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Abstract. This paper proposes an approach for developing integrated aircraft flight
loads models that may be used for used for both manoeuvre as well as gust loads analysis.
These types of analysis are traditionally based on models of very different nature. Mod-
els for manoeuvre loads analysis are based on nonlinear rigid body equations of motion
to account for large amplitude responses as resulting from prescribed, aggressive pilot in-
puts. Airframe flexibility is accounted for only quasi-statically by correction factors in the
aerodynamic database. Models for gust loads analysis on the other hand, only consider
small perturbations around a trimmed flight state. In this case, both structural dynam-
ics as well as unsteady aerodynamic effects are important. Linear equations of motion
are simulated in the frequency domain, since unsteady aerodynamic methods such as the
Doublet Lattice Method (DLM) are readily available for this purpose.

The use of separate models for gust and manoeuvre loads analysis has important draw-
backs. For example, it not possible to study the combined effect of extreme manoeuvres
and gusts. Structural dynamic effects may induce additional loads, which are currently not
accounted for in manoeuvre loads analysis. Furthermore, flight control systems (FCSs)
contain many nonlinearities, requiring considerable effort to address these in linear fre-
quency domain simulations.

This paper develops practical methods for development of integrated flight loads models.
This is achieved by using a suitable set of fully flexible equations of motion, coupled
with nonlinear quasi-steady aerodynamics and linear unsteady aerodynamics. The quasi-
steady aerodynamic model accounts for more involved flight mechanical effects such as
yaw-rolling coupling and induced drag. These nonlinear effects are modelled by using
classical Vortex Lattice Method Aerodynamic Influence Coeffcients (AIC) with refined
boundary conditions, but also higher fidelity methods may be used if available. Unsteady
Aerodynamics are accounted for by an Rational Function Approximation (RFA) of the
DLM matrices according to Roger’s method. As an important contribution, this paper
explains how to set up the RFA and how to define boundary conditions, such that quasi-
steady and unsteady aerodynamic effects are appropriately separated. This approach
makes the integration with nonlinear quasi-flexible aerodynamic databases considerably
simpler and also allows the effect of gust penetration to be modelled more efficiently
for use in the time domain. As a validation example, comparisons between a classical
frequency domain gust model and the new proposed modelling scheme are presented for
discrete gust responses.
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1 INTRODUCTION

For certification of an aircraft, it has to be demonstrated that its structure can withstand
the loads acting on it without damage. In order to design the structure accordingly, a
so called loads envelope has to be computed. This loads envelope is comprised of critical
combinations of flight conditions, i.e. altitude, Mach number, mass configurations and
excitations. These so called load cases are specified for commercial aircraft in the CS/FAR
Part 25 Subpart C Regulations [1].

The inputs for loads analysis models are generally a Finite Element Model (FEM) con-
taining the stiffness and mass data for each mass case, the steady and/or unsteady aero-
dynamic loading at the specified Mach number, control laws of the Flight Control System
(FCS) influencing the control surface deflections, dependent on the current flight state,
and information about the systems, such as actuator transfer functions. The model is
then subjected to external disturbances, such as gusts, or excited by pilot inputs. In [2]
an approach to standardize an efficient dynamic model integration process was presented.

Traditionally, manoeuvre and gust loads analyses are carried out using different types of
models that accommodate the specific needs of the involved disciplines. Table 1, summa-
rizes the strategies for setting up different analysis models for static manoeuvres, dynamic
manoeuvres and gust load analysis. Static manoeuvre loads, such as e.g. the symmetric

Equations of Motion Aerodynamics

Static
Man.
Loads

linear elastic EoM using inertia re-
lief.

quasi-steady linear VLM with cor-
rected lift gradients

Dynamic
Man.
Loads

6-DOF rigid nonlinear EoM solved
in time domain, as used in flight me-
chanical simulations.

quasi-steady aerodynamics with
nonlinear effects, mainly due to
α. Aeroelastic effects are usually
addressed by a database populated
with results from static manoeuvre
calculations.

Gust
Loads

generalized linear elastic EoM solved
in frequency domain.

unsteady aerodynamics from a linear
harmonic DLM

Table 1: Comparison of modelling strategies for different loads analyses models

2.5g pull-up, are typically calculated using linear elastic equations of motion (EoM), as
implemented for instance in commercial packages like NASTRAN [3]. These EoM use in-
ertia relief schemes to account for the mass effects of an free flying aircraft and can be
used in a modally reduced form or on the physical structural grid. The aerodynamics are
accounted for by a Vortex Lattice Method (VLM) coupled to the structure by a so called
spline matrix.

Dynamic manoeuvre loads analyses involve large rigid body movements and aerodynamic
nonlinearities, e.g. over an angle of attack range. Also, the nonlinear Flight Control Sys-
tem (FCS), including Load alleviation Functions (LAF) plays an important role. There-
fore, nonlinear equations of motion, as used in flight mechanical simulations are employed.
Typically, these simulations account for aeroelastic effects by using a ”flexibilized” aero-
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dynamic database, populated with results from static manoeuvre calculations. Unsteady
aerodynamic effects only play a minor role and are usually neglected or modelled rather
crudely.

Gust loads analysis models compute small perturbations around a trimmed flight state,
using modally reduced linear elastic equations of motion. Subsequently, the loads of
the trimmed flight state from a static manoeuvre load case have to be superimposed.
Unsteady aerodynamic effects are essential to capture the accurate loads levels. These
types of models are typically solved in the frequency domain, where linear unsteady
aerodynamics are conveniently available through the Doublet Lattice Method (DLM) [4].
Methods to account for nonlinearities introduced by Flight Control Systems in these types
of simulation have been presented in [5, 6].

