wing mass46. ELWIS
serves as a preprocessor and communicator between the already mentioned
disciplines loads, aerodynamics and structures. The finite element wing
model is generated by ELWIS in a fully automated process from the CPACS
parameterization. The ELWIS model generator reads the CPACS file, builds
an internal model of the wing and finally writes the ANSYS input file.
Skins, ribs and spars are modeled as shell elements. Stringers are modeled
in a smeared representation in an additional shell layer. Spar caps are
modeled by beam elements with a rectangular cross section.

After the lifting surfaces, the so called additional structures are generated.

46 The full detail of the wing mass estimation workflow exceeds the scope of this study. Dor-
bath [29] is the best source for further information.
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(a) Planform of wing components

(b) FEM of wing structure

Figure 4.11: Design concept: Wing mass
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4.2 Wing Mass

These structures are all structural connections between movables and the
wing (flap tracks, hinges and actuators), the engine pylon and the landing
gear. Compared to the generation of the lifting surfaces, the knowledge-
based generation of the additional structures goes one step further. Hereby,
the geometry and the computational model are generated by KBE rules.
The load carrying structure of the additional structures is modeled three-
dimensional, it includes the models of all joints and hinges that are part
of the real components. On the one hand, this leads to realistic load paths
in the component. On the other hand, the flaps and the landing gear can
deflect in a non-linear multi body simulation in ANSYS. This is required,
for the accurate modeling of load cases with flaps in landing configura-
tion. Apart from the slat mass and some minor components off the mass
breakdown all results of the ELWIS process are physics-based.

The integration of the higher-fidelity wing mass includes an update of the
mass breakdown and a parameter replacement within VAMPzero. It is
therefore straight forward in comparison to the integration of the Oswald
factor. Subsequently, the results of the design of experiments can be for-
warded to the symbolic regression.

The building blocks that are available to the symbolic regression to find
f0() include multiplication, division, power, cosine, sine, logarithm, and
the exponential function. Addition and subtraction are excluded to extract
an equation that can easily be scaled by S and still remains reasonably
transparent. Equations 4.37 and 4.38 are the result of two consecutive sym-
bolic regression runs. Obviously, the symbolic regression neglects the taper
ratio as the sensitivity of the wing’s mass to this parameter is small. The
decision of the algorithm seems reasonable in comparison to the literature
review. Only two out of four sources include the factor and in Raymer’s as
well as in Shevell’s approach the impact of the taper ratio is small.

f0 =
353.9AR(W/S)0.1699cos(2.178(t/c)ln(AR))

cos(ϕ25)e1.96e-7ϕ25 AR3.452/(t/c)2.918 (4.37)

f1 = 0.0123 f0S− 0.42 f0 (4.38)

Figure 4.12 shows the behavior of equation 4.37 in comparison to the results
of the multi-fidelity loop. It serves as means to verify that the surrogate
model represents the behavior of the physic-based analysis. As before, the
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Figure 4.12: Verification: Wing mass

Metric Sample points Verification points

Mean error −0.61% −2.1%
Standard deviation 7.5% 7.3%
Root mean squared error 0.57% 0.58%
Standard deviation 0.71% 0.61%

Table 4.6: Verification: Wing mass

error of the surrogate model is zero if all points are located on the diagonal.
Remarkably, the surrogate as well as the physics-based analysis manage to
represent the outlier at ≈ 22t in the upper right of the plot. The sample
is a high aspect-ratio, forward swept wing with a high wing loading and
close to minimum thickness to chord ratio. It is the only sample that made
changes to the physic based analysis necessary to converge. However, the
changes affected only the numerical solver and not the physical model.

Furthermore, table 4.6 lists the error metrics for the surrogate model. Sim-
ilar to the previous design study, the values of the sample and verification
points are compared to the results of the surrogate model at the same loca-
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tions. The mean and root mean error are provided as well as their standard
deviations. All values are comparably low; the mean error for the verifica-
tion points is noticable, but not critical.
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Figure 4.13: Surrogate model: Wing mass

Figure 4.13 displays the behavior of the surrogate model. The hidden di-
mensions are set to default values, i.e., ϕ = 20°, AR = 9.5, λ = 0.25, (W/S) =
600kg/m2 and (t/c) = 0.14. It must be noted that similar to the previous
plot on the behavior of the Oswald factor and due to the high dimension-
ality of the design space only this single cut-out of the behavior in the
five-dimensional design space can be presented.

As the taper ratio is included in the design space but not in the surrogate
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model, figure 4.13 is not sensitive to this parameter. Furthermore, the wing
loading has the lowest impact on the wing mass. The sweep angle has a
large impact on the wing mass. The mass increase is worse for forward
swept wings than for backward swept wings. Partially, this is due to wash-
in and wash-out effects. Furthermore, the design concept hampers forward
swept wings. On the one hand the twist distribution, albeit conservative, is
non-beneficial for a forward swept wing. However, as already mentioned,
a sophisticated multi-disciplinary optimization is necessary to determine
a reasonable twist distribution and while the multi-fidelity loop is capable
of this operation the computational cost47 is currently not manageable. On
the other hand, the kink is beneficial for the wing mass of forward swept
wings as additional bending moment is shifted inwards.

As expected, the aspect ratio has the highest impact on the wing mass.
Non-linear effects are dominant in combination with the sweep angle of the
wing. Furthermore, for high aspect ratios the coupling with the thickness
to chord ratio becomes dominant. Minor sensitivities can be observed for
the combination of the wing loading and the thickness to chord ratio.

In comparison to the design study on the Oswald factor, the domain of
definition has been limited as the structural design concept is only appli-
cable in this limited bandwidth. Both the behavior of equation 4.37 and
the outlier in figure 4.12 justify these limitations as they demonstrate the
boundaries of the design concept. If considered independently then higher
aspect ratios seem to be possible even if they may not be sensible designs.
However, the combination of high-sweep angles and high aspect ratios is
close to what is manageable by the physics-based analysis48 and at least the
backward sweep angle should not be reduced any further to still include
existing designs.

Finally, equation 4.38 is included in the conceptual design model to validate
it in the context of overall aircraft design. Figure 4.14 compares the results
of VAMPzero and the reference aircraft. It must be noted that VAMPzero
is improved by equation 4.32 (Oswald factor) as well as by equation 4.38

47 A single sample of the multi-fidelity loop takes about 7 to 10 hours. The number of samples
is 110. Hypothetically, if each optimization demands an additional 20 iteration per sample,
the raise in computational cost is insurmountable.

48 Furthermore, aeroelastic effects start to have a significant influence on the wing mass as high
aspect ratios and sweep angles amplify the effects of wash-out. Hence, for these radical
designs a sophisticated twist distribution is necessary which is currently omitted due to the
reasons mentioned above.
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(wing mass). In combination, both equations improve the average error of
the maximum take off mass from −2.1% to −1.4% and the average error of
the operational empty mass from −0.9% to −0.6%.
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Figure 4.14: Validation: Wing mass

4.3 Strut-Braced Wing Mass

The present study states that conceptual design methods are currently not
capable of handling unconventional configurations, and the study aims to
enhance conceptual design by means of physics-based analysis at compa-
rable cost and complexity of a conceptual design method. However, the
design studies included so far in this chapter show none of the infamous
unconventional design concepts such as the box- or strut-braced wing. The
design studies explore the properties of a conventional design concept in
an unconventional domain of definition rather than an unconventional de-
sign concept. Hence, to prove that the workflow is applicable for uncon-
ventional designs, this section describes a design study which applies the
multi-fidelity workflow to a strut-based wing design. The workflow fo-
cuses on the strut and wing mass estimation.

A strut-braced wing is a high wing with a supporting strut that extends
from a low fuselage position up to the wing, typically at an outer spanwise
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position. The shape of the strut is similar to an untapered wing. If the
wing produces lift then it puts the strut under tension. In this way, the
bending moment on the wing root is reduced. Several means exist to de-
rive a design that exploits this effect. The wing may be constructed lighter
by reducing skin and spar thicknesses. Alternatively, the wing geometry
may be altered to increase the aerodynamic properties. For example, high
aspect ratio strut-braced wings reduce the amount of induced drag, or the
thickness of the wing may be reduced to enable a higher proportion of nat-
ural laminar flow, at least on the upper surface of the wing. If the thickness
of the wing decreases then the wave drag decreases under the assumption
that the aircraft travels at transsonic speeds. Consecutively, the wing sweep
can be reduced to further enhance the aerodynamic properties of the wing
and reduce the torsion loads. Drawbacks of the configuration arise from
the additional strut mass which may exceed the wing mass savings, the ad-
ditional strut drag, and the interference drag at the strut-wing intersection.

Existing Approaches

Several strut-braced wing configurations have been developed in the re-
search community. Figure 4.15 shows three different configurations from
different research institutions. These studies either make use of empirics
based assumptions or sophisticated physics-based analysis.

(a) Virgina Tech, [41] (b) Boeing, [21] (c) ONERA, [24]

Figure 4.15: Exisiting approaches: Strut-braced wing

Grasmeyer [41] and Gur et al. [43] outline the research at Virgina Tech on
the topic of strut braced wings. The later study examines a jet transport
configuration with a design range of 7730 nautical miles and 305 passen-
gers. Some parts of the analysis base on empirics and simple methods
while other parts of the analysis, as Ko et al. [59] outline, utilize second
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4.3 Strut-Braced Wing Mass

order response surfaces from higher-fidelity analyses. In comparison to a
conventional configuration that fulfills the same requirements, the maxi-
mum take-off mass decreases by 3,5% and the fuel consumption is reduced
by more than 9% percent.

Bradley and Droney [21] present the subsonic ultra green aircraft concept
(SUGAR) that is based on a strut braced wing. However, the main focus of
their research is on alternative propulsion concepts. The requirements in
their study ask for a configuration with a design mission of 3500 nautical
miles and 154 passengers. A comparison of a today’s conventional aircraft
configuration with the new design at the technology level of the year 2030

results in a reduction of fuel burn by 38,9% on a mission of 900 nautical
miles.

Finally, ONERA investigates a strut-braced wing configuration within the
Albatros project. Carrier et al. [24] present a design for a design range of
3000 nautical miles and 180 passengers. The results are based on high-
fidelity analysis with a focus on aerodynamics and natural laminar flow.
Their design bests a conventional configuration by 7% in terms of take-off
mass and 5.6% in terms of fuel consumption on a mission of 500 nautical
miles.

The cited studies have in common that the calculations are either based
on empirics or higher fidelity analysis. As empirics are usually sensitive
only to a limited number of design variables (if they are sensitive at all),
and higher-fidelity analysis is omitted due to reasons already mentioned
in the course of this study, the conventional design of a strut braced wing
is hardly possible during the very early design stages.

None of the studies mentioned above present a sophisticated mass estima-
tion method for the strut-braced wing that includes primary and secondary
structures. As the mass

Multi-Fidelity Workflow: Strut-Braced Wing Mass

Generally speaking, the multi-fidelity workflow for the estimation of the
wing and strut mass is an extension of the previous workflow. Hence,
similar components of both workflows are not explained in further detail.
Given the fact that no strut-braced jet transport aircraft are in production or
have been constructed for the size and speed of this category, a validation
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is not possible. Accordingly, the last step of the multi-fidelity workflow can
not be accomplished.

Apart from the strut-braced wing arrangement, the design concept changes
slightly in comparison to the previous design concept. The empenage is a
T-tail as customary for a high-wing configuration that must prevent deep
stall scenarios. The engines are fuselage mounted to circumvent the neg-
ative impact of wing mounted engines on the natural laminar flow of the
configuration. Furthermore, due to the stiff connection inboard of the strut-
wing intersection no major gains in bending moment relief are expected
from wing mounted engines.

The complexity of the wing is slightly reduced as no kink is necessary
to include the landing gear. Hence, the wing consists of a rectangular
fuselage section and two trapezoid sections outboard of the wing, where
the first section extends up to the wing strut intersection. The wing still
encompasses flaps and ailerons.

The strut has a wing like geometry with a symmetric airfoil and a rela-
tive thickness of 12%. The root of the strut is mounted at the lower and
outer end of the fuselage, close to the expected landing gear position of
this configuration. Given the fact that the strut is mostly sized by tension
loads, the strut structure is composed of a single spar and a set of ribs. All
components of the strut are constructed from carbon fibre materials. The
tip of the strut ends in the wing in such a way that the strut spar and the
wing’s front spar as well as one wing rib intersect.

Additional design parameters for the strut are the position of the strut tip
relative to the wing spanwise coordinate ηstrut, and the depth of the strut
cstrut as a ratio of the strut chord to the wing chord at the wing’s root
section. Figure 4.16 shows the parametrization of the strut-braced wing as
well as the representation in the finite element model.

The domain of definition includes the sweep, aspect ratio, tip twist, thick-
ness to chord ratio, maximum takeoff mass and reference area already es-
tablished in the previous design studies as well as the spanwise position
of the strut tip and its relative depth. Table 4.7 shows the upper and lower
boundaries of the domain of definition. In comparison to the previous
studies, the design space is more restricted due to the fact that more de-
sign variables are included. Especially, the combination of the maximum

124



4.3 Strut-Braced Wing Mass
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Figure 4.16: Design concept: Strut-braced wing

take-off mass and the reference area may otherwise lead to several unfea-
sible designs in an extended design space.

