
Master’s Thesis

Improvement of a Multi-Body Collision
Computation Framework and Its

Application to Robot (Self-)Collision
Avoidance

Author
Alexander Martín Turrillas

German Aerospace Center (DLR)
Institute of Robotics and Mechatronics

Oberpfaffenhofen, June 1, 2015

Supervisor DLR
Mikel Sagardia

Supervisor Tecnun
Emilio Sánchez

Abstract

One of the fundamental demands on robotic systems is a safe interaction with their
environment. In order to fulfill that condition, both collisions with obstacles and
own structure have to be avoided. This problem has been addressed before at the
German Aerospace Center (DLR) through the use of different algorithms. In this
work, a novel solution that differentiates itself from previous implementations due
to its geometry-independent, flexible thread structure and computationally robust
nature is presented.

In a first step, in order to achieve self-collision avoidance, collision detection must
be handled. In this line, the Robotics and Mechatronics Center of the DLR devel-
oped its own version of the Voxmap-Pointshell (VPS) Algorithm. This penalty based
collision computation algorithm uses two types of haptic data structures for each pair
of potentially colliding objects in order to detect contact points and compute forces
of interfering virtual objects; voxelmaps and pointshells.

Prior to the work presented, a framework for multi-body collision detection al-
ready existed. However, it was not designed nor optimized to handle mechanisms.
This thesis presents a framework that handles collision detection, force computation
and physics processing of multi-body virtual realities in real-time integrating the
DLR VPS Algorithm implementation.

Due to the high number of available robots and mechanisms, a method that is
both robust and generic enough to withstand the forthcoming developments would
be desirable. In this work, an input configuration file detailing the mechanism’s
structure is used, based on the Denavit-Hartenberg convention, so that any type of
robotic system or virtual object can use this method without any loss of validity.

Experiments to prove the validity of this work have been performed both on
DLR’s HUG simulator and on DLR’s HUG haptic device, composed of two DLR-
KUKA light weight robots (LWRs).

i

Declaration

This thesis is an account of research undertaken between November 2014 and April
2015 at the Institute of Robotics and Mechatronics of the German Aerospace Center
(DLR), Oberpfaffenhofen, Germany.

Except where acknowledged in the customary manner, the material presented in
this thesis is, to the best of my knowledge, original and has not been submitted in
whole or part for a degree in any university.

Alexander Martín Turrillas
Oberpfaffenhofen, April 2015

iii

Improvement of a Multi-Object Collision Computation Framework and Its

Application to Humanoid and Industrial Robots for Collision Avoidance

Predicting and preventing collisions with the environment and with itself is essential

for humanoid and industrial robots in order to guarantee safe manipulations. In this

line, the Robotics and Mechatronics Center of the German Aerospace Center (DLR)

developed its own version of the Voxmap-Pointshell (VPS) Algorithm [1, 2] in order

to detect collisions and compute forces of interfering virtual objects. This penalty

based collision computation algorithm uses two types of haptic data structures in order

to achieve update rates of 1 kHz: voxelmaps and pointshells.

As shown in Fig. 1, voxelmaps are 3D grids in which each voxel stores a discrete

distance value v to the surface. On the other hand, pointshells are sets of points

uniformly distributed on the surface of the object; each point has additionally an

inwards pointing normal vector. Both structures can be built using hierarchies in order

to speed up the collision detection process. During collision detection, distances and

penetrations can be computed between these data structures, as explained in Fig. 2.

In order to perform collision detection for humanoids or similar complex mechanisms,

engines that support the simultaneous computation of multiple bodies are necessary

[3], which could increase the complexity of the problem quadratically. The DLR is

currently working on a framework that handles collision detection, force computation

and physics processing of muti-body virtual realities in real-time.

The objective of this work consists in supporting the research on muti-body collision

detection applied to collision avoidance for humanoid and industrial robots. During the

thesis, the humanoid robot SpaceJustin (see Fig. 3) will be used as a test platform [4].

Concrete goals will be established according to the student’s profile and needs.

Qualifications

 Good knowledge of C/C++.

 Knowledge of computational geometry.

 Knowledge of physical phenomena between rigid solids.

 Knowledge of inter-process communications.

 Good English level; German is not necessary, but preferable.

 Optional: Linux, LaTeX, Matlab / Simulink.

Fields of Study

Computer Science, Mechanical Engineering, or similar.

Literature

[1] McNeely, W. A.; Puterbaugh, K. D.; Troy, J.J.: “Voxel-Based 6-DoF Haptic Rendering

Improvements”. In: Haptics-e. Vol. 3, No.7, 2006.

[2] Sagardia, M.; Stouraitis, T,: Lopes e Silva, J.: “A New Fast and Robust Collision

Detection and Force Computation Algorithm Applied to the Physics Engine Bullet:

Method, Integration, and Evaluation,” in EuroVR, 2014, (to be published).

[3] Cohen, J. D.; Lin, M. C.; Manocha, D.; Ponamgi, M.: “I-Collide: An Interactive and Exact

Collision Detection System for Large-Scale Environments,” in Proc. of ACM Interactive

3D Graphics Conference, 1995.

[4] Täubig, H.; Bäuml, B.; Frese, U.: “Real-time Swept Volume and Distance Computation

for Self Collision Detection,” in IEEE/RSJ International Conference on Intelligent Robots

and Systems, 2011.

Contact

Mikel Sagardia German Aerospace Center (DLR)

Mikel.Sagardia@dlr.de Institute of Robotics and Mechatronics

+49 8153 28 1039 D-82230 Oberpfaffenhofen, Germany

Master’s Thesis Description

Figure 1. Left: 2D representation of a

voxelmap; deeper voxels are darker. Right:

2D representation of a pointshell; darker

and bigger points represent higher positions

in the hierarchy.

Figure 3. Humanoid robot SpaceJusin. The

collision computation and avoidance system

should be tested in this robotic system

composed of 47 degrees of freedom.

Figure 2. On the left, a simplified voxelmap

(bottom) is colliding with red pointshell

points (top), yielding red bold collision

forces. On the right, the computation of a

single collision force related to a colliding

point is graphically shown. Single collision

forces are computed scaling the normal

vector (ni) of the colliding point (Pi) with the

sum of the local (niei) and global (vs)

penetration of the point in the object.

Torques (Ti) are the cross product between

forces (Fi) and point coordinates (Pi).

Acknowledgements

First and foremost I offer my sincerest gratitude to my supervisor, Mikel Sagardia,
who has provided me the chance to be a part of the prestigious German Aerospace
Center (DLR) for almost a year and supported me throughout my thesis with his
patience and knowledge, whilst allowing me the room to work in my own way. I
attribute the level of my Master’s degree to his encouragement, effort and engage-
ment through the learning process. Without him, this thesis, would not have been
completed or written. One simply could not wish for a better or friendlier supervisor.

I am using this opportunity to express my gratitude to everyone who supported
me throughout the course of this project. I am thankful for their aspiring guidance,
invaluably constructive criticism and friendly advice during the production of this
work. I am sincerely grateful to them for sharing their truthful and illuminating
views on a number of issues related to the project.

I place on record, my sincere thank you to Emilio Sánchez for advising me
throughout my thesis, and most importantly, for awakening in me the curiosity to
explore the world of robotics and providing me with the skills to successfully tackle
this new challenge.

Beyond physics, programming and robotics, it is lucky for me to have met such
valuable friends who inspirit my effort to overcome all the difficulties that arise from
work and everyday life. I have to acknowledge all my colleagues at DLR (Maialen,
Marti, Bastian, Henning, and Javi among many others) for their assistance in so
many aspects that I cannot list due to the lack of space.

Special thanks to my co-worker Nora Etxezarreta, who has colored my stay in
Munich ever since the first day. Always intellectually stimulating, she has the ability
to turn a meal or a mundane train trip into an enlivening discussion scenario helping
me notice life from a different perspective. Sometimes, one is carried away by the
routine and fails to realize all what is being missed by walking blinded in life . Nora,

vii

however, has constantly shared with me new plans, projects and ideas that have
made my stay in Munich everything but dull or boring.

I am deeply grateful to Maria Muñoz, for making of my life an adventure and
broaden my horizons, helping me realize that life is only as exciting as we are willing
to make it. Without all her encouragement and reinforcement to take on new chal-
lenges I would have never obtained the opportunity to complete this project.

Last but not least, I owe more than thanks to my family members, which includes
my parents, my sister, my grandmother and my godparents, for their financial sup-
port and encouragement throughout my life. Your faith in me was what sustained
me thus far.

I want to dedicate this work to the memory of my grandfather Casildo Turrillas.
He was my mayor inspiration to become an engineer. His wisdom, generosity and
insightful nature made of him an exceptional role model to whom I owe most of what
I know today. You will be missed.

viii

Contents

Abstract i

Declaration iii

Original Master’s Thesis Description v

Acknowledgements vii

Content ix

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2
1.3 Resources . 2
1.4 Report outline . 3

2 Related Work 5
2.1 Self-Collision Detection for Humanoids 5

2.1.1 Sphere based Geometry Models for Self-Collision Avoidance . 6
2.1.2 Reactive Self-Collision Avoidance 7
2.1.3 Swept Volume Distance Computation 8
2.1.4 Protective Hulls for Collision Detection 9
2.1.5 Comparison between Methods for Self-Collision Detection for

Humanoids . 10
2.2 Voxelmap-Pointshell (VPS) Haptic Rendering Algorithm 12

2.2.1 Proximity Queries and Penalty-Based Force Computation . . 14

ix

3 Generic Mechanism Model 17
3.1 Building the Configuration File to Model the Mechanism 18

3.1.1 Numbering the Mechanism 18
3.1.2 Affixing Frames to Links . 19
3.1.3 Link Parameter Determination 20
3.1.4 Configuration File Specification 21

4 Multi-Body Collision Computation Applied to Mechanisms 27
4.1 Previous Structure . 28
4.2 Implemented Structure . 30

4.2.1 ObjectState . 33
4.2.2 HapticStructure . 33
4.2.3 ObjectPose . 33
4.2.4 ObjectContact . 33
4.2.5 ObjectStateDB . 34
4.2.6 ObectPair . 34
4.2.7 ObectPairThread . 34
4.2.8 ObectPairThreadDB . 34
4.2.9 ObjectPairCollisionData 34
4.2.10 RelationTable . 35

4.3 Implemented Collision Computation 35
4.4 Integration of the Multi-Body Collision Computation within the Frame-

work . 36

5 Experiments and Results 39
5.1 Generic Robot Model . 39

5.1.1 Results . 40
5.2 Force and Torque Computation . 41

5.2.1 Results . 42
5.3 Multiple Collision Detection . 44

5.3.1 Results . 46
5.4 HUG Collision Detection and Avoidance 46

5.4.1 Results . 49

6 Conclusions and Future Work 55
6.1 Conclusions . 56
6.2 Future Work . 58

Bibliography 61

x

Appendices 65

A Haptic User Gerät (HUG) 67

B Towards Human-Robot Interaction 71

xi

List of Figures

2.1 Virtual representation of sphere robot and human geometries. 6
2.2 Different representations of the Stanford Bunny. 13
2.3 Signed distance field. 15

3.1 Integration of the Generic Mechanism Model module. 17
3.2 Example mechanism. 19
3.3 Frame numbering for the example mechanism. 20
3.4 Affixing frames to the example mechanism. 21
3.5 Determining Denavit-Hartenberg parameters for the example mecha-

nism. 22

4.1 Previous class structure for the multi-body framework. 29
4.2 Computation process in the previous structure. 30
4.3 Class structure of the multi-body collision computation module. . . . 32
4.4 The global workflow for the current multi-body framework. 36

5.1 Simple mechanism in motion; three links and joints. 40
5.2 Rod force and momentum equilibrium. 43
5.3 Virtual representation of the two rods. 43
5.4 Resulting VPS forces and torques for the two rods. 44
5.5 Spheres approaching to contact. 44
5.6 Voxelmap and pointshell haptic data structures used to model the

spheres. 45
5.7 Spheres colliding at three different stages. 46
5.8 Computation time for spheres colliding with no safety margin. 47
5.9 Original link 1 geometry and pointshell and voxelmap data structures

for links 1 and 2 respectively. 48
5.10 Real and simulated HUG. 48
5.11 Simulink interface screenshot. 50
5.12 Visual representation of a virtual collision in DLR’s HUG robot. . . 51

xiii

5.13 Computation time for DLR’s HUG collision detection sampling 1 every
500 iterations. 52

5.14 Computation time for DLR’s HUG collision detection sampling 1 every
10 iterations. 53

5.15 Computation time for DLR’s HUG collision detection sampling every
iteration. 54

6.1 DLR’s Justin humanoid robot. 57

A.1 Light Weight Robot representation. 67
A.2 A human operating with HUG. 68

B.1 Assembly of the human geometry. 72
B.2 Standard human proportions. 72
B.3 Skeleton and depth image provided by Kinect. 74
B.4 Simulation of human body interacting with HUG through Kinect

tracking. 74

xiv

List of Tables

2.1 Comparison between collision avoidance methods. 11

3.1 Denavit-Hartenberg parameter table for the example mechanism (Fig-
ure 3.2). 21

A.1 Hardware Specifications. 68

B.1 Dimension for the virtual human geometry. 73

xv

Chapter 1

Introduction

This introductory chapter starts by presenting the motivation for this research work.
Following the motivation section, the main objectives of the thesis are detailed. The
next section focuses on specifying the resources being used to carry the research and
testing of this project. Finally, an outline of the Master’s Thesis’ structure is given.