Employing different types of loads analysis models always bears the risk of introducing
inconsistencies, e.g. when input data with different status is used. An approach is pro-
posed to unify gust and manoeuvre loads models for simulation in the time domain, by
using a suitable set of fully flexible equations of motion that are able to capture large
nonlinear motions. The quasi-steady aerodynamic model, based on the VLM is enhanced
to account for more involved flight mechanical effects such as yaw-rolling coupling and in-
duced drag, by refining the boundary conditions. Unsteady Aerodynamics are accounted
for by an Rational Function Approximation (RFA) of the DLM matrices according to
Roger’s method. The RFA is set up to adequately separate quasi-steady from unsteady
aerodynamic effects. Transformation of the rigid body aerodynamics, necessary for cou-
pling with the nonlinear equations of motion will be discussed. Discrete gust excitation
and how to avoid the problematic approximation of the gust column is also addressed by
the proposed scheme. Finally, a validation for a discrete gust load case, comparing the
proposed method with the classical frequency domain approach is presented.

2 EQUATIONS OF MOTION

When setting up the equations of motion for a loads analysis of a flexible aircraft, the
finite element stiffness model needs to be reduced. The model reduction is done by em-
ploying a Guyan reduction [7], with condensation points along a loads reference axis. The
mass distributions are prepared for the corresponding payload/fuel cases. Subsequently
a modal analysis is carried out and only part of the modal basis is retained to reduce the
computational cost.

2.1 Linear Equations of Motion

The modally reduced linear equations of motion expressed in the frequency domain and
explicitly partitioned in a rigid body (b− set) and flexible part (f − set), are given as.{

−ω2

[
Mbb 0
0 Mff

]
+ iω

[
0 0
0 Bff

]
+

[
0 0
0 Kff

]}[
ub
uf

]
=

[
ΦT
gb

ΦT
gf

]
Pext
g (ω) (1)

This type of EoM only accounts for small perturbations and is the usual form used for gust
load analysis. The external forces Pext

g (ω) on the structural grid (g−set) are dependent on
the rigid body and flexible motion, as well as atmospheric disturbances from the discrete
gust. The combined set of rigid and flexible part is called h−set, consequently, the modal
matrix is then Φgh =

[
Φgb Φgf

]
.
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2.2 Nonlinear Equations of Motion

Accounting for large motions similar to a flight mechanics analysis, is required for dy-
namic manoeuvres. A derivation of a set of equations of motion suitable for this purpose
is given in [8–11]. The nonlinear equations of motion describe the movement relative to a
”mean axes” body reference frame. Its orientation an d poition are defined by constraints,
based opn minimum relative momentum and angular momentum of flexible deformation
wrt these axes. These constraints are usually applied in linearized form (practical mean
axes constraints), resulting in a so called Buckens frame [12]. A detailed discussion about
different floating reference frames can be found in the paper by Canavin [13]. Advanta-
geously, the free-free vibration modes of a normal modes analysis automatically fulfill the
”pratical mean axes” constraints.

The simplifying assumptions made during the course of derivation of the unrestrained
equations of motion of a flexible aircraft are:

1. an earth fixed inertial reference system is assumed, neglecting the earth rotation.
2. gravity is uniform within this reference system.
3. the structure is composed of lumped masses.
4. Hooke’s law is valid, i.e. deformations are small.
5. Eigenvectors are available from a modal analysis and are orthogonal w.r.t. the mass

matrix.
6. deformations and rate of deformations are small and co-linear, i.e. their cross prod-

uct can be neglected.
7. the tensor of inertia is assumed constant.

The derivation, yields the following equations of motion for an unrestrained flexible air-
craft: [

mb

(
V̇b + Ωb ×Vb −TbE gE

)
JbΩ̇b + Ωb × (JbΩb)

]
= ΦT

gbP
ext
g (t)

Mff üf + Bff u̇f + Kffuf = ΦT
gfP

ext
g (t)

(2)

where Φgb is the rigid body modal matrix about the center of gravity. Vb and Ωb are
the velocity, respectively angular velocity in the body frame of reference. Matrix TbE

transforms the gravitational vector from an earth fixed E to the body fixed frame of
reference b. In [11] a derivation without the last two assumption is carried out, preserving
inertial coupling between the flexible and rigid body part.

2.3 Load recovery

In order to recover the nodal loads Pg acting on the structural grid, the force summation
method (FSM) [14] is employed. The FSM requires the external forces to be available on
the structural grid.

Pg = Pext
g −Mgg

{
Φgb üb + Φgf üf

}︸ ︷︷ ︸
Piner

g

(3)

in the case of the nonlinear equations of motion (2), the rigid body acceleration is given
as

üb =

[
V̇b + Ω×Vb −TbE gE
Ω̇b + J−1

b (Ωb × (JbΩb))

]
. (4)
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Considerably simpler to employ is the so called Mode Displacement Method (MDM),
where the internal loads are recovered using the physical stiffness matrix.

Pg = KggΦgf uf (5)

The MDM uses a reduced modal basis for recovery of the entire internal loads, whereas
for the FSM only the inertial loads are modally truncated. The FSM accounts for the
static part directly on the physical grid, and therefore has a superior convergence behavior
compared to the MDM. Additionally, the FSM allows to discern between the contributions
of inertial and aerodynamic forces, which might be insightful for design decisions.