The design of experiments is based on a Latin hypercube with 160 samples.
Hence, the ratio of 20 samples per design variable is maintained. Given the
high dimensionality of the design space, a graphical representation of the
DOE is futile, and instead, appendix F lists the corresponding data.

As in the previous design studies, VAMPzero initializes the higher fidelity
analyses. Apart from the additional geometric parametrization, VAMPzero
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Variable Symbol Range Unit

Reference area S 100. - 160. [m2]
max. take-off mass mTOM 60.0 - 90.0 [t]
Sweep angle ϕ25 5.0 - 20.0 [ ]
Aspect ratio AR 12.0 - 17.0 [ ]
Tip twist τt -6.0 - 0.0 [ ]
Thickness ratio t/c 0.08 - 0.13 [ ]
Strut position ηstrut 0.2 - 0.7 [ ]
Strut chord cstrut 0.1 - 0.2 [ ]

Table 4.7: Domain of definition: Strut-braced wing

estimates that the primary wing mass is reduced by approximately 40%
compared to a cantilever wing. Carrier et al. [24] published similar results
and this study extrapolates their findings. The mass of the strut is constant
during the initialization. These estimates are necessary to predict a mean-
ingful aircraft configuration. However, given the fact that the maximum
take-off mass is provided by the domain of definition, this simplified mass
estimation has no influence on the subsequent loads process and the final
results.

The physics-based analysis utilizes the WINGmass tool chain that has been
introduced in the previous design study, see also Figure 4.10. As WING-
mass is coded accordingly to the CPACS definition that encompasses an
abstract definition of wings and their attachments, no further changes to
WINGmass are necessary. Furthermore, the integration by VAMPzero re-
quires no additional changes.

The results of the design of experiments are forwarded to the symbolic
regression to find separate equations for the mass of the strut-braced wing
and the strut. The default mathematical operations are allowed during the
symbolic regression. For clarity, the mass estimation is split up for the
two components of the strut-braced wing (Eq. 4.39-4.41). The symbolic
regression includes all design variables in the equations, albeit, each single
equation excludes few design variables.
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mwing =
1.144e-4AR2mTOM − 76.91AR

ARt/cηstrut − τtηstrut − 7.698e-3AR

+ 39.35S + 130.2ϕ25t/cS (4.39)

mstrut =0.0206ϕ25mTOM + 87.71ηstrutcstrut
√

ARS

+ Sηstrutcstrut
√

ARS− 21.790e3ϕ25t/cηstrut (4.40)

msbw =mwing + mstrut (4.41)

Figure 4.17 shows the behavior of the strut-braced wing mass in the domain
of definition. As before, the contour plot matrix only displays one plane
out of the domain of definition. In this case, all hidden values are set to the
mid point of the domain of definition. Furthermore, the maximum take-off
mass, the tip twist, and the the strut chord are excluded from the plot to
establish transparency.

Given the fact that the wing section inboard of the wing strut connection is
very stiff, this part of the wing is mostly sized by minimum skin thickness.
Hence, the reference area of the wing has a large impact on the strut-braced
wing mass.

The influence of the wing sweep is comparably low and this behavior is
mostly due to the small bandwidth in the domain of definition. Higher
sweep values can be excluded as they are only reasonable in combination
with high cruise speeds. However, these lead to significant transonic drag
at the strut-wing intersection. Furthermore, as the strut attaches to the
wing front spar the negative torsion effects of wing sweep are reduced.

In comparison to the conventional, cantilever wing, the influence of the
aspect ratio on the strut-braced wing mass is low due to the stiff inboard
triangle that consists of the wing, the strut and the fuselage. Hence, a high
aspect ratio design of a strut-braced wing appears reasonable. However,
the domain of definition should only be extended to higher aspect ratios if
a detailed aeroelastic analysis is available.

For a cantilever wing, the thickness to chord ratio has a large influence on
the wing mass. With a strut-braced wing the sensitivity is reduced. As
before, one of the drivers for this behavior is the triangle arrangement of
fuselage, strut and wing. The added stiffness reduces the inboard loads,
and hence, the influence from the thickness to chord ratio diminishes. For
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Figure 4.17: Surrogate model: Strut-braced wing

a natural laminar flow design of the strut-braced wing this behavior is ben-
eficial, as low thickness laminar profiles may be selected. Nonetheless, for
very low thickness to chord ratios detailed aeroelastic analysis is necessary
as well.

The influence of the spanwise strut coordinate on the strut-braced wing
mass is outstanding. The bandwidth of ηstrut includes small values to
demonstrate the rise in mass due to a diminishing effect of the strut. In
accordance to the overall design of the aircraft the optimum spanwise po-
sition of the strut is at ≈ 0.6. This value is comparable, yet slightly lower
than the results by Carrier et al. that have been mentioned earlier.
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Figure 4.18: Verification: Strut-braced wing

As before, sixteen, i.e., ten percent of the number of sample points, veri-
fication points are placed at random locations in the domain of definition
and evaluated. Table 4.8 and figure 4.18 show the results of the verification.
The quality of the symbolic regression for the wing mass is high. In con-
trast, the results of the strut mass equation verification are not as precise.
However, given the fact the only two parameters are available that describe
the actual geometry of the strut, this lack of precision has been predictable.

The present design study enhanced the capabilities of conceptual design so
that the design of a strut-braced wing configuration is possible at the very

Metric Sample points Verification points
mwing msbw mwing msbw

Mean error 0.39% 1.8% −0.85% 1.2%
Standard deviation 3.5% 16.0% 3.5% 11.0%
Root mean squared error 0.12% 2.6% 0.13% 1.3%
Standard deviation 0.23% 6.1% 0.29% 1.9%

Table 4.8: Verification: Strut-braced wing
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4 Design Studies

early design stages and at very low computational cost. Future research
may look into further configuration-specific details such as the interference
drag of strut and wing as well as the landing gear integration.

The findings as well as further sources of error of all design studies are
discussed in more detail in the following chapter. Furthermore, chapter 6

highlights areas of future research. The presented topics include further
fields of application for the multi-fidelity workflow as well as means to
improve the body of methods.
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5 Discussion All models are wrong, and
increasingly you can succeed
without them.

(Peter Norvig)

Norvig [4], in his role as Director of Research at Google Inc., rephrased the
previously introduced dictum by Box. He states that in an environment
where vast quantities of data are available no actual models are necessary
to represent knowledge, i.e., bare correlation is supposedly enough. For ex-
ample, statistics-based machine translation software that depends on vast
sets of translated text requires no additional explicit, a-priori knowledge,
e.g., on the grammar of a language.

As the presented study relies heavily on large amounts of data, i.e., the
design of experiments conducted on the multi-fidelity loop, and surro-
gate models that are derived from this data, one might be tempted to fol-
low Norvig’s dictum. However, this study is not aligned with this line
of thought: The goal of this study to increase the capabilities of concep-
tual design, an inevitable step in the design process, by the exploitation
of a multi-fidelity workflow for speed and precision rather than to replace
higher fidelity analysis models. Higher-fidelity analysis models remain a
necessity in aircraft design. Currently, non-sufficient, historical-based sta-
tistical data and methods hamper conceptual design. An aircraft design
that arises only from historical-based methods may be as unconventional
as a new language derived from statistics-based machine translation. The
symbolic regression algorithm is the only technique applied in the course
of this study that requires no a-priori knowledge. As symbolic regres-
sion needs to find a new description for an unknown problem structure,
it benefits from the fact that it is not bound by a predefined mathematical
structure.

This chapter elaborates on the findings of the design studies and high-
lights results as well as possible sources of error. Subsequently, chapter 6

discusses the body of methods in more detail and reflects upon the initial
targets of this study.

The previous chapter presents three design studies that derive new con-
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5 Discussion

ceptual design methods based on higher-fidelity physical models. The first
design study serves as a proof of concept and derives a new equation to
quantify the Oswald factor for a double trapezoid wing. The second study
overcomes a larger information gap between conceptual and preliminary
design as it connects to a high-fidelity wing mass estimation that includes
models for primary and secondary structures as well as loads and aerody-
namics. It results in a new equation for the estimation of the wing mass.
Finally, the third design study establishes a link to unconventional designs
and examines the mass of a strut-braced wing aircraft.
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Figure 5.1: Historic vs. physics-based domain of definition

The studies prove that the domain of definition can be significantly ex-
tended. As figure 5.1 shows, the design space of existing49 jet transport
aircraft is limited to a small bandwidth and any predictions on future de-
signs are not possible outside of the narrow design space. All aircraft are
grouped in a narrow space when the aspect ratio, sweep angle, and taper

49 The domain of definition that is outlined by the plot is not exhaustive. It includes all aircraft
that are listed in the validation data set, see appendix B.
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ratio are compared. In contrast, the two larger boxes represent the design
spaces covered by the first two design studies.

The design space for the wing mass design study is smaller as the design
concept is only applicable in a limited domain of definition. On the one
hand, this effect is due to the increase in the level of fidelity of the product
model (flaps, slats, ailerons, etc.), and on the other hand, this is due to an
increase in the level of fidelity of the physical model (aeroelastic conver-
gence). For example, if the taper ratio is small then no sufficient chord
depth remains for ailerons and slats and the spar layout needs significant
changes. Hence, one insight of these studies is that at a higher level of
detail the domain of definition may be limited by the design concept. For
example, in a previous study a simpler beam model of a wing has been
applied where control surfaces have only been taken into account empiri-
cally. With these simpler models it is possible to extended the domain of
definition further, yet the precision is worse.

Of course, if sufficient analysis models are available then the multi-fidelity
workflow is applicable to further design concepts, e.g., delta- or highly ta-
pered wings. However, one needs to take into account that different design
concepts should be handled in different analysis routines, i.e., conceptual
design equations. Hence, it is not advisable to force the description of all
design concepts into one in-transparent and un-maintainable package but
rather perform separate analyses, as outlined for the conventional and the
strut-braced wing. Chapter 6 presents an outlook on further design studies.

As the issues of scale diminish, it is far less complex to quantify non-
dimensional than dimensional properties of the aircraft. The Oswald factor
equation can be found without any reference to the size of the wing and
accordingly the size of the aircraft. Conversely, this is not as simple for
the wing mass as it is significantly influenced by the size of the wing and
the mass of the aircraft. However, a design of experiments, where both the
reference area and the maximum takeoff mass change, leads to several in-
feasible50 (and non-converging) designs. Hence, the design study is based
on the wing loading and becomes scaled by statistical data. In this way the
physical behavior of the higher-fidelity analysis is preserved while a larger

50 Of course, given sufficient computational power, it is possible to explore a DOE that includes
invalid locations and ignore failed the analysis runs. However, this approach is only valid if
failed analysis runs can be identified reliably, and hence, the approach is prone to errors and
hight cost.
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design space is covered. The design study on strut-braced wing aircraft cir-
cumvented this issue by a smaller domain of definition where unsuitable
designs are unlikely.

As seen from the results in the previous chapter, all equations verified
to the data from the design of experiments both for the sample and the
verification points and behave well within the conventional design space
during the validation phase. However, some sources for errors exist and
should be included in the discussion. The most outstanding are due to the:

• error of the parametrization.

• error of the surrogate model.

• error of the physical analysis model of higher-fidelity.

When an equation is derived from a multi-fidelity workflow it is impor-
tant to ensure that a quantity is interpreted equally on all levels of de-
tail. Hence, CPACS as a common namespace is applied in the scope of
this study to minimize translation errors. Furthermore, each design study
describes the quantities in rich detail, e.g., the wing mass breakdown to
minimize errors due to misinterpretation. Furthermore, the validation en-
sures that the equations return sensible results in the context of conceptual
design. However, errors of the parametrization or rather its interpretation
can hardly be excluded completely.

The introduction of any kind of surrogate model implies a certain amount
of error in the calculation as it will not exactly reflect the behavior of the
underlying physical model. One may try to decrease the error as much as
possible within the bounds of given resources. However, two distinctive
aspects come into play:

First, as it would be necessary to determine the behavior of the underly-
ing model at every possible point within the domain of definition, it is
merely impossible to quantify the error exactly. The computational cost
rises quickly beyond what is manageable and a verification must end at a
reasonable error level. However, the physics behind the underlying mod-
els are well understood and hence no singularities are expected that would
make an extended effort necessary. The verification based on the Monte
Carlo sampling plans ensures that the surrogate model reflects the behav-
ior of the physical model also at locations that are not covered within the
initial DOE.
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Second, the quantification of the error of a surrogate model is a Sisyphus
task. In a verification step, further evaluations of the high cost model are
necessary. If one determines these evaluations then they should also be
included within the surrogate model to increase the overall quality. It can
easily be seen that this loop may be non-terminal.