1.1 Motivation

For robots in human and industrial environment, it is crucial to ensure a high level
of safety. That involves the avoidance of collisions with both obstacles and the own
structure. Over the last decades, this safety aspect has been addressed frequently.
A wide array of solutions have been presented to cope with this problem. Many
of them focus on presenting collision detection methods [19], [12], [14], while others
provide solutions to reactive path-planning of safe trajectories and repulsion from
potential obstacles [30], [21], [11]. There are even approaches that implement colli-
sion detection and avoidance methods on specific humanoid robots, such as HRP-2
[31], ASIMO [32] or Justin [3].

However, to the date of the project, none of them provide enough simplicity to
be used on any type of complex and non-convex geometry. Furthermore, many of
the methods avaiable today handle collision detection and avoidance unitedly [2],
[6], [30]. Greater flexibility is granted when collision detection is separated from the
path-planning module, allowing the user to decide how to handle the latter feature.
Even if a framework flexible enough to be used with any type of dynamic model is
desired, to the date one of the most common applications for collision detection is
the field of humanoid robots [31], [32], [3]. For this reason, a module that computes
the forward kinematics of the robot given the joint angles/displacements is required.

1

Another important requirement for this work is the need of a method that can
reliably peform at 1 kHz. Some of these methods achieve computational times under
1ms [19], [6] while others fail to acomplish this rate [2]. In general, the computa-
tional time depends on the number and complexity of the objects. However, the
VPS algorithm [28] introduced in Section 2.2 enables geometry-independent collision
dectection. Due to this fact, a new solution that takes advantage of this algorithm
not available until the date is desired.

1.2 Objectives

The main purpose of this work is to develop a framework capable of detecting and
dealing with self collisions of multiple objects in real-time. It is also important for
it to be generic enough so that any type of mechanism is eligible to make use of it.
In order to achieve this goal, several subtasks have been specified:

• Literature research on self-collision detection and avoidance for humanoid and
industrial robots.

• Development of the multi-body collision detection framework based on the
VPS algorithm [28] and the previously implemented multi-body framework for
assembly simulations. The work must satisfy the following requisites:

– Be valid for any type of geometries.

– Be valid for any type of mechanisms.

– Operate robustly in real-time settings, that is, in 1 kHz.

• Development of arbitrary mechanism description file.

• Experiments and results.

• Documentation of complete research.

1.3 Resources

The following computer configurations and software versions have been used to pro-
duce this work. Reproducing the work under this same environment should yield
similar results. Other configurations and software versions may also be used but the
results could vary.

• The computer used to benchmark the Multibody Collision Computation al-
gorithm used Intel Xenon 5060 at 3.2GHz. The operating system was SUSE
Linux Enterprise Desktop 11.

2

• To create and modify virtual models, Blender has been used in its 2.49 version.

• The VPS framework [28] has been used to compute contacts.

• The trafo3d framework has been used to handle algebraic operations in a simple
and robust way.

1.4 Report outline

The report has been divided in the following chapters:

Chapter 2: Related Work The documentation studied is presented and the meth-
ods for collision detection are side-by-side compared.

Chapter 3: Generic Mechanism Model The process of building a configuration
file for the mechanism to compute the fordward kinematics and joint forces and
torques is described.

Chapter 4: Collision Computation between Mechanisms The framework that
enables to compute contacts between any number of objects is detailed.

Chapter 5: Experiments and Results The results yielded by all the trials that
have been performed is presented.

Chapter 6: Conclusions and Future Work The final output of this work is sum-
marized and conclusions for the overall result are given. The future goals for
the framework to accomplish are suggested.

3

Chapter 2

Related Work

In order for humanoid robots to become practical they must be able to operate safely
and reliably. Self-collisions occur when one or more of the links of a robot collide.
These collisions can result in damage to the robot itself, or through a loss of balance
or control cause human injury or damage to its surrounding environment. Thus,
detecting and avoiding self-collisions is fundamental to the development of robots
which can be safely operated in human environments.

To address this problem several different approaches have been presented. To
keep the report’s length to a reasonable amount, only the most significant approaches
related to this thesis are reviewed.

Some of the methods rely on strictly convex geometries to guarantee gradient
continuity during the process of distance computation, while others do not give that
much emphasis to geometry and focus on the use of repulsion potential fields ap-
plicable to both torque and position controlled manipulators. However, most of the
approaches do make use of simplified convex geometries. This thesis presents an
approach that tackles arbitrary complex geometries.

2.1 Self-Collision Detection for Humanoids

This thesis is influenced by four previous works that are reviewed in the following
sections: 2.1.1, 2.1.2, 2.1.3, 2.1.4.

5

2.1.1 Sphere based Geometry Models for Self-Collision Avoidance

Sphere based geometric models can be used for the human and robot due to the
efficiency of the distance computation. For this work the [2] sphere based collision
avoidance has been studied, which builds upon [18], [22], [21]. In [2] the method is
tested for a human and a Puma 762 robot arm interacting in a robotic workcell.

The first step, was to model both the human and the robot arm using minimally
bounding spheres. Figure 2.1 shows the result of modelling the two bodies using
spheres; the human was built using 46 spheres while the Puma 762 robot arm used
41. More detailed models may have been produced increasing the number of spheres
for each object.

Figure 2.1: Virtual representation of sphere robot and human geometries.

The motion of both human and robot have to be tracked at all times. Whenever
the robot links or the human moves, the centers of the spheres are updated with new
values. Having updated the transformation matrices of the sphere centers, the main
algorithm performs human-robot collision checks.To produce more accurate and con-
sequently safer results, predictions of the robot and human motions are utilized to
mitigate the detrimental effect of a non-instantaneous robot operating in a dynamic
environment. Lucian Balan and Gary M. Bone[2] present a prediction method based
on weighted average velocities applied at the sphere level of the human geometric

6

model. Averaging is used to reduce the effect of random velocity variations. By
choosing to apply the prediction method at the sphere level, each sphere position
is predicted independently. Therefore, limbs moving in different directions can be
tracked with no effort. Lucian Balan and Gary M. Bone [2] report that it even works
when there are several humans moving in the same workcell.

Once the collision detection has been performed the most suitable path to avoid
potential contacts has to be selected. An optimization method employing penalty
factors is used to determine the path that best balances between motion towards the
goal and maximizing the distances between the spheres of the human and the robot.
The relative position between two distinct human-robot sphere describe a search di-
rection. For each search direction a cost function is computed; the closer the pair of
spheres, the larger the penalty factor assigned to that search direction. The direction
of motion with the smallest cost function is selected as the best choice for the robot
motion command for the next time-step of the simulation. If all the search directions
are predicted to produce collisions at some point along the time-step window, the
robot is commanded to stop until the human drifts from the path of the robot. This
collision avoidance approach is heuristic; it aims for efficiency rather than optimality
of the solution.

The main advantages of this method are simplicity and efficiency. Computing
the minimal distance between two spheres only requires a few basic computational
operations, whereas for polyhedral models the computation is far more complicated.
Due to the its efficiency and deterministic nature, it is a method suited to be used
in real-time. However, [2] achieved a 40Hz sampling rate on a 1.8GHz Pentium IV
PC for a total of 87 spheres, below the standards of some other collision detection
methods presented in this chapter.

2.1.2 Reactive Self-Collision Avoidance

A wide field of research focuses on reactive repulsion potential field-based designs,
introduced by Khatib [17]. This method has been implemented on the humanoid
ASIMO [32]. Virtual repulsive forces are generated between potentially colliding
links and transformed via an admittance into corresponding joint motions. Alexander
Dietrich, Thomas Wimböck, Holger Täubigy, Alin Albu-Schäffer, and Gerd Hirzinger
[6] present extensions to reactive self-collision avoidance for torque and position con-
trolled humanoids continuing the work started in [29]. One of the main contributions
presented is an efficient damping design which incorporates the configuration depen-
dence of collision-endangered situations. They also present a strategy for indispens-
able emergency stops of the entire system. Finally, an admittance-based interface to

7

position controlled subsystems, which can be embedded in the derived force/torque
based design approach, is provided.

In a first step, the distances between the virtually represented links have to be
computed. For this purpose, a standard distance computation technique for convex
hulls [12] is employed. Each rigid link is modelled by a fixed volume V . In every
control cycle, all the volumes are transformed int the world frame by applying the
corresponding transformations. Then, for every pair of links, the distance and cor-
responding proximal points are determined, being possible to exclude some pairs of
points from being processed. Afterwards, the pairs of smallest distance are kept for
further processing.

In the work presented by [6] the humanoid Justin [3] was modelled using only
78 points and 28 radii for Justin’s 28 links, achieving a tight representation of the
humanoid robot. For real-time self-collision avoidance applications, Justin’s collision
model is calculated once per control cycle applying 302 pairs of links.The computa-
tion time varies from 0.3 to 0.4ms on an Intel Core2Duo Processor T7400 (2.16GHz).

The basic idea behind the control algorithm is to apply repulsion potential fields
to approaching links in order to avoid self-collisions while taking energy out of the
system by dissipating kinetic energy via an efficient damping design. Furthermore,
another additional safety feature is implemented: even in case collisions are improb-
able, if the repulsion fields are active, an emergency stop which leads to a mechanical
braking of each motor was implemented.

2.1.3 Swept Volume Distance Computation

The task of collision detection and distance computation prior to the collision avoid-
ance strategies can be performed using very distinct methods that may vary in
efficiency and accuracy, being more suitable for one or another application. [33]
introduce an algorithm based on computing the swept volumes of all bodies and
checking them pairwise for collisions. It operates on joint angle intervals. Therefore,
it does not only test a single or N intermediate configurations but assures safety of
a whole movement. The key idea of the swept volume computation is representing
volumes as convex hulls extended by a buffer radius producing the sphere swept
convex hulls. This leads to tight and compact bounding volumes. The operation
set available to model the different joints is strictly conservative and allows for a
trade-off between accuracy and computation time. During a configurable timespan
the algorithm updates a table of pairwise distances, and thus can guarantee real-time.

8

This method handles large braking distances, safeguards the whole braking move-
ment, and executes in real-time. It first computes the swept volumes of all bodies,
i.e., the volume the body touches within its movement. All volumes are represented
in terms of sphere swept convex hulls of a finite set of points. So each volume is the
Minkowski-Sum of a convex polyhedron given by a set of points, and a ball of radius
r. For the case of the humanoid robot Justin, 26 bodies containing 80 points and 26
radii were used for its modelization, producing a fairly tight representation. A single
body’s representation uses only 3.1 points on average, less that 4 for a tetrahedron,
the simplest polyhedral volume. Non-convex bodies have to be split into convex
subparts which are treated as separate bodies.

Afterwards, all pairs of swept volumes are checked for collision, computing dis-
tances between two convex polyhedra given as arrays of points through the GJK-
algorithm [12]. The algorithm requires a kinematic model of the robot defining
joint-frames and a geometrical model with the robot’s rigid bodies represented in
one joint-frame. Testing an application with a fast moving humanoid robot along
with the already described self-collision detection method, contacts were properly
avoided according to [33]. 0.4ms computation time was achieved on an Intel T2500
at 2GHz.

2.1.4 Protective Hulls for Collision Detection

This method is a variant of the sphere bounding algorithm for geometries explained
in Section 2.1.1. Protective hulls, however, allow a tighter representation of the
geometry while still permitting the inclusion of a safety margin. [19] describe an
efficient geometric approach for detecting link interference, suitable for complex ar-
ticulated robots such as humanoids, relying on fast, feature-based minimum distance
determination methods for convex polyhedra [24]. Threshold values can be set on
the allowable minimum distance between links in order to provide a safety margin
that accounts for errors in modelling and control.