3 AERODYNAMIC THEORY

One of the key aspects of the loads analysis is the calculation of aerodynamic forces acting
on the structure. A vast amount of theories is available, ranging from simple lifting line to
high Fidelity Navier-Stokes CFD solvers. Despite advances in computer technologies, the
large amount of load cases that have to be considered are still prohibitive for costly CFD
calculations in the realm of loads loop calculations. Therefore, usually classical methods
derived from potential theory, such as the Vortex Lattice Method (VLM) [15] are still in
use.

3.1 Vortex Lattice Method

The Vortex Lattice Method (VLM) discretizes a lifting surface by trapeziodal shaped
elementary wings, so called aerodynamic boxes. The aerodynamic lift is generated by
placing a vortex along the quarter chord line of such an aerodynamic box. According to
the Helmholtz theorems, such a vortex must either end at a solid surface, or extend to
infinity. Hence, the bound vortex is extended at both corner points to infinity, forming the
well known horseshoe shape with its legs pointing in free stream direction. The circulation
strength Γj of the individual horseshoe vortices is then determined by the Biot-Savart-
Law and meeting the flow compatibility condition, i.e. no perpendicular flow vj through
the solid surface at the control point at 3/4 chord, according to Pistolesi’s theorem [16].

vj = AjjΓj (6)

Figure 1 depicts the geometry of an aerodynamic box. The load acting point is located
at mid span, quarter chord (l− set) and the control point at three quarter (j− set) chord
point, respectively. The box reference point (k − set) is at the center of the box. The
panel chord is cj and the span is bj. The vector of the bound vortex is denoted by bl.

Figure 1: Geometrical properties of an aerodynamic box
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To simplify the notation, all of the following equations are expressed for one aerodynamic
box only. To extend the method for multiple boxes, all the derived matrices have to be
expanded in a block-diagonal fashion.

The Kutta-Joukowsky-Law relates the circulation to the lifting force.

Lj = ρU∞Γjbj (7)

Normalizing the velocities at the control point wj =
vj

U∞
and inversion of (6), yields the

differential pressure coefficients with the aerodynamic AIC matrix.

∆cpj = Qjjwj (8)

Reversely, the circulation of an individual horseshoe vortex can be calculated from the
pressure coefficient as follows.

Γj = U∞
cj
2

∆cpj (9)

This is the conventional implementation of the VLM as employed for instance in NASTRAN.
Alternatively, the Kutta-Joukowsky-Law can be cast in the following form, involving a
cross product instead of a scalar multiplication.

Ll = ρVl × (blΓj) with Ll,Vl,bl ∈ R3 and Γj ∈ R1 (10)

The vector bl is the vector quantity between the two corners of the horseshoe vortex,
i.e. the bound vortex. The lift force Ll then acts, as aerodynamic theory predicts,
perpendicular to the local stream velocity Vl at the quarter chord point. Equation (10)
can be recast as

Ll = q∞

(
− cj skew(bl)

)
wl · ∆cpj . (11)

The vector wl is the velocity at quarter chord normalized by the free stream velocity.
The quantities with index l are elements in R3, whereas index j denotes elements in R1.
Since wl as well as wj depend on the boundary conditions, the expression is inherently
nonlinear and has to be multiplied on box level. Therefore, it is computationally more

demanding compared to the linear expression. If wl =
[
1 0 0

]T
, i.e. the free stream is

exclusively in x-direction, the analysis simplifies to the conventional case, with the lift Ll,
acting in the z-direction only. Note that the y-component of (bl)y = bj.

3.2 Induced drag

According to the Helmholtz theorems, the spanwise change of circulation of a 3D lifting
surface leads to trailing vortices that are shed into the wake. The vorticity in the wake
induces an additional downwash at the quarter chord of each box, which turn the lift
vector rearwards. This rearward component is the so called induced drag. Following
largely the derivation of Katz and Plotkin [17], the normalized induced velocity at the
quarter chord is expressed as follows.

wlind
= Dlj∆cpj (12)

The induced downwash matrix Dlj is equivalent to Ajj from (6) without the contributions
from the bound vortex. The induced downwash then acts only in z-direction. To build up
the effective stream direction wl, the induced component wlind

needs to be added to the
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Figure 2: induced drag
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Figure 3: Drag polar in wind and in body axes

free stream and motion induced components, as illustrated in figure 2. Interesting to note
is that despite the presence of an induced drag component, the force still acts forward
in the body frame of reference, when neglecting friction and pressure drag components.
Figure 3 illustrates the same drag polar in a wind and in a body axis coordinate system.

In figure 4 an example of a rectangular wing with aspect ratio AR = 10 is considered.
The conventional method is contrasted to the proposed method including induced drag
and lift forces acting perpendicular to the effective stream direction. For a simple angle of
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attack case, the lift acting in z-direction is identical for the conventional and present VLM.
Additionally, the present method includes a component acting in in negative x-direction
(forward). For better illustration, the component of the induced drag has been drawn
separately. It can been seen that at areas of large spanwise lift gradients, the induced
drag increases. At mid span, the induced drag is small and approaches zero, as the aspect
ratio goes to infinity, in accordance with aerodynamic theory.

When considering a case with an additional yaw rate rn, the present method shows a bias
of the lift distribution. This can be attributed to the fact that the x-component of wl is
increased for the advancing wing, while it is decreased for the receding wing. This bias
in the lift distribution induces a rolling moment. In contrast to the conventional method
the present method is able to capture the yaw-roll coupling.