Finally, the error of the physical model of higher-fidelity has several sources.
Apart from error’s due to simplifications51, which are neglected given the
fact that the amount of simplification is drastically decreased by advanc-
ing from conceptual to preliminary design, systematic and human errors
stand out. The higher fidelity models have been checked for systematic
errors, as shown in the cited studies. All models that are applied in the
course of this study have to be validated to existing aircraft configurations,
and hence, systematic errors on a large scale may be excluded. Human
error may arise from a wrong application and configuration of the higher
fidelity models. At first, the use of a common namespace eliminates sev-
eral sources of faulty input specification, as it defines the necessary process
information to trigger each analysis model. Furthermore, the developers
of the preliminary design models aided in the setup of the multi-fidelity
loops and ensured correct use. In the end, the validation further reduces
the chance of human errors as it shows that the extracted equations return
sensible results for a given database of aircraft configurations.

On a final note, the validation suffers from the fact that it is limited to
conventional configurations. Yet, this is an inevitable characteristic. If
a database for unconventional configurations would exist then another
historical-based conceptual design model could be created in the same
fashion as before. However, the developed methods foster the design of
such configurations and may be validated against higher fidelity results in
the future.

51 A model remains a model, and hence, it is alway prone to errors. Of course, a higher-fidelity
model reflects the physics and design concept in more detail than a coarse model. However,
whether any model applied in preliminary design returns the exact value for any aircraft in
production remains questionable.
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6 Conclusion
If we want to start new things
rather than trying to elaborate
and improve old ones then we
cannot escape reflecting on our
basic conceptions.

(Hans Primas)

Despite the fact that Primas focuses on issues in natural sciences and phi-
losophy on a much broader scale than the present study, his dictum re-
flects the overall problem definition. If present-day aircraft design systems
are assumed to accurately predict the properties of unconventional aircraft
configurations then historical-based formulations in conceptual aircraft de-
sign need to be replaced in as many cases as possible.

Chapter 1 outlined the current design process for a new aircraft configura-
tion and identified conceptual design and preliminary design as inevitable
parts that are nonetheless distinguished as elements of analysis and synthe-
sis, respectively. The historical-based nature of conceptual design hereby
restricts the design process to a limited domain of definition. Accordingly,
two obstacles hamper the design process and the introduction of physics-
based analysis in the early stages of aircraft design. Given the fact that
both the design phases operate on different levels of fidelity, a seamless
exchange of information is not possible. First, it is necessary to bridge
the information gap between conceptual design and preliminary design.
However, in aircraft design a large number of evaluations, for example, in
optimization loops, are necessary. Given the high computational cost of
preliminary design methods, no benefits are derived from bridging the in-
formation gap, as neither sufficient time nor sufficient computing power
is available. Hence, even if the information gap is bridged, the obstacle of
time remains.

The present study proposes a multi-fidelity loop to bridge the information
gap. This loop couples a conceptual design model with several preliminary
design models via a common namespace. The key steps are initialization,
i.e., the creation of sufficient input for the preliminary design models from
the results of the conceptual design, and integration, i.e., the feedback of

137



6 Conclusion

higher-fidelity results of the preliminary design into conceptual design to
evaluate the synthesis of the design.

In the subsequent step, it is necessary to decrease the computational cost.
Hence, the multi-fidelity loop is coupled upstream with a design of ex-
periments and downstream with a surrogate modeling algorithm. Design
studies explore the multi-fidelity loop on a global scale and construct a
surrogate model that can be applied in conceptual design at a low com-
putational cost. Furthermore, the proposed solution attempts to extract a
surrogate that has a low mathematical complexity and therefore high trans-
parency. This goal aligns well with another statement of Primas [102]: “In
mathematical and scientific theories the aesthetic dimension plays a decisive role
alongside logical correctness.”

The introduction outlined three main challenges that need to be addressed
to enable successful application of the proposed body of methods:

• Establishment of a closed multi-fidelity design loop between concep-
tual design and preliminary design.

• Exploration of a wide design space in an efficient and stable way.

• Generation of a surrogate model that reflects the behavior of a physics-
based analysis while maintaining low computational cost and high
transparency.

Chapter 2 presented the state of the art of the various research fields in-
cluded within the scope of this study. It established fields where further
development is necessary and where existing solutions could be applied.

Subsequently, chapter 3 focused on the body of methods necessary to mas-
ter the above-mentioned challenges. First, a closed multi-fidelity loop is
an essential part of the aircraft design system developed at DLR in recent
years. The present study contributed to this development as it further en-
hanced the capabilities of the common namespace that is represented by
the CPACS data format. Furthermore, a conceptual design model termed
VAMPzero was developed. Of utmost importance for the multi-fidelity
loop is VAMPzero’s ability to both initialize and integrate information. It is
presently the only conceptual design model that was specifically developed
and the only one capable of closing a multi-fidelity loop. By now, several
preliminary analysis models are connected to the CPACS data format and
some of these have been applied in the course of the design studies.
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In contrast to most other works in the field of multi-fidelity, the problem
formulation in the present study necessitated a global rather than a local
exploration of the design space, as it would be the case for optimization
studies that include trust regions. Hence, several algorithms for the design
of experiments were outlined and compared. Latin-hypercubes are a state
of the art approach and were applied in the course of this study. Even
though, several methods for the improvement of Latin-hypercubes exist
beyond what has been included in the design studies, satisfying results
were obtained. Given the fact that the proposed body of methods was
applied for the first time, the number of samples was kept rather high52 to
minimize the risk of numerical inaccuracies. Hence, an optimization of the
design of experiment algorithm might prove valuable only after the overall
number of samples has been reduced to a minimum.

Usually, a calculation method in conceptual design seldom covers more
than one page of code; often, a single equation is sufficient. The overall size
of the code may range from several hundred kilobytes to a few megabytes.
As the applied methods are simple, their transparency is of utmost impor-
tance to enable the designer to quickly identify dependencies and simplifi-
cations. Hence, it is of essential to derive a surrogate model that covers not
only the behavior of the physical model but is also transparent and well-
arranged. The present study introduced symbolic regression as a surrogate
model algorithm. Symbolic regression creates surrogates with a compara-
bly high accuracy that is essential for the solution approach. Unlike most
other surrogate models, e.g., Kriging, the symbolic regression combines
low complexity and high accuracy.

Finally, the first of the three design studies served as a proof of concept and
resulted in a new equation to quantify the Oswald factor. Furthermore, a
more advanced multi-fidelity coupling was established that coupled con-
ceptual design with a high-fidelity wing mass estimation. Furthermore, a
similar workflow was applied to estimate the mass of a strut-braced wing,
and hence, the applicability of the proposed approach for unconventional
configuration was proven. The outcomes of these studies were discussed
in greater detail in the previous chapter.

52 Despite the fact that numerical experiments (as shown in figure 3.15) and general experi-
ence within DLR research indicate a factor of approximately ten samples per dimension, a
conservative number of twenty samples was applied for the design studies.
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6 Conclusion

Outlook

The present study brought the research to a coherent (intermediate) point.
Of course, several topics come to mind that can possibly extend this re-
search in the future. Apart from the fact that the outlined body of methods
may be applied to other design problems, e.g., empennage sizing including
stability and control analysis, three distinctive research fields are named
and discussed here explicitly.

Unconventional design concepts

In the course of this study the case has been made that conceptual design
methods are currently not capable of handling unconventional configura-
tions and the goal is to enhance conceptual design by means of physic
based analysis at comparable cost and complexity of a conceptual design
method. Nevertheless, the design studies in chapter 4 did not include
any of the infamous unconventional design concepts such as the blended
wing body as no sufficient analysis models of higher-fidelity have been
available during the conceptual phase of the present study. The following
paragraphs outline which components of the multi-fidelity workflow are
subject to changes to extend the design studies to a more unconventional
design concept. Hereby, no changes to the overall process are necessary,
but adoptions need to be applied to those components that are specific to
the design concept.

In a first step a common namespace is necessary which describes the char-
acteristics of any configuration in an unambiguous way, e.g., the aspect
ratio of a box wing needs to be defined. Subsequently, all conceptual and
preliminary design models that are a part of the multi-fidelity loop need to
be adapted to this parametrization.

The conceptual design model can either be extended to take into account
further unconventional design concepts or be replaced by a design specific
conceptual design code. Given the fact that the level of detail is low at the
conceptual design stage, these extensions can usually be achieved without
greater effort. The synthesis part of the conceptual design model operates
mostly on the properties of a configuration, e.g., lift over drag and thrust
specific fuel consumption, and hence is stable to changes of the design
concept.
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In accordance to the design concept, the effort necessary to initialize a de-
tailed model from the description at conceptual design stage may be sub-
stantial. However, for the blended wing body mentioned above the initial-
ization is comparably simple, as the design concept can be represented by
a wing-like structure.

Contrary, all analysis models of higher fidelity, i.e., at the preliminary de-
sign stage, need to be adjusted to changes in the design concept. For ex-
ample, the wing mass analysis chain applied in the second and third de-
sign study needs to process the unconventional configurations. For higher
fidelity physics based models this may also include some amount of cali-
bration and this calibration is hard to achieve given the limited amount of
available, detailed, and accurate data.

Once the three major issues specific to the design concept parametrization,
initialization and higher-fidelity analysis are overcome, further design studies
can be conducted. Current research at DLR and other institutions, e.g.,
on the topic of the box-wing or the blended wing body, seem to make
the extension of the proposed body of methods for more unconventional
design concepts possible in the foreseeable future.

Reduction of computational cost

As the body of methods was applied for the first time and hence included
several safety factors, means can be identified to reduce the computational
cost of the multi-fidelity workflow. First, as mentioned above, the cost of
the design of experiments may be reduced significantly. Conversely, the
safety factor for the number of samples per dimension may be lowered.
Alternatively, the design of experiment algorithm may be improved. A
Latin-hypercube explicitly optimized for space-fillingness may allow for
a further reduction of the number of samples per dimension. Both these
improvements would lead to a smaller number of samples for the multi-
fidelity loop and hence reduce the number of higher-fidelity analyses. This
would lead to significant reductions in computational cost, for example, in
the case of a further study on the wing mass that incorporates costly finite
element models.

Another significant factor contributing to computational cost is the sym-
bolic regression. The algorithm developed by Schmidt and Lipson [121]
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profits from parallelization, so some of its computational time may simply
be reduced by a more intense use of hardware. Furthermore, it is possible
to speed the symbolic regression up by seeding, i.e., feeding the genetic al-
gorithm with predefined solutions as initial populations. For example, it is
possible to perform seeding using the available historical-based conceptual
design methods. However, the usefulness of these seeds for describing the
physics-based analysis remains a topic of future research.

Iterative approach

Another possibility for improvement in addition to optimizing parts of the
overall process as described above is the exploitation of an iterative rather
than a sequential process. Currently, the number of samples is determined
a-priori, which leads to the major drawback that it is unknown whether
this number of samples is sufficient or perhaps even extraordinarily large.
For example, the number of samples needs to be increased if the verifica-
tion fails. However, this information is obtainable only after a significant
amount of computational cost has been incurred.

The alternative approach follows an iterative operation scheme, as sketched
in figure 6.1, that is comparable to the trust region approach in multi-
fidelity optimization processes. In the trust region approach, the optimiza-
tion process is based on low-fidelity and high-fidelity models. Most evalu-
ations operate on the low-fidelity model and are corrected by a few evalua-
tions of the high-fidelity model. The optimization process thereby operates
initially on a global scale and creates a surrogate that is applicable in a local
trust region where the quality of the surrogate model is ensured. In con-
trast to this scheme, an iterative, multi-fidelity workflow for the creation
of a global surrogate model should work from the local scale to the global
scale rather than vice versa.

As a first step, the creation of a local surrogate model in a limited domain of
definition based on a small number of samples is proposed. It is probable
that most physic, or at least most linear (and a few non-linear), effects may
already be captured by the local surrogate model. In subsequent steps, the
domain of definition is extended with a small number of samples. The
symbolic regression in this next step takes into account all available points
and becomes seeded with the solution of the previous iteration. The nested
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Figure 6.1: Iterative multi-fidelity workflow

Latin hypercubes described by Qian [103] and Rennen et al. [107] might be
used for the repeatedly created design of experiments.

Furthermore, the current result of the symbolic regression can be validated
against all available sample points to identify locations within the design
space where the accuracy is low. If the DOE is then adjusted iteratively
to distribute further samples near theses locations than the multi-fidelity
workflow is able to react to local effects in the domain of definition and
capture them sufficiently.

However, only detailed research can demonstrate whether the iterative ap-
proach leads to a decrease in computational cost. Even if the small number
of samples is taken into account to capture most of the behavior of the
physical models, whether the overall number of samples can be reduced
remains questionable. Nonetheless, due to the parallelization effects of
a combined search for a surrogate model and the next iteration of pre-
liminary designs the overall time may be reduced.
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Summary

In conclusion, the information gap has been bridged and conceptual de-
sign methods based on physics rather than on historical data have been
developed. However, this is a work-intensive task, especially for the ini-
tialization. A large amount of design knowledge needs to be coded. For
example, the complete structural layout of a wing must be placed in an
algorithm that is applicable over a wide domain of definition and needs to
generate sensible layouts. Furthermore, expertise is necessary to identify
the variables for the domain of definition that a) are design drivers and b)
can be included in conceptual design in a reasonable manner.