In the case of serial-chain manipulators, immediately adjacent links cannot col-
lide if proper joint angle limits are defined. Each chain, in turn, must avoid collisions
with all the other chains present in the mechanism. Given the number of links N
the number of pairs P that should be checked for collision is given by:

P = N2−3N+2
2 . (2.1)

9

In order to represent the link geometry for interference detection, approximate
convex protective hulls of each link are derived from the original CAD models, which
represent inherently closed surface models of solid objects. The hulls completely en-
close the underlying geometry, and provide a safety margin around each link. Should
a link have severe non-convex geometrical cal features, it can always be subdivided
into a rigid collection of convex pieces. [19] have achieved a representation of the
H7 humanoid robot (30 DOF, 137 cm, 55 kg) using 2702 triangles, compared to the
initial 314588 triangles from the CAD model.

For the minimum distance determination, the Voronoi-clip (V-clip) algorithm was
selected [24]. This is a feature-based algorithm which improves upon the Lin-Canny
algorithm [20]. For convex polyhedra, V-clip does not need to construct hierarchies
of bounding volumes, like other methods [26], [13]. The running time does not de-
pend on the distance between objects; only on their geometric complexity and motion
relative to the previous query. The closest points between each active pair of links
obtained through the algorithm are tracked over the course of an entire trajectory
and verified for collision avoidance.

According to the work presented by [19], for a single posture of the robot (7 joint
angles for each leg), 19 closest-feature pairs can be updated in less than 0.13ms on
average, including the forward kinematics calculation. All the minimum distances
between all possible relevant body pais (435 pairs) can be calculated in approximately
2.5ms.

2.1.5 Comparison between Methods for Self-Collision Detection for
Humanoids

Collisions between bodies can be thought of as a binary result in its simplest form,
i.e., whether two or more bodies overlap or not. This implies that checking for
collision between objects following continuous motion trajectory necessitates either
computing the swept volume of the object motions and checking for interference, or
discretizing the trajectory into a finite set of samples which are individually tested
for collision. Since swept volume calculations are overall difficult and expensive to
compute, discretization is frequently used [2], [6], [19]. Nevertheless, regardless of the
discretization resolution selected, it is always possible to construct a case in which
a potentially dangerous collision goes undetected due to an insufficient number of
samples. Due to this fact, when studying the trajectory sampling alone, methods
that employ swept volumes would be more desirable.

Another important feature of the collision detection methods is the geometry

10

geometry
representation

trajectory
sampling

coll. det.
algorithm

f. kinematics
module

force
computation

sphere based CA [2]:

spheres disc. cost function
based

no no

reactive CA [6]:

convex hulls disc. GJK [12] no
reactive
pot. field

swept volume CA [33]:

convex hulls cont.
adapted
GJK [33]

no no

protective hulls for CD [19]:

convex hulls disc. V-clip [24] no no

Table 2.1: Comparison between the methods presented in Sections 2.1.1, 2.1.2, 2.1.3,
2.1.4.

representation. Tighter representation (more accurate to the original geometry) pro-
duces more accurate results when checking for collisions. Some methods cannot
handle any type of geometries and rely on methods that produce approximate con-
vex reproductions of the original object to perform the collision computation [2], [6],
[33], [19]. Overall, all these representations are conservative and always completely
bound the original body. Moreover, the inclusion of a safety margin further mitigates
the need for perfectly accurate modelization of the object for collision avoidance pur-
poses. Nevertheless, a tight representation will always be preferred for more accurate
results.

Today collision avoidance is frequently used in different purpose mechanisms [2],
[6], [33], [19]. The sensors used to track the motion of these mechanisms sometimes
yield the local joint angles and displacements [6] instead of the transformation ma-
trices to the global reference frame [2], therefore computing the forward kinematics
is needed. A method that provides and can be used alongside a module to compute
the forward kinematics is advantageous in that it simplifies its implementation on
different mechanisms.

All the main features of the methods for collision avoidance (CA) studied in this
section have been contrasted in Table 2.1.

11

Observing Table 2.1 it can be inferred that all the methods rely on modelling the
geometry with convex shapes. The representation of highly non-convex geometries
requires more pre-processing and the computational expense of all the presented
methods is dependant on the complexity of the geometry. This work presents a
method based on the VPS Algorithm, detailed in Section 2.2, that is not affected by
the complexity of the original geometry. Only the resolution employed to mesh the
object directly increases the computational requirements.

Another feature that was found overall lacking, is a module able to compute the
forward kinematics of the mechanism given the joint angles and displacements. Even
if some of the methods affirm to compute the forward kinematics internally [6] they
do not provide a module to enable its use on any type of mechanism. In this work we
aim to fill this gap by developing a module that can be integrated on any mechanism
if needed to compute the forward kinematics.

Collision avoidance is handled in different ways throughout the methods pre-
sented. Most of these methods do not intend to provide haptic feedback [2, 19] and
therefore no forces are computed in order to avoid collisions. Instead, cost func-
tion based path planning [2] or precomputed collision paths [19] are used. This work
aims to develop a method able to provide collision avoidance based on penalty forces.
These forces and torques can be the input of a torque controlled mechanism to avoid
collisions or simply used to provide feedback on the magnitude of the forces being
generated. These forces and torques can be converted in displacements [5] for po-
sition controlled robots. This feature, however, is out of the scope of the present
thesis.

2.2 Voxelmap-Pointshell (VPS) Haptic Rendering Algo-
rithm

One of the main features of this work is the use of the Voxelmap-Pointshell (VPS)
Algorithm [28] to model geometries, detecet collisions and compute contacts between
objects. This is due to its unique traits:

• It allows for the use of any geometry.

• Computational time does not depend on the complexity of the geometry.

• Collisions between multiple objects can be computed within 1ms [28].

• It is able to compute in a level-of-detail manner, adjusting on the requirements
of each simulation.

12

This force computation and collision detection method is based on the Voxelmap-
Pointshell (VPS) Algorithm [28]. Two data structures are used to model each pair
of colliding objects: voxelmaps and pointshells. Pointshells, can also be clustered
in sphere hierarchies to quickly recognize possibly colliding areas. Both these data
structures can be visualized in Figure 2.2 applied to the Stanford Bunny.

Figure 2.2: Different representations of the Stanford Bunny: (a) Triangle mesh with
35606 vertices; (b) Several point tree levels of the bunny coded with colors; (c)
Two successive sphere tree levels of the bunny (the red transparent is the upper
level); (d) Voxelized representation of the bunny (surface voxels in red); (e) voxelized
representation of the bunny (first inner layer in green). Figure extracted from [28].

Voxelmaps are 3D-grids formed by voxels that contain a discrete value represent-
ing their distance to the surface voxel. The voxelmap haptic data structure can be
extended to contain floating point surface distance fields. A mixed data structure
that merges the advantages of both fields can also be created; fast and accurate pen-
etration and distance computations using modest memory requirements are enabled
by this approach.

The pointshell haptic data structure is a point-cloud that samples object surfaces.
Each point in the cloud, in turn, has a normal vector pointing inwards of the object
surface. The point-cloud is arranged in a point-sphere tree, similarly to [4]. The
approach followed by [28] differs in that presented by [4] due to the fact that a down-
top building design starting with a high point sampling resolution is seek. This way,
points are uniformly distributed. The point clusters are then bound by minimal en-
closing spheres [9], creating a hierarchy that allows for fast collision area localization.

Once these haptic data structures have been generated, the VPS algorithm, in
charge of computing collisions, traverses the point-sphere hierarchy detecting the
likely colliding regions of the pointhshell. The penetration or distance values in
these regions are then computed. In the case that the voxelmap overlaps with the
pointshell, the VPS algorithm yields the penalty forces corresponding to this con-

13

tact. As mentioned in Section 1.2, one of the objectives of this thesis is proving a
collision computation method that can be used with any type of geometry, regardless
of its complexity. An advantageous feature of this algorithm is the fact that the com-
putation speed depends mainly on the sampling of the object and not on its geometry.

All pointshells produced for [28] were generated within 20 seconds and have a
size of around 2MB. Refer to [27] for more information on generation time.

2.2.1 Proximity Queries and Penalty-Based Force Computation

This section presents the distance and penetration computation of the pointshell
points without considering the point traverse and selection problem. [28] provides
further insight on the hierarchical traverse algorithm.

In the process of detecting collisions, those in the points in the pointshell belong-
ing to likely colliding regions are checked for their voxel value v in the voxelmap.
The points Pi in the pointshell with a corresponding voxelmap value v(Pi) ≥ 0 are
colliding points. The force in the pointshell’s center of mass ftot is then computed
by adding the colliding points’ normals ni(Pi) weighted by their penetration in the
voxelmap (V (Pi) ≥ 0). Torques ti are computed as the cross product between the
cross product between point coordinates Pi and forces fi, all magnitudes expressed
in the pointshell frame, with its origin in the center of mass. The total torque ttot is
then computed as the sum of these individual torques ti. This process is summarized
in 2.2 and 2.3:

∀i | V (Pi) ≥ 0 : fi = V (Pi)) · ni → ftot =
∑

fi, (2.2)

∀i | V (Pi) ≥ 0 : ti = V (Pi)× fi → ttot =
∑

ti. (2.3)

The voxelmap distance or penetration function V (Pi) has two components: global
and local penetrations, as shown in (2.4):

V (Pi) = ni · ei︸ ︷︷ ︸
local

+ v(Pi) · σ︸ ︷︷ ︸
global

.
(2.4)

The local penetration (ni · ei) is is computed as the projection of the vector be-
tween the pointshell point and the voxel center (ei = C−Pi) on the normal vector
of the point: therefore, it represents the depth of the point within the voxel. On the
other hand, the global penetration (v(Pi) ·σ) is the value resulting from the product
between the voxel value in which the point lies (v(Pi)) and the voxel size (σ = s).
As the resolution increases (s→ 0), the influence of the local penetration decreases.

14

Figure 2.3 illustrates the already presented variables for two overlapping bodies.

0

00

0

00

0

0

1

-1 -1 -1

P i

v = 0

n i

F i

ei

CA

B

Figure 2.3: Signed distance field (Voxelmap). The surface voxels, the ones overlap-
ping with the gometry have 0 value. Voxels in the outer layers receive −v value,
where v is the number of the outer layer count at the studied voxel. Conversely,
inner layers are given v value, where v is the inner layer count. Figure by Mikel
Sagardia.

When the penetration between voxelmap and pointshell takes a negative value
(V (Pi) ≤ 0) the distance between these two haptic structures is being measured.
In that case, max(|V (P = Q) ≤ 0|) represents the distance between the two objects,
and Q the pointhsell point closest to the counterpart voxelmap object.

In has to be noted that, as explained in [34], the quality of the force magnitudes
is influenced by the voxelmap resolution while computation time is affected by the
number of pointshell points that has to be checked for collision. It is therefore ad-
vised, that higher pointshell and voxelmap resolutions are only used in likely colliding
areas.

15

Chapter 3

Generic Mechanism Model

One of the main objectives of this framework is to develop a module that given the
joint angles or displacements of each Degree-of-Freedom (DoF) of the mechanism
computes the poses of all the frames attached. That is, solving the forward kinemat-
ics of the mechanism. In order to achieve this, a configuration file that provides all
the necessary information related to the mechanism is built. The module provides
a parser for this configuration file that acts as an intermediate component between
the mechanism, which provides the angles and displacements of the DoF, and the
collision computation algorithm, which receives the pose of every object. Figure 3.1
displays how this module is integrated within the framework.

DH Parameters
Base frame

Configuration file

Parser

Poses of each
elements/links

of the mechanims

Generalized DoF values

Generic Mechanism Model

Movement of base frame

{Hi}
{qi}

{H0} {0} - {1}

{2}
{3}

Figure 3.1: Integration of the Generic Mechanism Model module.

17

The configuration file, where the mechanism is described, can also be used to
compute the forces and torques acting on the joints given the forces and torques
acting on each object.The focus of this thesis, however, lies on the kinematics. This
configuration file specifies the kinematics of a robot by giving the values of four
quantities for each link following the Denavit-Hartenberg notation.

Most manipulators are structed from joints that exhibit just one DoF. In the case
of a joint having n DoF it can be modelled as n joints of 1 DoF connected with n−1

joints of zero length. Therefore, without any loss of generality, only manipulators
that have joints with a single DoF will be considered. Robots, specially humanoids,
might be formed by more than one kinematic chain; this configuration file contem-
plates mechanisms containing any number of chains.

3.1 Building the Configuration File to Model the Mech-
anism

The aim of this section is to describe the steps required to build the configuration
file used to later solve the forward kinematics problem and explain what represents
each of the parameters involved.

An example mechanism, presented in Figure 3.2, is used throughout this section
to exemplify how the configuration file is built.