3.3 Doublet Lattice Method

So far only quasi-steady aerodynamics were considered. For gust loads analysis the un-
steady aerodynamics are essential. The governing flow equation is the unsteady Prandtl-
Glauert equation. The Doublet Lattice Method (DLM) provides a harmonic solution for
this equation. Further, is uses the acceleration potential which is formally equivalent to
the velocity potential equation. Therefore, the same elementary solutions are valid, e.g.
the source potential. Analog to acoustics, the harmonically oscillating source is moved
wrt a resting fluid, followed by a Gallilei transformation, which moves the observer with
the source. Lift can not be generated by a source, hence the source potential is differenti-
ated in the z-direction, yielding the doublet potential. The acceleration potential directly
yields the pressure difference between the upper and lower surface, which makes additional
steps, i.e. the use of the Kutta-Joukowsky Law, in the load recovery process unnecessary.
However, the acceleration potential of the doublet still needs to be integrated to calculate
the induced velocity, which is needed to meet the flow tangency condition on the lifting
surface. Contrary to the velocity potential of a free flying wing, where there is a velocity
jump across the wake surface, there is no such jump in the pressure, hence the wake needs
not to be modelled.

The DLM [4] is the unsteady extension to the VLM, which similarly places the singularity
along the quarter chord and satisfies the flow tangency at the three quarter chord. The
doublet potential is evaluated at discrete points along the quarter chord line, which are
used for a polynomial fit and its subsequent analytical integration. The integration still
can not be performed in closed form and series approximations for parts of the kernel
functions need to be employed. The final result for the pressure coefficient

∆cpj(k) = Qjj(k)wj(k) (13)

has similar form to the conventional steady aerodynamics, where

k =
cref/2

U∞
(14)

is is the reduced frequency. In fact, for k = 0 the DLM solution is replaced with the
steady VLM results [18], since for this case no approximations are required.

4 AERODYNAMIC BOUNDARY CONDITIONS

This section explains how the boundary conditions for the VLM and DLM are obtained
wrt the box reference point. The box center serves as reference point and is denoted
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k − set, as depicted in figure 1. Depending on the displacement, respectively motion of
the reference point, the normal velocity wj at the control point and velocity at the quarter
chord point wl need to be determined. Further the lift acting on the l − set point needs
to be transferred back to the reference point as well.

In the conventional method the sets j,k, and l are introduced as follows.

uj =
[
z
]
j

; uk =
[
z θ

]T
k

; ul =
[
z
]
l

(15)

The j − set contains only one Degree of Freedom (DoF) in z-direction, since, at the
control point, only the normal velocity is of interest. For the conventional method, the
lift is assumed to act only in z-direction at quarter chord. This induces a moment about
the y-axis at the box reference point. Hence, the k − set contains the two DoF zk and
θk. When the displacement of the reference point is considered, this corresponds to a box
angle of attack.

For the present method the l − set has to be extended to include all three translational
degrees of freedom. When transferring the load from l − set to k − set, moments in
all directions are induced, therefore the k − set needs to be extended to six degrees of
freedom1. Hence, the displacement vectors u have the following degrees of freedom.

uj =
[
z
]
j

; uk =
[
x y z ϕ θ ψ

]T
k

; ul =
[
x y z

]T
l

(16)

The time derivatives of displacement vectors, normalized by the free-stream velocity are
denoted by w.

wj =
u̇j

U∞
; wl = u̇l

U∞
(17)

These vectors, obeying the small angle assumption, correspond to local angles of attack.
All of the associated matrices pertaining to the boundary conditions need to be extended
with the additional degrees of freedom.

4.1 Differentiation matrices

The boundary conditions for the flow velocities at the quarter chord wl, respectively at
the three quarter chord wj, need to be determined with respect to the panel reference
point uk, by using so called differentiation matrices. The differentiation matrix D1 relates
the steady displacement of the reference point uk to the local velocities wl and wj, while
D2 does the same for the motion of the reference point u̇k. Figure 5 illustrates how the
differentiation matrices are determined.

The steady rotation θk directly translates to wj at the control point. There are not further
contributions, hence the matrix D1

jk is formulated as follows.

wj =
[
0 0 0 0 1 0

]︸ ︷︷ ︸
D1

jk

uk (18)

A normalized heaving motion żk/U∞ and a pitching motion θ̇k/U∞ multiplied by the lever
arm −cj/4 lead to a −wj contribution. The matrix D2

jk is multiplied by 2
cref

, in order to

1Since both the l − set and k − set points are located in the same x-y plane, there is no need for the
ψ component in the k − set, however for the sake of completeness it is introduced anyway.
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Figure 5: Explanation of the differentiation matrices D1
jk, D2

jk, and D2
lk

be compatible with the reduced frequency of eq. (14).

wj = − 2
cref

[
0 0 1 0 −cj/4 0

]︸ ︷︷ ︸
D2

jk

(
cref/2

U∞

)
· u̇k (19)

wj = D2
jk

(
cref/2

U∞

)
· u̇k (20)

Respectively, the matrix D2
lk can be set up, for the three translational DoF at the quarter

chord.

wl = − 2
cref

1 0 0 0 0 0
0 1 0 0 0 −cj/4
0 0 1 0 cj/4 0


︸ ︷︷ ︸

D2
lk

(
cref/2

U∞

)
· u̇k (21)

wl = D2
lk

(
cref/2

U∞

)
· u̇k (22)

As can be seen by inspection, there is no matrix for D1
lk, as a steady deformation does

not change the direction of flow. For the conventional VLM the two cases depicted in
figure 5 lead to identical results, as the flow conditions at the control point are the same.
For the present VLM, there is a significant difference between the two flow conditions, as
the direction of the lift vector changes for the heaving motion, while remaining unchanged
for the steady deflection case.