In addition, the created surrogate models extend the capabilities of con-
ceptual design and will be a major time saver for future applications. Not
only is the accuracy of the conceptual design model increased but also less
iterations are necessary in multi-fidelity loops as the quality of the initial
solution is increased. In the case of the strut-braced wing, no means to per-
form a conceptual design at low computational cost existed prior to this
study.

The introduction of symbolic regression as a surrogate model is one of
the key factors for the success of the outlined study. Without symbolic
regression the surrogate models would not have been transparent enough
for conceptual design. It is especially gratifying to note that to some extend
these models perform well in the aesthetic dimension.
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A Complexity

Complexity is a measure for the transparency of a mathematical expression.
Each mathematical operator and operand is assigned a cost value as given
in Table A.1. Complexity is the sum of all cost in the expression. For
example 1+ x has a cost of 3. Similar, cos(1+ x) has a cost of 6. Apart from
the function error a low complexity is an objective in Symbolic Regression.
The values applied in this study have their origin in the Eureqa toolbox,
published by Schmidt and Lipson [121].

Name Complexity Name Complexity

Constant 1 Sine 3

Integer Constant 1 Cosine 3

Input Variable 1 Tangent 4

Addition 1 Exponential 4

Substraction 1 Natural Logarithm 4

Multiplication 1 Factorial 4

Division 2 Power 5

Negation 1 Square Root 4

Logistic 4 Minimum 4

Step 4 Maximum 4

Sign 4 Modulo 4

Gaussian 4 Floor 4

Hyperbolic 4 Ceiling 4

Error 4 Absolute 4

Table A.1: Complexity cost for various building blocks
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B Validation Data

This appendix lists the validation data applied to check the derived models
in the context of overall aircraft design. As a matter of fact, only conven-
tional aircraft configurations can be listed. A validation out of the bounds
of the conventional design space would require at least physical testing or
prototyping.

The validation data base is limited to Boeing and Airbus aircraft. If one
includes all engine options and gross weight variants the extend of this list
will grow rapidly. Nevertheless, as the level of detail is comparably low it
is hard to establish a significant separation effect. After all, as mentioned in
chapter 1, the driving requirements for these aircraft may lie well outside
of performance, e.g. family concepts.

Tables B.1 through B.5 list 25 aircraft. The data is constructed from publicly
available documents like the Aircraft Characteristics for Airport Planing and
must not reproduce the actual behavior of any of the products named.
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B Validation Data

Manufacturer Airbus Airbus Airbus Airbus Airbus
Model 300-600 310-300 318-100 319-100 320-200

Fuselage
Length [m] 53.30 45.89 31.45 33.84 37.57

Height [m] 5.64 5.64 4.14 4.14 4.14

Width [m] 5.64 5.64 3.95 3.95 3.95

Wing
Area [m2] 260 219 122.40 122.40 122.40

Span [m] 44.84 43.90 34.10 34.10 34.10

Aspect Ratio [ ] 7.73 8.80 9.50 9.50 9.50

Taper Ratio [ ] 0.29 0.26 0.24 0.24 0.24

Sweep [deg] 28 28 25 25 25

Vertical Tail
Area [m2] 45.20 45.20 24.80 21.50 21.50

Height [m] 8.30 8.30 7 6.26 6.26

Aspect Ratio [ ] 1.52 1.52 1.97 1.82 1.82

Taper Ratio [ ] 0.40 0.40 0.29 0.30 0.30

Sweep [deg] 40 40 34 34 34

Horizontal Tail
Area [m2] 69.45 64 31 31 31

Span [m] 16.26 16.26 12.45 12.45 12.45

Aspect Ratio [ ] 3.81 4.13 5 5 5

Taper Ratio [ ] 0.40 0.44 0.26 0.26 0.26

Sweep [deg] 33 34 29 29 29

Engine
nEngine [ ] 2 2 2 2 2

bypassRatio [ ] 5.31 5.31 6 5.90 5.90

OPR [ ] 32 32 27.30 27.30 27.10

Performance
Cruise Mach [ ] 0.78 0.80 0.78 0.78 0.78

Max. Seats [ ] 345 265 120 156 180

Design Range [km] 3620 5000 3600 3000 2780

Masses
mTOM [kg] 165000 139500 68000 70000 73500

mOEM [kg] 86727 77000 35900 39700 42100

Table B.1: Validation data: A300, A310, A318, A319, A320
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Manufacturer Airbus Airbus Airbus Airbus Airbus
Model 321-100 330-200 330-300 340-200 340-500

Fuselage
Length [m] 44.50 57.77 62.68 58.42 66.03

Height [m] 4.14 5.64 5.64 5.64 5.64

Width [m] 3.95 5.64 5.64 5.64 5.64

Wing
Area [m2] 122.40 363.10 363.10 361.60 439.40

Span [m] 34.15 60.30 60.30 60.30 63.45

Aspect Ratio [ ] 9.53 10.01 10.01 10.06 9.16

Taper Ratio [ ] 0.24 0.25 0.25 0.25 0.22

Sweep [deg] 25 30 30 30 31.10

Vertical Tail
Area [m2] 21.50 47.65 45.20 45.20 47.65

Height [m] 6.26 9.44 8.45 8.45 9.44

Aspect Ratio [ ] 1.82 1.87 1.58 1.58 1.87

Taper Ratio [ ] 0.30 0.35 0.35 0.35 0.35

Sweep [deg] 34 45 45 45 45

Horizontal Tail
Area [m2] 31 72.90 72.90 72.90 93

Span [m] 12.45 19.40 19.40 19.40 22.59

Aspect Ratio [ ] 5 5.16 5.16 5.16 5.49

Taper Ratio [ ] 0.26 0.36 0.36 0.36 0.36

Sweep [deg] 29 30 30 30 30

Engine
nEngine [ ] 2 2 2 4 4

bypassRatio [ ] 5.90 4.70 5.10 6.60 7.50

OPR [ ] 27.30 29.30 32 30.50 35.19

Performance
Cruise Mach [ ] 0.78 0.82 0.82 0.82 0.83

Max. Seats [ ] 220 380 440 420 375

Design Range [km] 3520 7780 6850 9260 12225

Masses
mTOM [kg] 89000 233000 233000 275000 372000

mOEM [kg] 46800 120500 124500 129000 170900

Table B.2: Validation data: A321, A332, A333, A342, A345
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B Validation Data

Manufacturer Airbus Airbus Boeing Boeing Boeing
Model 340-600 380-800 707-320 717-200 737-200

Fuselage
Length [m] 73.46 70.40 44.35 34.30 29.54

Height [m] 5.64 8.41 4.33 3.35 4.01

Width [m] 5.64 7.14 3.76 3.40 3.76

Wing
Area [m2] 439.40 845 283.40 92.97 102

Span [m] 63.45 79.75 43.40 28.40 28.35

Aspect Ratio [ ] 9.16 7.53 6.65 8.68 7.88

Taper Ratio [ ] 0.22 0.21 0.26 0.21 0.27

Sweep [deg] 31.10 34 35.11 24.50 25

Vertical Tail
Area [m2] 47.65 122.30 30.47 19.50 19.70

Height [m] 9.44 13.66 7.20 4.35 5.85

Aspect Ratio [ ] 1.87 1.53 1.70 0.97 1.74

Taper Ratio [ ] 0.35 0.39 0.41 0.78 0.29

Sweep [deg] 45 40 30 45 35

Horizontal Tail
Area [m2] 93 222.57 58.06 24.20 31.31

Span [m] 22.59 30.37 13.94 11.20 10.97

Aspect Ratio [ ] 5.49 4.14 3.35 5.18 3.84

Taper Ratio [ ] 0.36 0.41 0.40 0.38 0.26

Sweep [deg] 30 35 36 30 30

Engine
nEngine [ ] 4 4 4 2 2

bypassRatio [ ] 7.50 8.71 5.10 4.55 5.10

OPR [ ] 35.19 36.62 27.30 27.30 27.30

Performance
Cruise Mach [ ] 0.83 0.84 0.73 0.77 0.74

Max. Seats [ ] 475 853 189 117 130

Design Range [km] 10560 12149 5200 2400 2225

Masses
mTOM [kg] 368000 560000 141700 54800 54200

mOEM [kg] 177800 276300 64600 31000 28600

Table B.3: Validation data: A346, A380, B707, B717, A732
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Manufacturer Boeing Boeing Boeing Boeing Boeing
Model 737-400 737-500 737-700 737-800 747-400

Fuselage
Length [m] 35.23 29.79 32.18 38.02 68.63

Height [m] 4.01 4.01 4.01 4.01 8.10

Width [m] 3.76 3.76 3.76 3.76 6.50

Wing
Area [m2] 105.40 105.40 125 125 560

Span [m] 28.88 28.88 34.32 34.32 64.40

Aspect Ratio [ ] 7.91 7.91 9.42 9.42 7.41

Taper Ratio [ ] 0.24 0.24 0.27 0.27 0.28

Sweep [deg] 25 25 25 25 37.50

Vertical Tail
Area [m2] 23.13 23.13 26.40 26.40 77.10

Height [m] 6 6 6 6 10.16

Aspect Ratio [ ] 1.56 1.56 1.36 1.36 1.34

Taper Ratio [ ] 0.31 0.31 0.31 0.31 0.33

Sweep [deg] 35 35 35 35 45

Horizontal Tail
Area [m2] 31.31 31.31 32.80 32.80 136.57

Span [m] 12.70 12.70 14.35 14.35 22.17

Aspect Ratio [ ] 5.15 5.15 6.28 6.28 3.60

Taper Ratio [ ] 0.26 0.26 0.19 0.19 0.27

Sweep [deg] 30 30 30 30 32

Engine
nEngine [ ] 2 2 2 2 4

bypassRatio [ ] 5.10 5.10 5.30 5.30 5.30

OPR [ ] 27.30 27.30 24.41 27.30 32.40

Performance
Cruise Mach [ ] 0.74 0.74 0.79 0.79 0.84

Max. Seats [ ] 168 132 149 189 600

Design Range [km] 3241 3330 3890 3890 9273

Masses
mTOM [kg] 68040 60500 70000 79000 396800

mOEM [kg] 33600 31300 37600 41400 178700

Table B.4: Validation data: B734, B735, B737, B738, B744
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B Validation Data

Manufacturer Boeing Boeing Boeing Boeing Boeing
Model 757-200 757-300 767-200 767-300 777-200

Fuselage
Length [m] 46.97 54.08 47.24 53.67 62.94

Height [m] 4.01 4.10 5.41 5.41 6.20

Width [m] 3.76 3.76 5.03 5.03 6.20

Wing
Area [m2] 185.25 185.25 283.30 283.30 427.80

Span [m] 38.05 38.06 47.57 47.57 60.93

Aspect Ratio [ ] 7.82 7.82 7.99 7.99 8.68

Taper Ratio [ ] 0.24 0.24 0.27 0.27 0.15

Sweep [deg] 25 25 31.50 31.50 31.64

Vertical Tail
Area [m2] 34.37 34.37 46.14 46.14 53.23

Height [m] 7.33 7.33 9.01 9.01 9.24

Aspect Ratio [ ] 1.56 1.56 1.76 1.76 1.60

Taper Ratio [ ] 0.35 0.35 0.31 0.31 0.29

Sweep [deg] 39 39 39 39 46

Horizontal Tail
Area [m2] 50.35 50.35 77.69 77.69 101.26

Span [m] 15.21 15.22 18.62 18.62 21.53

Aspect Ratio [ ] 4.59 4.60 4.46 4.46 4.58

Taper Ratio [ ] 0.33 0.33 0.20 0.20 0.30

Sweep [deg] 27.50 27.50 32 32 35

Engine
nEngine [ ] 2 2 2 2 2

bypassRatio [ ] 4.10 4.10 4.80 4.80 6

OPR [ ] 27.30 27.30 30 30 38.90

Performance
Cruise Mach [ ] 0.80 0.80 0.80 0.80 0.84

Max. Seats [ ] 228 279 255 290 440

Design Range [km] 5740 4450 3980 3980 8250

Masses
mTOM [kg] 115650 122400 142800 158700 286900

mOEM [kg] 59350 64300 80100 86000 138100

Table B.5: Validation data: B752, B753, B762, B763, B772
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C Design of Experiments

# x1 x2 x3 # x1 x2 x3

1 0.00000000 0.00000000 0.00000000 33 0.00000000 0.00000000 0.66666667
2 0.33333333 0.00000000 0.00000000 34 0.33333333 0.00000000 0.66666667
3 0.66666667 0.00000000 0.00000000 35 0.66666667 0.00000000 0.66666667
4 1.00000000 0.00000000 0.00000000 36 1.00000000 0.00000000 0.66666667
5 0.00000000 0.33333333 0.00000000 37 0.00000000 0.33333333 0.66666667
6 0.33333333 0.33333333 0.00000000 38 0.33333333 0.33333333 0.66666667
7 0.66666667 0.33333333 0.00000000 39 0.66666667 0.33333333 0.66666667
8 1.00000000 0.33333333 0.00000000 40 1.00000000 0.33333333 0.66666667
9 0.00000000 0.66666667 0.00000000 41 0.00000000 0.66666667 0.66666667