3.1.1 Numbering the Mechanism

The fist step requires the user to number the points in the mechanism where co-
ordinate frames will be attached. A point must be chosen to be used as reference
in the mechanism. This will be the point number 0. This point has to be a fixed
point in the mechanism and must never be attached to a moving joint. Should it
be coincident with a joint, the reference point will be attached rigidly to the fixed
part of the joint and an extra frame would be attached to the moving part so that
it moves along with it.

All the joints and end effector points in all the links that constitute the multiple
chains of the robot have to be assigned a natural number (starting with 1) so that
no number is repeated. The joint angles/displacements (DoF of the mechanism) of
the frames located on these points will be the input to compute the transformation
matrices, so an orderly and logic numbering is advised.

18

(a) Example mechanism (b) Example mechanism overlapping with
mechanism sketch

(c) Sketched mechanism

Figure 3.2: Example mechanism acquired from [5].

Next, links are numbered so that link number i is between frame i and i + 1.
Frame i is attached rigidly to link i. Finally, all the remaining points whose transfor-
mation matrix has to be computed are numbered continuing the previously started
numbering sequence. The points that fall in this group could be fixed points, or
intermediate link points whose position is of interest.

Figure 3.3 displays how would this process be carried out in the example mech-
anism introduced by Figure 3.2.

3.1.2 Affixing Frames to Links

Once all the relevant points have been correctly numbered, as detailed in Section
3.1.1, frames are attached to these points according to the following convention:

• The Z-axis of frame i Zi is coincident with the joint axis i.

• As a general rule, Xi points along ai (the distance from Zi to Zi+1 measured
along Xi−1) in the direction of joint i to joint i+ 1. In the case of the two axes
intersecting, assign Xi to be normal to the plane containing the two axes.

19

{0} - {1}

{2}
{3}

Figure 3.3: Frame numbering for the example mechanism.

• For join i revolute: Xi is chosen so that it align with Xi−1 when θi(the angle
from Xi−1 to Xi measured about Zi) = 0 and origin i so that di (the distance
from Xi−1 to Xi measured along Zi) = 0. In the example mechanism joints 1

and 3 are revolute.

• For joint i prismatic: Xi is chosen so that θi = 0 and i’s origin is chosen at the
intersection of Xi−1 and joint axis i when di = 0. In the example mechanism
joint 2 is prismatic.

• Yi axis is assigned to complete a right-hand coordinate system.

This convention, however, does not result in a unique attachment, there exists
more than one valid configuration, since there are two choices of direction for Zi.
Moreover, in the case of intersecting axes, two choices for the direction of Xi. Figure
3.4 displays how frames are attached in the example mechanism.

3.1.3 Link Parameter Determination

Once every frame has been attached to each link in the chain, the four quantities
that describe each link are defined. Two describe the link itself and two describe the
link’s connection to a nightboring link. In the usual case of a revolute joint, θi is
called the joint variable, and the other three quantities would be fixed link parame-
ters. For prismatic joints, di is the joint variable, and the other three quantities are
fixed link parameters. No frame should have more than one variable parameter.

A table is filled for every frame attached to the mechanism indicating the values
of the four quantities that are used to describe each link:

20

{0} - {1} ẑ0-1

x̂1
x̂0

{2}
{3}

{4}

ẑ3 x̂3
ẑ4

x̂4

ẑ2

x̂2

Figure 3.4: Affixing frames to the example mechanism.

i ai−1 αi−1 di θi

1 0 0 0 θ1

2 L1 0 d2 0

3 0 90o 0 θ3

4 L3 0 0 0

Table 3.1: Denavit-Hartenberg parameter table for the example mechanism (Figure
3.2).

• ai−1 = the distance from Zi−1 to Zi measured along Xi−1

• αi−1 = the angle from Zi−1 to Zi measured about Xi−1

• di = the distance from Xi−1 to Xi measured along Zi

• θi= the angle from Xi−1 to Xi measured about Zi

Table 3.1 showcases the values for the Denavit-Hartenberg parameters for the ex-
ample mechanism. On the other hand, Figure 3.5 visually displays what magnitudes
these values represent.

3.1.4 Configuration File Specification

This section explains how the source code of the configuration file is input. The
structure has been designed so that there exist a number of different environments

21

{0} - {1} ẑ0-1

x̂1
x̂0

{2}

L1

90º

L3

{3}
{4}

ẑ3 x̂3
ẑ4

x̂4

ẑ2

x̂2

Figure 3.5: Determining Denavit-Hartenberg parameters for the example mechanism.

each of which is used to specify different features of the mechanism. Within each
environment a set of commands to input values and choose between different options
is available. As a reference to understand the environments and commands detailed
in this section the configuration file for the example mechanism is presented in Listing
3.1.

Listing 3.1: Configuration file for the example mechanism.

Length and ang le un i t s
un i t s

l ength mm
angle degree s

end_units

Frame o f each DoF
mapping

dof 0 1
dof 1 2
dof 2 3

end_mapping

DH Parameters (L1 = 240 , L3 = 160)
chain

frame 1 0 0 0 theta
frame 2 240 0 d 0
frame 3 0 90 0 theta

22

frame 4 160 0 0 0
end_chain

Comments:

• Any number of comments can be made using the # token at the beginning of
the line. Any content following this tag will be ignored.

Unit Specification (optional):

• Environment tags:

– units: This tag specifies the beginning of the units environment. All
the commands available for the units environment can be used after this
tag.

– end_units: It indicates the end of the units environment.

• Commands:

– length unit_name: It specifies the length units to be used. Possible
inputs: mm, cm, m(default), inches.

– angle unit_name: It specifies the angle units to be used. Possible inputs:
degrees, radians(default).

Mapping:

• Environment tags:

– mapping: This tag specifies the beginning of the mapping environment.
All the commands available for the chain environment can be used after
this tag.

– end_mapping: It indicates the end of the mapping environment.

• Commands:

– dof dof_id frame_id: It is used to create a mapping between the array
that will contain the values of the degrees-of-freedom and the frame they
correspond to. This way, when the array containing the values for each
degree-of-freedom is fed to compute the transformation matrices, parser
function will be aware of which frame they are attached to.

23

∗ dof_id: The id of each degree-of-freedom corresponds to its position
in the array. The numbering should start at 0, sequentially continuing
with the following positive integers.
∗ frame_id: It specifies the frame to which the corresponding degree-

of-freedom is mapped to. This value has to be a possitive integer.

Chain Creation:

• Environment tags:

– chain: This tag specifies the beginning of the chain environment. All
the commands available for the chain environment can be used after this
token.

– end_chain: Indicates the end of the chain environment.

• Commands:

– reference reference_frame_id: A positive integer is used to indicate
the reference frame to be used for the chain. The reference frame to be
used has to be previously defined for another chain or be the global refer-
ence frame 0. This command can be omitted when the chain’s reference
frame is the global reference frame 0.

– frame id a_i-1 alpha_i-1 d_i theta_i: A new frame is created with
the specified id and the four parameters that describe the link to which the
corresponding frame is attached. These parameters, detailed in Section
3.1.3, have to follow the following rules:

∗ id: A unique positive integer. Corresponds to the number given in
the process of numbering the mechanism.
∗ a_i-1: A constant real number.
∗ alpha_i-1: A constant real number.
∗ d_i-1: For frames attached to prismatic joints, this quantity is vari-

able. This is specified inputting d. (See frame 2 on Listing 3.1).
Otherwise input a real number.
∗ theta_i-1: For frames attached to revolute joints, this quantity is

variable. This is specified inputting theta. (See frames 1 and 3 on
Listing 3.1). Otherwise input a real number.

– Notes:

∗ The order in which frames inside a chain are fed is important, as each
frame will use the previous as reference.

24

∗ Note: Fixed frames or other points attached to links can be modelled
like chains of an only frame, being the parameters constant values.
The reference for these points can be specified using the reference
token as explained before.
∗ Note: The reference frame must not be provided.

General remarks:

• The parser is case sensitive. Commands must be input in lowercase as specified
below.

• The parameters that follow the commands can be separated by any number of
spaces or tags. All the parameters for the specified command should however
remain in the same line. A line break indicates that a new command will be
input.

• The configuration file can be saved using any extension. However, .txt or
.config is advised.

25

Chapter 4

Multi-Body Collision Computation
Applied to Mechanisms

The main goal of the framework is to detect the collisions between any number of
specified bodies while at the same time computing the forces and torques that arise
from that contact. This collision computation, in turn, has satisfy some requirements.
The first one is to be flexible and extendable, that means, it should be able to be
used by users of different needs and requirements in different humanoids or bodies
with the minimum amount of setup and modification. Another requirement is that
the collision detection should happen in fewer than 1ms. In the case of the visual
modality it is usually enough to employ a 60Hz rate for video playback, however, for
applications where haptic feedback is required, a rate of at least 1000Hz is usually
necessary. This fact has a both a biological and physic ground; while the eye per-
ceives a series of discontinuous frames as fluid movement, starting at a rate of 30Hz,
a much higher rate is needed for the touching perception to realistically feel a virtual
contact. Moreover, the haptic system becomes unstable for higher delays when the
same stiffness is trying to be achieved. This is due to the active system’s energy gain.
1ms requirement even nowadays is sharp, so very efficient methods are required in
which computationally expensive operations have to be avoided. To achieve such
speed the parallel computing becomes essential to relieve the large amount of oper-
ations and checks performed per loop. The code should as well be written in C++
programming language following the rules of object oriented programming (OOP).
Finally, it is desirable that the structure produced is optimized to handle complex
mechanisms, such as humanoid robots, frequently used at DLR.

The fulfilment of those requirements set this new project apart from the pre-
viously existing framework. The previous structure did also allow for multi-body
collision computation, it was, however, not optimised for more flexibility focussing

27

on mechanisms, in which objects and threads can be grouped for better performance.
The result of this project is code that is both flexible and adaptable to different re-
quirements, while at the same time remain efficient to robustly perform in a standard
computer.

4.1 Previous Structure

The current work has inherited and built upon many features from the previously
implemented version of the multi-body framework. Figure 4.1 displays the previous
structure. A configuration file was used to build the scene, in which the voxelmap
and pointshell files needed for the computation were specified. These interfaces
in charge of storing the voxelmap and pointshell haptic structures are defined as
Objects. The Object class represent the bodies in the scene that are being checked
for collision. On top of the structure the Algorithm class gathers all the Objects in
the environment and provides a method to receive the state information of the ob-
jects (receiveStateMatrix()); this data includes the position or the safety margin
needed for the computation of contacts. It also provides a method that outputs the
information relative to collisions between all the Objects (sendCollisionMatrix())
where forces and torques are displayed.

The main feature of this approach is that there exists a thread behind every
possible Object pair in charge of detecting and computing collisions using the VPS
algorithm, explained in Section 2.2. The start() and stop() methods available in
the Algorithm class respectively, start and stop the threads that handle the compu-
tation of collisions. The threads function asynchronously with respect to the main
thread that provides the state matrix for all objects and reads the contact infor-
mation every loop, independently of whether each thread has been able to compute
the collision. This can be understood as if at every moment in time an overall pic-
ture of the collision state is computed. On the other hand, if a synchronous thread
configuration were to be used, every iteration of the main thread should wait until ev-
ery subthread completed the computation, which could potentially require extended
overall computation time. An example of how this asyncronous behaviour is achieved
when computing collisions between a pair of objects, is displayed in Figure 4.2. A
collision computation loop between two objects involves:

1. Calling the Object.receivePose() method in order to feed the poses of both
the objects to the collision computation thread.

2. Calling the Algorithm.computeCollisionForce() method in order to com-
pute the forces that arise between the two bodies with the new supplied poses.

28

receiveStateMatrix()

NM

At
rib

ut
es

Algorithm

{*Objects}
...algorithmData

M
et

ho
ds

computeCollisionForce()
· getPoses()
· computeForcesVPS()
· updateForceBuffers()

pause()

resume()

{Algorithms}

Environment

{Objects}

{Voxmaps}

{Pointshells}

...

At
rib

ut
es

start()

sendCollisionMatrix()

stop()

...

M
et

ho
ds

At
rib

ut
es

objectData

Object

Pose
Force Buffer
{*Algorithms}
{*Objects}
...

objectData

M
et

ho
ds

receivePose()

updateForceBuffer()
· ...

· sendForce()

At
rib

ut
es

At
rib

ut
es

Algorithm

{*Objects}
...algorithmData

M
et

ho
ds

computeCollisionForce()
· getPoses()
· computeForcesVPS()
· updateForceBuffers()

pause()

resume()

At
rib

ut
es

objectData

Object

Pose
Force Buffer
{*Algorithms}
{*Objects}
...

objectData

M
et

ho
ds

receivePose()

updateForceBuffer()
· ...