The flow conditions can then be expressed as a function of reduced frequency.

wj(k) =
(
D1

jk + ik D2
jk

)
uk ; wl(k) = ik D2

lk uk (23)

4.2 Load transformation to panel mid point

With the flow conditions given, the lift vector can be calculated using the AIC matrices.
Now the load at the box reference point needs to be determined. This is done by the
matrix Tlk that transforms the load at the quarter chord point l − set calculated by
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equation (11) to the box mid point k− set. This replaces the conventionally used matrix
Skj, which is used to transform directly the pressure coefficients to a load acting at box
mid point. The index j is actually a misnomer, since the matrix Skj assumes the load
acting on the quarter chord, just like Tlk. This is equivalent to setting Skj = TT

lk · aj,
where aj = cj · bj is the box area.

4.3 Spline matrix

The aerodynamic properties are given with respect to the aerodynamic grid k− set. The
matrix connecting the displacements of the the structural grid (g−set) to the aerodynamic
grid (k − set) is called spline matrix Tkg. For the present VLM, the k − set had to be
extended to six DoF, hence the spline matrix has to be extended to the full six k − set
DoF as well. The structural g − set consists of all six DoF per grid point already.

The commonly used Infinite Plate Spline (IPS) [19] uses the radial basis function φ(r) =
‖r‖2 ln(‖r‖), with ‖rkg‖ =

√
(xk − xg)2 + (yk − yg)2. This radial basis function consti-

tutes an analytical flat plate solution. All grid points (aerodynamic and structural) are
transformed and projected onto the so called spline plane, which is defined by the lifting
surface. The points are assumed to move with the deflection determined by the flat plate
solution.

To extend the spline to six DoF, the solution for the deformation in z-direction is used for
the x- and y-direction as well. These additional terms represent an in-plane deformation.
Further, similar to the local angle of attack, which is obtained by differentiating the
solution in chordwise, i.e. x-direction, the slope in spanwise direction can be calculated
by differentiating in y-direction. For the IPS, the derivative wrt the z-direction is zero.
The 6-DOF IPS spline matrix can be assembled as follows.

Tkg =

 diag
([

tkg tkg tkg
]T)

03×3

skew

([
∂tkg

∂xk

∂tkg

∂yk

∂tkg

∂zk

]T)
03×3

 (24)

Using the modal matrix for the flexible deformations Φgf , the deformation of the aerody-
namic DoF can be related to the modal displacements from the equations of motion.

uk(k) = TkgΦgfuf (k) (25)

4.4 Control surface modes

For loads analysis purposes, usually there are no control surface modes present in the
modal basis Φgf , since they were not modelled as structural parts. The control surfaces
can be included as rigid body rotations of the associated aerodynamic boxes about a hinge
axis.

uk(k) = Φkxux(k) (26)

The control surface matrix Φkx can be treated in the same way as the structural modes.

5 TIME DOMAIN UNSTEADY AERODYNAMICS

The main reason, that gust load calculations are done in the frequency domain, is the
availability of tabulated unsteady aerodynamic matrices as function of reduced frequency
through the DLM.
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5.1 Rational Function Approximation

To make the frequency domain unsteady aerodynamics usable for time domain calculations
provision need to be taken. One possibility is to fit the tabulated frequency data with
rational functions. Consequently, this method is called Rational Function Approximations
(RFA). This form can be expressed in the Laplace domain and thus be used for time
domain simulations. For a shorter notation, it is convenient to introduce an equivalent to
the reduced frequency k in the Laplace domain denoted by s∗.

ik = iω
(
cref/2

U∞

)
⇔ s∗ = s

(
cref/2

U∞

)
(27)

The RFA captures the time dependent behavior of the unsteady flow by introducing of
additional aerodynamic states, so called lag states. Many flavors of this method have
been published [20–23], with improvements leading to systems with fewer lag states.

Most publications concentrate on approximation of the generalized aerodynamic matri-
ces Qhh, i.e. the AIC matrices are already multiplied with the differentiation matrices
(23) and the modal basis. This approach has three significant disadvantages. Firstly,
the aerodynamic forces are not available on the structural grid, making the use of the
FSM (3) impossible, although this can be fixed by approximation of the half generalized
aerodynamic matrices Qgh. Secondly, and more importantly, the steady and unsteady
contributions can not be discerned anymore. And thirdly, the approximation becomes
tied to a mass case, whereas a physical approximation is only dependent on the Mach
number.

Here, a scheme is proposed to approximate directly the physical AIC matrices Qjj(k),
using Roger’s method [20].

Qjj(s
∗) = Q0

jj + Q1
jjs
∗ +

np∑
i=1

QLi
jj

s∗I

s∗ + pi
(28)

The term Q0
jj represents the quasi-steady term, Q1

jj is the added mass, and the QLi
jj

with the predefined poles pi terms are responsible for the lagging behavior of the unsteady
flow. Interesting to note is the absence of the Q2

jj acceleration term in the physical
approximation. Notably, in the original paper of Roger [20], the approximation was also
done prior to multiplication with the differentiation matrices, however no added mass term
was considered. The relation between the approximation of the physical AICs without
the acceleration term and the approximation of the generalized AIC matrices with an
acceleration term is explained in the appendix in section 8.