10 0.33333333 0.66666667 0.00000000 42 0.33333333 0.66666667 0.66666667
11 0.66666667 0.66666667 0.00000000 43 0.66666667 0.66666667 0.66666667
12 1.00000000 0.66666667 0.00000000 44 1.00000000 0.66666667 0.66666667
13 0.00000000 1.00000000 0.00000000 45 0.00000000 1.00000000 0.66666667
14 0.33333333 1.00000000 0.00000000 46 0.33333333 1.00000000 0.66666667
15 0.66666667 1.00000000 0.00000000 47 0.66666667 1.00000000 0.66666667
16 1.00000000 1.00000000 0.00000000 48 1.00000000 1.00000000 0.66666667
17 0.00000000 0.00000000 0.33333333 49 0.00000000 0.00000000 1.00000000
18 0.33333333 0.00000000 0.33333333 50 0.33333333 0.00000000 1.00000000
19 0.66666667 0.00000000 0.33333333 51 0.66666667 0.00000000 1.00000000
20 1.00000000 0.00000000 0.33333333 52 1.00000000 0.00000000 1.00000000
21 0.00000000 0.33333333 0.33333333 53 0.00000000 0.33333333 1.00000000
22 0.33333333 0.33333333 0.33333333 54 0.33333333 0.33333333 1.00000000
23 0.66666667 0.33333333 0.33333333 55 0.66666667 0.33333333 1.00000000
24 1.00000000 0.33333333 0.33333333 56 1.00000000 0.33333333 1.00000000
25 0.00000000 0.66666667 0.33333333 57 0.00000000 0.66666667 1.00000000
26 0.33333333 0.66666667 0.33333333 58 0.33333333 0.66666667 1.00000000
27 0.66666667 0.66666667 0.33333333 59 0.66666667 0.66666667 1.00000000
28 1.00000000 0.66666667 0.33333333 60 1.00000000 0.66666667 1.00000000
29 0.00000000 1.00000000 0.33333333 61 0.00000000 1.00000000 1.00000000
30 0.33333333 1.00000000 0.33333333 62 0.33333333 1.00000000 1.00000000
31 0.66666667 1.00000000 0.33333333 63 0.66666667 1.00000000 1.00000000
32 1.00000000 1.00000000 0.33333333 64 1.00000000 1.00000000 1.00000000

Table C.1: Full factorial sample plan
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C Design of Experiments

# x1 x2 x3 # x1 x2 x3

1 0.52331659 0.45765820 0.01507784 33 0.63918007 0.02231173 0.13090356
2 0.71809038 0.89372781 0.85952820 34 0.83185877 0.42753005 0.82378877
3 0.69511576 0.85890331 0.97103776 35 0.85408129 0.62220017 0.38398620
4 0.58426099 0.84004166 0.58370791 36 0.86228206 0.41914107 0.46520390
5 0.74284686 0.71315798 0.29564375 37 0.59216821 0.73368085 0.64605606
6 0.81310049 0.84139029 0.47436997 38 0.86763896 0.26992637 0.27274147
7 0.11390271 0.12618325 0.09774527 39 0.73469115 0.35381744 0.84542967
8 0.56341826 0.75642848 0.82395697 40 0.40007721 0.94389484 0.51174435
9 0.91530287 0.42879988 0.47930155 41 0.49445554 0.61445659 0.66505015

10 0.67420375 0.63427120 0.52175372 42 0.51219017 0.84732147 0.97165884
11 0.51790356 0.37071847 0.44734474 43 0.14369980 0.94819837 0.64950757
12 0.71518788 0.07353518 0.28228377 44 0.64100494 0.00967303 0.88610897
13 0.74164764 0.30617696 0.58880503 45 0.57710951 0.45565062 0.14349256
14 0.16634986 0.76619005 0.01879928 46 0.90071925 0.24057979 0.06688968
15 0.94671337 0.04609987 0.49388867 47 0.86680254 0.23543555 0.19182521
16 0.40504128 0.00140480 0.78948953 48 0.45046498 0.09334541 0.48209940
17 0.41807317 0.51409126 0.42873985 49 0.57038754 0.87430360 0.57863079
18 0.19664306 0.16861785 0.17559114 50 0.41216012 0.82465468 0.42908250
19 0.89456693 0.59927050 0.49044858 51 0.38449930 0.99407591 0.16694501
20 0.59225885 0.78863836 0.61776694 52 0.76224420 0.80353644 0.80973757
21 0.39169583 0.67884819 0.16644614 53 0.99903590 0.14622386 0.19309968
22 0.43743011 0.70081238 0.79178761 54 0.69209516 0.54776919 0.68098166
23 0.46021940 0.85243878 0.98283524 55 0.12524882 0.64158823 0.62068282
24 0.19516284 0.16732447 0.61120669 56 0.44257123 0.07116753 0.43966730
25 0.14079472 0.75740699 0.43448020 57 0.35897089 0.68258132 0.68374916
26 0.59932567 0.15208340 0.39138571 58 0.05745481 0.15293680 0.89300671
27 0.97069937 0.10654628 0.59042444 59 0.58394015 0.81939178 0.83674567
28 0.25906796 0.98748716 0.89298724 60 0.30826290 0.79159012 0.23112717
29 0.08550308 0.92163676 0.85005209 61 0.75389985 0.48600321 0.25322016
30 0.17878178 0.84909104 0.83847600 62 0.21429770 0.02513174 0.06392401
31 0.48469373 0.87718459 0.94853716 63 0.51251830 0.33955413 0.32510014
32 0.53448369 0.13632465 0.02243996 64 0.81371631 0.37957814 0.94942816

Table C.2: Monte Carlo sample plan
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# x1 x2 x3 # x1 x2 x3

1 0.75023428 0.30547817 0.61548616 33 0.28179929 0.60707575 0.92331832
2 0.84054856 0.03501466 0.64111988 34 0.98604379 0.31854682 0.48959589
3 0.80922993 0.29429211 0.80642170 35 0.49907227 0.42190504 0.63203698
4 0.63642583 0.39959424 0.01108287 36 0.39566663 0.35341001 0.47630142
5 0.15655831 0.78511818 0.11268622 37 0.78607707 0.98374034 0.09249502
6 0.84757113 0.05945731 0.26446924 38 0.04525572 0.71125143 0.82000194
7 0.38359696 0.36037531 0.90170080 39 0.19341872 0.06787173 0.17218341
8 0.14328868 0.95692466 0.45272057 40 0.46546586 0.02664238 0.16948915
9 0.41758944 0.56181724 0.45526068 41 0.59316481 0.51248809 0.36353594

10 0.56388464 0.61931478 0.79664557 42 0.93244807 0.52918567 0.21551834
11 0.11756340 0.16922309 0.74065144 43 0.74000594 0.13239943 0.35736276
12 0.72095201 0.75086553 0.72778558 44 0.24425719 0.45181866 0.59710122
13 0.26210181 0.00666649 0.96740498 45 0.47318967 0.86406817 0.30359388
14 0.35750164 0.21365004 0.05044462 46 0.90286624 0.19850651 0.67521174
15 0.66054030 0.57894966 0.88026254 47 0.09329712 0.93424134 0.26943649
16 0.44814002 0.47794830 0.69384630 48 0.96375397 0.39039517 0.41877480
17 0.10021217 0.66214007 0.03730065 49 0.20596451 0.17501106 0.09549284
18 0.50367567 0.74483454 0.13867087 50 0.13464427 0.14260040 0.94597300
19 0.53682350 0.24647548 0.50716447 51 0.36717565 0.81099268 0.22449003
20 0.55261329 0.23098256 0.77513808 52 0.93944742 0.72300088 0.39343900
21 0.27588152 0.26584888 0.91395181 53 0.82427989 0.45553603 0.75766722
22 0.59873339 0.89190623 0.14287225 54 0.76870473 0.49245477 0.43050221
23 0.34123485 0.88515809 0.56174860 55 0.97614168 0.69207948 0.56789589
24 0.30616294 0.25527994 0.24470250 56 0.02575238 0.83081661 0.37867192
25 0.00647093 0.99258160 0.99491662 57 0.43508038 0.84585077 0.07163352
26 0.32614260 0.91511493 0.98224009 58 0.06193029 0.82619387 0.86803750
27 0.52131757 0.10406168 0.85151084 59 0.68225372 0.56342206 0.33489386
28 0.88828407 0.53255313 0.19789198 60 0.86877452 0.11736868 0.70364824
29 0.61519267 0.08593308 0.65947590 61 0.71689793 0.62662867 0.58698156
30 0.17488877 0.42077021 0.83168988 62 0.21958672 0.94271237 0.31414667
31 0.91670671 0.64575999 0.52553335 63 0.65146161 0.67550314 0.29332143
32 0.69782396 0.33786051 0.03028395 64 0.07790748 0.77780910 0.53574424

Table C.3: Latin hypercube sample plan
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D Oswald Factor

This appendix lists data from the design study for the Oswald factor in
chapter 4. Table D.1 gives the locations of all points within the initial design
of experiments. Furthermore, the table provides the results of the Oswald
factor both from Tornado and the surrogate model. Subsequently, table D.2
shows the same data of the verification points.

# ϕ25 AR λ τt ηk eact. epred.

1 3.351 14.133 0.450 −5.297 0.327 1.005 0.997
2 −5.578 18.793 0.326 −0.162 0.258 0.990 0.997
3 −0.231 14.508 0.761 −2.874 0.343 0.976 0.990
4 11.688 18.340 0.112 −8.724 0.216 0.959 0.996
5 −21.137 9.085 0.810 −4.100 0.230 0.995 0.996
6 8.960 22.293 0.857 −4.412 0.285 0.870 0.904
7 37.302 11.683 0.275 −8.914 0.294 0.981 0.923
8 −32.751 22.448 0.135 −4.759 0.362 0.549 0.551
9 −12.079 5.833 0.951 −7.622 0.276 1.004 0.997

10 −2.158 17.550 0.281 −0.860 0.355 0.997 0.998
11 −14.627 24.773 0.242 −6.216 0.240 0.945 0.953
12 23.171 21.263 0.546 −6.852 0.318 0.799 0.769
13 −36.717 10.096 0.580 −9.601 0.276 0.959 0.928
14 −29.490 10.541 0.734 −6.050 0.261 0.983 0.974
15 −25.453 15.547 0.689 −4.209 0.299 0.965 0.952
16 31.765 16.399 0.756 −8.469 0.356 0.662 0.635
17 −37.071 14.643 0.780 −1.399 0.320 0.886 0.891
18 17.207 11.414 0.960 −3.705 0.228 0.923 0.941
19 19.117 13.115 0.911 −6.340 0.266 0.899 0.904
20 33.475 23.863 0.413 −2.522 0.203 0.842 0.798
21 0.668 13.312 0.720 −3.459 0.330 0.985 0.992
22 −7.071 21.921 0.258 −2.316 0.242 0.973 0.991
23 −33.400 21.729 0.824 −6.400 0.298 0.730 0.817
24 −22.678 13.534 0.907 −6.939 0.271 0.988 0.991
25 30.490 17.231 0.930 −9.562 0.291 0.678 0.661
26 −14.304 6.118 0.741 −1.921 0.397 1.004 0.982

Continued
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D Oswald Factor

# ϕ25 AR λ τt ηk eact. epred.

27 −27.468 20.174 0.143 −8.542 0.217 0.876 0.887
28 −6.029 23.174 0.206 −5.021 0.322 0.969 0.985
29 39.175 12.899 0.698 −7.038 0.312 0.775 0.764
30 22.254 16.176 0.880 −1.063 0.383 0.760 0.769
31 −7.738 17.906 0.425 −0.094 0.283 0.995 0.996
32 −9.972 15.845 0.372 −6.666 0.319 0.994 0.985
33 15.726 5.202 0.790 −5.633 0.260 1.005 1.000
34 −37.863 6.278 0.188 −3.320 0.201 0.867 0.908
35 35.579 17.693 0.339 −3.972 0.346 0.728 0.701
36 21.308 23.206 0.817 −2.230 0.250 0.753 0.786
37 25.857 8.161 0.211 −1.613 0.233 1.017 1.000
38 −4.391 12.478 0.705 −7.818 0.370 0.996 1.000
39 7.216 24.947 0.469 −9.140 0.212 0.979 0.972
40 2.002 13.660 0.994 −5.863 0.286 0.946 0.969
41 −3.859 21.146 0.235 −7.923 0.379 0.989 0.992
42 27.759 7.104 0.344 −2.458 0.303 1.015 0.999
43 20.701 6.418 0.978 −1.766 0.389 0.976 0.974
44 30.272 17.107 0.514 −0.260 0.310 0.824 0.804
45 −26.919 19.611 0.437 −0.444 0.225 0.948 0.935
46 −17.141 21.555 0.596 −6.558 0.218 0.977 0.985
47 −23.669 7.353 0.394 −2.772 0.222 0.966 0.963
48 32.597 10.672 0.421 −3.538 0.212 0.997 0.974
49 −29.705 9.746 0.639 −7.313 0.338 0.979 0.941
50 −34.928 8.832 0.222 −7.175 0.264 0.894 0.902
51 −24.799 12.283 0.152 −7.713 0.229 0.900 0.935
52 −15.471 6.770 0.727 −0.747 0.334 1.001 0.987
53 −20.406 15.144 0.119 −7.477 0.342 0.916 0.892
54 −18.668 23.550 0.855 −9.826 0.339 0.877 0.933
55 −38.738 9.463 0.895 −7.571 0.350 0.968 0.925
56 24.525 19.893 0.179 −4.543 0.381 0.829 0.811
57 4.366 20.963 0.566 −5.780 0.265 0.976 0.979
58 −8.435 12.099 0.552 −7.250 0.296 1.004 0.997
59 19.829 7.796 0.478 −5.311 0.364 1.012 0.993
60 3.104 24.445 0.984 −9.459 0.208 0.883 0.940
61 17.716 11.190 0.670 −4.397 0.330 0.967 0.953
62 −22.270 24.018 0.289 −4.169 0.369 0.778 0.774
63 −19.399 15.759 0.587 −5.506 0.281 0.985 0.974
64 −2.491 9.828 0.517 −8.262 0.386 1.011 0.999
65 14.877 9.376 0.244 −2.056 0.333 1.016 0.999
66 −34.036 19.017 0.195 −2.995 0.395 0.588 0.586

Continued
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# ϕ25 AR λ τt ηk eact. epred.