· sendForce()

At
rib

ut
es

Figure 4.1: Previous class structure for the multi-body framework. The structure is
composed of three main classes: Environment, Algorithm and Object. The Object
class is initiated for each body in the scene. The Algorithm class is the link between
two objects that can collide and is in charge of the collision detection. Environment
contains all the others while tracking the status of each. Figure by Mikel Sagardia.

3. Calling the Object.send() and Object.updateForceBuffer() methods in or-
der to provide the new computed force to the haptic device and update the
buffer of the object respectively.

Having decided to use this configuration where every Object pair utilize a new
thread to compute collisions some problems did arise in larger projects. The initial
idea of computing collisions in parallel might seem like an overall positive idea, but
as given in (2.1), the number of pairs and consequently threads increases quadrat-
ically with the number of Objects. For 20 Objects 171 threads are required. It
was observed that projects that demanded the use of a large amount of threads did
not perform satisfactorily. The implemented structure, focuses on the optimisation
of the framework for mechanisms. Instead of using completely independent threads,
these are grouped in serially computed calls as explained in Section 4.2.

29

Figure 4.2: Computation process in the previous structure for a single object pair
(electronic module and hand): The blue arrows represent packets of information with
the position of objects being received. The green arrows depict the forces and torques
from the contact being sent. It can be observed that the Algorithm thread functions
independently from the information reception from the main thread. ∆tsend is the
time period between two consecutive computed forces being sent. treceive is the time
period between two consecutive poses being received for an object. t(1) is the time
delay between the poses being received and the start of the VPS collision detection
computation. tvps is the time required to compute the collisions for the pair of
objects. Finally, t(3) is the time delay until both forces computed are sent. Figure
by Mikel Sagardia.

4.2 Implemented Structure

This section aims to detail the structure designed to perform the multi-body colli-
sion computation. The classes created as well as the main attributes and methods
of these classes are presented in Figure 4.3. All the code produced has been written
in C++ following the object-oriented programming (OOP) paradigm and has been
stored in a library. This library can be loaded into any application to provide the

30

multi-body collision computation capabilities. As mentioned in Section 6.2, in the
future a configuration file along with a parser for this file could be used to setup the
whole environment instead of having to create an application.

There are two main classes in the multi-body collision computation class struc-
ture: ObjectStateDB and ObjectPairThreadDB. The ObjectStateDB class is a database
containing all the ObjectState objects (they store all the information relative to
the objects in the environment). This class is also able to access and modify
all the attributes of the objects it contains. The ObjectPairThreadDB class is a
database containing all the ObjectPairThread objects. Each ObjectPairThread
object is a thread that computes collisions for the pairs it has been assigned. The
ObjectPairThreadDB class is able to start and stop all the threads that compute
collisions for every object pair.

The overall workflow between classes occurs as follows: First the objects are cre-
ated specifying its voxelmap and pointshell haptic data structures. Afterwards these
objects are added to the object database from which the main functions are called
to perform modifications on these objects. Once the object database contains all
of the objects that are to be used in the scene, the relations table is created. This
table contains the contact state between each possible pair belonging to the object
database. The contact state is described by the forces and torques existing between
the two bodies, the maximum penetration, and the number of contact points between
the two haptic data structures.

The next step is the creation of the required amount of object groups in order to
ease the collision detection process. Each one of the object groups will be a separate
thread that will run along the other threads belonging to each of the object groups.
To make this possible, in each object group possible colliding pairs are added so
that there is no collision pair repeated. This way, only possible colliding pairs are
computed saving time. Any time during the computation, pairs can be added or
removed depending on whether the collision between two target objects is possible
or not. At the same time, that these threads are running, the main thread checks for
new poses of each object, sending them to the objects in the database when needed.
The total force on each object is also computed, taking into account the force yielded
on each and every colliding pair it is involved. These forces can then be sent to the
corresponding haptic device or processed to add friction or enable a god object mode.

The main classes in charge of enabling the collision computation within the multi-
body framework are detailed in sections 4.2.1 to 4.2.10.

31

ar
ra

ng
eR

el
at

io
nT

ab
le

()
se

tA
ll

Po
se

s(
*H

)
…{O

bj
ec

tS
ta

te
s}

{R
el

at
io

nT
ab

le
}

…

Ob
je
ct
St
at
eD
B

Ob
je

ct
St

at
e(

“f
il

e.
vo

x”
,

“f
il

e.
pt

s”
)

ge
t/

se
tP

os
e(

H)
ge

t/
se

tC
on

ta
ct

(*
F,

 *
T,

 d
)

up
da

te
Po

se
Bu

ff
er

()
up

da
te

Co
nt

ac
tB

uf
fe

r(
)

…{O
bj

ec
tP

os
e}

{O
bj

ec
tC

on
ta

ct
}

{P
os

eB
uf

fe
r}

{C
on

ta
ct

Bu
ff

er
}

{H
ap

ti
cS

tr
uc

tu
re

}
…

Ob
je
ct
St
at
e

ge
t/

se
tC

on
ta

ct
(*

F,
 *

T,
 d

)
re

se
t(

)
…Fo

rc
e(

*F
)

To
rq

ue
(*

T)
Pe

ne
tr

at
io

n/
Di

st
an

ce
(d

)

Ob
je
ct
Co
nt
ac
t

ge
t/

se
tP

os
e(

H)
re

se
t(

)
…Po

se
(H

)
Ti

me
 S

ta
mp

Ob
je
ct
Po
se

se
tV

ox
el

ma
p(

“f
il

e.
vo

x”
)

se
tP

oi
nt

sh
el

l(
“f

il
e.

pt
s”

)

Vo
xe

lm
ap

Po
in

ts
he

llHa
pt
ic
St
ru
ct
ur
e

in
it

()
up

da
te

(r
ow

,

 c
ol

um
n,

 O

bj
ec

tP
ai

rC
ol

li
si

on
Da

ta
)

…{O
bj

ec
tP

ai
rC

ol
li

si
on

Da
ta

s}
Re
la
ti
on
Ta
bl
e

Fo
rc

e
A

Fo
rc

e
B

To
rq

ue
 A

To
rq

ue
 B

Pe
ne

tr
at

io
n/

Di
st

an
ce

…

Ob
je
ct
Pa
ir
Co
ll
is
io
nD
at
a

se
tS

af
et

yM
ar

gi
n(

)
se

tA
ll

Po
se

s(
*H

)
…*O

bj
ec

tS
ta

te
 A

*O
bj

ec
tS

ta
te

 B
Sa

fe
ty

 M
ar

gi
n

Ob
je
ct
Pa
ir

st
ar

t(
)

st
op

()
…Th

re
ad

{O
bj

ec
tP

ai
rs

}

Ob
je
ct
Pa
ir
Th
re
ad

st
ar

tT
hr

ea
ds

()
st

op
Th

re
ad

s(
)

…{O
bj

ec
tS

ta
te

Db
}

Co
he

re
nc

e
Ve

lo
ci

ty
Co

he
re

nc
e

Sl
ee

p
Ti

me
…

Ob
je
ct
Pa
ir
Th
re
ad
DB

Figure 4.3: Class structure of the multi-body collision computation module.

32

4.2.1 ObjectState

The ObjectState class contains the ObjectPose, ObjectContact and HapticStructure
classes, providing methods to access and modify the values of their data members.
The different values of the ObjectPose and ObjectContact classes are sequentially
stored in a data buffer. The position data buffer allows for the computation of the
mean and instant, linear and angular velocity of each object. This information can
later be used to predict motion and avoid future possible collisions.

4.2.2 HapticStructure

As explained in Section 2.2, two haptic structures -voxelmpas and pointshells- are
used to represent the geometry of each body and compute the forces and torques that
might arise from collisions. This class is in charge of storing the voxelmap pointshell
structures for their future usage in the collision detection algorithm.

4.2.3 ObjectPose

Each object in the database is represented by two fundamental data. One of them
describes all related with its position and kinematics while the other details the
dynamics: the contact points torques and forces acting on it. The ObjectPose
class is in charge of storing the kinematic variables of the object in an orderly and
accessible way. The objects in this framework obey the rigid body physical laws,
thus, the position and orientation is perfectly described using a translation vector
from the reference frame to the geometric center of the object and a rotation matrix
that represents the rotation of a frame attached to the rigid body with respect to
the reference frame. This information is stored in a 3×4 transformation matrix, also
used to compute the velocity as its first derivative.

4.2.4 ObjectContact

The contact state is constituted by the forces and torques acting on the body and
a variable that stores whether the object has collided with any object during the
current iteration. One object might be colliding with more that one object at the
same time, yielding different forces for each colliding pair. The forces and torques
acting on each object pair are stored in the RelationTable class. The force and
torque stored in this class is the total force and torque acting on a certain object on
an instant of time.

33

4.2.5 ObjectStateDB

This class contains all the necessary components to build a database of ObjectState
objects. It is arranged so that the ObjectStateDB class has the main methods to be
able to set up all the variables and operate on them. Each object is in turn composed
of two subclasses, ObjectPose and ObjectContact; the former provides information
relation to position and the latter related to to the forces and torques that might
arise from collision. This class is referenced by pointers in other classes to be able
to access all the information related to each object.

4.2.6 ObectPair

This class provides the method to compute collisions for the given object pair. As a
result, forces and torques as well as the number of contact points and the distance
or penetration, in the case of the two objects overlapping, are obtained.

4.2.7 ObectPairThread

The ObjectPairThread class stores a group of ObjectPair objects to compute col-
lisions. This class has methods to add and remove ObjectPair objects. It also
provides functions to start, stop and pause the thread that is in charge of computing
the contacts for each ObjectPair.

4.2.8 ObectPairThreadDB

This class stores all the ObjectPairThread objects that may have been created and
is able to start, stop and pause all of them at the same time. This class sets an
important difference with the previous structure, where every object pair needed a
thread for the computation of contacts. Using this configuration, the user chooses to
distribute the pairs in threads in the way he pleases according to the criteria being
employed.

4.2.9 ObjectPairCollisionData

This class contains all collision data related to each pair of objects that can collide:
the closest contact point, the penetration depth (positive when the object pair is
colliding, negative otherwise) and the forces and torques on both objects. The total
force and torque, computed as a vector sum of all the forces and torques of all the
ObjectPairCollisionData, is 0 at all times.

34

4.2.10 RelationTable

This table stores ObjectPairCollisionData objects for all the possible colliding
pairs. At each moment in time, this table contains the colliding state of all the
objects. Even if it represents a table, objects are internally stored in an array that
can be accessed with the two indices of the table: row and column. It has been
defined as a 2D table instead as a database due to the fact that it relates every
object with all the other in groups of two.

4.3 Implemented Collision Computation

An important feature that differentiates the implementation of the multi-body col-
lision computation framework presented in this thesis from the previous, is the way
in which parallel computing is handled. Previously, every object pair was assigned a
different thread for collision detection. The implementation presented in this work
allows the user decide how many threads are to be created and which object pair
checks are going to be performed which threads. This structure has been chosen due
to the flexibility it offers when working with mechanisms.

Checking for collisions is a computationally expensive operation; for this reason
strategies to avoid unnecessary checks have been applied. First of all, the user must
choose a maximum velocity modulus value (vmax). In this thesis vmax = 1 m/s was
used; it was empirically verified that no moving object on the trials performed did
exceed this limit.

The user has to decide how to distribute the object pair checks in threads so
that the collision computation is ready to be started. Each thread works in parallel
with all the rest of threads. On the other hand, collision checks for each object pair
within a thread are performed sequentially. Collision computation for a given pair
of objects in a thread is performed as follows: Once a thread has been started, it
waits until a new pose is received. When a new pose is received for the first time
the VPS algorithm is called. This algorithm outputs the force (F), torque (T) and
penetration or distance (δ). The quotient between the distance and the maximum
velocity yields the minimum amount of time (∆t) in which collisions are not going to
happen. Knowing the time required for the average cycle (ts), the quotient between
(∆t) and (ts) yields the number of cycles there is no need to check for collisions;
therefore, the thread is idled during this time. Finally, when this time has expired
the process is repeated until the thread is stopped.

35

4.4 Integration of the Multi-Body Collision Computation
within the Framework

In this work two separate modules have been developed in order to achieve (self-)
collision detection for any type of mechanism. One of them, the generic robot model
module explained in Chapter 3, is in charge of solving the forward kinematics prob-
lem for the mechanism. The other, the multi-body collision computation explained
in this chapter, aims to compute contacts between the objects in the environment.
This section illustrates how these two modules are integrated within the rest of the
framework.