5.2 Realization of the system

The system (28) can be now used for the time domain simulation. Pre-multiplying equa-
tion (28) with TT

kgSkj, the approximation can be expressed as a left hand side realization.

Qgj(s
∗) = Q0

gj + Q1
gjs
∗+

[
QL1

gj . . . QLnp
gj

]︸ ︷︷ ︸
D

s∗I− diag
([
−p1I . . . −pnpI

])︸ ︷︷ ︸
R

−1 [
I . . . I

]T︸ ︷︷ ︸
E

s∗ (29)
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When the matrices D and ET are interchanged, the system is right hand side realized.
The order of the resulting system changes from np · noutputs to np · ninputs.

The system can then be cast in the form of an ordinary differential equation (ODE) for
the lag states, with ẇj as input.

ẋL = R
(

U∞
cref/2

)
xL + E ẇj (30)

When using Roger’s method, the involved matrices R and E have a pronounced sparsity
pattern, such that the ODEs are fully decoupled. The order of the system becomes less
important from a computational point of view, since no costly matrix multiplications are
required for the time integration. The resulting aerodynamic forces are then.

Paero
g =

(
Q0

gj wj

)
︸ ︷︷ ︸
steady Ps

g(wj)

+
(
Q1

gj

(
cref/2

U∞

)
ẇj + D xL(ẇj)

)
︸ ︷︷ ︸

unsteady Pu
g(ẇj)

(31)

The most significant advantage of the present RFA over the traditional generalized ap-
proximation is that equation (31) can be split explicitly into a steady part depending on
wj and an unsteady part solely depending on ẇj. The steady part can then be replaced by
the present enhanced VLM or even more sophisticated methods. For dynamic manoeuvre
simulations the unsteady contribution can be included for fast manoeuvres, or neglected
if deemed unnecessary or simulation speed is of concern.

5.3 Unsteady rigid body aerodynamics in nonlinear EoM

In the nonlinear equations of motion (2) the rigid body modes have to be treated differ-

ently. The differentiation matrix D1 relates the orientation
[
ϕ θ ψ

]T
b

to a box angle of
attack. However, for the nonlinear equations of motion this orientation is defined wrt the
geodetic frame of reference and not wrt the freestream. Therefore, the matrix D1

jk in
equation (23) has to be cancelled, i.e. the position and orientation of the aircraft has no
influence on the aerodynamics. The angle of attack, respectively sideslip are determined
by the velocities u̇b wrt a body fixed reference frame. The rationale behind cancelling the
D1

jk term for the nonlinear rigid body motion is equivalent to the absence of the D1
lk in

equation (23). After the transformation Teb from the center of gravity (index b) to the
aerodynamic reference point (index e), the angle of attack α is że/U∞ and the sideslip
angle β is ẏe/U∞, i.e. the normalized heaving and side motion.

wj(k) = ik ·D2
jk Φke Teb ub (32)

Expressed in the time domain the steady and unsteady contributions are as follows.

wj = D2
jk Φke Teb

(
cref/2

U∞

)
u̇b ; ẇj = D2

jk Φke Teb

(
cref/2

U∞

)
üb (33)

If the aerodynamic matrices are only available in a generalized form, a correction for the
rigid body mode shapes has to be applied, when they are used in conjunction with the
nonlinear equations of motion. Detailed information on the correction technique can be
found in reference [24].
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5.4 Gust excitation

Aside from the continuous turbulence, discrete tuned gusts are required [25] for design
load calculations. The velocity profile of discrete gust is defined in CS/FAR 25.341 as a
gust with a 1-cos shape.

vG =
1

2
U0

(
1− cos

2πx(t)

2H

)
(34)

The gust gradient H is the distance parallel to the airplane’s flight path from the start of
the gust to its peak velocity, Hence the total gust length is 2H. For a given gust amplitude
U0 several gust gradient distances between 30ft and 350ft have to be calculated to find
the critical response for each load quantity. This process is called gust tuning.

The gust spectrum of a discrete tuned vG(ω) is available semi-analytically for the fre-
quency domain. When the aircraft is subjected to the gust, the penetration speed U∞
and location of the control points xj wrt the gust need to be considered. In the frequency
domain these time lags are expressed as phase shifts with an exponential function.

wG
j (ω) = nj · exp (−iω · xj/U∞) · vG(ω)/U∞ (35)

The generalized gust column for the frequency domain can then be set up.

QhG(k) = ΦT
ghQgj(k)wG

j (ω) (36)

The approximation of this gust column is problematic, due to phase shifts introduced
when the aircraft penetrates the gust, cf. eq.(35). This is considered a major problem for
application in an large scale industrial context.