67 39.248 18.090 0.660 −8.035 0.345 0.468 0.476
68 −39.740 7.969 0.624 −3.685 0.350 0.952 0.908
69 16.020 11.304 0.607 −8.889 0.301 0.985 0.968
70 26.938 20.733 0.269 −5.955 0.391 0.738 0.704
71 −17.604 22.925 0.369 −0.998 0.252 0.956 0.952
72 29.079 19.596 0.476 −0.548 0.223 0.895 0.867
73 −0.982 8.551 0.379 −8.620 0.314 1.013 0.994
74 −35.919 22.184 0.969 −9.906 0.269 0.741 0.820
75 5.098 8.266 0.491 −3.122 0.392 1.014 1.000
76 33.755 10.345 0.644 −9.303 0.359 0.911 0.864
77 −9.364 19.313 0.846 −4.983 0.376 0.956 0.999
78 36.744 22.641 0.866 −4.679 0.256 0.474 0.512
79 −11.634 6.857 0.570 −4.872 0.274 1.009 0.986
80 14.002 16.805 0.166 −9.002 0.235 0.987 0.990
81 −31.834 8.792 0.922 −1.588 0.377 0.979 0.964
82 −13.116 13.961 0.323 −8.164 0.205 0.981 0.986
83 1.190 24.357 0.939 −1.240 0.308 0.898 0.956
84 10.954 20.385 0.108 −9.797 0.242 0.948 0.991
85 −10.401 15.233 0.525 −3.090 0.316 0.996 0.993
86 5.790 7.490 0.399 −3.860 0.244 1.017 0.996
87 23.651 18.851 0.888 −0.335 0.388 0.639 0.672
88 −16.094 5.738 0.356 −3.217 0.280 0.985 0.949
89 −26.144 20.471 0.770 −1.805 0.249 0.939 0.958
90 25.217 5.075 0.799 −1.461 0.236 1.001 1.000
91 12.401 14.905 0.306 −5.428 0.372 0.998 0.975
92 35.129 18.572 0.157 −6.749 0.399 0.631 0.639
93 10.360 10.970 0.676 −2.672 0.305 0.984 0.982
94 −30.458 5.531 0.540 −2.102 0.353 0.976 0.926
95 28.215 12.734 0.838 −1.144 0.290 0.859 0.866
96 38.383 23.708 0.453 −8.345 0.325 0.409 0.371
97 8.197 16.600 0.498 −0.615 0.210 0.990 0.987
98 −28.309 14.242 0.651 −5.158 0.246 0.977 0.963
99 7.031 11.849 0.313 −9.212 0.364 1.013 0.999

100 12.835 16.557 0.620 −6.137 0.367 0.939 0.921

Table D.1: Oswald factor: sample points
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D Oswald Factor

# ϕ25 AR λ τt ηk eact. epred.

1 3.436 15.248 0.194 −5.728 0.399 0.994 1.000
2 −15.949 7.030 0.255 −2.904 0.327 0.977 0.946
3 −5.160 5.891 0.932 −7.094 0.358 1.003 0.999
4 30.012 5.670 0.915 −8.891 0.366 0.984 0.975
5 13.093 21.881 0.143 −7.157 0.299 0.948 0.965
6 14.212 23.074 0.390 −0.887 0.247 0.960 0.942
7 −19.379 11.387 0.270 −2.295 0.233 0.958 0.965
8 39.165 14.567 0.187 −5.673 0.348 0.832 0.804
9 −8.928 17.636 0.132 −5.638 0.354 0.951 0.965

10 −19.744 8.994 0.421 −0.568 0.284 0.986 0.969

Table D.2: Oswald factor: verification points
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E Wing Mass

This appendix lists data from the design study for the wing mass estima-
tion in chapter 4. Table E.1 gives the locations of all points within the
initial design of experiments. Furthermore, the table provides the results
of the wing mass both from ELWIS and the surrogate model. Subsequently,
table E.2 shows the same data of the verification points.

# AR λ ϕ25 t/c W /S mact. mpred.

1 10.669 0.205 0.204 0.108 715.73 8931.76 9108.06
2 7.430 0.515 −0.369 0.135 698.22 7395.66 7300.43
3 8.485 0.401 −0.147 0.116 617.96 7685.50 7938.92
4 12.274 0.320 −0.307 0.154 671.34 9782.36 9957.38
5 6.026 0.511 0.440 0.151 690.84 6814.46 5879.89
6 7.327 0.565 −0.556 0.150 518.07 7676.32 7200.42
7 12.174 0.540 0.641 0.132 667.12 10669.65 9434.53
8 7.039 0.433 −0.694 0.138 551.58 8006.63 8187.36
9 10.517 0.345 −0.135 0.159 633.05 7997.98 7838.28

10 6.736 0.309 0.484 0.145 609.29 6922.19 6468.76
11 9.235 0.445 −0.494 0.129 678.41 9268.70 9893.13
12 11.794 0.421 −0.299 0.121 712.66 11600.23 12231.11
13 10.827 0.300 −0.097 0.159 664.55 8067.44 8001.43
14 12.806 0.593 0.054 0.103 725.71 12395.20 11070.20
15 11.213 0.235 0.428 0.133 513.46 7562.48 8485.78
16 8.987 0.559 −0.396 0.118 647.75 9155.26 9437.36
17 8.617 0.469 −0.077 0.113 526.36 7727.65 7763.32
18 8.166 0.453 0.309 0.134 576.25 7313.16 7098.37
19 9.375 0.502 −0.647 0.152 588.11 9977.68 9746.38
20 10.750 0.225 0.613 0.120 491.81 7684.11 8764.23
21 9.551 0.209 −0.356 0.115 561.76 9058.63 9790.09
22 12.014 0.586 −0.627 0.101 650.36 23536.01 23023.29
23 12.107 0.216 −0.572 0.131 536.87 14613.28 14083.15
24 12.548 0.357 0.670 0.110 581.91 9552.15 8239.73
25 8.840 0.560 0.334 0.122 653.85 7620.93 7883.56
26 6.823 0.331 −0.413 0.143 708.70 7213.73 6757.38

Continued
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E Wing Mass

# AR λ ϕ25 t/c W /S mact. mpred.

27 9.691 0.462 −0.444 0.135 614.38 9203.56 9595.80
28 6.291 0.578 −0.211 0.114 641.89 6777.66 6207.58
29 7.243 0.324 −0.017 0.108 595.91 7265.55 6793.12
30 9.136 0.299 −0.229 0.111 729.36 8393.43 9265.34
31 12.921 0.263 −0.255 0.123 686.84 11785.28 12994.10
32 6.447 0.239 −0.661 0.140 733.53 7364.24 7660.14
33 7.532 0.264 0.260 0.148 572.35 7171.74 6368.43
34 7.939 0.482 −0.515 0.124 660.71 8320.26 8738.56
35 10.848 0.550 0.413 0.158 504.91 7369.18 7702.92
36 12.981 0.364 0.126 0.105 720.79 11225.05 10427.56
37 8.549 0.223 −0.433 0.114 699.73 8504.95 9467.66
38 6.979 0.368 0.346 0.128 534.78 6869.48 6394.36
39 8.765 0.466 0.684 0.118 598.29 8288.55 8895.60
40 11.009 0.532 −0.163 0.130 519.77 8909.39 9328.58
41 12.361 0.247 −0.105 0.130 585.64 9475.07 10311.12
42 10.582 0.449 0.685 0.112 557.09 8969.82 9015.67
43 12.656 0.284 −0.389 0.135 528.58 12211.52 12196.65
44 10.906 0.242 −0.594 0.142 495.92 11476.04 11277.80
45 10.132 0.229 0.244 0.106 691.89 8543.94 8747.41
46 6.071 0.507 0.274 0.126 661.82 6695.60 5851.56
47 12.775 0.573 0.021 0.153 603.11 9090.26 8834.65
48 9.196 0.356 0.058 0.128 580.25 7642.58 7748.58
49 7.784 0.413 −0.641 0.102 642.57 10102.14 10381.52
50 7.562 0.553 −0.676 0.115 550.88 9649.55 9502.36
51 6.391 0.485 −0.250 0.148 493.42 6853.23 5568.75
52 9.582 0.389 −0.182 0.141 593.37 7905.73 8035.34
53 10.443 0.306 0.621 0.136 555.81 7840.76 8922.09
54 7.985 0.342 0.569 0.139 720.56 7770.57 7927.40
55 11.311 0.219 −0.479 0.109 715.06 13464.70 15060.80
56 11.587 0.407 0.076 0.125 655.78 9121.53 9424.75
57 8.909 0.476 0.012 0.139 575.60 7562.17 7304.68
58 11.922 0.270 −0.123 0.146 683.64 8859.77 9401.46
59 8.339 0.278 0.651 0.107 620.31 7986.78 8536.57
60 7.143 0.374 0.089 0.141 499.85 6975.79 5972.41
61 7.690 0.385 −0.043 0.110 507.63 7438.68 6966.20
62 10.237 0.384 0.528 0.158 600.57 7653.65 8068.99
63 9.912 0.547 0.388 0.154 511.62 7223.76 7491.35
64 11.109 0.367 0.508 0.157 706.68 8791.23 8530.61
65 11.385 0.204 0.191 0.101 684.21 9349.07 9366.86
66 6.619 0.479 −0.270 0.156 570.82 6964.44 5778.18
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# AR λ ϕ25 t/c W /S mact. mpred.

67 11.855 0.522 −0.583 0.122 615.44 17089.57 15584.56
68 6.872 0.333 0.101 0.137 680.92 7015.49 6184.57
69 7.871 0.442 0.589 0.104 539.83 7304.38 7838.02
70 10.060 0.377 0.143 0.156 723.57 7959.24 7640.17
71 11.692 0.398 0.404 0.119 590.75 8355.55 8828.64
72 8.397 0.295 0.123 0.105 534.03 7446.41 7493.72
73 9.328 0.494 −0.004 0.143 560.41 7732.86 7438.90
74 6.258 0.314 −0.281 0.141 637.37 7006.11 5898.44
75 11.651 0.260 −0.067 0.112 515.34 9484.93 10218.41
76 12.372 0.519 0.372 0.147 673.52 9289.28 8780.95
77 10.392 0.281 −0.038 0.155 544.82 8103.29 7601.22
78 11.114 0.350 −0.470 0.157 704.12 9730.00 9904.28
79 6.496 0.590 0.361 0.149 503.07 6731.10 5734.00
80 7.341 0.254 −0.610 0.117 657.41 8091.28 8862.91
81 12.602 0.339 0.584 0.145 732.05 10559.70 9337.32
82 7.106 0.249 0.451 0.150 695.27 7203.23 6673.57
83 6.650 0.409 −0.203 0.131 644.92 6925.43 6252.04
84 7.661 0.440 −0.518 0.116 566.77 8375.72 8481.96
85 8.245 0.582 0.300 0.138 701.09 7573.75 7291.68
86 11.415 0.498 −0.456 0.149 674.68 10702.31 10608.47
87 9.766 0.416 −0.339 0.127 636.26 9035.15 9521.32
88 9.031 0.598 0.035 0.125 629.64 7937.40 7852.66
89 6.186 0.395 −0.532 0.147 548.34 7036.69 6275.88
90 9.796 0.321 −0.174 0.120 590.04 8396.73 8994.81
91 9.990 0.492 0.554 0.109 543.57 7848.31 8506.27
92 8.707 0.528 0.492 0.153 625.28 7453.14 7526.45
93 11.507 0.275 0.470 0.124 501.34 7630.05 8607.88
94 9.467 0.291 0.216 0.127 524.38 7466.88 7747.01
95 12.493 0.536 −0.326 0.101 564.66 16409.31 15911.76
96 8.090 0.456 0.181 0.144 606.71 7271.08 6759.41
97 10.045 0.431 0.224 0.123 530.28 7598.38 8145.06
98 12.053 0.536 0.156 0.134 630.62 8875.65 9120.17
99 8.206 0.425 0.280 0.107 612.09 7542.17 7519.96