Mechanism Processor

init(config_file.txt)

computeH(q)

q H

Mulitbody App

receiveH(H)

computeContacts()

Mechanism

receiveJointForcesAndTorques(F, T)

sendJointData()

Virtual Representation

init(config_file.x3dv)

moveObjects(H)

F, T

Figure 4.4: The global workflow for the current multi-body framework.

The overall workflow between all the components of the framework is displayed
in Figure 4.4. First, the mechanism provides the rotations and translations of each
one of its degrees-of-freedom. The mechanism processor module is in charge of trans-
forming this information into the transformation matrices of each of the objects that
compose the mechanism. This transformation matrices are then sent to the visuali-
sation of the scene and to the threads that are computing collisions in the multi-body
application (the implementation of multi-body collision computation). Afterwards,
the object forces and torques yielded are converted into joint forces and torques and

36

sent to the mechanism. Finally, these forces and torques produce a movement on
the mechanism intended to avoid collisions that is sent back to mechanism processor
completing the cycle.

37

Chapter 5

Experiments and Results

In this chapter, all the experiments performed to check the validity of the framework
are detailed. As mentioned in Section 1.2, it is important for the work to be valid to
fulfil some requirements:

• Be valid for any type of geometry.

• Be valid for any type of mechanism.

• Operate robustly in real-time settings.

The trials carried on test that this requisites are satisfied at all times. Chapters
3 and 4 detail two distinct parts of this framework: the former, aims to provide a
simple way to deal with mechanism kinetics, while the latter explains the collision
computation process. These two parts have been tested separately for an in-depth
analysis of their behaviour and later included into the final test, aiming to exam the
performance of the framework altogether.

5.1 Generic Robot Model

In this experiment, the geometry and the kinematics behaviour is acknowledged to
the framework using a configuration file as detailed in Chapter 3. The file specifies
the position of each frame attached to each link and whether those frames are al-
lowed one degree-of-freedom rotation or translation. For this test, a simple robot arm
formed by 3 links and 3 articulated joints has been used (see Figure 5.1a). The mech-
anism starts at a horizontal rest position, where all the joint angle values are zero
(qi = 0,∀i). Then, the degrees-of-freedom begin to be articulated following a known
connecting rod-crank movement as detailed in (5.1). For this purpose no voxelmap

39

(a) Initial pose. (b) Intermediate pose. (c) Lower end pose.

Figure 5.1: Simple mechanism in motion; three links and joints. Movement corre-
sponds to (5.1)

or pointshell structures are needed due to the fact that no collision is to be computed.

Positive results for this trial must satisfy the already mentioned requirements in
addition to providing an accurate depiction of the position of the mechanism during
the whole simulation process. The reason for a known movement pattern to be used is
that it allows for simple proof of validity based on the already existing mathematical
and empirical data.

∀i : qi = arcsin (0.5 · sinα),

α = f(t).
(5.1)

5.1.1 Results

This test has been carried out on a 3.2GHz Intel Xenon 5060. Using the configu-
ration file showcased in Listing 5.1. During the simulation process carried out at
a 1ms rate the links have produced the expected motion never surpassing the 1ms
threshold, always remaining around 20µs. Some screenshots of its movement are
presented in 5.1. This first test has provided solid data to believe that the Generic
Robot Model interface behaves as expected fulfilling the imposed requirements. Due
to the simplicity of the geometries and the test settings further analysis on more
complex geometries and demanding environments has been performed, as detailed
in the following sections of this chapter.

Listing 5.1: Configuration for a simple link chain, introduced in Figure 5.1.

SIMPLE CHAIN

un i t s # Lengh/Angle un i t s (SI) .
l ength m

40

ang le degree s
end_units

mapping # Frame o f each DoF
#dof dof_id frame_id do f_o f f s e t do f_sca le
dof 0 1 0 .0 1 .0
dof 1 2 0 .0 1 .0
dof 2 3 0 .0 1 .0

end_mapping

chain
#frame id a_i−1 alpha_i−1 d_i theta_i
frame 1 0 0 0 theta
frame 2 1 .1 0 0 theta
frame 3 1 .1 0 0 theta

end_chain

l i n k
id 1
cente r 1 . 0 0 .0 0 .0 0 .5 0 .0 1 .0 0 .0 0 .0 0 .0 0 .0 1 .0 0 .0

end_link

l i n k
id 2
cente r 1 . 0 0 .0 0 .0 0 .5 0 .0 1 .0 0 .0 0 .0 0 .0 0 .0 1 .0 0 .0

end_link

l i n k
id 3
cente r 1 . 0 0 .0 0 .0 0 .5 0 .0 1 .0 0 .0 0 .0 0 .0 0 .0 1 .0 0 .0

end_link

5.2 Force and Torque Computation

Complicated scenarios make it difficult to verify that the forces and torques obtained
are indeed accurate. For this purpose, a simple test where prior mathematical cal-
culations yield the correct direction and sense for both forces an torques has been
devised.

41

The Voxelmap-Pointshell (VPS) Haptic Rendering Algorithm [28] computes the
forces and torques for each pair of voxelmap and pointshell haptic structures acting
on the pointshell in the voxelmap’s frame. Afterwards, forces and torques acting
on the voxelmap are deducted from the force and torque equilibrium between both
objects. (5.2) displays how this is achieved in the case of object A being the voxelmap
and B the pointshell.

FB = WFB = WRA · AFB,

TB = WTB = WRA · ATB,

∑
F = 0 = FA + FB → FA = −FB,

∑
MA = 0 = TA + AB× FB → TA = FB ×AB.

(5.2)

An experiment, using the the framework presented in Chapter 4, involving two
rods has been conducted to check that the forces and torques produced respond to
the laws of classical mechanics. One of the rods spins around its center-of-mass
while the other remains fixed in its initial position. At one point of the first rod’s
movement contact arises between the two bodies and therefore forces and torques
along with it. These values have been studied on the center-of-mass of each rod as
seen in Figure 5.2

5.2.1 Results

The magnitude of penalty forces is related to the penalty values, which in the case
of VPS are the penalty values of colliding points. It is not in the scope of this thesis
investigating it. However, the direction and sense of these determine whether the
collision is being computed correctly or not. Positive results for this test are defined
as the obtention of forces and torques with reasonably similar or equal direction and
same sense as those depicted in Figure 5.2.

Both rods, depicted in light blue, have been conferred a certain degree of trans-
parency to ease the perception of the penetration between the two bodies as it can
be observed in Figure 5.3.

The experiment has been been conduted on a 3.2GHz Intel Xenon 5060. The
moving rod has been modelled using 19296 solid voxels while the static rod employed
8152 pointshell points. The average simulation rate was 0.2ms. Moreover, as shown

42

TA

TB

FBFB

FA

FA

Figure 5.2: Rod force and momentum equilibrium.

Figure 5.3: Virtual representation of the two rods.

in Figure 5.4, the direction of the forces (in red) and torques (in blue) satisfy all
the initial requirements and providing positive evidence. Having already tested the
collision computation for two bodies the next step is to check the simultaneous
collision detection and subsequent computation for multiple bodies that is object of
this work.

43

(a) Contact above moving rod. (b) Contact below moving rod.

Figure 5.4: Resulting VPS forces and torques for the two rods.

Figure 5.5: Spheres approaching to contact at three different points of their move-
ment cycle. The cyan vectors indicate the direction and magnitude of the velocity
of each of the spheres.

5.3 Multiple Collision Detection

In order to check that multiple simultaneous collisions can be handled, a scenario
where three spheres are given a motion so that they meet at some point has been
produced. These spheres move with uniform linear motion starting at three different
corners of an invisible square box containing them. When these bodies hit one of
the invisible walls of this box change their sense of movement; this way, they meet
again at the center of the box. The module of the velocity of two of these sphere is
twice as much as the module of the remaining one. For this reason, the first loop
two balls will meet at the center of the box while the following all three will collide
at this point. Figure 5.5 displays some screenshots of their representation using In-
stantPlayer at different points of their movement cycle.

To facilitate the interpretation of results, different colors have been employed to

44

(a) Original geometry. (b) Voxelmap. (c) Pointshell.

Figure 5.6: Voxelmap and pointshell haptic data structures used to model the
spheres. Voxelmap: 61 voxels in X, 61 voxels in Y and 61 voxels in Z. Pointshell:
1066 pointshell points.

display the different variables that are involved in the contact of these three bodies.
Velocities are presented in cyan, forces in red and torques in blue. In addition to
that, spheres turn red when the number of colliding points is greater than zero, i.e.,
contact between bodies exists.

For this scenario, where spheres posses 0.05m radius, a resolution of 0.005m has
been used for both the voxelmap and the pointshell. In the case of the voxelmap,
this haptic structure has been produced with 20 outer layers, so as to improve the
computation of distances. Both haptic geometries are showcased in Figure 5.6

Three possible colliding pairs exist:

• Sphere 1 with sphere 2.

• Sphere 1 with sphere 3.

• Sphere 2 with sphere 3.

Even if one single thread might be enough to perform the collision detection of
these three pairs, each of them has been assigned a separate thread that continuously
checks for collisions to test the multi-threaded behaviour of the framework. Splitting
the collision checks in different threads increases the overall performance due to the
fact that repetitive tasks are executed in parallel rather than sequentially. This is
true up to a point: when the number of threads exceed the processor’s capacity the
efficiency drastically decreases, meaning that some checks should be grouped and
checked sequentially. As explained in Chapter 4, one of the mayor points of this
framework is to allow the user to decide how to distribute the colliding pairs accord-
ing to the maximum achievable efficiency in the machine being used or to what it

45

Figure 5.7: Spheres colliding at three different stages. The red arrows represent the
forces that arise from contact.

best suits his or her purpose.

These simple geometries should collide producing forces that can be interpreted
effortlessly in order to prove their validity. A successful simulation would involve
being able to detect collisions of tangent and overlapping bodies at all times simul-
taneously. In addition to that, forces, torques, velocities and the contact state have
to be computed and adequately represented without exceeding the 1ms restriction.

5.3.1 Results

The achieved representation of the contact variables and velocity can be viewed in
Figure 5.7. At the different stages of the motion of these three bodies the collisions
are successfully detected and the forces and torques computed accordingly.

In addition to the correct computation of all contact variables, this process must
satisfy some requirements to be able to be tested along with real time machines. The
trial has been carried out on a 3.2GHz Intel Xenon 5060. Figure 5.8 displays the
results obtained.

5.4 HUG Collision Detection and Avoidance

The final tests includes all the modules built for this framework. A simulator has
also been created to reproduce the movements of the real DLR’s HUG haptic device
and be able to display collisions and torques being sent to this robot. HUG is a
bi-manual haptic device consisting of two light-weight robots (LWRs). Information
relative to HUG can be found in Appendix A.

46

0.5 1 1.5 2 2.5 3
x 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Iteration Number

Ti
m

e
(m

s)

Objects Colliding
Computation Time
Mean Comp. Time

Figure 5.8: Computation time for spheres colliding with no safety margin.

In order to test the behaviour of HUG under test conditions, 14 objects have
been used to model its geometry, 7 for each arm. Figure 5.9 displays the original ge-
ometry for link 1 along with the voxelmap and pointshell haptic data structures used
to model links 2 and 1 respectively. Potentially 78 object pairs should be checked for
collision according to (2.1). However, the contiguous objects of each arm do not need
to be checked for collisions, since the joint angle limits prevents them from colliding,
yielding a total of 66 object pairs. Figure 5.10 shows both the real HUG and the
simulator developed to visualize HUG.

The multi-body collision detection framework that has been developed in C++
language works along a Simulink project in charge of controlling the real HUG robot.
HUG runs on a realtime machine with a compiled C code. The system model is ac-
cessed with the Simulink GUI. Figure 5.11 shows the Simulink block that acts as an
interface between the HUG model and the multi-body collision detection framework.

This Simulinik block receives the robot data, that includes the joint angles, then

47

(a) Link 1 meshed. (b) Link 2 voxelmap. (c) Link 1 pointshell.

Figure 5.9: Original link 1 geometry and pointshell and voxelmap data structures for
links 1 and 2 respectively: Figure 5.9a shows the original geometry of link 1. Figure
5.9b shows the voxelmap for link number 2 with a mesh resolution of 0.002m. Figure
5.9c shows the pointshell for link number 1 with a mesh resolution of 0.004m.

(a) Real HUG. (b) HUG simulator.

Figure 5.10: Real and simulated HUG. Figure 5.10a shows a human operating the
real HUG. Figure 5.10b shows the simulator developed to visualize HUG.