An alternative approach is presented that avoids the RFA of the gust column entirely.
Examining the physical nature of the gust column reveals that a rational function is not
suitable for approximating time shifts ∆t. The question arises why an approximation
is required in the first place, when the sole purpose is to transfer the gust to the time
domain. The downwash at the control points due to a gust wG

j (eq. (35)) can simply be
expressed as a function of time. The relative location of the airframe wrt the gust is given
as.

xGj (t) = xj + 2H − U∞ · t (37)

The normalized gust velocities are then given as,

wG
j (t) =

{
1

2U∞

(
1− cos

(
π · xG

j (t)

H

))
· nj, for 0 < xGj < 2H

0 otherwise
(38)

Differentiation of the normalized gust velocity wrt time yields,

ẇG
j (t) =

{
− π

2H
· sin

(
π · xG

j (t)

H

)
· nj, for 0 < xGj < 2H

0 otherwise
(39)

The approximation of the gust column is avoided completely and the application becomes
merely a function evaluation when integrating the ODE. If the velocity of the aircraft is
assumed to be constant, the gust is independent of the aircraft simulation and can be
pre-computed as a function of Ma, H and U∞. Subsequently, the results are fed into the
overall aircraft simulations.
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5.5 Simulation

For the simulation all contributions to the downwash wj(t) eq.(40) from rigid body, flex-
ible and control surface motion need to be summed up and connected to the nonlinear
equations of motion (2). Unsteady aerodynamics are considered, using the time derivative
of the downwash ẇj(t) eq. (40) with equations (31) and (30).

wj =



D2
jkΦkeTeb ·

(
cref/2

U∞

)
u̇b(t)

+D1
jkΦkx · ux(t)

+D2
jkΦkx ·

(
cref/2

U∞

)
u̇x(t)

+D1
jkTkgΦgf · uf (t)

+D2
jkTkgΦgf ·

(
cref/2

U∞

)
u̇f (t)

+wG
j (t)


; ẇj =



D2
jkΦkeTeb ·

(
cref/2

U∞

)
üb(t)

+D1
jkΦkx · u̇x(t)

+D2
jkΦkx ·

(
cref/2

U∞

)
üx(t)

+D1
jkTkgΦgf · u̇f (t)

+D2
jkTkgΦgf ·

(
cref/2

U∞

)
üf (t)

+ẇG
j (t)


(40)

Further, propulsion and flight control systems are included in the simulation, resulting in
an integral nonlinear model for manoeuvre and gust loads analysis, as well as for handling
quality investigations.

6 VALIDATION: DISCRETE GUST

To validate the loads analysis model, an open loop discrete gust computation in the time
domain with nonlinear equations of motion is compared to a traditional approach using
a frequency domain solution. The frequency response is transformed to the time domain
using an inverse fast fourier transformation (iFFT) (F−1), cf. [26].

The aim is to compare the effects of using different types of equations of motion, the
application of the gust as a function of time, and using time domain integration vs.
frequency domain solution. Therefore, the approximated AIC matrices, evaluated at
discrete frequencies with eq. (28) are used for the frequency domain solution.

The frequency domain results are obtained by solving the equations of motion (1) for
uh(ω). The aerodynamic forces are on the right hand side of eq. (1). Note the dependency
on uh.

Pext
g (ω) = q∞ TT

kgSkjQjj(k)
[(

D1
jk + ik D2

jk

)
TkgΦgh uh(ω) + wG

j (ω)
]

(41)

The nodal loads can be easily recovered using the mode displacement method in eq. (5)
with

uf (t) = F−1(uf (ω)) (42)

Strongly recommended however is the use of the force summation method in eq. (3), with

Piner
g (t) = F−1(−ω2Mgh uh(ω)) (43)

and
Pext
g (t) = F−1(Pext

g (ω)). (44)

The frequency domain model was evaluated for 1024 frequency points. The obtained loads
were superimposed with those from a horizontal flight trim calculation of the nonlinear
time domain model.
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The model used for the validation is a generic transport aircraft, containing 2040 aero-
dynamic boxes, 18 control surfaces, and 122 structural grid points. 100 flexible modes
were retained. The rational function approximation was done on the basis of splined AIC
matrices Qgj(k), using 12 poles. The aircraft was subjected to a gust with a gust gradient
H = 100ft = 30.48m and amplitude U0 = 10.16m/s the airspeed was U∞ = 170.15m/s
at Ma = 0.5 and altitude h = 0m. For the time domain simulation the gust was pre-
computed, using a standard Dormand-Prince ode45 variable stepsize integrator. The gust
forces were fed into an Simulink implementation of the presented integral loads analysis
model and simulated for 2.5s.
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Figure 6: Loads for time and frequency domain solutions

The diagram on the left of figure 6 depicts the integrated wing (WRBM) and horizontal tail
root bending moments (HTRBM) for time and frequency domain calculations. The right
diagram zooms in on the maximum load for the WRBM and contrasts the MDM with the
FSM. The agreement between the time integration and frequency response calculations is
excellent. The results are almost indistinguishable.

7 CONCLUSIONS

In this paper an approach for development of integrated models suitable for both gust
and manoeuvre loads analysis has been presented. The underlying nonlinear equations
of motion, based on a so called ”mean axes” system, describe the integrated flight and
structural dynamics of the flexible airframe. The data required for the equations of motion
is consistent with the classical methods used in loads analysis, i.e the results of a modal
analysis of the stiffness and mass data.

For the aerodynamic model a new approach for Rational Function Approximation (RFA)
in combination with a suitable selection of boundary conditions has been discussed, allow-
ing for a clear separation between steady and unsteady effects. This allows both effects to
be modelled using the most appropriate technique available and for their easy integration.

In this paper, the steady aerodynamic method employed is the commonly used Vortex
Lattice Method. The VLM has been enhanced to account for the direction of lifting forces,
due to change in relative flow direction, including an induced drag component. This is
achieved by using refined boundary conditions, to set up the Kutta-Joukowsky-Law in its

16



vector cross-product form, as opposed to the commonly used scalar multiplication form.
Apart from the induced drag AIC, the required matrices are purely geometric in nature.
The aerodynamic

data of the conventional VLM, i.e. Qjj(k = 0) can be reused. The lift vector with
three degrees of freedom of the enhanced VLM induces additional forces and moments
at the box reference point. The infinite plate spline matrix was extended to six DoF to
accommodate these additional load components.