100 10.281 0.569 0.532 0.103 624.23 9145.15 8518.40

Table E.1: Wing mass: sample points
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E Wing Mass

# AR λ ϕ25 t/c W /S mact. mpred.

1 9.587 0.242 0.060 0.126 491.35 7661.66 7839.92
2 9.348 0.238 0.684 0.126 554.18 9076.66 8990.90
3 6.710 0.269 −0.278 0.143 579.67 7014.57 6114.42
4 10.423 0.214 −0.156 0.126 546.72 8425.36 9086.17
5 6.312 0.570 −0.090 0.117 541.26 6670.83 5853.03
6 7.398 0.343 −0.345 0.157 632.62 7278.89 6555.81
7 6.234 0.562 0.524 0.107 532.47 6696.39 6485.70
8 11.908 0.219 0.229 0.117 613.53 8433.84 9207.08
9 12.326 0.329 0.248 0.155 677.81 8425.34 8454.69

10 8.236 0.276 −0.338 0.146 695.42 7631.31 7549.01

Table E.2: Wing mass: verification points
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F Strut Braced Wing Mass

This appendix lists data from the design study for the strut-braced wing
mass estimation in chapter 4. Table F.1 gives the locations of all points
within the initial design of experiments. Furthermore, the table provides
the results of the strut-braced wing mass both from ELWIS and the surro-
gate model. Subsequently, table F.2 shows the same data of the verification
points.
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# mTOM AR ϕ25 τt t/c S ηs cs mwing,act. mwing,pred. mstrut,act. mstrut,pred.

1 82.7 16.1 0.188 −0.134 0.095 153.9 0.591 0.136 7852.7 7828.0 1024.1 1055.3
2 88.0 16.0 0.232 −0.133 0.087 119.0 0.331 0.180 8531.1 8528.5 899.9 811.8
3 83.2 14.0 0.246 −0.163 0.106 145.2 0.665 0.189 7236.8 7005.5 1467.9 1360.9
4 86.9 16.7 0.426 −0.167 0.090 146.6 0.603 0.189 8664.2 8204.1 1614.4 1584.0
5 77.8 16.9 0.239 −0.076 0.125 135.3 0.404 0.187 7471.5 7491.4 894.5 925.5
6 81.5 15.8 0.200 −0.101 0.120 114.7 0.651 0.176 5669.5 5814.9 970.3 981.9
7 77.7 14.0 0.328 −0.129 0.096 136.7 0.627 0.101 6678.6 6751.7 770.2 718.4
8 71.3 13.2 0.344 −0.163 0.082 114.5 0.303 0.135 6522.2 6419.3 718.6 642.9
9 76.1 14.5 0.310 −0.081 0.103 144.2 0.667 0.144 7040.7 7042.8 999.7 1046.0

10 77.2 13.3 0.187 −0.155 0.127 116.3 0.274 0.174 5982.8 6267.5 510.8 538.0
11 77.7 14.0 0.328 −0.129 0.096 136.7 0.627 0.101 6678.6 6751.7 770.2 718.4
12 80.5 13.2 0.273 −0.112 0.128 156.7 0.468 0.169 8021.4 7674.2 1033.6 974.8
13 70.0 16.7 0.240 −0.156 0.083 114.0 0.540 0.151 5860.9 6124.0 710.4 828.2
14 84.8 13.3 0.338 −0.121 0.118 137.7 0.475 0.107 7178.9 7130.6 687.9 668.2
15 88.1 15.8 0.420 −0.140 0.128 138.6 0.450 0.133 7891.4 7959.4 1038.1 872.3
16 72.1 13.4 0.216 −0.089 0.122 124.2 0.471 0.126 6180.5 5946.8 542.2 563.0
17 71.4 17.0 0.284 −0.093 0.127 136.8 0.439 0.126 7178.8 7249.6 609.5 672.4
18 78.9 13.6 0.304 −0.153 0.116 112.1 0.293 0.152 6727.6 6491.0 550.6 617.0
19 80.2 12.2 0.176 −0.104 0.126 102.3 0.677 0.125 5065.0 4742.7 553.8 529.7
20 83.5 14.6 0.415 −0.114 0.084 125.2 0.360 0.168 8241.3 7948.3 1054.7 990.5
21 85.3 13.9 0.350 −0.125 0.119 149.6 0.612 0.151 7686.1 7525.8 1180.7 1059.3
22 82.5 13.7 0.349 −0.152 0.105 121.0 0.464 0.115 6387.8 6467.9 649.6 673.6
23 76.3 14.8 0.370 −0.122 0.108 117.4 0.527 0.100 6057.2 6207.4 620.5 575.2
24 89.2 15.0 0.295 −0.099 0.097 119.9 0.549 0.194 6289.3 6710.6 972.4 1137.3
25 86.3 13.6 0.401 −0.149 0.123 113.5 0.461 0.120 6209.0 6256.4 541.7 655.4

Continued
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# mTOM AR ϕ25 τt t/c S ηs cs mwing,act. mwing,pred. mstrut,act. mstrut,pred.

26 88.5 12.6 0.195 −0.077 0.126 158.3 0.306 0.157 7941.1 8278.5 695.6 721.2
27 89.1 15.6 0.336 −0.158 0.119 129.8 0.251 0.146 9294.5 9131.7 745.5 756.8
28 75.8 14.3 0.358 −0.168 0.086 106.7 0.662 0.147 5503.3 5448.6 774.5 852.0
29 83.3 13.1 0.421 −0.074 0.113 155.2 0.258 0.167 8944.7 9194.0 705.7 929.4
30 71.9 12.4 0.215 −0.075 0.123 100.9 0.363 0.186 4749.3 4949.0 568.5 557.6
31 75.7 13.1 0.192 −0.154 0.083 107.9 0.390 0.173 5977.3 5712.8 768.5 659.9
32 86.7 14.7 0.423 −0.170 0.082 128.4 0.552 0.150 6872.4 7196.5 909.1 1119.4
33 86.6 12.1 0.332 −0.137 0.091 142.4 0.359 0.156 7262.4 7655.4 966.5 889.8
34 87.8 12.3 0.373 −0.124 0.101 132.7 0.341 0.109 7093.4 7416.9 1057.7 724.4
35 85.1 16.1 0.380 −0.118 0.118 155.1 0.504 0.181 8277.8 8445.7 1290.5 1279.9
36 89.0 14.6 0.235 −0.136 0.098 131.4 0.459 0.137 7044.7 7297.5 764.6 802.8
37 75.4 14.9 0.313 −0.165 0.102 157.8 0.208 0.135 9561.5 10173.9 679.6 676.4
38 77.0 12.7 0.265 −0.152 0.103 127.6 0.536 0.159 6267.5 6126.6 835.8 840.7
39 70.4 12.0 0.218 −0.160 0.106 111.0 0.377 0.154 5049.9 5240.4 579.8 548.6
40 74.0 15.4 0.338 −0.093 0.099 108.6 0.534 0.122 5596.0 5859.9 634.3 652.1
41 80.7 15.3 0.287 −0.150 0.098 144.7 0.280 0.106 9398.5 9058.7 468.4 630.5
42 70.2 14.8 0.390 −0.135 0.127 125.0 0.418 0.169 6564.8 6575.2 763.3 758.1
43 87.3 12.1 0.315 −0.075 0.116 127.2 0.690 0.116 6423.8 6181.2 682.1 691.2
44 84.7 13.0 0.431 −0.110 0.112 150.9 0.371 0.178 7667.8 8220.1 1062.3 1063.3
45 78.5 15.2 0.269 −0.085 0.113 100.3 0.584 0.195 5053.6 5314.6 789.6 883.0
46 87.6 14.9 0.208 −0.096 0.111 140.3 0.649 0.113 6885.1 6995.5 828.2 810.8
47 88.3 12.5 0.181 −0.119 0.101 106.2 0.485 0.102 5542.7 5524.1 614.8 488.0
48 88.7 14.6 0.301 −0.097 0.109 111.4 0.510 0.166 6018.9 6263.6 786.5 867.3
49 87.1 15.1 0.368 −0.113 0.119 131.7 0.345 0.163 8109.4 7985.3 1054.9 880.7
50 85.5 15.9 0.330 −0.126 0.113 148.2 0.338 0.188 8976.9 8921.0 1049.1 1034.9
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# mTOM AR ϕ25 τt t/c S ηs cs mwing,act. mwing,pred. mstrut,act. mstrut,pred.

51 80.8 15.2 0.199 −0.125 0.087 109.3 0.426 0.148 6396.5 6491.8 634.3 678.9
52 86.0 14.2 0.230 −0.105 0.112 104.1 0.216 0.144 7922.3 7909.7 484.5 516.2
53 74.1 13.7 0.260 −0.115 0.121 102.7 0.282 0.199 6073.4 5826.1 659.1 605.4
54 73.5 13.8 0.323 −0.085 0.081 115.1 0.555 0.170 5729.0 5879.8 834.4 938.6
55 82.0 13.8 0.397 −0.148 0.096 150.3 0.565 0.142 7553.1 7662.4 982.6 1069.9
56 84.5 15.5 0.376 −0.111 0.089 153.4 0.227 0.129 12113.7 11897.0 1157.7 835.5
57 86.9 15.0 0.183 −0.137 0.102 105.2 0.337 0.166 6871.8 6834.9 509.1 620.5
58 90.0 12.3 0.176 −0.167 0.096 128.0 0.248 0.120 7931.1 7876.4 356.1 489.5
59 76.9 16.6 0.348 −0.109 0.121 123.6 0.423 0.175 6885.4 7031.3 777.6 873.4
60 72.8 13.5 0.264 −0.106 0.124 124.6 0.623 0.196 6143.7 5912.3 1193.5 1010.8
61 85.1 14.1 0.272 −0.129 0.108 149.9 0.353 0.171 8408.3 8276.3 992.4 911.0
62 77.9 15.5 0.319 −0.121 0.088 132.0 0.318 0.111 8653.3 8364.7 589.1 667.2
63 86.4 13.7 0.405 −0.091 0.094 157.3 0.646 0.128 8035.6 7995.5 1024.7 1122.8
64 70.9 12.0 0.352 −0.167 0.114 142.7 0.696 0.146 7121.2 6620.4 1065.8 876.7
65 81.4 16.3 0.432 −0.082 0.099 122.9 0.298 0.179 9232.7 8762.9 1084.6 951.0
66 79.7 16.2 0.211 −0.119 0.081 144.5 0.501 0.132 7487.2 7957.3 861.4 903.0
67 89.7 15.6 0.436 −0.162 0.089 146.2 0.221 0.171 12634.4 12331.2 955.8 1042.2
68 72.4 16.5 0.414 −0.122 0.120 147.5 0.576 0.177 7616.7 7672.6 1179.5 1176.3
69 76.5 12.8 0.285 −0.102 0.084 122.2 0.557 0.163 5976.0 6002.1 804.1 913.1
70 76.1 14.4 0.356 −0.109 0.084 112.9 0.636 0.182 5654.4 5838.2 950.2 1081.5
71 76.6 14.5 0.357 −0.151 0.100 107.3 0.630 0.121 5329.4 5530.7 626.1 662.2
72 78.3 16.1 0.341 −0.165 0.093 141.5 0.380 0.150 8119.5 8283.2 722.3 910.2
73 71.1 15.2 0.236 −0.099 0.124 149.1 0.392 0.192 7705.5 7512.4 935.6 943.8
74 72.1 15.8 0.290 −0.070 0.093 110.1 0.682 0.198 5563.9 5627.7 998.7 1145.0
75 72.3 14.3 0.297 −0.171 0.099 138.0 0.315 0.146 7760.3 7483.2 641.8 702.6
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# mTOM AR ϕ25 τt t/c S ηs cs mwing,act. mwing,pred. mstrut,act. mstrut,pred.