48

sent to the mechanism simulator. The mechanism simulator then computes the
tranformation matrices given these joint angles thanks to the mechanism processor
module explained in Chapter 3. Afterwards, this matrices are used to check collisions
between all the object pairs, and the forces and torques yielded are transformed into
joint torques in order to be sent back to the Simulink application. Having received
this torques, they are transformed empirically into an acceptable torque range for
the robot through a gain and limited to a maximum to avoid possible threats to
the overall safety of the test. This torques can be turned on and off depending on
whether they are supposed to be sent to the robot to test its collision avoidance
behaviour or not. Finally, a roundtrip delay is computed for the whole process to
check the frequency at which it can fluidly perform.

5.4.1 Results

In a first step, collisions were successfully detected and displayed in the simulator
built for this purpose. Figure 5.12 displays a virtual self-collision of HUG having
introduced a safety margin of 7.5 cm. Once the collisions were consistently detected
the computed joint torques were sent to HUG to observe the self-collision avoidance
behaviour. The robot did avoid potential collision thanks to the use of the safety
margin and the torques generated in the joints that avoided any further penetration
increase on the fictitious (due to the safety margin) penetration arouse.

Due to the fact that the simulations are executed at less than 1ms, a vast amount
of data is gathered in a short amount of time if every variable is stored in every single
iteration. For this reason, data has been collected at different sampling rates: 500
(1 sample every 500 iterations), 10 (1 sample every 10 iterations) and 1 (all possible
samples). Figures 5.13, 5.14 and 5.15 display the results obtained on a 3.2GHz Intel
Xenon 5060.

49

Figure 5.11: Simulink interface: In light blue the input and output ports to receive
the joint torques and send the joint angles are depicted. The yellow boxes output
the information received or being sent from these ports (in blue). The green shapes
account for the safety of the robot, for instance, providing switches to turn on and
off the torques sent. The grey and red boxes provide constant values. The graph
contained in the blue window pane displayed the roundtrip delay of the whole process.
Finally the orange ellipses represent the main input (robot data) and output (control
parameters) of the project.

50

Figure 5.12: Visual representation of a virtual collision in DLR’s HUG robot: Col-
liding objects are represented in bright red, forces are given by the red arrows and
torques are depicted as rounded arrows spinning around the joints; their width indi-
cates the magnitude of their value.

51

0.5 1 1.5 2 2.5
x 105

0

0.05

0.1

0.15

0.2

0.25

0.3

Iteration Number

Ti
m

e
(m

s)

Objects Colliding
Computation Time
Mean Comp. Time

Figure 5.13: Computation time for DLR’s HUG collision detection sampling 1 every
500 iterations.

52

0.5 1 1.5 2 2.5
x 105

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Iteration Number

Ti
m

e
(m

s)

Objects Colliding
Computation Time
Mean Comp. Time

Figure 5.14: Computation time for DLR’s HUG collision detection sampling 1 every
10 iterations.

53

0.5 1 1.5 2 2.5
x 105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration Number

Ti
m

e
(m

s)

Objects Colliding
Computation Time
Mean Comp. Time

Figure 5.15: Computation time for DLR’s HUG collision detection sampling every
iteration.

54

Chapter 6

Conclusions and Future Work

The goal of this thesis was to develop a framework that enables fast collision com-
putation for any type of mechanisms. Collision detection and later handling are one
of the fundamental demands on robotic systems to interact with their environment
in a safe manner. As detailed in Chapter 2, there already exist many methods with
this purpose, and even DLR’s previous implementations that compute and handle
collisions. However, to the best of my knowledge, none at the date of the production
of this work were fast or flexible enough to satisfy the demanding requirements of
the Insitute of Robotics and Mechatronics at DLR. These requirements were:

• Being valid for any type of geometries

• Being valid for any type of mechanisms

• Operating robustly in real-time settings, that is in 1 kHz

The output of this work is a multi-body collision detection framework based
on the Voxelmap-Pointshell (VPS) Algorithm [28], able to function in 1kHz and
improved for mechanisms. Additionally, a generic robot kinematics and dynamics
simulator was implemented. These modules, combined, enable self collision com-
putation of complex robot systems and collision avoidance with the environment.
Methods, implementation and validation of the experimental data are presented in
this report.

The fast and robust collision computation provided by the Voxelmap-Pointshell
(VPS) Algorithm modified DLR implementation, was the chosen method for the
process of detecting contacts and computing forces between single pairs of objects.
Being the multi-body core a problem that increases quadratically in complexity with
the number of objects, part of this project’s work was to develop a method to han-
dle collisions checks in the most efficient way possible, for which the use of parallel

55

computing in the CPU has been necessary.

Another major topic of the thesis was developing a method for inputing the
structure of a given mechanism to ease the computation of forward kinematics. This
method is also capable of computing joint actuator’s forces or torques given the forces
and torques on each link that arise from collision. Through this implementation the
user is enabled to work with several different mechanisms simply by writing a con-
figuration file and working directly with the data that need to be received from and
sent to the mechanism.

The framework described in this work has been extensively tested through differ-
ent means. At an early stage, the analysis was focused on proving that each distinct
part that compound this work functioned as expected. This was achieved through
the implementation of simple tasks that could be mathematically checked for valid-
ity. Afterwards, a simple test involving three spheres was performed. Once every
component had performed reliably under the testing conditions, an experiment for a
real robot was implemented. First, a simulator was developed to verify that a trial
on the real mechanism would result in safe human-machine interaction. To track
the human’s movement in the simulator a commercial Kinect [23] camera has been
used. Appendix B provides further insight on the topic. To track the users position
using the real HUG, Vicon camera system has been used. Only when all parts of this
framework were tested with positive results, it was integrated on the actual Haptic
User Gerät (HUG).

6.1 Conclusions

Evidence has been gathered to support that this improvement of a multi-body colli-
sion computation framework and its application to robot (self-)collision avoidance is
in the right direction to devise a future where a safe human-machine and machine-
machine interaction is possible. There are still many concerns that have to be ac-
counted for, however; collision detection is one of the major and fundamental con-
cerns today [8].

All the initial tests have yielded positive results, not only behaving to the math-
ematical model but also meeting and even outperforming the already mentioned
requirements. It was shown that the HUG device, consisting of two LWRs, can
safely avoid self collisions and collision with complex objets in the environment. All
this, with 16 objects in the scene with around 70000 triangles altogether and below
1ms. The successful outcome is due to the hard work of the many people involved

56

in this project, that have provided many of the basic tools for this framework to
successfully perform.

As it may occur in many long-lasting projects, the final output differs slightly
from the initial intention. This is due to the inclusion of new ideas, unanticipated
needs or events. However, this fact can have a positive impact on the outcome;
solving the problems that arise and finding answers to unforeseen requirements re-
sult in a more robust and flexible production. In the present work, the following
modifications with respect to the initial plan have been performed:

• The initial goal of the project was to test the framework on the humanoid robot
Justin (see Figure 6.1) the bimanual DLR haptic device HUG was used instead
[15]. All results obtained with HUG are translatable to Justin. The framework
can be implemented following the exact same steps required for HUG in Justin.

• The original idea was to test the framework checking for collisions between
all the objects that integrate a certain mechanism. Nevertheless, when the
human is added to the group of objects checked for collisions, human-machine
collision detection is enabled. To track the position an movement of the human,
Kinect[23] camera sensor has been used. New methods have been created to
read from the data stream of the device and transfer this information to the
geometry modelling the human shape. Further information on this topic can
be found in Appendix B.

Figure 6.1: DLR’s Justin humanoid robot.

The framework, however, has some limitations. In this project a framework has
been developed where the real and virtual representations have to be synchronized

57

for a correct computation of results. If the virtual model differs considerably in
position and orientation from the real mechanism, the output would be inaccurate.
Therefore, careful calibration as well as a rigorous configuration file are required.
The results are likewise subject to the accuracy of devices being used; inaccurate
position tracking would result in collisions not being detected or false positives. The
speed of the computer’s processor being used to handle the VPS collision detection
can also have an influence on the results; faster processors would allow for higher
sampling rates improving the accuracy of collision detection and the haptic feedback
in the case of forces being computed. The user, has to take into account all of these
variables and establish a safety margin (which act as a safety layer around the robot
links) that secures correct collision computation for the object application.

6.2 Future Work

To the date of writing, the framework has already been implemented for the HUG
robot. In the future, more robotic mechanism could test this framework. Presum-
ably, DLR’s Justin [7] could carry into effect the self-collision detection module. Not
limited to humanoid robots, this framework can prove to be valuable in several dif-
ferent scenarios where collision checks between bodies are required.

Being such a versatile collision computation module, the number of scenarios
where it could be tested is virtually unlimited. Assembly lines could include it to in-
crease the performance of robots interacting on the same objects. Not only collisions
can be detected, but also the exact point where contact has been produced opening
the door for new applications.

As for the framework in itself, there are some improvements that could be per-
formed. A configuration file to setup the entire environment could be implemented,
in the fashion [28] uses for its setup. This would bring the user control over all
the parameters without the need of mastering any specific programming languages.
Even for those proficient in C++ a configuration file to setup the project could save
considerable time.

Currently, the mechanism parser along with the mechanism processor are capable
of computing the forward kinematics of a given robot and the actuator forces and
torques given the forces and torques acting on the links of each chain. However,
there are many more possibilities in this field of robotics. For instance, given the
linear and angular velocities of a certain mechanism the inertia forces and torques
can be computed or given a path the module could compute the forces and torques

58

required to follow the given trajectory as detailed in [5].

DLR’s VPS implementation [28] requires the existence of penetrations to com-
pute forces and torques. In reality, contact occurs without perceivable penetration
between bodies. The God-Object Method [25] bridges this gap, enabling the VPS
method to compute forces and torques with the required penetration but then ren-
dered as if they were occurring in the surfaces of the objects. This method has been
tested in many other applications with positive results and could prove to be useful
for this particular work. Furthermore, some other modules to provide additional
functionalities could be implemented on the framework, similar to the kinetic energy
damping design or the emergency stop algorithm [6] implements.

59

Bibliography

[1] Vicon camera system. http://www.vicon.com/System/TSeries, May 2015.

[2] Lucian Balan and Gary M. Bone. Real-time 3d collision avoidance method for
safe human and robot coexistence. In International Conference on Intelligent
Robots and Systems, 2006.

[3] C. Borst, C. Ott, T. Wimböck, B. Brunner, F. Zackarias, B. Bäuml, U. Hillen-
brand, S. Haddadin, A. Albu-Schäffer, and G. Hirzinger. A humanoid upper
body system for two-handed manipulation. In Proc. of IEEE/ASME Interna-
tional Conference on Advanced Intelligent Mechatronics, 2007.

[4] J. Barbič and D.L. James. Six-dof haptic rendering of contact between geo-
metrically complex reduced deformable models. IEEE Transactions on Haptics,
1(1):39 –52, jan.-june 2008.

[5] John J. Craig. Introduction to Robotics, volume Third Edition. Pearson Educa-
tion International, 2005.

[6] Alexander Dietrich, Thomas Wimböck, Holger Täubigy, Alin Albu-Schäffer, and
Gerd Hirzinger. Extensions to reactive self-collision avoidance for torque and
position controlled humanoids. In IEEE International Conference on Robotics
and Automation, 2011.

[7] German Aerospace Center (DLR). Humanoid space justin.
http://spectrum.ieee.org/automaton/robotics/humanoids/space-justin, April
2015.

[8] Chister Ericson. Real-time Collision Detection. Morgan Kaufmann Publishers,
2005.

[9] Kaspar Fischer and Bernd Gärtner. The smallest enclosing balls of balls: Com-
binatorial structure and algorithms. International Journal of Computational
Geometry & Applications, 2004.

61

h
h

[10] Kinect Fisioterapia. Human standard proportions.
http://fissioterapia.blogspot.com.es/2015/01/hombre-de-virtuvio-y-la-historia-
de-la.html.

[11] E. Freund and J. Rossmann. The basic ideas of a proven dynamic collision
avoidance approach for multi-robot manipulator systems. In Proc. of IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 1173–1177,
October 2003.

[12] Elmer G. Gilbert, Daniel W. Johnson, and S. Sathiya Keehrthi. A fast procedure
for computing the distance between complex objects in three-dimensional space.
IEEE Journal of Robotics and Automation, 1988.

[13] S. Gottschalk, M. C. Lin, and D. Manocha. Obb-tree: A hierarchical structure
for rapid interference detection. In Proceedings of ACM SIGGRAPH ’96, 1996.

[14] S. Haddadin, A. Albu-Schäffer, A. De Luka, and G. Hirzinger. Collision detec-
tion & reaction: A contribution to safe physical human-robot interaction. In
Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 3356–3363, September 2008.