The unsteady aerodynamics are accounted for by the Doublet Lattice Method. The AIC
matrices need to be approximated by an RFA to be available for time domain simulations.
Unlike common practice, the RFA is done for the physical AICs rather than their fully
generalized form. As already stated, this approach enables a clear separation of steady
and unsteady effect and requires the approximation to be carried out only once per Mach
number and not for each mass case-Mach number combination. The gust penetration
effects are accounted for by simple evaluations for the gust velocities and its time derivative
as function of time. This way the problematic approximation of a frequency domain gust
column can be avoided entirely.

To connect the steady and unsteady aerodynamics to the nonlinear equations of motion,
a special transformation for the rigid body part has to be employed. This is achieved by
cancelling the differentiation matrix D1

jk for the rigid body modes.

As a validation example for the proposed modelling approach, a comparison of a time
domain simulation of a discrete gust with the results from a frequency domain calculation
has been made. The load quantities were compared in the time domain using an inverse
Fourier transformation (iFFT) of the spectra from the frequency domain calculation. The
comparison shows excellent agreement of the two different approaches.

Since the present integrated model is simulated in the time domain, it can be used not
only for design gusts, but also for investigations involving superposition of gusts and
manoeuvres. Furthermore, wind fields dependent on time, position, and aircraft attitude
can be examined.

8 APPENDIX: FULLY GENERALIZED VS. PHYSICAL RFA

Responsible for the presence of an acceleration term in the classical RFA, is the additional
time derivative in the downwash equation (23). When considering the unsteady contri-
butions ẇj, the inputs associated with the differentiation matrix D2

jk is an acceleration,
which has to be accounted for in the approximation of the fully generalized AIC matrices.
When applying the approximation before multiplication with the differentiation matri-
ces, the acceleration term has to be omitted. Using the latter methodology, it becomes
possible to distinguish steady from unsteady contributions.

The classical form of the approximation is obtained from the physical RFA by generalizing
the AIC matrices

Qhj = ΦT
gh TT

kg Skj Qjj (45)

and the two differentiation matrices

D1
jh = D1

jkTkgΦgh and D2
jh = D2

jkTkgΦgh. (46)
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Multiplication and rearrangement of the terms, yields (cf. Roger [20])

Q̃hh(s
∗) =(

Q0
hjD

1
jh

)
︸ ︷︷ ︸

Q̃0
hh

+

(
Q1

hjD
1
jh + Q0

hjD
2
jh +

np∑
i=1

QLi
hjD

2
jh

)
︸ ︷︷ ︸

Q̃1
hh

s∗ +

(
Q1

hjD
2
jh

)
︸ ︷︷ ︸

Q̃2
hh

s∗2

+

np∑
i=1

(
QLi

hj

(
D1

jh −D2
jh pi

))
︸ ︷︷ ︸

Q̃
Li
hh

s∗I

s∗ + pi
. (47)

The generalized form in equation (47) however, does not allow to discern between the
steady and unsteady contributions anymore. Inspection of equation (40) indicates that
the time derivative of the flexible deformation u̇f has a quasi-steady part wj, induced
by the heaving motion, as well as an unsteady part ẇj, due to the change over time.

Unfortunately these terms are combined in Q̃1
hh, making it impossible to use an enhanced

steady aerodynamic model from a different source.
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Tragflügelsystemen. In Gesammelte Vorträge der Hauptversammlung 1937 der Lilien-
thal Gesellschaft.

[17] J. Katz and A. Plotkin (1991). Low Speed Aerodynamics: From Wing Theory to
Panel Methods. McGraw-Hill.

[18] W.P. Rodden, J.P. Giesing and T.P. Kalman (1971). New developments and applica-
tions of the subsonic doublet-lattice method for nonplanar configurations. In AGARD
Symposium on unsteady aerodynamics for aeroelastic analyses of interfering surfaces,
AGARD-CP-80-71. AGARD.

[19] R.L. Harder and R.N. Desmarais (1972). Interpolation Using Surface Splines. Journal
of Aircraft, 9(2), 189–191.

[20] Roger, K. L. (1977). Airplane math modeling methods for active control design. In
AGARD Structures and Materials Panel, AGARD/CP-228. AGARD, pp. 4–1 – 4–11.

[21] R. Vepa (1977). Finite State Modeling of Aeroelastic Systems. Tech. Rep. NASA
CR-2779, NASA.

[22] I. Abel (1979). An analytical technique for predicting the characteristics of a flexible
wing equipped with an active flutter-suppression system and comparison with wind-
tunnel data. Tech. Rep. NASA TP-1367, NASA LARC.

[23] M. Karpel (1981). Design for Active and Passive Flutter Suppression and Gust
Alleviation. Tech. Rep. NASA CR-3482, NASA.

[24] Looye, G. (2005). Integration of rigid and aeroelastic aircraft models using the
residualised model method. In International Forum on Aeroelasticity and Structural
Dynamics, IF-046. CEAS/DLR/AIAA.

19



[25] Hoblit, F. M. (1988). Gust Loads on Aircraft: Concepts and Applications. AIAA
Education Series.

[26] M. Karpel, V. Feldgun and B. Moulin (2007). Dynamic Response of Aeroelastic
Systems Using Fast Fourier Transforms. In International Forum on Aeroelasticity
and Structural Dynamics, IF-049. CEAS/AIAA.

20