76 74.8 16.5 0.293 −0.143 0.105 101.4 0.205 0.159 8436.2 8518.2 432.8 567.6
77 70.8 13.6 0.435 −0.174 0.080 121.8 0.240 0.158 8000.3 7608.0 758.0 775.4
78 83.0 13.9 0.224 −0.098 0.087 135.7 0.402 0.118 7632.3 7522.1 850.7 672.1
79 78.4 12.8 0.324 −0.100 0.117 110.8 0.566 0.148 5574.7 5507.4 673.6 682.1
80 72.6 12.4 0.252 −0.135 0.121 146.1 0.399 0.137 6619.8 6905.7 635.9 658.3
81 78.8 12.9 0.360 −0.102 0.082 126.4 0.319 0.181 7264.7 7324.9 876.4 879.2
82 75.9 15.0 0.244 −0.126 0.104 109.6 0.489 0.115 5672.1 5806.5 541.9 561.4
83 77.3 14.5 0.231 −0.152 0.094 116.8 0.603 0.173 5686.0 5852.1 918.0 962.1
84 85.0 16.3 0.334 −0.089 0.086 139.0 0.327 0.102 9881.7 9672.8 1188.1 739.9
85 77.6 16.8 0.281 −0.098 0.109 143.6 0.264 0.128 9611.2 9424.2 887.1 658.5
86 80.4 16.4 0.325 −0.082 0.112 134.9 0.287 0.191 9001.4 8794.8 906.5 884.9
87 70.5 16.9 0.363 −0.148 0.088 123.2 0.213 0.197 9681.9 9919.8 813.0 781.7
88 73.9 16.8 0.213 −0.134 0.104 140.8 0.687 0.138 7270.1 6896.3 1057.6 1047.5
89 79.6 16.2 0.354 −0.144 0.104 147.7 0.255 0.164 9993.5 9884.5 679.8 858.6
90 87.2 14.1 0.247 −0.155 0.094 159.6 0.474 0.105 8219.1 8270.9 854.0 784.7
91 75.3 14.8 0.270 −0.092 0.101 156.4 0.382 0.121 8380.2 8248.9 755.2 735.2
92 77.4 16.8 0.403 −0.174 0.126 130.8 0.268 0.166 8516.7 8509.1 877.7 802.0
93 88.1 12.7 0.197 −0.095 0.124 104.6 0.262 0.108 6185.1 6339.2 274.1 416.0
94 79.2 16.4 0.243 −0.073 0.110 129.3 0.613 0.141 6426.7 6685.7 879.2 905.6
95 85.8 12.9 0.248 −0.139 0.107 158.6 0.618 0.127 7807.4 7555.5 1000.2 959.2
96 79.9 15.6 0.298 −0.149 0.093 159.8 0.681 0.103 8473.9 7919.7 955.7 946.0
97 70.3 12.5 0.266 −0.072 0.081 151.2 0.295 0.193 7790.4 7673.8 996.5 836.5
98 81.6 15.1 0.411 −0.108 0.091 159.0 0.515 0.190 8195.9 8537.2 1449.2 1458.1
99 79.8 13.4 0.275 −0.142 0.092 103.2 0.691 0.196 5013.0 5121.3 955.1 1032.8

100 84.3 16.6 0.219 −0.116 0.085 101.9 0.411 0.140 6856.1 7020.4 705.5 662.4
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# mTOM AR ϕ25 τt t/c S ηs cs mwing,act. mwing,pred. mstrut,act. mstrut,pred.

101 78.7 16.0 0.383 −0.162 0.112 151.4 0.230 0.116 10294.2 10095.6 481.6 720.2
102 82.8 17.0 0.262 −0.158 0.130 128.9 0.430 0.112 7099.7 7249.3 729.1 617.7
103 83.9 14.2 0.238 −0.093 0.114 141.7 0.233 0.153 8623.8 8954.1 567.1 640.5
104 78.2 14.1 0.251 −0.170 0.098 118.6 0.671 0.197 5854.8 5789.2 1170.1 1159.1
105 83.5 12.2 0.329 −0.105 0.090 115.9 0.331 0.139 6497.7 6589.8 715.5 704.7
106 74.3 16.4 0.382 −0.081 0.107 105.8 0.658 0.184 5729.5 5678.1 936.2 974.4
107 89.3 16.9 0.408 −0.127 0.092 153.2 0.599 0.169 8888.2 8616.3 1417.4 1503.1
108 78.1 12.2 0.279 −0.146 0.111 134.1 0.246 0.133 7173.8 7243.1 552.6 576.6
109 74.6 14.5 0.287 −0.090 0.128 140.9 0.349 0.129 7632.6 7413.9 587.6 627.7
110 75.0 15.7 0.255 −0.141 0.100 104.4 0.443 0.134 5766.8 5886.3 564.0 612.0
111 84.2 13.0 0.428 −0.108 0.085 155.9 0.561 0.140 7867.7 7948.4 1012.6 1158.2
112 83.7 14.8 0.257 −0.083 0.104 146.9 0.484 0.103 7600.6 7726.9 798.2 705.3
113 74.5 14.4 0.221 −0.139 0.125 110.4 0.519 0.178 5519.7 5476.7 762.7 757.1
114 71.2 15.3 0.410 −0.131 0.092 106.8 0.498 0.183 5654.8 5863.6 841.3 911.5
115 81.2 12.7 0.395 −0.145 0.110 111.8 0.322 0.172 6016.0 6334.9 604.4 771.4
116 72.9 15.1 0.314 −0.166 0.125 143.0 0.356 0.155 7655.3 7561.5 666.7 757.4
117 86.1 16.5 0.322 −0.088 0.097 143.5 0.373 0.165 9051.8 9042.3 1246.2 1009.7
118 71.7 16.0 0.182 −0.084 0.090 117.2 0.496 0.125 6054.0 6230.2 566.0 641.7
119 82.4 16.3 0.254 −0.077 0.089 102.2 0.288 0.124 8430.5 8284.3 877.7 567.0
120 86.0 12.6 0.307 −0.078 0.095 129.2 0.698 0.160 6361.5 6323.6 1001.0 1078.6
121 81.8 14.4 0.391 −0.091 0.083 120.8 0.202 0.142 10406.5 10974.8 777.2 767.4
122 71.6 12.9 0.365 −0.073 0.113 132.4 0.237 0.174 8632.7 7317.9 434.8 700.7
123 89.8 12.1 0.371 −0.115 0.085 117.8 0.673 0.177 5895.4 5969.9 993.6 1144.8
124 82.2 12.5 0.388 −0.145 0.094 133.4 0.621 0.107 6598.1 6584.0 749.7 760.1
125 79.4 13.1 0.346 −0.172 0.116 157.6 0.210 0.149 8792.5 9198.7 653.0 731.0
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# mTOM AR ϕ25 τt t/c S ηs cs mwing,act. mwing,pred. mstrut,act. mstrut,pred.

126 73.8 12.3 0.204 −0.129 0.117 154.1 0.445 0.110 6840.9 7088.0 575.4 591.3
127 85.6 14.2 0.367 −0.072 0.129 125.9 0.590 0.143 6634.1 6597.7 819.7 804.1
128 79.4 13.2 0.311 −0.123 0.105 145.4 0.394 0.161 6905.7 7492.6 959.7 877.9
129 81.0 14.7 0.258 −0.107 0.088 134.5 0.408 0.132 7588.1 7598.2 628.6 762.9
130 80.9 13.0 0.178 −0.141 0.085 130.1 0.479 0.192 6573.6 6511.3 966.3 964.8
131 82.4 13.9 0.317 −0.086 0.123 118.3 0.654 0.190 6019.3 5959.4 1002.6 1021.6
132 83.8 13.5 0.427 −0.080 0.091 100.4 0.277 0.105 7973.4 7218.3 770.2 705.0
133 89.5 13.4 0.277 −0.173 0.119 113.3 0.573 0.180 5776.9 5831.7 945.9 907.7
134 73.7 14.2 0.406 −0.159 0.090 125.9 0.570 0.164 6243.6 6416.4 926.9 1005.2
135 70.7 15.5 0.210 −0.130 0.100 137.3 0.366 0.158 7417.8 7280.3 705.0 738.6
136 80.3 15.9 0.223 −0.146 0.129 151.9 0.640 0.187 7730.7 7406.5 1611.2 1374.5
137 71.8 12.4 0.202 −0.161 0.115 120.5 0.454 0.157 5317.0 5604.4 739.2 641.7
138 88.8 16.4 0.378 −0.104 0.102 103.4 0.492 0.119 6184.6 6561.1 892.1 739.0
139 73.4 12.7 0.363 −0.087 0.117 105.4 0.385 0.185 5649.2 5462.1 627.6 695.0
140 74.9 16.7 0.398 −0.079 0.082 126.7 0.223 0.138 11178.5 11246.5 1015.9 760.0
141 74.7 14.3 0.413 −0.071 0.118 152.5 0.581 0.161 7834.1 7680.7 1042.6 1072.0
142 76.5 13.5 0.193 −0.117 0.086 130.7 0.303 0.193 7220.3 7375.9 917.3 730.7
143 73.4 14.9 0.206 −0.157 0.122 121.5 0.508 0.143 6061.2 5992.5 726.3 680.4
144 75.6 16.2 0.190 −0.143 0.110 156.2 0.516 0.184 7959.3 7747.9 1292.2 1226.1
145 75.1 15.4 0.227 −0.156 0.097 138.7 0.312 0.117 8209.4 8013.9 1025.2 585.9
146 73.1 15.9 0.227 −0.094 0.109 152.1 0.634 0.114 7363.4 7339.0 822.8 853.3
147 72.6 16.1 0.302 −0.103 0.115 134.4 0.414 0.130 7175.7 7238.4 601.4 697.0
148 76.9 12.5 0.306 −0.118 0.129 123.3 0.525 0.123 6233.2 5993.6 572.4 568.9
149 83.1 15.3 0.299 −0.138 0.115 115.7 0.643 0.156 5843.4 6025.5 895.9 890.0
150 81.9 14.7 0.400 −0.169 0.107 119.5 0.585 0.114 6152.2 6358.9 708.6 705.3

Continued
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# mTOM AR ϕ25 τt t/c S ηs cs mwing,act. mwing,pred. mstrut,act. mstrut,pred.

151 80.1 13.9 0.203 −0.111 0.101 107.5 0.595 0.108 5244.1 5404.7 559.4 554.9
152 84.4 13.5 0.386 −0.112 0.124 139.9 0.269 0.110 8057.5 8291.9 405.5 684.7
153 89.4 13.8 0.342 −0.087 0.110 136.1 0.432 0.104 7560.1 7530.3 828.5 710.6
154 79.1 16.6 0.424 −0.120 0.121 112.7 0.544 0.131 6132.6 6374.8 836.4 701.8
155 88.4 15.6 0.279 −0.161 0.122 149.5 0.451 0.123 8049.3 8087.2 787.8 808.0
156 84.0 15.7 0.394 −0.131 0.130 108.3 0.528 0.112 5922.8 6124.6 731.4 572.9
157 81.3 15.3 0.292 −0.128 0.114 139.6 0.606 0.200 6995.8 7090.2 1348.5 1325.8
158 87.7 12.8 0.418 −0.096 0.106 133.4 0.436 0.118 6659.0 7254.0 768.9 805.5
159 73.0 15.7 0.186 −0.079 0.108 148.5 0.242 0.185 9315.1 8982.5 617.6 681.8
160 87.4 13.3 0.377 −0.132 0.095 154.6 0.420 0.153 7642.6 8342.3 1099.8 1055.1

Table F.1: SBW mass: sample points
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# mTOM AR ϕ25 τt t/c S ηs cs mwing,act. mwing,pred. mstrut,act. mstrut,pred.

1 72.3 16.2 0.265 −0.148 0.087 158.7 0.684 0.182 8664.2 7706.9 1603.7 1610.0
2 82.9 15.6 0.426 −0.086 0.102 113.6 0.255 0.139 9126.6 8729.4 959.4 787.0
3 77.9 12.4 0.284 −0.076 0.115 137.6 0.280 0.163 7041.4 7268.5 616.7 680.8
4 76.2 17.0 0.274 −0.080 0.129 123.6 0.505 0.190 6438.3 6621.2 955.5 969.9
5 71.4 15.5 0.369 −0.131 0.104 132.3 0.390 0.124 7218.9 7235.8 547.8 697.0
6 88.2 16.3 0.296 −0.114 0.098 142.1 0.668 0.142 7665.5 7526.9 1117.4 1162.1
7 80.6 13.7 0.236 −0.108 0.095 155.5 0.636 0.109 7439.9 7429.5 838.9 856.8
8 83.7 13.2 0.244 −0.157 0.112 129.9 0.481 0.147 6577.4 6528.0 892.3 772.8
9 78.2 14.5 0.315 −0.095 0.107 104.9 0.370 0.160 6204.7 6128.7 718.8 679.4

10 89.5 15.1 0.198 −0.168 0.124 109.5 0.621 0.120 5531.8 5673.9 692.1 627.4
11 70.7 13.3 0.389 −0.139 0.109 116.3 0.544 0.178 5788.7 5756.1 847.4 840.2
12 75.5 15.9 0.334 −0.097 0.127 119.3 0.303 0.155 7307.5 7198.4 619.4 662.7
13 74.6 14.6 0.349 −0.159 0.094 106.7 0.445 0.200 5848.0 5876.7 766.2 899.5
14 87.2 15.0 0.205 −0.119 0.117 135.2 0.404 0.173 7452.3 7438.4 937.3 858.2
15 79.3 14.1 0.372 −0.102 0.082 153.6 0.579 0.169 7568.2 7813.4 1204.5 1323.1
16 73.5 12.7 0.406 −0.174 0.118 149.6 0.560 0.104 7626.3 7274.0 662.9 631.8

Table F.2: SBW mass: verification points
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