[15] Thomas Hulin. Hug - the dlr haptic user gerät.
http://www.dlr.de/rmc/sr/en/desktopdefault.aspx/tabid-8750/.

[16] Thomas Hulin, Katharina Hertkorn, Philipp Kremer, Simon Schätzle, Jordi
Artigas, Mikel Sagardia, Franziska Zacharias, and Carsten Preusche. The dlr
bimanual haptic device with optimized workspace (video). In Proc. of IEEE
International Conference on Robotics and Automation, 2011.

[17] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots.
In The International Journal of Robotics Research, pages 90–98, Spring 1986.

[18] O. Khatib, K. Yokio, O. Brock, K. Chang, and A. Casal. Robots in human
environments. In Proc. of IEEE First Workshop on Robot Motion and Control,
pages 213–221, 1999.

[19] James Kuffner, Koichi Nishiwaki, Satoshi Kagami, Yasuo Kuniyoshi, Masayuki
Inaba, and Hirochika Inoue. Self-collision detection and prevention for humanoid
robots. In Proc. of IEEE International Conference on Robotics and Automation,
May 2002.

[20] M. Lin. Efficient Collision Detection for Animation and Robotics. PhD thesis,
U.C. Berkeley, U.C Berkeley Department of Electrical Engineering and Com-
puter Science, 1993.

62

h
h

[21] H. Liu, X. Deng, and H. Zha. A planning method for safe interaction between
human arms and robot manipulators. In Proc. of IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, pages 1814–1820, August 2005.

[22] B. Martinez-Salvador, A. P. del Pobil, and M. Pérez-Francisco. A hierarchy of
detail for fast collision detection. In Proc. of IEEE International Conference on
Intelligent Robots and Systems, pages 745–750, 2000.

[23] Microsoft. Kinect for xbox 360. http://www.xbox.com/en-US/xbox-
360/accessories/kinect.

[24] B. Mirtich. Vclip: Fast and robust polyhedral collision detection. In ACM
Transactions on Graphics, July 1998.

[25] Michael Ortega, Stephane Redon, and Sabine Coquillart. A six degree-of-
freedom god-object method for haptic display of rigid bodies. Technical report,
i3D-INRIA, 2006.

[26] S. Quinlan. Efficient distance computation between non-convex objects. In
Proc. of IEEE International Conference on Robotics and Automation, pages
3324–3329, 1994.

[27] Mikel Sagardia, Thomas Hulin, Carsten Preusche, and Gerd Hirzinger. Im-
provements of the voxmap-pointshell algorithm - fast generation of haptic data-
structures. In 53. IWK - TU Ilmenau, 2008.

[28] Mikel Sagardia, Theodoros Stouraitis, and Joao Lopes e Silva. A new fast and ro-
bust collision detection and force computation algorithm applied to the physics
engine bullet: Method, integration and evaluation. In EuroVR 2014 - Con-
ference and Exhibition of the European Association of Virtual and Augmented
Reality. The Eurographics Association, 2014.

[29] A. De Santis, A. Albu-Schäffer, C. Ott, B. Siciliano, and G. Hirzinger. The
skeleton algorithm for self-collision avoidance of a humanoid manipulator. In
Proc. of IEEE/ASME International Conference on Advanced Intelligent Mecha-
tronics, 2007.

[30] F. Seto, K. Kosuge, and Y. Hirata. Self-collision avoidance motion control for
human robot cooperation system using robe. In Proc. of IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pages 50–55, August 2005.

[31] O. Stasse, A. Escande, N. Mansard, S. Miossec, P. Evrard, and A. Kheddar.
Real-time (self-)collision avoidance task on a hrp-2 humanoid robot. In Proc. of

63

h

IEEE International Conference on Robotics and Automation, pages 3200–3205,
May 2008.

[32] H. Sugiura, M. Gienger, H. Janssen, and C. Goerick. Real-time self collision
avoidance for humanoids by means of nullspace criteria and task intervals. In
Proc. of IEEE/RSJ International Conference on Humanoid Robots, pages 575–
580, December 2006.

[33] Holger Täubig, Berthold Bäuml, and Udo Frese. Real-time swept volume and
distance computation for self collision detection. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2011.

[34] Rene Weller, Mikel Sagardia, David Mainzer, Thomas Hulin, Gabriel Zach-
mann, and Carsten Preusche. A benchmarking suite for 6-dof real time collision
response algorithms. In ACM Virtual Reality and Software Technology, 2010.

[35] Robin Wolff, Carsten Preusche, and Andreas Gerndt. A modular architecture
for an interactive real-time simulation and training environment for satellite on
orbit servicing. In 15th IEEE/ACM International Symposium on Distributed
Simulation and Real Time Applications, 2011.

64

Appendices

65

Appendix A

Haptic User Gerät (HUG)

HUG, the DLR Haptic User Gerät [16] has been developed with the aim to achieve
the most realistic force-feedback for DLR’s sophisticated haptic applications. HUG
is a bimanual haptic device composed of two Light-Weight Robot (LWR) arms (see
Figure A.1). The DLR LWR is composed by a series of links united by revolute joints
being very light in weight and flexible. Its sensory equipment has been especially
designed to work in the field of human interaction. It mimics the human arm in both
size and power. Furthermore, gripper tools can be connected thanks to its standard
robot interface flange.

Figure A.1: Light Weight Robot representation.

Each LWR arm weighs just 14 kg being able to work with loads up to 14 kg. All
the electronics are integrated into the robot arms. Each of the Light Weight Robot’s
joints has a motor position sensor and a sensor for joint position and joint torque.
This enables the user to operate the robot position, velocity and torque controlled,
resulting in a highly dynamical system with active vibration damping. The hardware
specifications of this LWR arm are detailed in Table A.1.

67

Total Weight 14 kg
Max. Payload 7 kg
Max. Joint Speed 120◦/s
Sensor angular resolution 20"
Maximum Reach 936 mm
Nr. of Axes 7 (R - P - R - P - R - P - R)
Motors DLR-Robodrive
Gears Harmonic Drive
Sensors (each Joint) 2 Position, 1 Torque Sensor
Brakes Electromagnetic Safety Brake
Power Supply 48 V DC
Control Position-, Torque,- Impedance Control
Control Cycles Current 40 kHz; Joint 3 kHz; Cartesian 1 kHz
Electronics Communications by optical SERCOS-Bus

Table A.1: Hardware Specifications according to A.

HUG has been assembled with two of these robots that are mounted behind the
user, such that the intersecting workspace of the robots and the human arms becomes
maximal. Equipped with a thorough safety architecture in hard- and software, HUG
assures safe operation for human and robot.

Figure A.2: A human operating with HUG.

A particularly advantageous characteristic of HUG is its capability of generating

68

high interaction forces in a comparably large workspace. Various hand interfaces and
additional vibro-tactile feedback devices are available to enhance user interaction.
Additionally, sophisticated control strategies improve performance and guarantee
stability. To this end, HUG is well suited for versatile applications in remote and
virtual environments:

• Telemanipulation of Justin using HUG, shown in Figure A.2.

• Virtual assembly simulations in which stiff collisions and smooth sliding are
possible [3].

• Training of astronauts and mechanics [35].

• Rehabilitation.

69

70

Appendix B

Towards Human-Robot Interaction

In robotics, a high level of safety and reliability is only ensured if self-collisions and
collisions with the environment can be completely excluded. Self-collisions involve
two or more geometries of the mechanism overlapping with each other. The robot,
however, is only aware of its own geometry through the setup performed by the
user. Therefore, when the geometry of the human is rendered as part of the robot’s
geometry, self-collision avoidance results in human-robot collision avoidance. To
achieve this, there are two basic requirements:

• A virtual representation of the human geometry .

• A method to track the position or relative movement of each of the joints of
the human whose movement is to be studied.

One common virtual representation for humanoid motion would be an skeletal
surface mesh along with a skeletal joint structure. The mesh, provides the outer
shape which can be rendered with a texture for more realistic results. The skele-
tal joint structure, in turn, contains the rotations of each of the degrees-of-freedom
found in the human body; these values are then used to animate the mesh accord-
ingly, deforming the mesh in the bent regions displaying elasticity. In robotics, due
to the need of computing distances between distinct body parts and penalty forces,
this type of representation is unfrequent.The framework presented, makes use of the
voxelmap-pointhsell haptic structures [28] that are used to represent and compute
collisions between rigid bodies. At present, the deformations that might arise from
collisions are not computed. Therefore, the human geometry has been divided in
different rigid objects that assembled together represent the human shape. Figure
B.1 illustrates how this is performed.

71

Figure B.1: Assembly of the human geometry.

One of the main problems of creating a rigid geometry to model the human is the
difficulty to create a unique representation that is valid for all the different potential
users. As stated in Chapter 1, one of the main requirements of this framework is
to be flexible, and that implies that different users have to be able to make use of
it. For this reason, a module to produce the geometry to model the user’s body has
been created. The simple version only requires one parameter to be specified; the
user’s height. All the geometries are then created according to the standard human
proportions, which can be found in Figure B.2. In the case that a more accurate
representation is needed, the user is enabled to change each of the contours of the
geometries.

Figure B.2: Standard human proportions according to [10].

72

body part geometry length contour

torso ellipsoid h · 0.16 h · 0.67

head cuboid h · 0.34 h · 0.36

biceps ellipsoid h · 0.19 h · 0.24

forearm ellipsoid h · 0.15 h · 0.20

hand ellipsoid h · 0.11 h · 0.11

thight ellipsoid h · 0.25 h · 0.37

calf ellipsoid h · 0.22 h · 0.24

foot cuboid h · 0.15 h · 0.20

Table B.1: Dimension for the virtual human geometry.

When the human is within the robot’s workspace, specially high safety margins
are used to protect the human from collisions. The safety margin, as explained in
Chapter 5, acts like a protective shell around the geometry that for the collision
computation method is no different from the actual geometry. Consequently, when
wide safety margins are employed, a highly accurate representation of the body is
not strictly necessary; the priority is to bound the human geometry within the de-
sired safety distance. As a result, given the height (h) this framework models the
human geometry using cuboids and ellipsoid for the different parts that constitute
the human body. Table B.1 displays how this is achieved.

Having created the human geometry the Kinect provides a data stream contain-
ing the poses of the different joints of the skeleton when tracking the user. The
hands-free tracking is possible thanks to an infrared projector and camera that track
the movement of objects and individuals in three dimensions. An instance of the
skeleton along with the depth image is shown in Figure B.3.

The joint poses provided by Kinect are used to animate the human geometry by
mapping each joint to the corresponding object. This way, the motion of the user
being tracked is replicated by the virtual object assembly created to model the user’s
anatomy. Figure B.4 shows virtual representation of the user interacting with HUG
A.

Further experiments will be conducted for human-robot interaction using this
framework with Kinect as tracking device. Videos for this thesis have been recorded

73

Figure B.3: Skeleton and depth image provided by Kinect.

Figure B.4: Simulation of human body interacting with HUG through Kinect track-
ing.

74

that show how human-robot interaction is achieved in a simulator, using Kinect as
position-tracking device. To the date of the writing, Kinect has only been tested
with the HUG simulator using this framework. The experiments carried out on the
real HUG used Vicon [1] as position-tracking device for the human body.

75

	Abstract
	Declaration
	Original Master's Thesis Description
	Acknowledgements
	Content
	List of Figures
	List of Tables
	Introduction
	Motivation
	Objectives
	Resources
	Report outline

	Related Work
	Self-Collision Detection for Humanoids
	Sphere based Geometry Models for Self-Collision Avoidance
	Reactive Self-Collision Avoidance
	Swept Volume Distance Computation
	Protective Hulls for Collision Detection
	Comparison between Methods for Self-Collision Detection for Humanoids

	Voxelmap-Pointshell (VPS) Haptic Rendering Algorithm
	Proximity Queries and Penalty-Based Force Computation

	Generic Mechanism Model
	Building the Configuration File to Model the Mechanism
	Numbering the Mechanism
	Affixing Frames to Links
	Link Parameter Determination
	Configuration File Specification

	Multi-Body Collision Computation Applied to Mechanisms
	Previous Structure
	Implemented Structure
	ObjectState
	HapticStructure
	ObjectPose
	ObjectContact
	ObjectStateDB
	ObectPair
	ObectPairThread
	ObectPairThreadDB
	ObjectPairCollisionData
	RelationTable

	Implemented Collision Computation
	Integration of the Multi-Body Collision Computation within the Framework

	Experiments and Results
	Generic Robot Model
	Results

	Force and Torque Computation
	Results

	Multiple Collision Detection
	Results

	HUG Collision Detection and Avoidance
	Results

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography
	Appendices
	Haptic User Gerät (HUG)
	Towards Human-Robot Interaction

